
 
 

 

  

Abstract—Rational approximation of fractional order (FO) 
differ-integrators via Continued Fraction Expansion (CFE) is a 
well known technique. In this paper, the nominal structures of 
various generating functions are optimized using Genetic 
Algorithm (GA) to minimize the deviation in magnitude and 
phase response between the original FO element and the 
rationalized discrete time filter in Infinite Impulse Response 
(IIR) structure. The optimized filter based realizations show 
better approximation of the FO elements in comparison with 
the existing methods and is demonstrated by the frequency 
response of the IIR filters. 

I. INTRODUCTION 
RACTIONAL order systems have gained wide attention 
in recent years from different research communities due 

to their added flexibility and improved performance over 
their integer order counterparts in a wide variety of fields 
ranging from control, signal processing to biological 
applications [1]. Recent hardware implementation of 
fractional order elements [2] have given more impetus to the 
implementation aspect of these systems by means of 
proposing various forms of realizations and approximations 
which mimic the original system to a certain degree of 
accuracy and at the same time can be easily implemented in 
real hardware with the help of simple mathematical 
operators [3]. 

For practical purposes, a band limited implementation of 
the FO elements is important. This indicates that FO 
elements which are basically infinite dimensional linear 
filters needs to be approximated with finite dimensional 
transfer functions in a specified band of frequencies of 
practical interest [4]-[5]. There are mainly two methods of 
discretization viz. indirect and direct method [6]. The 
indirect discretization method is accomplished in two steps. 
Firstly the frequency domain fitting is done in continuous 
time domain and then the fitted continuous time transfer 
function is discretized. Direct discretization based methods 
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[7] include the application of Power Series Expansion (PSE), 
Continuous Fractional Expansion (CFE) [8], MacLaurin 
Series Expansion [9] etc with a suitable generating function. 
The mapping relation or formula for conversion from 
continuous time to discrete time operator ( s z↔ ) is known 
as the generating function. Among the family of expansion 
methods, CFE based digital realization has been extensively 
studied with various types of generating functions like 
Tustin [10], Simpson [11], Al-Alaoui [12], mixed Tustin-
Simpson [13], mixed Euler-Tustin-Simpson [14], impulse 
response based [15] and other higher order generating 
functions [16]-[18]. 

This paper focuses on the CFE based realization of the 
fractional order differ-integrators with an optimization based 
approach for the mixed type generating functions. In 
particular the weights of various composite generating 
functions like Al-Alaoui type [19], Chen-Vinagre type [13] 
etc. are optimized with a stochastic evolutionary algorithm 
known as Genetic Algorithm (GA) to minimize the 
discrepancies between the magnitude and phase response of 
the original FO differ-integrator and the high order IIR filter 
representing its band-limited discrete time realization. 

The rest of the paper is organized as follows. Section II 
builds up the theoretical framework for the present 
proposition and discusses the IIR filter realization problem 
in the light of the optimization framework. Section III 
illustrates the simulation results and highlights the major 
findings with appropriate discussions. The paper ends in 
Section IV with the conclusions followed by the references. 

II. THEORETICAL FORMULATION 

A. Family of Generating Functions and Basic Concepts 
Chen, Petras & Xue [7] and Chen, Vinagre & Podlubny 

[8] have introduced four classes of generating functions 
representing the discrete time rational approximation of a 
simple continuous-time differentiator ( ( )1s H z −≈ ) as: 
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Here, T represents the sampling time and z denotes the 
discrete time complex frequency. It is clear that the Euler’s 
discretization formula (1) is an extension of the backward 
difference technique of numerical differentiation. 
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The Tustin’s discretization can be obtained from the basic 
( s z↔ ) mapping relation by expanding the exponential 
terms with their first order approximations. i.e. 
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Also, the well known Simpson’s numerical integration 
formula is given by (in time domain): 
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By applying z transform on (4) it is found: 
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The above relationship represents a digital integrator and can 
be inverted to obtain a digital differentiator as: 
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Al-Alaoui has shown in [19] that the discretization formula 
can be improved by interpolating the classical Euler and 
Tustin’s formula as follows: 
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where, ( )0,1α ∈ is a user-specified weight that balances the 
impact of the two generating function i.e. Euler (rectangular) 
and Tustin (Trapezoidal) and their corresponding accuracies 
introduced in the discretization. Replacing 3 4α = in (6) 
produces the conventional Al-Alaoui operator as: 
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Generalized Al-Alaoui operator (6) shows that the IIR filter 
has a pole at 1z = and zero varies between [ ]1, 0z ∈ −  for 

[ ]0,1α ∈ . Thus, the operator (6) can be directly inverted to 
produce a stable IIR realization for a differentiator also. 

Simpson type generating function (6) considers a second 
order polynomial fitting between two points in discrete time. 
The above statement can be explained better by conventional 
Simpson’s numerical integration technique. Early 
discretization techniques developed by Euler and Tustin are 
mainly based on the First order polynomial fitting. 
Simpson’s advancement in the discretization technique 
shows that one can fit higher order polynomial to obtain 
better accuracy. But this is not a wise technique, since 
expansion with higher order generating function would 
increase the overall order of the discrete time filter. Also, as 
the order of generating function increases, the region of 
performance in the frequency domain gets shrinked and also 

order of the IIR filter will be high. So we have restricted this 
up to second order realization only unlike [17]-[18] and 
optimized within a chosen structure like Al-Alaoui [19] to 
obtain an optimum generating function. The generalized Al-
Alaoui type generating function (6) is ideal for applications 
where the requirement is to maximize accuracy without 
going for a higher order realization. The motivation behind 
optimum interpolation of two different discretization 
methods is the fact that the frequency response of a 
continuous time integrator lies between the Tustin and 
Euler/Simpson’s approximation [9]. 

Chen & Vinagre [13] proposed a hybrid generating 
function that interpolates the accuracies of Simpson and 
Tustin’s method as follows: 
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The generalized Chen-Vinagre operator (8) has two real 
poles at 1z = ± . Its two zeros lie at 1z = − for 0α = . But for 
any non-zero value of ( ]0,1α ∈ the IIR filter (8) will have 
non-minimum phase zero which will lead to unstable poles if 
the formula is inverted to represent a differentiator. Handling 
such unstable poles by reflecting it within the unit-circle has 
been extensively studied in [13].  

B. IIR Type Realization of FO Elements via Continued 
Fraction Expansion 

Let us now, consider a fractional order integrator 
( ) [ ]1 , 0,1G s s γ γ += ∈ ⊆               (9) 

Then, with an Al-Alaoui type generating function the 
discrete-time realization of the FO-integrator (9) becomes 
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where, {}CFE ⋅  denotes the continued fraction expansion of 
an irrational function ( )G z and is expressed as: 
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In this paper, to approximate the FO integrator (9), the 
CFE in (10) is carried out using the symbolic computation 
capabilities of the Maple Toolbox for MATLAB. Maple is 
widely used technical computing software used by Engineers 
and Scientists worldwide, with an advanced symbolic 



 
 

 

computation engine. The Maple Toolbox for MATLAB 
tightly integrates with Maple, providing all the features of 
the Maple engine to MATLAB users. In this work, the 
symbolic computation capabilities of Maple have been used 
within the MATLAB environment for evaluating the CFE of 
the operator in question and manipulating the obtained 
expressions to a form suitable for the native MATLAB 
functions to work with. The present work is an extension of 
the MATLAB routines presented in [7]-[8], [12]-[13] and 
detailed below with few modifications. 
 The ‘cfrac’ function from the Number Theory package of 
Maple has been called to symbolically calculate the CFE, 
taking 1z −  as variable x . Then the convergent polynomial 
has been generated using the ‘nthconver’ function from the 
same package. The terms have been collected and the 
requisite values substituted. The numerator and denominator 
have been separated using ‘numden’ function from the 
MTM package. The resulting numerator and denominator 
were in the symbolic type. In order to use them with other 
native MATLAB functions, they have been converted to 
polynomials of type double by calling ‘sym2poly’ and 
‘double’ functions from the same package in sequence. 
 Now, the MATLAB generates polynomial vectors with 
decreasing order. But here, 1x z −= . So, in order to obtain the 
standard filter transfer function form the numerator and 
denominator matrices have been flipped with the ‘fliplr’ 
MATLAB function. This transfer function represents the IIR 
realization of a FO integrator having a user specified order. 
Using the above mentioned technique few numerical studies 
are made for the digital realization of a semi-differentiator. 

 
Fig. 1. Accuracies of different order of IIR realization with Al-Alaoui 
generating function. 
 

Fig. 1 shows that with Al-Alaoui’s generating function 
(7), the accuracy of the IIR realization increases especially 
in the phase curve for an increase in the order of realization. 
Also, with fixed order IIR realization with the generalized 
Al-Alaoui type generating function (6), the increase in the 
weightα , balancing the influence of Euler and Tustin 
discretization formulae, better accuracy is achieved in the 
low frequency regimes whereas errors in the high frequency 
regimes also increases simultaneously (Fig. 2). This 
motivates us to choose α optimally such that it gives 
minimum discrepancy in both the gain and phase responses 
for a particular fractional order element ( s γ± ) within a 
chosen frequency band. Fig. 3 shows the effect of decrease 

in the sampling time for fixed order of IIR filter realization 
which indicates only shift of the constant phase region 
towards higher frequencies. In present simulation study, the 
sampling time has been chosen as 0.001T = , as studied by 
Chen et al. [8]. 

 
Fig. 2. Accuracies of different weights (α) of Al-Alaoui type generating 
function interpolation for 3rd order IIR realization. 

 
Fig. 3. Effect of change in sampling time (T) for 5th order IIR realization 
with Al-Alaoui type generating function. 

C. IIR Filter Realization within Optimization Framework 
The IIR filter realization is done by minimizing the 

weighted sum of the discrepancies between gain and phase 
responses of the continuous time FO element ( )G s and its 

discrete time IIR realization ( )1G z − . The objective function 

( J ) for optimum IIR realization of the FO elements is given 
by (12) and is minimized using GA to produce optimum 
value of the weight α for the generalized Al-Alaoui (6) and 
Chen-Vinagre (8) type generating functions. 
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The two components of the objective function (12), 
indicating the deviation in the magnitude and phase response 
of the FO differ-integrator and its digital IIR realization is 
evaluated within a chosen frequency band 410 , Nω ω−⎡ ⎤∈ ⎣ ⎦  

with Nω being the Nyquist frequency. From Fig. 1-3 it has 
been already shown that with Al-Alaoui’s generating 



 
 

 

function having fixed weight 3 4α = , it is hard to maintain 
constant phase for a wide range of frequencies, though the 
gain curves are almost closer to that of the FO element. 
Hence, GA based IIR filter optimization has been carried out 
for various levels of weights w , balancing the discrepancies 
in the magnitude and phase of the realization with a chosen 
generating function. Also, it is to be noted that GA and other 
evolutionary algorithms have been extensively used in recent 
literatures [20]-[25] for similar digital filter optimization 
tasks, as also in this case. 

Genetic Algorithm is a computational stochastic method 
for optimization based on the natural Darwinian evolution. In 
GA each solution vector (chromosome) is represented by bit 
strings which are the essentially an encoded form of the 
solution variables. These chromosomes evolve over 
successive generations through evolutionary operations like 
reproduction, crossover and mutation. Each set of solution 
vector in the mating pool is assigned a relative fitness value 
based on the evaluation of an objective function. The fitter 
individuals have a greater probability of passing on to the 
next generation. Newer individuals are created on 
probabilistic decisions from parent genes by the process of 
crossover. Mutation is applied at randomly selected positions 
of the parent gene to produce newer individuals. With these 
operators newer individuals are produced and the solution is 
iteratively refined until the objective function is minimized 
below a certain tolerance level or the maximum number of 
iterations are exceeded. 

III. SIMULATION STUDIES 

A. Optimization of Al-Alaoui Type Generating Function 
Al-Alaoui [19] proposed a new class of digital integrators 

which combines the merits of conventional Euler and Tustin 
type discretization methods. In this paper, Al-Alaoui’s IIR 
structure, representing a digital integrator is enhanced with 
evolutionary algorithm based optimization techniques while 
minimizing the objective function (12). Al-Alaoui type 
generating functions give slightly better accuracy when 
employed with GA based 5th order realization as shown in 
Fig. 4 and 5. 

 
Fig. 4. Accuracies of GA based 3rd order IIR realization with various levels 
of gain-phase error balancing. 

 
Fig. 5. Accuracies of GA based 5th order IIR realization of Al-Alaoui 
operator with various levels of gain-phase error balancing. 
 
The corresponding optimization results for a semi-
differentiator are reported in Table I, with optimum weights 
( optα ) of the generating function. It is also shown that the 
optimized values of the objective function ( minJ ) is lesser 
than that with the nominal Al-Alaoui operator ( Al AlaouiJ − ) 
with 3 4α = for each chosen value of w . 
 

TABLE I 
OPTIMIZATION PERFORMANCE WITH AL-ALAOUI TYPE GENERATING 

FUNCTION FOR 3RD AND 5TH ORDER IIR REALIZATION 

weight (w) 
in the J  

3rd order IIR 5th order IIR 

Jmin α opt 
JAl-Alaoui 

(α=0.75) Jmin α opt 
JAl-Alaoui 

(α=0.75) 
0.1 770.1836 1.0 770.99 738.7006 0.9286 739.006 

0.2 693.6743 0.9667 694.27 662.3276 0.8074 662.4116

0.3 617.0517 0.9053 617.55 585.7912 0.7755 585.8171

0.4 540.372 0.8771 540.84 509.2171 0.7601 509.2227

0.5 463.6698 0.8606 464.12 432.6281 0.7512 432.6282

0.6 386.9565 0.85 387.4 356.0319 0.7454 356.0338

0.7 310.2368 0.8425 310.69 279.4314 0.7411 279.4393

0.8 233.5131 0.8368 233.97 202.8284 0.7378 202.8449

0.9 156.7868 0.8324 157.26 126.2236 0.7358 126.2504
 

The 3rd order optimized IIR filters are reported in (13) for 
increasing value of the weight w balancing the relative gain-
phase discrepancies of a semi-differentiator: 
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Similar results can also be obtained for 5th order IIR 
realization for a semi-differentiator with different w as: 
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                        (14) 

B. Optimization of Chen-Vinagre Type Generating 
Function 

For the realization of a semi-integrator with Chen-Vinagre 
type generating function (8) when employed via GA always 
produces the optimized parameter as 1α = . This makes the 
realization restricted to Simpson only since it is a second 
order approximation with higher degree of accuracy in 
frequency domain. Optimization with Chen-Vinagre type of 
generating function (8) has also been carried out for 5th order 
IIR realization but no improvement in the frequency 
response has been found. The 3rd and 5th order optimum IIR 
filter with Chen-Vinagre type generating function is given 
by (15) and (16) respectively. 
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        (16) 

 
Fig. 6. Accuracies of different order of IIR realization of Al-Alaoui operator 
with Chen-Vinagre type generating function. 

 
Fig. 7. Accuracies of different weights of Chen-Viangre type generating 
function interpolation for 3rd order IIR realization. 



 
 

 

 
Fig. 8. Accuracies of GA based 3rd and 5th order IIR realization. 
 

Fig. 6 and 7 presents effects of variation in the IIR filter 
order and weight (α ) of the Chen-Vinagre type generating 
function, similar to that presented in section IIB. The relative 
accuracies of Tustin, Simpson and Al-Alaoui operator based 
3rd and 5th order IIR realization of a semi-integrator is also 
shown in Fig. 8. 

IV. CONCLUSION 
This paper shows that CFE based FO differentiator or 

integrator realizations can be improved using genetic 
algorithm. Proposed GA based IIR realization produces 
better accuracy while also keeping the order of realized filter 
low. Al-Alaoui’s operator with GA based realization shows 
better accuracy compared to its original 3rd and 5th order 
realization for a FO semi-differentiator. GA based Chen-
Vinagre type generating function reduces to the simple 
Simpson type generating function for 3rd and 5th order 
realization for a FO semi-integrator. Stability preserved 
discretaization of semi-differentiators via inversion of Chen-
Vinagre type generating function by reflecting the unstable 
poles within unit circles has been detailed in [13]. Further 
investigation can be directed towards performance measure 
of the proposed optimization technique for varying differ-
integrator orders i.e. without confining the study in semi-
differintegrators only. The concept proposed in this paper 
can also be extended for higher order operators like [17], 
[18], [2] in future research. 
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