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Abstract— Robot control requires the rapid computation of
robot shape, which for continuum robots typically involves
solving complex mechanics-based models. Furthermore, shape
computation based on kinematic input variables can be in-
accurate due to parameter errors and model simplification.
An alternate approach is to compute the shape in real-time
from a set of sensors positioned along the length of the robot
that provide measurements of local curvature, e.g., optical fiber
Bragg gratings. This paper proposes a general framework for
selecting the number and placement of such sensors with respect
to arclength so as to compute the forward kinematic solution
accurately and quickly. The approach is based on defining
numerically-efficient shape reconstruction models parameter-
ized by sensor number and location. Optimization techniques
are used to find the sensor locations that minimize shape and tip
error between a reconstruction model and a mechanics-based
model. As a specific example, several reconstruction models
are proposed and compared for concentric tube robots. These
results indicate that the choice of reconstruction model as well
as sensor placement can have a substantial effect on robot shape
estimation.

I. INTRODUCTION

Many approaches to robot control involve solving the for-
ward kinematics problem in real-time as a means to compute
the desired twist (velocity) vector for the tip coordinate
frame. For robots comprised of rigid links and discrete joints,
the kinematic model is composed of algebraic equations and
is trivial to compute. Continuum robots, however, that obtain
their shape through flexure of their structural components,
often require more complex mechanics-based models [1], [2],
[3] and [4].

For example, the kinematics of concentric tube robots are
modeled by a boundary value problem [1], [4]. These models
can be difficult to compute in real-time. Furthermore, contin-
uum robots flex when they apply forces to their environment.
Accounting for this flexure adds even more complexity to
the model [2], [4], [5] and, in addition, sensing is needed to
measure flexion.

Approaches to measuring the shape of a continuum robot
include image-based methods [6],[7], electromagnetic track-
ing [8] and force sensing in control tendons [2]. While each
of these approaches can be useful in certain circumstances,
they can also pose challenges. For example, image-based
methods can be computationally intensive leading to low
update rates. Electromagnetic tracking is subject to magnetic
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Fig. 1. Fiber Bragg Gratings used as curvature sensors along the length
of a continuum robot.

field distortions and often only provides robot tip location
and not robot shape. Tendon force sensing is corrupted by
tendon sliding friction and also does not provide local shape
information.

An alternative approach used to measure needle deflection
[9], [10] and also recently for continuum robot shape esti-
mation [11] is to use optical fibers with fiber Bragg gratings
(FBGs). By arranging multiple fibers (typically three or four)
around the circumference of a cylinder at fixed distance from
the neutral axis of bending, the strain-induced frequency
shift in a set of FBGs can be used to compute the x and
y curvature of a cross section. This is shown in Fig. 1.
By including multiple FBGs along the length of a fiber,
each possessing its own center frequency, the curvature at
a discrete set of points along the length of a curved tubular
object can be measured. The estimated shape of the object’s
centerline as well as its tip location can be reconstructed
by integrating these curvature measurements using a model
describing how curvature varies between sensors.

In prior work, sensors are placed uniformly along the
length and use the k-nearest neighbor interpolation model
[9] to reconstruct the curvature functions or use a second
order polynomial model for curvature functions and solve
for the coefficients from the boundary conditions using one-
dimensional beam theory [10].

FBG’s represent a promising alternative for continuum
robot shape sensing and the cost of optical interrogators
used to measure frequency shift has decreased considerably
in recent years. In order to provide a basis of comparison be-
tween this technology and the alternate approaches described
earlier, however, several important issues need be addressed.
These include characterizing the dependence of centerline
and tip frame error on the reconstruction model used as well
as on the number of sensors and their location along the
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length of the robot.
The contributions of this paper are to provide a framework

for addressing this problem, to propose several types of
reconstruction models and to illustrate the use of these
models in the context of concentric tube robots. The paper is
arranged as follows. The next section introduces the general
framework for optimizing sensor locations and proposes
three reconstruction models parameterized by a set of cur-
vature measurements. Section III applies this framework and
the proposed reconstruction models to concentric tube robot
kinematics. Numerical examples are presented in Section IV
and conclusions appear in final section.

II. SHAPE ESTIMATION FOR CONTINUUM ROBOTS

We begin this section with a brief review of the single
backbone curve model for describing the kinematics of a
general continuum robot. We then discuss shape reconstruc-
tion models, and show how optimal sensor locations can be
determined via an optimization problem that minimizes the
shape and tip errors between the reconstruction model and a
mechanics-based model.

A. Kinematics of Continuum Robots
The continuum robots considered in this paper can be

modeled by an arclength parametrized curve in three-
dimensional space, referred to as the backbone curve. Letting
s denote the arclength parameter, a right-handed reference
frame T (s) ∈ SE(3) is then attached to each point of the
backbone curve in such a way that (i) the z-axis is always
tangent to the backbone curve, and (ii) no rotations about the
z-axis (or backbone curve) are permitted. A reference frame
defined in this way is referred to as a Bishop frame [12].
Taking the left-invariant derivative of T (s) with respect to
s, we obtain

[V (s)] = T−1 dT

ds
=

(
[u(s)] ν

0 0

)
∈ se(3), (1)

where u(s) is given by u(s) =
(
ux(s) uy(s) 0

)T ∈
R3. The curve u(s) ∈ R3 denotes the angular velocity of
the frame T (s) per unit arclength, while ν ∈ R3 denotes
the linear velocity of the origin of T (s) per unit arclength;
for the Bishop frame as defined, the z-component of u(s) is
zero, and ν = ( 0 0 1 )T ∈ R3.

B. Shape Reconstruction Models
The estimation of shape begins with the reconstruction

of the curvature function ũ(s) defined along the backbone
curve (the tilde is used to denote functions defined in terms
of the reconstruction model). The coordinate frames T̃ (s)
are obtained by integrating Eq. (1). The shape of the robot
p̃(s) can then be obtained by taking the position vector of
T̃ (s).

1) Piecewise Constant Curvature Model: Given p sensors
with respective locations sk ∈ R, i = 1, . . . , p, the simplest
reconstruction method assumes that the curvature between
sensors is constant; this implies that the function ũ(s) is of
the form

ũ(s) = uk =
(
ukx uky 0

)T
(2)

for βsk−1 + (1 − β)sk ≤ s < βsk + (1 − β)sk+1, where
ukx and uky ∈ R respectively denote the bending curvature
sensor values at sensor location sk in the x and y directions.
The constant scalar β ∈ [0, 1] controls how the intervals
are spaced around the sensor locations: if β = 0, the sensor
covers the interval from its current location to the next sensor,
whereas if β = 1, the sensor covers the interval from the
previous sensor location to its current location. The backbone
coordinate frame T̃ (s) is computed as follows when β is set
to 0:

T̃ (s) = T0e
[Vs0 ](s1−s0)e[Vs1 ](s2−s1) · · · e[Vsk ](s−sk) (3)

The term [Vsk ] ∈ se(3) is given by [Vsk ] =
(

[uk] ν
000 0

)
.

2) Basis Function Model: The shape reconstruction mod-
els introduced in this paper are based on the assumption that
the curvature functions u(s) can be reconstructed as a linear
combination of a certain set of basis functions. Consider that
the x and y components of ũ(s) are given in the form

ũx(s) =

q∑
j=1

cjxB
j
x(s), ũy(s) =

q∑
j=1

cjyB
j
y(s) (4)

where Bjx(s) and Bjy(s) ∈ R respectively denote basis
functions in the x and y directions, cjx and cjy ∈ R are
the corresponding coefficients for the x and y components,
and q denotes the total number of basis functions. Assume
that the basis functions Bjx(s), j = 1, . . . , q in Eq. (4) are
given. To determine the coefficients cjx, j = 1, . . . , q, we
can use the sensor measurements at the arclength location
sk, k = 1, . . . , p. Let fk ∈ R be a scalar-valued function
associated with the k-th sensor location, defined as the
difference between the curvature value ũx(sk) computed
from a reconstruction model and the sensor measurement
ukx:

fkx = ũx(sk)− ukx =

q∑
j=1

cjxB
j
x(sk)− ukx (5)

The cjx can be expressed as minimizers to the least-squares
criterion involving fk:

c̄x = arg min
c̄x

p∑
k=1

fkx
2

= arg min
c̄x
‖Bxc̄x − ūx‖2, (6)

where Bx ∈ Rp×q , c̄x ∈ Rq and ūx ∈ Rp are given by

Bx =


B1
x(s1) B2

x(s1) · · · Bqx(s1)
B1
x(s2) B2

x(s2) Bqx(s2)
...

. . .
...

B1
x(sp) B2

x(sp) Bqx(sp)

 (7)

c̄x =
(
c1x c2x · · · cqx

)T
(8)

ūx =
(
u1
x u2

x · · · upx
)T

(9)

The generalized inverse Bx† of Bx can be used to compute
the augmented coefficient vector c̄x as follows:

c̄x = Bx
†ūx (10)
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In general, if p = q, a unique solution c̄x can be obtained as

c̄x = Bx
−1ūx. (11)

This results in fkx = 0 for all k = 1, . . . , p, in which case
the reconstruction model reduces to an interpolation model.
If on the other hand p > q, then Eq. (10) leads to the
least squares sum of fk, in which case the reconstruction
model reduces to a regression model. Having the number of
sensors p be smaller than the number of bases q is clearly
undesirable. If p < q, the solution to Eq. (6) is not uniquely
determined, and the reconstructed shape tends to deviate
in undesirable ways. The same procedure (5)∼(11) can be
applied to the y-component of ũ(s).

Without any knowledge of the mechanics for the target
continuum robot, choosing a suitable basis function to ef-
ficiently approximate the shape becomes difficult. Popular
choices for the basis function include the polynomial basis

Bjx(s) = sj−1, j = 1, . . . , q, (12)

as well as the Fourier series basis

Bjx(s) = ei
2πjs
L , j = −q, . . . , q. (13)

C. Optimal Sensor Location

Given p sensors and a reconstruction model ũ(·), the
sensor locations can be determined as the solution to the
following optimization problem:

min
sk

w1J1 + w2J2, k = 1, . . . , p, (14)

where J1 and J2 denote the errors of the shape and tip
configurations, respectively, and w1 and w2 denote the
corresponding weight coefficients. Assume that we have M
workspace samples, and denote the kinematic input variables
corresponding to the l-th workspace sample by ξl. Let
u(s, ξl) and p(s, ξl) denote the corresponding kinematic cur-
vature and backbone centerline solutions for ξl as determined
from a mechanics-based model. The shape error function J1

can then be defined with respect to either the curvature or
the backbone centerline as follows:

J1 =

M∑
l=1

1

L

∫ L

0

‖p(s, ξl)− p̃(s, ξl)‖ ds. (15)

Note that u(s, ξl) and p(s, ξl) can be computed from the
appropriate mechanics-based kinematic model for all the
workspace samples, while ũ(s, ξl) and p̃(s, ξl) are obtained
from the chosen reconstruction model. The tip configuration
error J2 over the M workspace samples can then be defined
as

J2 =

M∑
l=1

dt(T (L, ξl), T̃ (L, ξl)), (16)

where dt : SE(3)×SE(3)→ R denotes a suitable distance
metric between a mechanics-based solution of the tip con-
figuration T (L) and one obtained from the reconstruction
model T̃ (L).

The objective function defined in (14) represent the av-
eraged error over the workspace samples. The minimizer to

(14) can provide the minimum averaged error, however, it
does not guarantee to minimize the maximum error over the
workspace samples. If one wants the maximum tip position
error over the workspace to be minimized, one can consider
an alternative optimization formula given by

min
sk

(
max
l
dt(T (L, ξl), T̃ (L, ξl))

)
. (17)

Similar formula can be applied to the maximum curvature
or position shape error.

III. CASE STUDY: CONCENTRIC TUBE ROBOTS

Concentric tube robots have recently received considerable
attention as a new medical instrument for minimally invasive
medical procedures. They are composed of pre-curved elastic
tubes that are concentrically arranged. In this section, the
proposed shape estimation framework is applied to concen-
tric tube robots. It is assumed that the shape sensors are
attached to a sensing tube or rod located inside the innermost
robot tube that translates with this robot tube. It is also
assumed that the sensing tube is very flexible in bending,
but is torsionally stiff so that it bends, but does not twist
with the innermost robot tube.

Note that concentric tube robots are particularly challeng-
ing since the boundaries of their telescoping sections can
slide along the robot centerline with respect to the sensors.
To take this into account, the basis functions developed here
are parameterized by section extension lengths and sensor
locations are optimized over the full range of these extension
parameters.

A. Kinematics of Concentric Tube Robots

For the shape computation of a concentric tube robot, the
rotated angle θi(s) ∈ R and the three-component curvature
vector ui(s) = ( uix(s) uiy(s) uiz(s) )T ∈ R3 for every
i-th tube need to be computed along the arclength parameter
s. The mechanics-based kinematic equations for a general
concentric tube robot with n tubes are derived in [1]; these
are of the form

dαi

ds
= uiz − u1z, i = 2, . . . , n

u1z = (1/k1z)(k2zu2z + . . .+ knzunz)

duiz

ds
= (kixy/kiz) (uixûiy − uiyûix)

ui|x,y =

 n∑
j=1

Kj

−1

R
T
z (αi)

 n∑
j=1

Rz(αj)Kj ûj

∣∣∣∣∣∣
x,y

(18)

where the relative twist angle αi ∈ R is defined by αi =
θi − θ1 and R(αk)z ∈ SO(3) denotes the rotation matrix
about the z-axis by αj . ûi = ( ûix ûiy ûiz )T ∈ R3

and Ki ∈ R3×3 denote the pre-curvature vector and the
frame-invariant stiffness tensor of i-th tube, respectively,
while kixy ∈ R and kiz ∈ R are the diagonal components
of Ki. The kinematic inputs are the insertion distances Li
and the initial relative twist angles θi(0) for every i-th tube.
The shape of the concentric tube robot can be computed by
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solving the above boundary value problem for the following
given boundary conditions:

αi(0) = θi(0)− θ1(0), i = 2, . . . , n (19)
uiz(Li) = 0, i = 2, . . . , n, (20)

which are obtained from the kinematic input variables Li
and θi(0).

Assume that the curvature functions ui(s), i = 1, . . . , n
are given from the above split boundary value problem. Since
we define the shape of a continuum robot in terms of the
Bishop frame attached at each point along the backbone
curve, the untwisted curvature function u(s) needs to be
computed. Consider the curvature function un(s) described
with respect to the material coordinate frame attached to the
n-th tube; by rotating un(s) along the z-axis by the amount
of its twisted angle θn(s), the x and y components of u(s)
can be obtained as follows:

θn(s) =

∫ s

0

unz(σ)dσ (21)

u(s)|x,y = Rz (θn(s))un(s)|x,y (22)
u(s)|z = 0. (23)

The kinematic solution for the bending curvatures uix(s),
uiy(s) in the final equation of (18) can be discontinuous
along the arclength, at locations where each tube ends or
the pre-curvature of each tube changes discontinuously. The
pre-curved shape and insertion length of the tubes determine
where these discontinuous points are located. Using these
points of discontinuity, the total arclength can be divided
into several curvature sections. This discontinuity in the
curvature functions should be taken into account during
shape estimation of the concentric tube robot. We next
address section-based reconstruction models that allow for
discontinuous bending curvatures at the boundary of each
curvature section, i.e., basis functions are parameterized by
section extension length.

B. Section-Based Principal Component Analysis Model

In the previous section we have introduced various choices
of bases for the curvature function. Assume that mechanics-
based kinematic solutions are available at a large num-
ber, M , of workspace samples. Denote the kinematic in-
put variables by ξ = {θi(0), Li}i=1,...,n and the cor-
responding solutions over the M workspace samples by
{ux(s, ξl), uy(s, ξl)}l=1,...,M (the subscript l in ξl is used
to denote the index of the workspace samples).

Since the length of each section as well as the total length
varies with the kinematic input variable ξ, we define a new
length parameter ŝ ∈ [0, 1] to denote the normalized section
length. The normalized locations of the junctions will be
fixed with this new length parameter. The reconstructed cur-
vature functions ũx(ŝ) and ũy(ŝ) in the x and y directions,
along the normalized length parameter ŝ with q bases, is
given by

ũx(ŝ) =

q∑
j=1

cjxB
j
x(ŝ), ũy(ŝ) =

q∑
j=1

cjyB
j
y(ŝ) (24)

Fig. 2. Three tubes comprising the concentric tube robot design used in
the examples. Tubes 1 and 2 form a variable-curvature pair that are rotated
with respect to each other to vary their composite curvature. Tube 3 can
be arbitrarily rotated and extended and conforms to the curvature of the
variable curvature pair when retracted.

where the bases are assumed to be orthogonal:∫ 1

0

Bj(ŝ)Bj
′
(ŝ)dŝ =

{
1 if j = j′

0 else (25)

The reconstruction error for the x-curvature function over
the normalized length parameter ŝ is defined by

Jx =

M∑
l=1

∫ 1

0

‖ux(ŝ, ξl)− ũx(ŝ)‖2dŝ. (26)

Natural bases can be obtained by minimizing Jx with respect
to the bases Blx(ŝ):{

B1
x(ŝ), . . . , Bqx(ŝ)

}
= arg min

Blx(ŝ)
Jx. (27)

Discretizing every function of ŝ in Jx reduces the problem
to a vector space minimization corresponding to the well-
known principal component analysis.

C. Section-based Polynomial Regression Model

Since the robot has been divided into piecewise continuous
curvature sections, the curvature function within each section
is guaranteed to be continuous. The simplest bases for
continuous functions are polynomials. From observation of
the dominant principal components, we can conclude that it
is sufficient to use up to quadratic terms as the bases for
each section (the number of basis functions q is 3 for the
polynomial bases in Eq. (12)):

ũx(s) =

 c1x for 1 sensor.
c1x + c2xs for 2 sensors.
c1x + c2xs+ c3xs

2 for 3 or more sensors.
(28)

If a single curvature value is available within the section,
the curvature is interpolated by a constant function within
the section. If two curvature values are available within the
given section, the curvature can be linearly interpolated.
If more then two curvature values are available within a
given section, the curvature can be interpolated via Eq. (11),
or regressed via Eq. (10) to a quadratic function. In the
case of no sensor measurements on the given section, the
interpolated or regressed function of an adjacent section can
be used, although this will likely be inaccurate.
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TABLE I
CONCENTRIC TUBE PARAMETERS

Tube 1 Tube 2 Tube 3
Section 1 Section 1 Section 1 Section 2

Length (mm) 150 150 150 80

Curvature (m−1) 4.525 4.525 0.0 16.667
Relative Stiffness 1 1 0.21 0.07

IV. NUMERICAL EXPERIMENTS FOR A CONCENTRIC
TUBE ROBOT

In this section we perform numerical experiments to de-
termine how accurately the reconstruction models introduced
in Sections II and III can determine the shape of a concentric
tube robot. Consider the three-tube design shown in Fig. 2.
The model parameters for each tube are given in Table I.
This design is described in detail in [1]. Tubes 1 and 2 are
a balanced pair of tubes with fixed insertion lengths. The
kinematic inputs for this robot are the initial rotated angles
θi(0)i=1,2,3 of each tube, and the insertion length L3 of the
innermost tube.

For this design, the centerline can be decomposed into
three curvature sections by two locations of discontinuous
curvature. The first discontinuity occurs at the distal tip of
the variable curvature tube pair. The second discontinuity
corresponds to the discontinuity in pre-curvature of Tube 3.
This location lies in the interior of the variable curvature pair
and varies with insertion length, L3.

We fix the first sensor location at the distal end of the robot
(s = L). By doing that, we can always measure the curvature
of the distal curvature section for the every extension length
of Tube 3. For our specific concentric-tube robot, the distal
curvature section has always a constant curvature determined
by the twisted angle of Tube 3 at the distal.

The three reconstruction models compared here are the
piecewise constant curvature model, the section-based PCA
model, and the section-based polynomial regression model.
For each reconstruction model, results are obtained for two
sets of sensor locations: uniformly spaced sensor locations,
and the optimized sensor locations obtained as a solution to
the optimization problem (14).

To solve for the optimal sensor locations, we use the global
optimization toolbox in MATLAB with the interior point
algorithm for local search [13] and the scatter-search method
for generating trial points [14].

A. Selection of Basis Functions

Basis functions are needed for both the PCA-based model
and the polynomial regression model. The PCA basis set
can be selected using an eigenvalue analysis of the curvature
functions over the workspace to obtain the principal compo-
nent bases and their corresponding weights. In descending
order of the weight values, the first five PC bases are chosen
as the basis functions for the section-based PCA model.

As depicted in Fig. 3, the curvature basis functions for
ux(ŝ) and uy(ŝ) can be interpreted geometrically. In partic-
ular, the most dominant principal component reproduces the
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Fig. 3. PCA bases versus normalized section parameters

constant pre-curvature of the distal portion of Tube 3. The
second most dominant component represents Tubes 1 and 2
as constant in curvature over their length. The third basis
elements predominantly model the approximately constant
curvature corresponding to the portion of Tube 3 that is
retracted into Tubes 1 and 2. The fourth basis elements model
the variation from constant curvature of Tubes 1 and 2 as
predicted by the mechanics model. The fifth basis elements
predominantly model variation in curvature of the portion of
Tube 3 that is retracted into Tubes 1 and 2.

Selection of basis functions for the section-based poly-
nomial regression model involves choosing the appropriate
order of the polynomial. Using the PCA bases as a guide,
second order polynomial functions should be sufficient.
Thus, the bases described in Section III-C are appropriate
for each curvature section.

B. Number and Location of Sensors

Fig. 4 compares the average tip position error over the
workspace with respect to the number of sensors 2 to 5.
Data for the piecewise constant curvature model is not shown
since it is comparatively very large. The solid curves repre-
sent the tip position error for the uniformly spaced sensor
locations, while the dashed curves are for the optimized
sensor locations. When only two sensors are used, the PCA
model exhibits the smallest error. As the number of sensors
increases, the error of the polynomial model becomes smaller
and, while not shown, the errors of both models converge to
nonzero lower bounds.

An example of optimized sensor locations is depicted in
Fig. 5. In this example, the section-based PCA reconstruction
model is used with four sensors. The depicted configuration
is when Tube 3 is fully extended such that the middle
curvature section has zero arclength. As Tube 3 is retracted,
this arclength increases from zero and the optimized location
of sensor 2 enables measurement of this middle section’s
curvature for all possible retraction lengths.
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TABLE II
AVERAGE AND MAXIMUM ERROR FOR FIVE SENSORS

Piecewise Constant Curvature Section-based PCA Section-based Polynomial Regression
Uniformly Spaced After Optimization Uniformly Spaced After Optimization Uniformly Spaced After Optimization

Avg. Tip Position Error (mm) 6.187 3.155 0.343 0.279 0.233 0.044
Max. Tip Position Error (mm) 18.820 14.163 1.838 1.872 1.441 0.527

Avg. Curvature Error (m−1) 0.832 0.432 0.044 0.040 0.021 0.004
Max. Curvature Error (m−1) 2.267 1.104 0.197 0.210 0.110 0.034
Avg. Backbone Centerline Error (mm) 0.844 0.518 0.062 0.049 0.045 0.009
Max. Backbone Centerline Error (mm) 2.924 2.177 0.327 0.331 0.247 0.098
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Section−based PCA Model with Uniformly Spaced Sensor Locations

Section−based PCA Model with Optimized Sensor Locations

Section−based Polynomial Interpolation Model with Uniformly Spaced Sensor Locations

Section−based Polynomial Interpolation Model with Optimized Sensor Locations

Fig. 4. Average tip position error over the workspace versus the number
of sensors.

Uniformly Spaced Sensor Locations

Optimized Sensor Locations

2

3

4

1

Junction 

Fig. 5. Optimized and uniformly spaced locations for four sensors using
PCA model. Sensor at robot tip is not shown.

C. Comparison between Reconstruction Models

The accuracy of the reconstruction models can be eval-
uated using the error functions defined in Eqs. (15) and
(16): the curvature shape error, the backbone centerline error
and the tip position error. Table II lists the average and
maximum value of these error functions for the specific
case of 5 sensors. The section-based polynomial regression
model shows the smallest errors for both uniformly spaced
and optimized sensor locations, followed by the section-
based PCA model. The piecewise constant curvature model
is substantially worse than the other models.

V. CONCLUSION

FBG-based curvature sensing represents a promising ap-
proach to real-time shape sensing for continuum robots.
The shape reconstruction framework proposed in this paper
provides a standardized approach to predicting the accuracy
of such a sensing system for any continuum robot whose
curvatures are piecewise continuous over sections of varying
arclength. Using this framework, reconstruction models can
be compared and the number of sensors can be selected
to meet specific accuracy requirements. In particular, the
numerical experiments presented suggest that, in the case of

concentric tube robots, high accuracy can be achieved with a
small number of sensors. Current research is extending these
results to consider the effects of error inherent in the nominal
mechanics-based model as well as error in the curvature
sensors.
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