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Abstract

Data movement between main memory and the CPU is a
major bottleneck in parallel data-intensive applications. In
response, researchers have proposed using compilers and in-
termediate representations (IRs) that apply optimizations such
as loop fusion under existing high-level APIs such as NumPy
and TensorFlow. Even though these techniques generally do
not require changes to user applications, they require intru-
sive changes to the library itself: often, library developers
must rewrite each function using a new IR. In this paper, we
propose a new technique called split annotations (SAs) that
enables key data movement optimizations over unmodified
library functions. SAs only require developers to annotate

functions and implement an API that specifies how to par-
tition data in the library. The annotation and API describe
how to enable cross-function data pipelining and paralleliza-
tion, while respecting each function’s correctness constraints.
We implement a parallel runtime for SAs in a system called
Mozart. We show that Mozart can accelerate workloads in
libraries such as Intel MKL and Pandas by up to 15×, with
no library modifications. Mozart also provides performance
gains competitive with solutions that require rewriting li-
braries, and can sometimes outperform these systems by up
to 2× by leveraging existing hand-optimized code.
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1 Introduction

Developers build software by composing optimized libraries
and functions written by other developers. For example, a typ-
ical scientific application may compose routines from hand-
optimized libraries such as Intel MKL [5], while machine
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learning practitioners build workflows using a rich ecosystem
of Python libraries such as Pandas [52] and PyTorch [22].
Unfortunately, on modern hardware, optimizing each library
function in isolation is no longer enough to achieve the best
performance. Hardware parallelism such as multicore, SIMD,
and instruction pipelining has caused computational through-
put to outpace memory bandwidth by an order of magnitude
over several decades [44, 51, 66]. This gap has made data

movement between memory and the CPU a fundamental bot-
tleneck in data-intensive applications [55].

In recognition of this bottleneck, researchers have pro-
posed redesigning software libraries to use optimizing com-
pilers and runtimes [27, 46, 48, 56, 61, 63–65]. For exam-
ple, Weld [56] and XLA [7] are two recent compilers that
propose rewriting library functions using an intermediate
representation (IR) to enable cross-function data movement
optimization, parallelization, and JIT-compilation. In both,
data movement optimizations such as loop fusion alone have
shown improvements of two orders of magnitude in real data
analytics pipelines [8, 55].

Although this compiler-based approach has shown promis-
ing results, it is highly complex to implement. This manifests
in two major disadvantages. First, leveraging these compilers
requires highly intrusive changes to the library itself. Many of
these systems [7, 34, 36, 46, 56] require reimplementing each
operator in entirety to obtain any benefits. In addition, the li-
brary must often be redesigned to “thread a compiler” through
each function by using an API to construct a dataflow graph
(e.g., TensorFlow Ops [10] or Weld’s Runtime API [56]).
These restrictions impose a large burden of effort on the
library developer and hinder adoption. Second, the code gen-
erated by compilers might not match the performance of code
written by human experts. For example, even state-of-the-
art compilers tailored for linear algebra [7, 34, 61] generate
convolutions and matrix multiplies that are up to 2× slower
than hand-optimized implementations [3, 14, 18]. Developers
thus face a tough choice among expanding these complex
compilers, dropping their own optimizations, or forgoing op-
timization across functions.

In this paper, we propose a new technique called split anno-

tations, which provides the data movement and parallelization
optimizations of existing compilers and runtimes without re-
quiring modifications to existing code. Unlike prior work
that requires reimplementing libraries, our technique only
requires an annotator (e.g., a library developer or third-party
programmer) to annotate functions with a split annotation
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(SA) and to implement a splitting API that specifies how to
split and merge data types that appear in the library. Together,
the SAs and splitting API define how data passed into an un-
modified function can be partitioned into cache-sized chunks,
pipelined with other functions to reduce data movement, and
parallelized automatically by a runtime transparent to the li-
brary. We show that SAs yield similar performance gains with
up to 17× less code compared to prior systems that require
function rewrites, and can even outperform them by as much
as 2× by leveraging existing hand-optimized functions.

There are several challenges in enabling data movement
optimization and automatic parallelization across black-box
library functions. First, a runtime cannot naïvely pipeline data
among all the annotated functions: it must determine whether
function calls operating over split data are compatible. For
example, a function that operates on rows of pixels can be
split and pipelined with other row-based functions, but not
with an image processing algorithm that operates over patches
(similar to determining valid operator fusion rules in com-
pilers [7, 38, 46, 56]). This decision depends not on the data
itself, but on the shape of the data (e.g., image dimensions)
at runtime. To address this challenge, we designed the SAs
around a type system with two goals: (1) determining how
data is split and merged, and (2) determining which functions
can be scheduled together for pipelining. Annotators use SAs
to specify a split type for each argument and return value in
a function. These types capture properties such as data di-
mensionality and enable the runtime to reason about function
compatibility. For each split type, annotators implement a
splitting API to define how to split and merge data types.

Second, in order to pipeline data across functions, the
runtime requires a lazily evaluated dataflow graph of the
annotated functions in an application. While existing sys-
tems [17, 32, 46, 55] require library developers to change
their functions to explicitly construct and execute such a
graph using an API, our goal is to enable these optimizations
without library modifications. This is challenging since most
applications will not only make calls to annotated library func-
tions, but also execute arbitrary un-annotated code that cannot
be pipelined. To address this challenge, we designed a client
library called libmozart that captures a dataflow graph from
an existing program at runtime and determines when to exe-
cute it with no library modification, and minor to no changes
to the user application. We present designs for libmozart for
both C++ and Python. Our C++ design generates transparent
wrapper functions to capture function calls lazily, and uses
memory protection to determine when to execute lazy values.
Our Python design uses function decorators and value substi-
tution to achieve the same result. In both designs, libmozart
requires no library modifications.

Finally, once the client library captures a dataflow graph of
annotated functions, a runtime must determine how to execute
it efficiently. We designed a runtime called Mozart that uses
the split types in the SAs and the dependency information in

the dataflow graph to split, pipeline, and parallelize functions
while respecting each function’s correctness constraints.

We evaluate SAs by integrating them with several data
processing libraries: NumPy [20], Pandas [52], spaCy [24],
Intel MKL [5], and ImageMagick [15]. Our integrations re-
quire up to 17× less code than an equivalent integration with
an optimizing compiler. We evaluate SAs’ performance ben-
efits on the data science benchmarks from the Weld evalu-
ation [55], as well as additional image processing and nu-
merical simulation benchmarks for MKL and ImageMagick.
Our benchmarks demonstrate the generality of SAs and in-
clude options pricing using vector math, simulating differ-
ential equations with matrices and tensors, and aggregating
and joining SQL tables using DataFrames. End-to-end, on
multiple threads, we show that SAs can accelerate work-
loads by up to 15× over single-threaded libraries, up to 5×
compared to already-parallelized libraries, and can outper-

form compiler-based approaches by up to 2× by leveraging
existing hand-tuned code. Our source code is available at
https://www.github.com/weld-project/split-annotations.

Overall, we make the following contributions:
1. We introduce split annotations, a new technique for en-

abling data movement optimization and automatic paral-
lelization with no library modifications.

2. We describe libmozart and Mozart, a client library and
runtime that use annotations to capture a dataflow graph
in Python and C code, and schedule parallel pipelines of
black-box functions safely.

3. We integrate SAs into five libraries, and show that they
can accelerate applications by up to 15× over the single-
threaded version of the library. We also show that SAs
provide performance competitive with existing compilers.

2 Motivation and Overview

Split annotations (SAs) define how to split and pipeline data
among a set of functions to enable data movement optimiza-
tion and automatic parallelization. With SAs, an annotator—
who could be the library developer, but also a third-party
developer—annotates functions and implements a splitting
API that defines how to partition data types in a library. Un-
like prior approaches for enabling these optimizations under
existing APIs, SAs require no modification to the code library
developers have already optimized. SAs also allow develop-
ers building new libraries to focus on their algorithms and
domain-specific optimizations rather than on implementing
a compiler for enabling cross-function optimizations. Our
annotation-based approach is inspired by the popularity of
systems such as TypeScript [25], which have demonstrated
that third-party developers can annotate existing libraries (in
TypeScript’s case, by adding type annotations [26]) and allow
other developers to reap their advantages.
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// inputs are `double` arrays with `len` elements

vdLog1p(len, d1, d1); // d1 = log(d1)

vdAdd(len, d1, tmp, d1); // d1 = d1 + tmp

vdDiv(len, d1, vol_sqrt, d1); // d1 = d1 / vol_sqrt

Listing 1. Snippet from the Black Scholes options pricing
benchmark implemented using Intel MKL.

@splittable(

size: SizeSplit(size), a: ArraySplit(size),

mut out: ArraySplit(size))

void vdLog1p(long size, double *a, double *out);

@splittable(

size: SizeSplit(size), a: ArraySplit(size),

b: ArraySplit(size), mut out: ArraySplit(size))

void vdAdd(long size, double *a,

double *b, double *out);

void vdDiv(long size, double *a,

double *b, double *out);

Listing 2. SAs for three functions in Intel MKL.

2.1 Motivating Example: Black Scholes with MKL

To demonstrate the impact of SAs, consider the code snippet
in Listing 1, taken from an Intel MKL implementation of the
Black Scholes options pricing benchmark. This implementa-
tion uses MKL’s parallel vector math functions to carry out
the main computations. Each function parallelizes work using
a framework such as Intel TBB [62] and is hand-optimized
using SIMD instructions. Unfortunately, when combining
several of these functions on a multicore CPU, the workload
is bottlenecked on data movement.

The data movement bottleneck arises in this workload be-
cause each function completes a full scan of every input array,
each of which contains len elements. For example, the call
to vdLog1p, which computes the element-wise logarithm of
the double array d1 in-place, will scan sizeof(double)*len

bytes: this will often be much larger than the CPU caches.
The following call to vdAdd thus cannot exploit any locality
of data access, and must reload values for d1 from main mem-

ory. Since individual MKL functions only accept lengths and
pointers as inputs, their internal implementation has no way to
prevent these loads from main memory across different func-
tions. On modern hardware, where computational throughput
has outpaced memory bandwidth between main memory and
the CPU by over an order of magnitude [44, 51, 66], this
significantly impacts multicore scalability and performance,
even in applications that already use optimized libraries.

SAs and their underlying runtime, Mozart, address this
data movement bottleneck by splitting function arguments
into smaller pieces and pipelining them across function calls.
Listing 2 shows the SAs an annotator could provide for the
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Figure 1. Performance of the Black Scholes benchmark on
1–16 threads with MKL, Weld, and MKL with Mozart.

three functions in Listing 1. We describe the SAs fully in
§3, but at a high level, annotators use the SA and a new
abstraction called split types to define how to split each func-
tion argument into small pieces. For example, the annotator
can define a split type ArraySplit to indicate that the array
arguments be split into smaller, regularly-sized arrays. The
split type SizeSplit then indicates that the size argument be
split to represent the lengths of these arrays. Annotators then
bridge the abstraction of the split type with code that performs
the splitting (e.g., by offsetting into the original array pointer)
by implementing a splitting API for each split type.

Given these SAs, Mozart executes the code in Listing 1 in a
markedly different way. Instead of calling each MKL function
on the full input arrays at once, Mozart splits each array into
small, equally-sized chunks that collectively fit in the CPU
cache (e.g., chunks of 4096 elements per array). Mozart then
assigns these chunks across threads, and has each thread call
all the functions in the pipeline in sequence (vdLog1p, vdAdd,
etc.) on one chunk at a time. Data for each chunk resides in
each CPU’s local cache across all functions. Although the
total number of loads and stores remains unchanged (i.e.,
across all chunks, each function still loads and processes all
elements of d1, tmp, and vol_sqrt), each array element is
loaded from main memory only once and served from cache
for all subsequent accesses. This is a stark reduction compared
to the original execution, which loads each array from main
memory for each function call.

Figure 1 shows the impact of SAs on the full Black Scholes
benchmark, which contains 32 vector operations, on a modern
Intel Xeon CPU. The benchmark runs on 11GB of data. While
un-annotated MKL bottlenecks on memory at around four
threads, Mozart scales to all the cores on the machine. In this
benchmark, Mozart also outperforms the optimizing Weld
compiler, which applies optimizations such as loop fusion to
reduce data movement by keeping data in CPU registers. We
found this was because Weld does not generate vectorized
code for several operators that MKL does vectorize. Although
it is feasible to extend Weld to include SIMD versions of these
operators, this benchmark is one example of the advantages of
leveraging code that developers have already hand-optimized.

To enable these performance improvements, Mozart first
captures a dataflow graph of annotated functions called in
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User Application Annotations (§3)
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Figure 2. Overview of Mozart.

the application (Figure 2). Since our goal is to leave libraries
unmodified, we wish to capture such a graph without an
explicit API that libraries implement. The libmozart client

library (§4) transparently handles constructing such a graph
and determining when to execute it, using a combination of
auto-generated wrapper functions and memory protection in
C/C++ and function decorators in Python. Mozart then runs a
planning step to determine which functions to pipeline, and
then executes tasks using the SAs and dataflow graph (§5).

2.2 Limitations and Non-Goals

SAs have a number of restrictions and non-goals. First, since
SAs make repeated calls to black-box functions to achieve
pipelining and parallelism, they are limited to functions that
do not cause side effects or hold locks. Second, SAs do not
apply the compute-based optimizations (e.g., common subex-
pression elimination or SIMD vectorization) that systems like
Weld and TensorFlow XLA can provide by re-implementing
functions in an IR. Nevertheless, because data movement
has been shown to be one of the major bottlenecks in mod-
ern applications, we show that SAs can provide speedups
competitive with these compilers without rewriting functions.

3 Split Annotation Interface

In this section, we present the split annotation (SA) interface.
We first discuss the challenges in pipelining arbitrary func-
tions to motivate our design. We then introduce split types

and split annotations, the core abstractions used to address
these challenges. We conclude this section by describing the
splitting API that annotators implement to bridge these ab-
stractions with code to split and merge data.

3.1 Why Split Types?

Split types are necessary because some data types in the user
program can be split in multiple ways. As an example, matrix
data can be split into collections of either rows or columns, or
can even be partitioned into blocks. However, some functions
require that data be split in a specific way to ensure correct-
ness. As an example of this, consider the program below,

which uses a function to first normalize the rows of a matrix
(indicated via axis=0), followed by the columns of a matrix.

normalizeMatrixAxis(matrix, axis=0);

normalizeMatrixAxis(matrix, axis=1);

In the first call, the matrix must be split by rows, since
the function requires access to all the data in a row when
it is called. Similarly, the second call requires that the ma-
trix be split into columns. Split types allow distinguishing
these cases, even when they depend on runtime values (e.g.,
axis). Beyond ensuring correctness, split types also enable
pipelining data split in the same way across functions.

3.2 Split Types and Split Annotations

A split type is a parameterized type N ⟨V0 . . .Vn⟩ defined by
its name N and a set of parameter values V0 . . .Vn . A split
type defines how a function argument is split. Two split types
are equal if their names and parameters are equal. If the split
types for two arguments are equal, it means that they are split
in the same way, and their corresponding pieces can be passed
into a function together. 1 Each split type is associated with a
single concrete data type (e.g., an integer, array, etc.).

The library annotator decides what a “split” means for the
data types in her library. As an example, an annotator for
MKL’s vector math library, which operates over C arrays, can
choose to split arrays into multiple regularly-sized pieces. The
annotator can then define a split typeArraySplit ⟨int , int⟩ that
uniquely specifies how an array is split with two integer pa-
rameters: the length of the full array and the number of pieces
the array is split into. An array with 10 elements can be split
into two length-5 pieces with a split type ArraySplit ⟨10, 2⟩,
or into five length-2 pieces with a split typeArraySplit ⟨10, 5⟩:
these splits have different split types since their parameters
are different, even if the underlying data refers to the same
array. In the remainder of this section, we omit the parameter
representing the number of pieces, because (1) every split
type depends on it, and (2) Mozart sets it automatically (§5)
and guarantees its equality for split types it compares.

A split annotation (SA) is then an annotation over a side-
effect-free function that assigns a name and a split type to
each of the function’s arguments and its return value. List-
ing 3 shows the full syntax of a single SA. For arguments
that should not be split (and thus copied to each pipeline),
annotators can give them a “missing” split type, denoted with
“_” (e.g., “arg: _”). In addition to providing split types, the
SA specifies which of the function arguments are mutable

using the mut tag, which Mozart uses to detect data depen-
dencies between functions when building a dataflow graph
(§4). Listing 2 shows SAs for MKL array functions. Taking
the vdAdd function as an example, the SA assigns the names
size, a, b, and out to the arguments and assigns each a split

1Since type equality depends not only on the type name but also on the
parameter values, split types are formally dependent types [12].
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@splittable(

[mut] <arg1-name>: [<arg1-split-type>|_], ...

) [-> <ret-split-type>]

/* one or more functions */

Listing 3. Full syntax of a split annotation.

type. The SA marks out as mut to indicate that the function
mutates this argument.

Split Type Constructors. One subtlety in writing SAs arises
due to the split types’ parameters. Even though a split type’s
name is known when the annotator writes an SA, its parame-
ters will generally not be known until runtime. For example,
in the ArraySplit split type defined above, the length of an
array will not be known until the program executes. This cre-
ates a challenge because Mozart needs to know the full split
type including the concrete values of its parameters.

To address this, a split type can use function arguments to
compute its parameters at runtime. Specifically, for an SA
over a function F , each split type in the SA uses a construc-

tor A0 . . .An ⇒ V0 . . .Vn to construct its parameters, where
A0 . . .An are zero or more arguments of F . Within an SA,
we use the syntax Name(A0...An) to refer to a constructor
for a split type with a name Name that constructs its param-
eters with function arguments A0...An, where A0...An are
names assigned to arguments in the SA. Note that the split
type constructor is a part of the splitting API that annotators
implement for each split type—we discuss this API further
in §3.3. Unless otherwise noted, we assume in this paper that
split types use the identity function A0 . . .An ⇒ A0 . . .An as
their constructor.

As an example, consider Ex. 1 in Listing 4, which takes a
matrix argument and an axis that determines whether the func-
tion operates over rows or columns (similar to the function in
§3.1). We can represent splitting this matrix by either rows or
columns by using a split type with three integer parameters
called MatrixSplit ⟨int , int , int⟩. The parameters represent
the matrix dimensions and the axis to iterate over. Within an
SA, an annotator can write MatrixSplit(m, axis) to repre-
sent this split type: Listing 4 shows the constructor definition
for this split type, which maps the matrix and axis into the
split type’s three parameters. The split type for matrices does
not depend on the matrix data itself, since the underlying data
does not affect how the matrix is split. The SAs in Listing 2
similarly use the size argument (but not the array itself) to
construct the ArraySplit split type.

With split types, Mozart can determine whether two func-
tions can be pipelined safely. For each annotated function
that Mozart captures in a dataflow graph, it initializes the
parameters of the split types using the function’s arguments.
If all the data passed between two functions have match-
ing corresponding split types, they can be pipelined. Oth-
erwise, already-split data must be merged and re-split be-
fore passing it to the next function to prevent pipelining

// Parameters are (rows, cols, axis)

splittype MatrixSplit(int, int, int)

// Constructor for MatrixSplit

MatrixSplit(m, axis) => (m.rows, m.cols, axis)

// Ex. 1: Normalize along an axis in a matrix.

@splittable(mut m: MatrixSplit(m, axis), axis: _)

void normalizeMatrixAxis(matrix m, int axis);

// Ex. 2: Add two matrices element-wise.

@splittable(left: S, right: S) -> S

matrix add(matrix left, matrix right);

// Ex. 3: Scale a matrix element-wise.

@splittable(mut m: S, val: _)

void scaleMatrix(matrix m, double val);

// Ex. 4: Remove zero-valued rows from a matrix.

@splittable(m: S) -> unknown

matrix filterZeroedRows(matrix m);

// Ex. 5: Reduce a matrix to a vector by summing.

@splittable(m: MatrixSplit(m, axis), axis: _)

-> ReduceSplit(axis)

vector sumReduceToVector(matrix m, int axis);

Listing 4. Examples of SAs over matrices. Ex. 1 shows con-
crete split types, Ex. 2-3 show generics, Ex. 4 shows unknown
split types, and Ex. 5 shows a reduction function.

errors. Returning to the example from §3.1, we can use
the split type from Ex. 1 in Listing 4 to assign the ma-
trix arguments the split types MatrixSplit ⟨rows, cols, 0⟩ and
MatrixSplit ⟨rows, cols, 1⟩: since these split types do not match,
Mozart will not pipeline them.

Generics. SAs also support assigning generics to an argu-
ment. Generics in an SA are similar to generic types in lan-
guages such as Java or Rust: if two generics within an SA
have the same name (e.g., S), the runtime ensures that the
split types they are assigned are equal. Names for generics
are local to an SA. Generics across SAs are propagated via
type inference (§5), another common feature of existing type
systems [28, 58].

Ex. 2 and 3 in Listing 4 show generics. Ex. 2 shows a
function that adds two matrices element-wise: if left and
right are split in the same way (indicated by their matching
generic S), the function can process them together.

Unknown Split Type. Some functions will change the split
type of a value in an unknown way upon execution. Ex. 4 in
Listing 4 shows an example. The filterZeroedRows function
changes the dimensions of its input, so its output split type
is unknown after the call. We represent this in an SA using
a special split type unknown, which represents a unique split
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type. Uniqueness prevents pipelining unknown values with any
other split value: for example, if we tried to pass two unknown

values to add, the types would not match, thus preventing
pipelining. However, generic functions such as scaleMatrix

(Ex. 3), which take a single argument split in any way, can
still accept unknown values. Generics and unknown together
enable SAs to support operators such as filters, which are
common in data-processing libraries like Pandas.

3.3 Splitting and Merging with the Splitting API

Annotators bridge the split type abstraction with an implemen-
tation using the splitting API. This API has several roles: it
provides the constructor for constructing parameters, defines
how to split data, and defines how to merge split pieces back
into a full result. Table 1 summarizes these functions.

Constructor. The constructor maps values that will appear
as function arguments to the split type’s parameters. In our
ArraySplit example, the constructor takes a long value repre-
senting an array’s size and returns that size as its parameter.
The constructor should not modify its arguments.

Split Function. The split function performs the splitting op-
eration using the original function argument and the split
type parameters. It returns a split value representing the range
[start , end) in the function argument. Returning to the MKL
ArraySplit example, the split function would return pointers
offset from the base array pointer. Mozart dynamically selects
the number of elements in [start , end) and ensures that end
does not surpass the total number of items in the argument.
The Info function relays information to Mozart for this (§5).
In our implementation, the split function also takes additional
parameters such as a thread ID and the number of threads.
This allows splits that are not based on integer ranges.

Merge Function. The associative merge function coalesces
split pieces into a single value once Mozart finishes process-
ing them. In our MKL SAs, updates occur in-place, so no
merge operation is needed, but if each function returned a new
array instead, the merge function could concatenate the split
arrays into a final result. This function can also be used to
perform operations such as reductions in parallel using SAs.

Ex. 5 in Listing 4 shows an example of a reduction oper-
ator that collapses a matrix into a vector by summing ei-
ther its rows or columns. The input matrix is split using
MatrixSplit defined earlier, but the result is a new split type
ReduceSplit ⟨axis⟩ that represents partial results. In particular,
ReduceSplit represents either reduced row values or column
values, depending on axis: its merge function uses axis to
reconstruct either a row-vector or a column-vector.

3.4 Conditions to Use SAs

To summarize, a side-effect-free function F (a,b, . . .) → c can
be annotated with an SA with split types (A,B, . . .) → C if:

Splitting API Summary (§3.3)

NameConstructor(A0,...An)=> Parameters

Split(D arg, int start, int end, Parameters)=> D

Merge(Vector<D>, Parameters)=> D

Info(D arg, Parameters)=> RuntimeInfo

Table 1. The API annotators implement for a split type
Name ⟨Parameters⟩. The argument has a data type D.

F (a,b, . . .) = MerдeC (F (a1,b1, . . .), F (a2,b2, . . .), . . .)

where SplitA(a) → [a1,a2, . . .] is the split function for split
type A and MerдeC (c1, c2, . . .) is the associative merge func-
tion for split type C. There are no constraints on the number
of splits each split function produces, as long as all split func-
tions produce the same number of splits for a given function.

3.5 Summary: How Annotators Use SAs

To annotate a library, an annotator first decides how to split
the library’s core data types. She then defines split types and
implements their splitting APIs. The annotator then writes
SAs for side-effect-free functions using the defined split types.
For functions that perform reductions or require custom merge
operations, the annotator implements per-function split types
that only implement the merge function. In our integrations,
we required up to three split types for the core data types per
library (e.g., DataFrames in Pandas), and one split type per
reduction function. We generated most SAs using a script,
since functions with matching function signatures can share
the same SA. We discuss effort of integration in detail in §8.

3.6 Generality of SAs

A split type can capture a variety of data formats by splitting
inputs and enabling pipelining and parallelization because
annotators define their splitting behavior. We show in our
library integrations in §7 and in our evaluation in §8 that SAs
can split and optimize numerical and scientific workloads
that use arrays, matrices, and tensors, SQL-like workloads
that use DataFrames for operations ranging from projections
and selections to groupBys and joins, image processing work-
loads, and natural language processing workloads. We note
that, because SAs primarily aim to accelerate data parallel
workloads that can be pipelined (i.e., cases where data move-
ment optimizations in IRs are most applicable), they will be
most impactful over collection-like data.

4 The Mozart Client Libraries

Mozart relies on a lazily evaluated dataflow graph to enable
cross-function data movement optimizations. Nodes in the
dataflow graph represent calls to annotated functions and their
arguments, and edges represent data passed between func-
tions. Constructing such a graph without library modifications
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register() evaluate()

// update x with f()
f(x);

f()
g() h()

// wrapper for f
void mozart::f(x) {

register(&f, x);

void sighandler() {
unprotect_memory();
evaluate();

// access `x`
if (x[0] > 1)

Client Library

To runtime to 

update values

1

2

3

4

Call wrapper function1

Register with graph2

Raise mem. 
fault

3

Evaluate 
graph

4

Figure 3. Overview of the C++ client library.

(e.g., by using an API as in prior work [10, 57]) is challenging
because applications will contain a mix of annotated func-
tion calls and arbitrary code that may access lazy values. The
libmozart client library is responsible for capturing a graph
and determining when to evaluate it. The library has a small
interface: register(function, args) registers a function and its
arguments with the dataflow graph, and evaluate() evaluates
the dataflow graph (§5 describes the runtime) when arbitrary
code accesses lazy values. Since the libmozart design is cou-
pled with the annotated library’s language, we discuss its
design in two languages: C++ and Python.

4.1 C++ Client Library

Our C++ client library uses code generation and OS-level
memory protection to build a dataflow graph and to determine
when to evaluate it. Figure 3 outlines its design.

Writing Annotations. An annotator registers split types, the
splitting API, and SAs over C++ functions by using a com-
mand line tool we have built called annotate. This tool takes
these definitions as input and generates namespaced C++
wrapper functions around each annotated library function.
These wrapper functions are packaged with the splitting API
and a lookup table that maps functions to their SAs in a shared
library. The application writer links this wrapped library and
calls the wrapper functions instead of the original library func-
tions as always. This generally requires a namespace import
and no other code changes–we note one exception below.

Capturing a Graph. The wrapper functions are responsible
for registering tasks in the dataflow graph. When an applica-
tion calls a wrapper, its function arguments are copied into
a buffer, and the libmozart register API adds the function
and its argument buffer as a node in the dataflow graph. The
wrapper knows which function arguments are mutable, based
on which arguments in the SA were marked mut (the SA is
retrieved using the lookup table). This allows libmozart to
add the correct data-dependency edges between calls.

Determining Evaluation Points. We evaluate the dataflow
graph upon access to lazy values. There are two cases: (1) the
accessed value was returned by an annotated function, and
(2) the accessed value was allocated outside of the dataflow
graph but mutated by an annotated function.

To handle the first case, if the library function returns a
value, its wrapper instead returns a type called Future<T>.
For types where T is a pointer, Future<T> is a pointer with
an overloaded dereference operator that first calls evaluate

to evaluate the dataflow graph. For non-pointer values, the
value can be accessed explicitly with a get() method, which
forces the execution. We also override the copy constructor
of this type to track aliases, so copies of a lazy value can
be updated upon evaluation. Wrapper functions can accept
both Future<T> values and T values, so Future values may
be pipelined. Usage of Future<T> is the main code change
applications must make when using SAs in C++.

We handle the second case (shown in Figure 3 in the access
to x[0]) by using memory protection to intercept reads of
lazy values. Applications must use our drop-in malloc and
free functions for memory accessed in the dataflow graph
(e.g., via LD_PRELOAD). Our version of malloc uses the mmap

call to allocate memory with PROT_NONE permissions, which
raises a protection violation when read or written. libmozart
registers a signal handler to catch the violation, unprotects
memory, and evaluates the dataflow graph registered so far.
When calling a wrapper function for the first time after evalua-
tion, libmozart re-protects all allocated memory to re-enable
capturing memory accesses. This technique has been used in
other systems successfully [45, 46] to inject laziness.

4.2 Python Client Library

Writing Annotations. Developers provide SAs by using Python
function decorators. In Python, split types for positional ar-
guments are required, and split types for keyword arguments
default to “_” (but can be overridden).

Capturing a Graph. libmozart constructs the dataflow graph
using the same function decorator used to provide the SA.
The decorator wraps the original Python function into one
that records the function with the graph using register(). The
wrapper function then returns a placeholder Future object.

Determining Evaluation Points. Upon accessing a Future

object, libmozart evaluates the task graph. In Python, we can
detect when an object is accessed by overriding its builtin
methods (e.g., __getattribute__ to get object attributes). Af-
ter executing the task graph, the Future object forwards calls
to these methods to the evaluated cached value. To intercept
accesses to variables that are mutated by annotated functions
(based on mut), when libmozart registers a mutable object, it
overrides the object’s __getattribute__ to again force eval-
uation when the object’s fields are accessed. The original
__getattribute__ is reinstated upon evaluation.

5 The Mozart Runtime

Mozart is a parallel runtime that executes functions anno-
tated with SAs. Mozart takes the dataflow graph generated
by the client library and converts it into an execution plan.
Specifically, Mozart converts the dataflow graph into a series

297



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Shoumik Palkar and Matei Zaharia

of stages, where each stage splits its inputs, pipelines the
split inputs through library functions, and then merges the
outputs. The SAs dictate the stage boundaries. Mozart then
executes each stage over batches in parallel, where each batch
represent one set of split inputs.

5.1 Converting a Dataflow Graph to Stages

Recall that each node in the dataflow graph is an annotated
function call, and each edge from function f1 to f2 represents
a data dependency, i.e., a value mutated or returned by f1
and read by f2. Mozart converts this graph into stages. The
functions f1 and f2 are in the same stage if, for every edge
between them, the source value and destination value have
the same split type. If any split types between f1 and f2 do not
match, split data returned by f1 must be merged, and a new
stage starts with f2. Mozart traverses the graph and checks
types to construct stages.

To check split types between a source and destination argu-
ment, Mozart first checks that the split types have the same
name. If the names are equal, Mozart uses the function ar-
guments captured as part of the dataflow graph to initialize
the split types’ parameters. If the parameters also match, the
source and destination have the same split type. If either split
type is a generic, Mozart uses type inference [28, 58] to de-
termine its type by pushing known types along the edges of
the graph to set generics. If a split type cannot be inferred
(e.g., because all functions use generics), Mozart falls back to
a default for the data type: in our implementation, annotators
provide a default split type constructor per data type.

This step produces an execution plan, where each stage
contains an ordered list of functions to pipeline. The inputs to
each stage are split based on the inputs’ split types, and the
outputs are merged before being passed to the next stage.

5.2 Execution Engine

After constructing stages, Mozart executes each stage in se-
quence by (1) choosing a batch size, (2) splitting and execut-
ing each function, and (3) merging partial results.

Step 1: Discovering Runtime Parameters. Mozart sets the
number of elements in each batch and the number of ele-
ments processed per thread as runtime parameters. Since the
goal of pipelining is to reduce data movement, we use a sim-
ple heuristic for the batch size: each batch should contain
roughly sizeof(L2 cache) bytes. To determine the batch size,
Mozart calls each input’s Info function (§3), which fills a
struct called RuntimeInfo. This struct specifies the number of
total elements that will be produced for the input (e.g., number
of elements in an array or number of rows in a matrix), and
the size of each element in bytes. The batch size is then set
to C×L2CacheSize∑

sizeof (element )
(where C is a fixed constant). We found

that this value works well empirically (see §8) when pipelines
allocate intermediate split values too, since these values are
still small enough to fit in the larger shared last-level-cache.

Workers partition elements equally among themselves. The
user configures the number of workers. Mozart checks to
ensure that each split produces the same total number of
elements. We opted for static parallelism rather than dynamic
parallelism (e.g., via work-stealing) because it is simpler to
schedule and we found that it leads to similar results for most
workloads: however, dynamic work-stealing schedulers such
as Cilk [30] are also compatible with Mozart.

Step 2: Executing Functions. After setting runtime param-
eters, Mozart spawns worker threads and communicates to
each thread the range of elements it processes. Each worker
allocates thread-local temporary buffers for the split values
and enters the main driver loop. The worker’s driver loop calls
the Split function for each input and writes the result into the
temporary buffers. If Split returns NULL, the driver loop exits.
For arguments with the missing “_” split type, the original in-
put value is copied (usually, this is just a pointer-copy) rather
than split. The start and end arguments of the Split function
are set based on the batch size and the thread’s range.

To execute the function pipeline per thread, Mozart tracks
which temporary buffers should be fed to each function as
arguments by using a mapping from unique argument IDs to
buffers. The execution plan represents function calls using
these argument IDs (e.g., a call f1(a0,a1,a2) → a3 will pass
the buffers for a0, a1, and a2 as arguments and store the result
in the buffer for a3). After each batch, these buffers are moved
to a list of partial results, and Mozart starts the next batch.

Step 3: Merging Values. Once the driving loop exits, each
worker merges each list of temporary buffers via the split type
merge function (the stage tracks the split type of each result),
and then returns the merged result. Once all workers return
their partial results, Mozart calls the merge function again on
the main thread to compute the final merged results.

6 Implementation

Our C++ version of libmozart and Mozart is implemented
in roughly 3000 lines of Rust. This includes the parser for
the SAs, the annotate tool for generating header files con-
taining the wrapper functions, the client library (including
memory protection), planner, and parallel runtime. We use
Rust’s threading library for parallelism. We make heavy use
of the unsafe features of Rust to call into C/C++ functions.
Memory allocated for splits is freed by the corresponding
mergers. Mozart manages and frees temporary memory.

The Python implementation of these components is in
around 1500 lines of Python. The SAs themselves use Python’s
function decorators, and split types are implemented as ab-
stract classes with splitter and merger methods. We use process-
based parallelism to circumvent Python’s global interpreter
lock. For native Python data, we only need to serialize data
when communicating results back to the main thread. We
leverage copy-on-write fork() semantics when starting work-
ers, which also means that “_” values need not be cloned.
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7 Library Integrations

We evaluate SAs by integrating them with five popular data
processing libraries: NumPy [20], Pandas [52] spaCy [24],
Intel MKL [5] and ImageMagick [15]. Table 3 in §8 summa-
rizes effort, and we discuss integration details below.

NumPy. NumPy is a popular Python numerical processing
library, with core operators implemented in C. The core data
type in the library is the ndarray, which represents an N-
dimensional tensor. We implemented a single split type for
ndarray, whose splitting behavior depends on its shape and
the axis a function iterates over (the split type’s constructor
maps ndarray arguments to its shape). We added SAs over all
tensor unary, binary, and associative reduction operators. We
implemented split types for each reduction operator to merge
the partial results: these only required merge functions.

Pandas. Our Pandas integration implements split types over
DataFrames and Series by splitting by row. We also added
a GroupSplit split type for GroupedDataFrame, which is used
for groupBy operations. Aggregation functions that accept
this split type group chunks of a DataFrame, create partial
aggregations, and then re-group and re-aggregate the partial
aggregations in the merger. We only support commutative
aggregation functions. We support most unary and binary
Series operators, filters, predicate masks, and joins: joins split
one table and broadcast the other. Filters and joins return the
unknown split type, and most functions accept generics.

spaCy. SpaCy is a Python natural language processing li-
brary with operators in Cython. We added a split type that
uses spaCy’s builtin minibatch tokenizer to split a corpus of
text. This allows any function (including user-defined ones)
that accepts text and internally uses spaCy functions to be
parallelized and pipelined via a Python function decorator.

Intel MKL. Intel MKL [5] is an optimized closed-source
numerical computation library used as the basis for other
computational frameworks [6, 20, 22, 27, 42, 46]. To integrate
SAs, we defined three split types: one for matrices (with rows,
columns, and order as parameters), one for arrays (with length
as a parameter), and one for the size argument. Since MKL
operates over inputs in place, we did not need to implement
merger functions. We annotated all functions in the vector
math header, the saxpy (L1 BLAS) header, and the matrix-
vector (L2 BLAS) headers.

ImageMagick. ImageMagick [15] is a C image processing
library that contains an API where images are loaded and
processed using an opaque handle called MagickWand. We
implemented a split type for the MagickWand type, where the
split function uses a crop function to clone and return a subset
of the original image. ImageMagick also contains an API for
appending several images together by stacking them—our
split function thus returns entire rows of an image, and this
API is used in the merger to reconstruct the final result.

7.1 Experiences with Integration

Unsupported Functions. We found that there were a hand-
ful of functions in each library that we could not annotate.
For example, in the ImageMagick library, the Blur function
contains a boundary condition where the edges of an image
are processed differently from the rest of the image. SAs’
split/merge paradigm would produce incorrect results here,
because this special handling would occur on each split rather
than on just the edges of the full image. Currently, annotators
must manually determine whether each function is safe to
annotate (similar to other annotation-based systems such as
OpenMP). We found that this was straightforward in most
cases by reading the function documentation, but tools that
could formally prove an SA’s compatibility with a function
would be helpful. We leave this to future work. We did not find
any functions that internally held locks or were not callable
from multiple threads in the libraries we annotated.

Debugging and Testing. Since annotators must manually en-
force the soundness of an SA, we built some mechanisms
to aid in debugging and testing them. The annotate tool, for
example, will ensure that a split type is always associated
with the same concrete type. The runtimes for both C and
Python include a “pedantic mode” for debugging that can be
configured to panic if a function receives splits with differing
numbers of elements, receives no elements, or receives NULL

data. The runtime can also be configured to log each function
call on each split piece, and standard tools such as Valgrind
or GDB are still available. Anecdotally, the logs and pedantic
mode made debugging invalid split/merge functions and er-
rors in SAs unchallenging. We also fuzz tested our annotated
functions to stress their correctness.

8 Evaluation

In evaluating split annotations, we seek to answer several
questions: (1) Can SAs accelerate end-to-end workloads that
use existing unmodified libraries? (2) Can SAs match or out-
perform compiler-based techniques that optimize and JIT ma-
chine code? (3) Where do performance benefits come from,
and which classes of workloads do SAs help the most?

Experimental Setup. We evaluate workloads that use the
five libraries in §7: NumPy v1.16.2, Pandas v0.22.0, spaCy
v2.1.3, Intel MKL 2018 and ImageMagick v7.0.8. We ran all
experiments on an Amazon EC2 m4.10xlarge instance with
Intel Xeon E5-2676 v3 CPUs (40 logical cores) and 160GB of
RAM, running Ubuntu 18.04 (Linux 4.4.0). Unless otherwise
noted, results average over five runs.

8.1 Workloads

We evaluate the end-to-end performance benefits of SAs using
Mozart on a suite of 15 data analytics workloads (of which
four are repeated in NumPy and Intel MKL). Eight of the
benchmarks are taken from the Weld evaluation [55], which
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Workload Libraries Description (# Operators)

Black
Scholes

NumPy,
MKL

Computes the Black Scholes [1] for-
mula over a set of vectors. (32)

Haversine NumPy,
MKL

Computes Haversine Dist. [11]
from a set of GPS coordinates to
a fixed point. (18)

nBody NumPy,
MKL

Uses Newtonian force equations to
determine the position/velocity of
stars over time. (38)

Shallow
Water

NumPy,
MKL

Estimates the partial differential
equations used to model the flow
of a disturbed fluid [23]. (32)

Data
Cleaning [21]

Pandas Cleans a DataFrame of 311 re-
quests [9] by replacing NULL, bro-
ken, or missing values with NaN. (8)

Crime Index Pandas,
NumPy

Computes an average “crime index”
score, given per-city population and
crime information. (16)

Birth
Analysis [49]

Pandas,
NumPy

Given a dataset of number of births
by name/year, computes fraction of
names starting with “Lesl” grouped
by gender and year-of-birth. (12)

MovieLens Pandas,
NumPy

Joins tables from the MovieLens
dataset [43] to find movies that are
most divisive by gender. (18)

Speech
Tag

spaCy Tags parts of speech and extracts
features from a corpus of text. (8)

Nashville ImageMagick Image pipeline [19] that applies
color masks, gamma correction, and
HSV modulation. (31)

Gotham ImageMagick Image pipeline [13] that applies
color masks, saturation/contrast ad-
justment, and modulation. (15)

Table 2. Workloads used in our evaluation. Descriptions for
workloads from Weld are taken from [55]. The number in
parentheses shows the number of library API calls.

obtained them from popular GitHub repositories, Kaggle com-
petitions, and online tutorials. We also evaluate an additional
numerical analysis workload (Shallow Water) over matrix
operations, taken from the Bohrium paper [46] (Bohrium
is an optimizing NumPy compiler that we compare against
here). Finally, we evaluate two open-source image processing
workloads [16] that use ImageMagick, and a part-of-speech
tagging workload [24] that uses spaCy.

8.2 End-to-end Performance Results

Figure 4 shows Mozart’s end-to-end performance on our 15
benchmarks on 1–16 threads. Each benchmark compares
Mozart vs. a base system without SAs (e.g., NumPy or MKL

without SAs). We also compare against optimizing compiler-
based approaches that enable parallelism and data movement
optimization without changing the library’s API, but require
re-implementing functions under-the-hood.

Summary of all Results. On 16 threads, Mozart provides
speedups of up to 14.9× over libraries that are single-threaded,
and speedups of up to 4.7× over libraries that are already par-
allelized due to its data movement optimizations. Across the
15 workloads, Mozart is within 1.2× of all compilers we
tested in six workloads, and outperforms all the compilers
we tested in four workloads. Compilers outperform Mozart
by over 1.5× in two workloads. Compilers have the greatest
edge over Mozart in workloads that contain many operators
implemented in interpreted Python, since they naturally bene-
fit more from compilation to native code than they do from
data movement optimizations. We discuss workloads below.

NumPy Numerical Analysis (Figures 4a-d). We evaluate
the NumPy workloads against un-annotated NumPy and three
Python JIT compilers: Bohrium [46], Numba [6], and Weld.
Each compiler requires function rewrites under-the-hood. Fig-
ures 4a-b show the performance of Black Scholes and Haver-
sine, which apply vector math operators on NumPy arrays.
All systems enable near-linear scalability since all operators
can be pipelined and parallelized. Overall, Mozart enables
speedups of up to 13.6×.

The nBody and Shallow Water workloads operate over
tensors and matrices, and contain operators that cannot be
pipelined. For example, Shallow Water performs several row-
wise matrix operations and then aggregates along columns to
compute partial derivatives. Mozart captures these boundaries
using split types and still pipelines the other operators in
these workloads. Figures 4c-d show that Mozart enables up
to 4.6× speedups on 16 threads. Bohrium outperforms other
systems in the Shallow Water benchmark because it captures
indexing operations that Mozart cannot split and that the
other compilers could not parallelize (Bohrium converts the
indexing operation into its IR, whereas Mozart treats it as a
function call over a single element that cannot be split).

Data Science with Pandas and NumPy (Figures 4e-h). We
compare the Pandas workloads against Weld: the other com-
pilers did not accelerate these workloads. The Data Cleaning
and Crime Index workloads use Pandas and NumPy to filter
and aggregate values in a Pandas DataFrame. Figures 4e-f
show the results. Mozart parallelizes and pipelines both of
these workloads and achieves an up to 14.9× speedup over
the native libraries. However, Weld outperforms Mozart by up
to 5.85× even on 16 threads, because both contain operators
that use interpreted Python code which Weld compiles.

Figures 4g-h shows the results for the Birth Analysis and
MovieLens workloads. These workloads are primarily bot-
tlenecked on grouping and joining operations implemented
in C. In Birth Analysis, Mozart accelerates groupBy aggre-
gations by splitting grouped DataFrames and parallelizing
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Figure 4. End-to-end performance on 15 benchmarks compared against a base system (in caption, e.g., NumPy) and several
optimizing compilers that require rewriting libraries. We show results on 1–16 threads. Each plot displays the speedup (in red)
that Mozart enables on 16 threads over the base system.

(there are no pipelined operators), leading to a 4.7× speedup.
In MovieLens, we pipeline and parallelize two joins and par-
allelize a grouping aggregation, leading to a 2.1× speedup.
In both, Mozart outperforms Weld. Weld’s parallel grouping
implementation bottlenecked on memory allocations around
8 threads in Birth Analysis. In MovieLens, speedups were
hindered due to serialization overhead (Weld marshals strings
before processing them, and Mozart sends large join results
via IPC), but the Weld serialization could not be parallelized.

Speech Tagging with spaCy (Figures 4i). Figure 4i shows
the performance of the speech tagging workload with and
without Mozart. This workload operates over a corpus of text
from the IMDb sentiment dataset [50]. It tags each word with
a part of speech and normalizes sentences using a preloaded
model. Mozart enables 12× speedups via parallelization. Un-
fortunately, no compilers supported spaCy.

Numerical Workloads with MKL (Figures 4j-m). We eval-
uate Mozart with MKL using the same numerical workloads
from NumPy. Unlike NumPy, MKL already parallelizes its
operators, so the speedups over it come from optimizing data
movement. Figures 4j-m show that Mozart improves perfor-
mance by up to 4.7× on 16 threads, even though MKL also
parallelizes functions. Mozart outperforms Weld on three
workloads here, because MKL vectorizes and loop-blocks
matrix operators in cases where Weld’s compiler does not.

Image workloads in ImageMagick (Figures 4n-o). Figure 4
shows the results on our two ImageMagick workloads. Like
MKL, ImageMagick also already parallelizes functions, but
Mozart accelerates them by pipelining across operators. Mozart
outperforms base ImageMagick by up to 1.8×. End-to-end
speedups were limited despite pipelining because splits and
merges allocate and copy memory excessively. Mozart sped
up just the computation by up to 3.4× on 16 threads.

8.3 Effort of Integration

In contrast to compilers, Mozart only requires annotators to
add SAs and implement the splitting API to achieve perfor-
mance gains. To quantify this effort, we compared the lines
of code required to support our benchmarks with Mozart vs.
Weld. Table 3 shows the results. Our Weld results only count
code for operators that we also support, and only counts in-
tegration code. We do not count code for the Weld compiler
itself (which itself is over 25K LoC and implements a full
compilation backend based on LLVM). Similarly, we only
count code that an annotator adds for Mozart, and do not
count the runtime code.

Overall, for our benchmarks, SAs required up to 17× less
code to enable similar performance to Weld in many cases.
Weld required at least tens of lines of IR code per operator,
a C++ extension to marshal Python data, and usage of its
runtime API to build a dataflow graph. Anecdotally, through
communication with the Pandas-on-Weld authors, we found
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LoC for SAs LoC for Weld

Library #Funcs SAs Split. API Total Weld IR Glue Total

NumPy 84 47 37 84 321 73 394

Pandas 15 72 49 121 1663 413 2076

spaCy 3 8 12 20

MKL 81 74 90 155

ImageMagick 15 49 63 112

Table 3. Integration effort for using Mozart. Numbers show
the total lines of code per library. Mozart requires up to 15×
fewer LoC to support the same operators as Weld.

Black Scholes Haversine

MKL
Mozart
(-pipe)

Mozart MKL
Mozart
(-pipe)

Mozart

Normalized

Runtime
1.00 1.01 0.21 1.00 0.97 0.48

LLC Miss

(avg/stddev)

39.86%
(2.26%)

42.96%
(1.56%)

22.12%

(1.99%)

50.44%
(7.99%)

57.47%
(0.40%)

41.18%

(3.67%)

Inst/Cycle

(avg/stddev)

0.536
(0.06)

0.511
(0.04)

1.221

(0.10)

0.892
(0.08)

1.362
(0.22)

1.65

(0.33)

Table 4. Hardware counters show that pipelining reduces
cache misses, which translates to higher performance.

that just supporting the Birth Analysis workload, even after
having implementing the core integration, was a multi-week
effort that required several extensions to the Weld compiler it-
self and also required extensive low-level performance tuning.
In contrast, we integrated SAs with the same Pandas functions
in roughly half a day, and the splitting API was implemented
using existing Pandas functions with fewer than 20 LoC each.

8.4 Importance of Pipelining

The main optimization Mozart applies beyond parallelizing
split data is pipelining it across functions to reduce data move-
ment. To show its importance, Table 4 compares three ver-
sions of the Black Scholes and Haversine workloads on 16
threads: un-annotated MKL, Mozart with pipelining, and
Mozart without pipelining (i.e. Mozart parallelizes functions
on behalf of MKL). We also used the Linux perf utility to
sample the hardware performance counters for the three vari-
ations of the workload. Mozart without pipelining does not
result in a speedup over parallel MKL. In addition, the most
notable difference with pipelining is in the last level cache
(LLC) miss rate: the miss rate decreases by a factor of 2×,
confirming that pipelining does indeed generate less traffic to
main memory and reduce data movement. This in turn leads
to better overall performance on multiple threads. We found
no other notable differences in the other reported counters.
We saw similar results for the other MKL workloads as well.

0% 20% 40% 60% 80% 100%

black scholes

nashville

Percent of total runtime

client unprotect planner split task merge

Figure 5. Breakdown of total running time in the Nashville
and Black Scholes workloads. Across all workloads, we ob-
served 0.5% overhead from other components.
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Figure 6. Effect of batch size on two workloads. Mozart
selects a batch size near the optimal using L2 cache size.

8.5 System Overheads

To measure the system overheads that Mozart imposes, Fig-
ure 5 shows the breakdown in running time for the Black
Scholes and Nashville workloads on 16 threads. We report
the client library time for registering tasks, the memory pro-
tection time for unprotecting pages during execution, plan-
ning, splitting, task execution, and merging. The Nashville
workload had the highest relative split and merge times, since
both the splitters and mergers allocate memory and copy data.
Across all workloads, the execution time dominates the total
running time, and the client library, memory protection, and
planner account for less than 0.5% of the running time.

Most of the overhead is attributed to handling memory
protection. In our setup, unprotecting each gigabyte of data
took roughly 3.5ms, indicating that this overhead could be
significant on task graphs that perform little computation. One
mechanism for reducing the overhead of memory protection
is the recent pkeys [59] set of system calls, which allows for
O(1) memory permission changes by associating pages with
a registered protection key. After tagging memory pages with
a key, the cost of changing their permissions is a register
write, so the time to unprotect or protect all memory allocated
with Mozart becomes negligible (tens of microseconds to
unprotect 1GB in a microbenchmark we ran).

8.6 Effect of Batch Size

We evaluate the effect of batch size by varying it on the
Black Scholes and nBody workloads and measuring end-to-
end performance for each parameter. We benchmarked these
two workloads because they contain “elements” of different
sizes: Black Scholes treats each double as a single element,
while the matrices’ split types in nBody treat rows of a matrix
(256KB in size each) as a single element. Figure 6 shows the
results. The marked point shows the batch size selected by
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Figure 7. Impact of compute-intensiveness in Mozart.

Mozart using the strategy described in §5. The plots show that
batch size can have a significant impact on overall running
time (too low imposes too much overhead, and too high ob-
viates the benefits of pipelining), and that Mozart’s heuristic
scheme selects a reasonable batch size. Across all the work-
loads we benchmarked, Mozart chooses a batch size within
10% of the best batch size we observed in a parameter sweep.

8.7 Compute- vs. Memory-Boundedness

To study when Mozart’s data movement optimizations are
most impactful, we measured the intensity (defined as cycles

spent per byte of data) of several MKL vector math functions
by calling them in a tight loop on an array that fits entirely in
the L2 cache. We benchmarked the following operations, in
order of increasing intensity: add, mul, sqrt, div, erf, and exp.
Figure 7a shows the relative intensities of each function (i.e.,
vdExp spends roughly 7× more cycles per byte of data than
vdErf). We then ran each math function 10 times on a large
8GB array, with and without Mozart. Figure 7b shows the
speedup of Mozart over un-annotated MKL on 1–16 threads.
Mozart has the largest impact on memory-intensive work-
loads that spend few cycles per byte, and shows increasing
speedups as increasing amounts of parallelism starve the avail-
able memory bandwidth.

9 Related Work

SAs are influenced by work on building new common run-
times or IRs for data analytics [48, 56, 65, 67] and machine
learning [27, 34, 64]. Weld [56] and Delite [65] are two spe-
cific examples of systems that use a common IR to detect
parallel patterns and automatically generate parallel code. Al-
though Mozart does not generate code, we show in §8 that in a
parallel setting, the most impactful optimizations are the data
movement ones, so SAs can achieve competitive performance
without requiring developers to replace code. API-compatible
replacements for existing libraries such as Bohrium [46] also
have completely re-engineered backends.

Several existing works provide black-box optimizations
and automatic parallelization of functions. Numba [6] JITs
code using a single decorator, while Pydron [53], Dask [4]

and Ray [54] automatically parallelize Python code for multi-
cores and clusters. In C, frameworks such as Cilk [30] and
OpenMP [37] parallelize loops using an annotation-style in-
terface. Unlike these systems, in addition to parallelization,
SAs enable data movement optimizations across functions
and reason about pipelining safety.

The optimizations that SAs enable have been studied be-
fore: Vectorwise [68] and other vectorized databases [31, 35,
47] apply the same pipelining and parallelization techniques
as SAs for improved cache locality. Unlike these databases,
Mozart applies these techniques on a diverse set of black-
box libraries and also reason about the safety of pipelining
different functions using split types. SAs are also influenced
by prior work in the programming languages community on
automatic loop tiling [41], pipelining [33, 40], and link-time
optimization [29, 39], though we found these optimizations
most effective over nested C loops in user code, and not over
compositions of complex arbitrary functions.

Finally, split types are conceptually related to Spark’s par-
titioners [2] and Scala’s parallel collections API [60]. Scala’s
parallel collections API in particular features a Splitter and
Combiner that partition and aggregate a data type, respectively.
Unlike this API, SAs enable pipelining and also reason about
the safety of pipelining black-box functions: Scala’s collec-
tions API still requires introspecting collection implementa-
tions. Spark’s Partitioners similarly do not enable pipelining.

10 Conclusion

Data movement is a significant bottleneck for data-intensive
applications that compose functions from existing libraries.
Although researchers have developed compilers and runtimes
that apply data movement optimizations on existing work-
flows, they often require intrusive changes to the libraries
themselves. We introduced a new black-box approach called
split annotations (SAs), which specify how to safely split data
and pipeline it through a parallel computation to reduce data
movement. We showed that SAs require no changes to exist-
ing functions, are easy to integrate, and provide performance
competitive with clean-slate approaches in many cases.
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