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Abstract

Background: With the fast advances in nextgen sequencing technology, high-throughput RNA sequencing has

emerged as a powerful and cost-effective way for transcriptome study. De novo assembly of transcripts provides an

important solution to transcriptome analysis for organisms with no reference genome. However, there lacked

understanding on how the different variables affected assembly outcomes, and there was no consensus on how to

approach an optimal solution by selecting software tool and suitable strategy based on the properties of RNA-Seq

data.

Results: To reveal the performance of different programs for transcriptome assembly, this work analyzed some

important factors, including k-mer values, genome complexity, coverage depth, directional reads, etc. Seven

program conditions, four single k-mer assemblers (SK: SOAPdenovo, ABySS, Oases and Trinity) and three multiple

k-mer methods (MK: SOAPdenovo-MK, trans-ABySS and Oases-MK) were tested. While small and large k-mer values

performed better for reconstructing lowly and highly expressed transcripts, respectively, MK strategy worked well

for almost all ranges of expression quintiles. Among SK tools, Trinity performed well across various conditions but

took the longest running time. Oases consumed the most memory whereas SOAPdenovo required the shortest

runtime but worked poorly to reconstruct full-length CDS. ABySS showed some good balance between resource

usage and quality of assemblies.

Conclusions: Our work compared the performance of publicly available transcriptome assemblers, and analyzed

important factors affecting de novo assembly. Some practical guidelines for transcript reconstruction from short-

read RNA-Seq data were proposed. De novo assembly of C. sinensis transcriptome was greatly improved using

some optimized methods.

Introduction

With the fast advances in nextgen sequencing technology

in recent years, massively parallel cDNA sequencing

(RNA-Seq) has emerged as a powerful and cost-effective

way for transcriptome study. RNA-Seq has been widely

applied to both well-studied model organisms and non-

model organisms, to provide information on transcript

profile of organisms, and to give important insights into

biological processes [1-5]. For organisms with known

reference genomes, researchers usually take advantage of

mapping-first strategy to analyze transcriptome data.

However, mapping-first strategy is not suitable when

reference sequence is not available or incomplete. Thus,

for organisms with un-sequenced genome or cancer cells

with widespread chimeric RNAs [6,7], de novo assembly

is essential to provide a workable solution for transcrip-

tome analysis.

In theory, de novo assembly of short sequence reads

into transcripts allows researchers to reconstruct the

sequences of full transcriptome, identify and catalog all

expressed genes, separate isoforms, and capture the

expression levels of transcripts. However, in reality de
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novo transcriptome assembly faced some unique chal-

lenges. Assemblers must be tuned to handle conditions

that were not present for genome assembly. Among

those conditions, transcripts are expressed at both low

and high levels, spanning a difference of ten thousands

folds. On top of that, sequence biases from nextgen

sequencing technology can further skew the expression

of transcripts. Expression of gene isoforms due to alter-

native splicing, and expression of genes with overlapped

regions would grossly compound the difficulty in de novo

transcriptome assembly.

Until recently, a few attempts were made to handle the

difficult tasks of assembling transcriptome from short-read

RNA-Seq data. Most of them were modified from the

breakthrough technology for genome assembly using short

sequence reads. SOAPdenovo [8], ABySS [9], and Velvet-

Oases (hereafter referred as Oases) [10] were reported to be

successfully applied to transcriptome assembly of various

organisms [3,9,11-13]. More recently, Grabherr et al. [14]

released Trinity, a program specially developed for de novo

transcriptome assembly from short-read RNA-Seq data,

which was shown to be efficient and sensitive in recovering

full-length transcripts and isoforms in yeast, mouse and

whitefly. Trinity constructed de Bruijn graph from large

amounts of short-read sequences, then used an enumera-

tion algorithm to score all possible paths and branches, and

retained those plausible ones as transcripts/isoforms. Tri-

nity was specially programmed to recover paths supported

by actual reads and remove ambiguous/erroneous edges,

thus ensured correct transcript reconstruction.

On the other hand, a different strategy, which employed

multiple k-mer (MK) values in building de Bruijn graph in

order to handle both highly and lowly expressed tran-

scripts, was proposed by Robertson et al. [11], and by

Surget-Groba and Montoya-Burgos [15]. While all de

Bruijn graph-based assemblers were programmed using a

single optimal k-mer length based on that whole-genome

shotgun sequencing libraries provided a uniform represen-

tation of genomic sequences, non-normalized mRNA

libraries can present a wide expression range of transcripts

in addition to transcript isoforms due to alternative spli-

cing events. Thus, it was likely that MK presented a strat-

egy advantageous over single k-mer (SK) for optimized

assembly of transcripts at different abundance.

With the challenges facing de novo transcriptome

assembly and emerging solutions from several research

groups, there has not been a consensus on what variables

to consider for choosing a suitable tool, how to approach

an optimal solution based on available information on

data, and even more importantly how to design an effi-

cient transcriptome study with maximizing reward by tak-

ing advantage of available assembly tools. We designed

this study to evaluate the performance of publicly available

assemblers for short-reads RNA-Seq data: SOAPdenovo,

ABySS, trans-ABySS, Oases and Trinity. Oases was

specially designed for transcriptome assembly, extended

from its corresponding Velvet version developed for gen-

ome assembly. SOAPdenovo and ABySS were originally

developed for genome assembly and also applied in tran-

scriptome assembly. In this study, we compared SK and

MK strategies, and examined how various coverage depths

affected assembly outcomes. In order to understand how

genome complexity influences transcriptome assembly, we

used two model organisms: D. melanogaster and S. pombe,

which differed in genomic properties. By running repeat

tests on identical machine, we gained the information on

assemblers’ resources requirement, memory usage, and

runtime. In addition, we applied the different methods to

reconstruct the transcripts for C. sinensis, an important

economic cultivar used to produce a good variety of tea

products. We were able to significantly improve on pre-

viously assembled transcriptome result by reconstructing

more full-length and high-quality transcripts with more

RNA-Seq reads incorporated.

Materials and methods

RNA-Seq data sets

RNA-Seq data sets used in this study were all publicly

available, and could be retrieved from NCBI SRA data-

base. They included a standard (non-strand specific)

Illumina data set from fruit fly, D. melanogaster, a

strand-specific data set from fission yeast, S. pombe, and

a standard data set from tea plant, C. sinensis.

The Drosophila melanogaster data (Dme-data) were 76bp

paired-end (76PE) Illumina reads. Their accession codes

are: SRR023199, SRR023502, SRR023504, SRR023538,

SRR023539, SRR023540, SRR023600, SRR023602,

SRR023604, SRR027109, SRR027110, SRR027114 and

SRR035403. Dme-data were obtained from mixture of

D. melanogaster embryonic samples from 0 to 24 hours

after egg laying [1]. The Schizosaccharomyces pombe data

(Spo-data) were strand-specific 68PE Illumina reads. Its

accession code is SRP005611. Spo-data came from four bio-

logical conditions, including late stationary phase, heat

shock, mid-log growth and growth after all glucose has

been consumed [14]. The Camellia sinensis data (Csi-data)

were 75PE Illumina reads. Its accession code is SRX020193.

Csi-data included samples from seven different tissues of C.

sinensis: tender shoots, young leaves, mature leaves, stems,

young roots, flower buds and immature seeds [3].

Preprocessing RNA-Seq data

Dme-data were preprocessed before used for de novo

assembly: reads that did not contain at least 41 Q20

bases among the first 51 cycles were removed. Q20 base

refers to the base with Q-value≥20, which is defined as

an error probability ≤ 1%. Low quality (<Q20) 3’ end of

reads were then trimmed off by custom PERL script.
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After preprocessing, we obtained totally 13.08 G bases

(Gb) quality filtered short reads data (~ 106.8 Million

read pairs). We randomly sub-sampled read pairs in

D. melanogaster quality filtered data set to generate 0.5

Gb (~ 4.1 M read pairs), 1 Gb (~ 8.3 M read pairs), 3 Gb

(~ 25.0 M read pairs), 5 Gb (~ 41.7 M read pairs) and 7

Gb (~ 58.3 M read pairs) subsets. Spo-data and Csi-data

were used without preprocessing step, thus to keep the

same data sets used in previous studies [3,14]. It has been

reported that 50 M paired-end S. pombe reads (~ 6.8 Gb)

were almost saturated for de novo assembly [14]. Thus,

we randomly subsampled read pairs in Spo-data to gen-

erate 50 M subset (~ 6.8 Gb) as well as three smaller sub-

sets, 0.5 Gb (~ 3.7 M read pairs), 1 Gb (~ 7.4 M read

pairs) and 3 Gb (~ 22.1 M read pairs) for purposes of

analysis. For Csi-data, all of the short reads (2.32 Gb, ~

15.46 M read pairs) were used for the analysis.

De novo assembly

Transcriptome short reads were de novo assembled using

SOAPdenovo (release 1.05)[8], ABySS (version 1.2.7)[9],

Velvet (version 1.1.04)[16] followed by Oases (version

0.1.21)[10] or Trinity (release 20110519) [14]. We

assembled each data set using similar assembly para-

meters (k-mer value = 25, CPU = 20), thus trying to keep

the same condition to compare their performance. The

Command-line parameters used with SOAPdenovo were

“-K 25 –p 20 -R -d -F”; ABySS: abyss-pe k=25 n=10 j=20

name=xx in=’fq1 fq2’; Velvet(multithreaded)-Oases:

“-cov_cutoff 2”; Trinity: –CPU 20 –bfly_opts “–edge-

thr=0.05 –compatible_path_extension” for D. melanoga-

ster and C. sinensis datasets; –CPU 20 –SS_lib_type RF

–jaccard_clip –bfly_opts “–edge-thr=0.05 –compatible_-

path_extension” for S. pombe dataset (strand specific),

also tested without –jaccard_clip option for Spo-6.8g

data set. Trans-ABySS was run by using a set of k-mer

values including 19, 25, 31, 37, 43 and 49, and then

merged assembled results by the first step of trans-

ABySS analysis pipeline. MK strategy was also applied to

SOAPdenovo and Oases using the same k-mer set and

merged by the first step of trans-ABySS analysis pipeline.

All the assemblies were performed on a server with 48

cores and 512 G of memory. The operating system is

Ubuntu 10.04 LTS. After assembly, only transcripts with

no less than 100 bases were used for the downstream

analysis.

Removal of redundancy

For MK strategy, merging all transcripts from different

k-mer assemblies will introduce redundancy. What’s

more, for some assemblers, occasionally, constructed

transcripts will also show redundancy (shorter transcript

was entirely covered by longer one with 100% identity).

For this scenario, CD-HIT-EST was used to remove the

shorter redundant transcripts when they were entirely

covered by other transcripts with 100% identity. This set

of transcripts was then aligned to CDS sequences and

genomes for the assessment. Since some isoforms of

reconstructed transcripts were different only for small

variations, such as SNPs, small insertions or deletions,

this may introduce bias for the basic assembly statistics.

CD-HIT-EST was used to remove the shorter redundant

transcripts when they were 100% covered by other tran-

scripts with more than 99% identity. The non-redundant

transcripts were then used to count the basic assembly

statistics for each method.

Mapping reads to transcripts

To get assembly statistics for the number of reads that

could be mapped back to transcripts (RMBT) , we used

bowtie (version 0.12.7) [17] to map back all input short

reads to the reconstructed transcripts, with parameters

“-q –phred33-quals –fr -1 fq1 -2 fq2 -v 3”.

Mapping reconstructed transcripts to reference

Genome sequence and gene annotations for S. pombe

(version 09052011) were downloaded from the ftp site of

Sanger institute (ftp://ftp.sanger.ac.uk/pub2/yeast/pombe/

). Genome data for D. melanogaster was downloaded from

download page of UCSC genome browser (http://hgdown-

load.cse.ucsc.edu). Existing gene models were downloaded

from UCSC Table Browser, and only the Ref genes were

used to evaluate the performance of each assembler. For

the protein coding sequences, a custom PERL script was

applied to remove the redundancy for those exactly identi-

cal sequences: the original 22680 protein coding tran-

scripts of D. melanogaster and 5174 transcripts of S.

pombe were reduced to 18558 and 5150 non-identical

coding transcripts, respectively. BLAT[18] with default

parameters was applied to map the reconstructed tran-

scripts from each assembler to non-identical reference

coding sequences and reference genomes. Four groups of

hits were classified for the evaluation of the capability for

CDS reconstruction: 1) Covered the entire reference cod-

ing sequence, having no mismatch, insertion or deletion

(100%); 2, 3, 4) At least 95%/80%/50% sequence identity

covering the entire reference coding sequence, respec-

tively. To assess the accuracy of reconstructed transcripts,

we aligned reconstructed transcripts to the reference gen-

ome using BLAT and then the number of equal or more

than 95% or 50% of reconstructed transcripts that could

be aligned back to its corresponding genome was used for

the assessment. Transcript with less than 50% of its length

could be mapped back to the genome was defined as

unmapped-transcript. Shared and unique transcripts

parsed from pairwise alignments were aligned to the
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reference genome. Transcript with at least 95% of its

length could be aligned to corresponding genomic locus

was considered for the assessment.

Expression quintiles

Short reads used for assembly were aligned to the CDS

sequences by Tophat (v1.2.0) [19], and then custom PERL

scripts were applied to computing normalized gene

expression level by calculating RPKM (Reads Per Kilobase

of exon model per Million mapped reads) of each tran-

script. Only paired end mapped reads were considered in

this study. Gene was defined as expressed if it’s RPKM >0,

and then all expressed genes were divided into expression

quintiles at 10% intervals for the evaluation.

Results

Study design and RNA-Seq data collections

Currently five publicly available assemblers have been

reported to be used for de novo assembling short-read

RNA-Seq data into transcripts. They are SOAPdenovo,

ABySS, trans-ABySS, Oases and Trinity. Trans-ABySS was

developed by ABySS team that adopted MK strategy to

ABySS. Following the same approach, we applied MK

strategy to SOAPdenovo and Oases (referred as SOAPde-

novo-MK and Oases-MK, respectively). Trinity, on the

other hand, fixed its k-mer value at 25 that was not

changeable. It used a specially designed algorithm to

recover possible transcripts/isoforms to ensure high plau-

sibility. But at the meantime, to assemble the same dataset

Trinity required runtime at least 20 folds more than the

other programs used under SK condition. So we found it

impractical to apply MK strategy to Trinity at current

stage. Thus, our design included 7 program conditions: 4

with SK (SOAPdenovo, ABySS, Oases and Trinity) and 3

with MK (SOAPdenovo-MK, trans-ABySS and Oases-

MK). All the tests were run on the same single-node

machine with 512G memory and 4 AMD Opteron 6168

(12-core) processors.

In order to examine how genome with different com-

plexity affects assembly outcomes, we selected public

RNA-Seq data from two model organisms as benchmark:

fruit fly (D. melanogaster) and fission yeast (S. pombe).

Fruit fly has a genome size of 117 Mb, having 22680 pro-

tein coding genes and average intron length ~ 2.3kb

(based on RefSeq gene sets). Fission yeast has a smaller

genome of ~ 12.5 Mb [20], with 5174 protein coding

genes, and average intron length ~ 81bp. Besides both

organisms have excellent genome reference available, their

distinct genome properties helped elucidate how simple

(fission yeast) or more complex (fruit fly) genomes influ-

enced transcriptome assembly. Tea plant, C. sinensis, has a

large genome (~ 4G) yet to be resolved. We hoped to sig-

nificantly improve on its existing transcriptome assembly,

so to demonstrate the usefulness of optimizing strategy

and guidelines for de novo transcriptome assembly.

Comparison of transcript assembly under different

program conditions

In order to compare the performance of each assembler,

we put in test two sets of benchmark data that displayed

different data properties. In addition, we varied the

amount of initial inputs from the two sets of data to evalu-

ate the effect of coverage depths on the assembly out-

comes (details in Materials and Methods). The outcomes

are summarized in Additional file 1 and 2.

When measured in the number of assembled transcripts,

total bases of transcripts, mean length, N50, percentage of

low quality transcripts, number of long-transcripts (≥1kb),

and number of reads that could be mapped back to tran-

scripts (RMBT), we observed significant improvement on

the outcomes when MK strategy was applied to each pro-

gram. For all paired tests: SOAPdenovo vs. SOAPdenovo-

MK, ABySS vs. Trans-ABySS, and Oases vs. Oases-MK,

there were at least 50% increases in the number of

assembled transcripts, total bases of transcripts, and num-

ber of long-transcripts comparing MK to SK (Additional

file 1 and 2).

With increasing coverage depth, each assembler gener-

ally produced a larger number of transcripts and more

total bases, but the mean transcript length and N50, after

an initial increase, peaked at a certain threshold and

started to decrease. The percentage of RMBT had a pat-

tern reversely correlated to increasing coverage depth for

all program conditions except for Trinity.

Overall, Oases-MK assembled the most transcripts and

long-transcripts, whereas trans-ABySS/ABySS produced

the longest mean transcript length and the largest N50.

While Trinity preformed the best in the percentage of

RMBT, SOAPdenovo was the worst in the category. The

percentage of RMBT is an important benchmark for eval-

uating the performance of each method. An optimal pro-

gram should use as many reads as possible to reconstruct

high-quality transcripts. Trinity reached almost 90% with

the D. melanogaster data, which may be attributed to its

greedy k-mer-based approach at the Inchworm step.

Oases-MK came in second for this measure. Given the

number of low quality transcripts, performance of SOAP-

denovo was not satisfactory.

Resources usage by different assemblers

The demand for resources to carry out de novo assembly

is an important factor to consider when choosing a soft-

ware tool. While it was proved to be critical in assembly

of large genome, resources usage for assembling tran-

scripts bears some equal importance for practical reason.

We monitored and recorded the runtime and memory
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usage for four SK assemblers running on testing data sets

on the same computer. We found the runtime and mem-

ory usage were two essential factors that limit the use of

a program. The measured data of runtime and memory

occupancy for each assembler tested with SK method are

illustrated in Figure 1.

The four SK assemblers displayed distinct memory

usage patterns through their processing steps. Among

them, Oases consumed the largest maximum memory (at

Velvetg step), whereas memory usage by ABySS was the

smallest (Figure 1a). It was assumed that larger data set

would consume more memory. This was generally true

with all four assemblers as the memory usage displayed a

good correlation with the size of testing data (Figure 1b),

though Oases was the most sensitive, and ABySS the

least sensitive in response to increasing data size. The k-

mer values also had great impact on both memory usage

and runtime. Memory usage displayed reverse correlation

with k-mer values for Oases but remained constant for

SOAPdenovo and ABySS (Figure 1c, Trinity remains

unknown as its k-mer value was not changeable). While

Trinity required the longest runtime and SOAPdenovo

the least for the same testing dataset, the time costs for

all four tools, as expected, were approximately propor-

tionate to the size of testing data set (Figure 1d). Run-

times for ABySS, Oases, and SOAPdenovo were reversely

correlated with the k-mer values (Figure 1e), but the

impact was not as dramatic as that of k-mer values on

memory usage.

These results indicated that assembly using Oases

with small k-mer value requires large memory and

may exceed the memory space of a typical computing

sever nowadays, and processing of a large data set by

Trinity can exceed reasonable execution time and

hence becomes impractical. Thus these factors warrant

careful consideration when one chooses a tool for ana-

lysis as well as setting parameters associated with the

tool.

Figure 1 Runtime and RAM usage performance for each assembler. Runtime and RAM usage for each assembler: Oases, SOAPdenovo,

ABySS and Trinity. (a) Real-time monitored runtime and RAM usage of each method using Dme-13g data set. The maximum RAM usage was

marked as asterisk for each assembler, and three stages of Oases and Trinity were shown by different colors (red: Velveth and Inchworm; green:

Velvetg and Chrysalis; blue: Oases and Butterfly). RAM usage (b) and runtime (d) of each method using different amounts of inputs with k-mer

value of 25. RAM usage (c) and runtime (e) of each method using Dme-13g data set with different k-mer value. #Alternatively, jobs from Butterfly

module could be distributed in clusters using a job array, which could greatly reduce the running time for this step.
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Validating assembled transcripts by mapping to reference

genome

To validate assembled transcripts, we mapped each tran-

script to its reference genome as described in Materials

and Methods: Map reconstructed transcripts to reference.

Transcripts assembled from D. melanogaster data sets

using different methods showed a high percentage in

alignment to its reference genome. Less than 0.5% of

assembled transcripts failed to align (Figure 2a, shown

using Dme-13g data set), and similar results were found

using smaller sampling data from D. melanogaster data

sets (data not shown). Pairwise alignment using BLAT

was performed for transcripts from SOAPdenovo-MK,

trans-ABySS, Oases-MK and Trinity. Shared (defined as

at least 95% sequence identical between two transcripts

from different methods) and unique (if the transcript is

not shared, then it was unique) transcripts were then

aligned to genome separately. While the shared tran-

scripts were generally validated by mapping to genome at

a high percentage, the unique ones were mapped to refer-

ence genome at various levels with Trinity being the best

and SOAPdenovo the worst (Figure 2b).

For S. pombe data set, Trinity, Oases and Oases-MK

showed worse performance than for D. melanogaster data

set, with more than 10% transcripts failing to be aligned to

reference (Figure 2c). Unique transcripts accounted for

more than 60% of all unmapped-transcripts (Figure 2d)

except for trans-ABySS (33.83%). Except for trans-ABySS

(19/45), the rests had over 50% of unique unmapped-

transcripts with BLASTX hits (E≤10-10) to Uniprot data-

base [21] (Figure 2d), representing some bona fide gene

transcripts. We further tested whether low quality

sequence in S. pombe data set contributed to the high per-

centage of unmapped-transcripts. After trimming low

quality nucleotides (<Q20) from 3’-end before re-assembly,

Trinity had a 6~7% increase in matched transcripts (data

not shown), confirming that sequence errors in S. pombe

data set were at least part of the reason for the higher level

of unmapped-transcripts.

Evaluating gene coverage and integrity of assembled

transcripts

The gene coverage and transcript integrity are important

performance benchmarks for transcriptome assembly. We

evaluated gene coverage and transcript integrity with D.

melanogaster and S. pombe data sets by matching recon-

structed transcripts to CDS and examining the numbers of

covered full-length genes. The full-length transcripts

reconstructed by different program conditions displayed

some similar patterns: the numbers of full-length tran-

script initially went up with increasing sequence reads; in

cases of SOAPdenovo-MK, ABySS, trans-ABySS, Oases-

MK and Trinity their numbers leveled off at certain data

levels, whereas for SOAPdenovo and Oases their numbers

started to drop (Figure 3a, b). The turning points appeared

to be related to the complexity of the genome. The turning

point was around 3G for fruit fly, and between 1-3G for

fission yeast.

For D. melanogaster, there is totally 55.46Mb of unique

transcripts from RefSeq or 53.80Mb from Ensemble gene

sets. Assuming 80% of the genes expressed, the 3Gb-

sequence reads, where the turning point was observed,

amounts to ~75× average coverage on total expressed

genes. For S. pombe, the turning point equals to approxi-

mately 100× average coverage. These numbers are impor-

tant reference in design of future de novo transcriptome

study, in which some estimate and careful testing are

recommended to find the optimized parameters for a

given organism. Full-length, partial-length, and fused CDS

were illustrated for transcripts reconstructed from D. mel-

anogaster (Figure 3c, d) and S. pombe (Figure 3e, f) data

sets. At the curve-turning point or the full-data point, MK

methods appeared to build more full-length CDS compar-

ing to SK with same assemblers, whereas partial-length

CDS remained almost unchanged. On the other hand,

there was an increase in the numbers of fused CDS being

associated with the MK methods.

It’s worth noting that the number of fused genes was

low for S. pombe transcripts reconstructed by Trinity,

which took use of strand-specific information for assembly

(Figure 3e, f). This was not observed with D. melanogaster

transcripts, where no strand-specific information was

available. In addition, Trinity had a “–jaccard_clip” option

that was recommended for gene dense genome with lots

of transcripts overlapping on the same strand. For S.

pombe transcripts, the option significantly reduced the

number of fused genes (Figure 3f, personal communica-

tion with Brian J. Haas).

In comparison of different program conditions, Oases-

MK appeared to cover the most in number of genes as

well as the most in number of full-length genes. While

comparable in total number of assembled transcripts,

SOAPdenovo-MK and trans-ABySS were lagging in the

number of reconstructed full-length genes (Figure 3c, d, e,

f). For SK methods, Oases’s performance was satisfactory

at small data set, but lagged behind with increased inputs.

Again, SOAPdenovo was the worst performer for this

measurement, especially with large inputs data at high

coverage depth.

Evaluating sensitivity of assemblers to genes expressed at

different levels

The sensitivity of program condition to gene expression

level was examined by counting the full-length transcripts

of various expression levels. As shown in Figure 4a and 4b,

using varying k-mer values Oases captured transcripts in a

different range of expression quintiles. The small k-mer

value, i.e. k=19, worked better for transcripts at low
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quintiles, whereas a large k-mer value, i.e. k=49 only

worked in a high quintile range. On the other hand, the

MK methods took advantage of these properties from dif-

ferent k-mer values, and can cover transcripts in a broad

expression range (Figure 4c, d).

Comparing the different program conditions, our data

showed that all had a poor performance at 10%~30% low-

est quintiles (Figure 4c, d). Surprisingly, Trinity recon-

structed a steady number of CDS at above 30% quintiles.

The others, SOAPdenovo, Oases, and ABySS when using

SK strategy did not perform well for either the lowly or

the highly expressed genes. However, when employing

MK strategy, the performance of SOAPdenovo, Oases, and

ABySS was greatly improved, especially on the high quin-

tile levels (Figure 4c, d). We observed that highly

expressed genes were often assembled into incomplete

transcripts. As shown in Figure 4e, NM_079795 represents

one of the highly expressed genes in D. melanogaster.

Figure 2 Number of transcripts that could be aligned to the genome. Shown are the percentages of transcripts that could be successfully

aligned to its corresponding genome with Dme-13g (a) and Spo-6.8g (c) data sets. (b) Percentage of unique and shared transcripts that could

be successfully aligned to the genome using Dme-13g data set by each of SOAPdenovo-MK, trans-ABySS, Oases-MK and Trinity. (d) The

percentage of unique unmapped-transcripts produced from each of assembly methods using Spo-6.8g data set. Numbers above the histogram

are the number of unique unmapped-transcripts (left) and number of unique unmapped-transcripts that had BLASTX top hits (E≤10-10) to

Uniprot database (right, within the brackets).
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Figure 3 Number of reconstructed protein coding genes. Number of full-length protein coding genes reconstructed by each method using

inputs with different depth of coverage: D. melanogaster data sets (a), S. pombe data sets (b). Number of reconstructed genes were shown using

Dme-3g (c), Dme-13g (d), Spo-1g (e) and Spo-6.8g (f) data sets, which included full-length reconstructed genes with 100% (blue) and at least

95% identity (reddish brown); partial-length reconstructed genes: 80% (green) and 50% (purple). Trinity assembly with strand specific option

“–SS_lib_type RF” was marked as asterisk. The assessment of Trinity without “–jaccard_clip” option was shown as “Trinity#” using Spo-6.8g data

set (f).
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Figure 4 Full-length genes reconstructed by each method at different expression quintiles. Shown are the percentages of reconstructed

full-length genes (Y axis) at different expression quintiles (X axis, 10% increment) by Oases with different k-mer values using Dme-3g (a) and

Spo-1g (b) or by each assembler using Dme-3g (c) and Dme-13g (d) data sets. (e) An example is shown as an assembled transcript in D.

melanogaster by different assembly methods. NM_079795 is one of the highly expressed genes at highest expression quintile, which could be

completely reconstructed by Trinity (red), but failed by other methods. Only incomplete transcripts (green) were reconstructed and both ends of

coding region were lost. Incomplete transcript with 1 bp deletion assembled by Oases-MK is shown below its gene model. Reads coverage is

shown at the bottom.
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While Trinity correctly reconstructed the entire transcript

of NM_079795, various short forms were generated by

other program conditions.

De novo assembly of C. sinensis transcriptome by

different assemblers

The tea plant, Camellia sinensis, is one of the most impor-

tant economic cultivar that is used to produce a good vari-

ety of tea products. It has an estimated genome size of

about 4.0Gb [22]. With its large genome size and no gen-

ome draft being available, the transcriptome analysis pro-

vided a good option to study the gene composition,

genetic polymorphism, and metabolic basis of this impor-

tant economic plant. However, there were some great

challenges researchers faced. They included unknown

number of genes in C. sinensis, potentially very large

genetic diversity of the studied population, and unclear

evolution history, etc.

We performed de novo assembly analysis to the pub-

lished RNA-Seq data set from C. sinensis [3], which con-

sisted of 15.46 million pairs of 75bp Illumina sequence

reads. To calibrate the system and make our results com-

parable to the original published work (used SOAPde-

novo), we first tested different k-mer values with

SOAPdenovo, and found k =25 produced similar results

with N50 and mean transcript length comparable to the

recently published results (Additional file 3: columns

“Published data” and “SOAPdenovo”). Then we performed

de novo assembly using different program conditions on

the C. sinensis RNA-Seq data (basic statistics are shown in

Additional file 3). Overall, the MK methods (SOAPde-

novo-MK, trans-ABySS and Oases-MK) produced much

larger numbers of transcripts (≥100bp) with more total

bases than the original published assembly data and

SOAPdenovo results we obtained. SOAPdenovo-MK,

trans-ABySS and Oases-MK also produced superior

results in mean length, N50 and numbers of long-tran-

scripts (≥500bp and ≥1kb) than the original published

results. Within SK methods, Trinity generated significantly

better results than the original published assembly data

and SOAPdenovo results in almost all categories except

mean length and N50. The better assemblies by MK meth-

ods and Trinity were translated into larger numbers of

coding proteins. We observed significant increases in

BLASTX hits to Uniprot database [21] and in the numbers

of unique Uniprot proteins identified (Additional file 3).

These additional genes would certainly help reveal the

complete metabolic pathways in C. sinensis and identify

the missing genes in natural molecule synthesis important

to tea flavor and quality. One good example is Cinnamate

4-hydroxylase (C4H, EC1.14.13.11), which is an important

enzyme that converts cinnamate to p-coumarate in flavo-

noid biosynthesis pathway. In the original paper [3], it was

indicated that there was no cinnamate 4-hydroxylase in

C. sinensis. However, in our assembly results from either

Oases-MK or Trinity, while performing BLASTX against

the KEGG database [23], we were able to identify multiple

C4H gene transcripts (Additional file 4 and 5) that filled

into the gap in flavonoid biosynthesis pathway.

Discussion and conclusions

De novo assembly of transcriptome from short-read RNA-

Seq data presented some unique challenges to bioinforma-

ticians. This study was designed to evaluate the perfor-

mance of five publicly available assemblers that were

previously used to assemble short-reads transcriptome

data: SOAPdenovo, ABySS, trans-ABySS, Oases, and

Trinity. In order to reveal the important factors to con-

sider for choosing an optimal strategy and software tool,

we set up variable testing conditions: single k-mer vs. mul-

tiple k-mer, simple genome vs. complex genome, low cov-

erage depth vs. high coverage depth, non-directional reads

vs. directional reads, etc. We measured results in terms of

resources usage, transcript accuracy, integrity and comple-

teness, and sensitivity to assemble transcripts from low to

high expression levels. By analyzing and comparing the

assembled results from various conditions, we were able to

develop some useful guidelines that help direct future

transcriptomics studies.

Performance by different tools using SK method

Trinity had a consistently better performance in almost all

the categories than the other SK tools, on the cost of

longer runtime (sometimes 20~100× longer). SOAPde-

novo, although using less memory and runtime, was the

least satisfactory. It performed poorly for reconstructing

CDS and for measurements like low quality transcripts

and RMBT. Other assemblers: ABySS and Oases, had an

impaired performance when reconstructing transcripts of

high coverage depth. We observed that highly expressed

transcripts were often incompletely assembled. However,

its reason remains unclear to us and we can only speculate

that sequence repeats or homologous genes may be the

cause.

The size of sequencing data from Illumina platform is

often very large, and therefore required substantial mem-

ory and long computing time, even for the very efficient

de Bruijn graph-based assemblers. For large datasets,

Oases required the largest memory, and Trinity took the

longest runtime. ABySS and SOAPdenovo showed some

good balance between memory usage and runtime.

MK strategy enhancing performance compared to SK

method

We for the first time applied MK strategy to SOAPdenovo

and Oases, and systematically evaluated the performance

of MK vs. SK on 3 assembler tools. By taking use of differ-

ent k-mer values, the MK method was able to capture
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both lowly expressed transcripts with small k-mer value

and highly expressed genes with large k-mer value. This

strategy ensured recovering more assembled full-length

transcripts at very low redundancy. The MK method

appeared to work well across all spectrums of coverage

depth, and with all programs tested. There can be further

improvement if MK strategy is applied to Trinity. How-

ever, the application is limited to its long runtime and

fixed k-mer value, so it is impractical to apply MK strategy

to Trinity with the current version.

We observed a decrease in transcripts mapping to refer-

ence genome and increase in fusion genes by MK method

when compared to SK method of the same tools. It may

indicate that MK method can lead to and accumulate

some incorrect assemblies or artificially fused transcripts.

Given the longer and more diverse transcripts recon-

structed by MK methods, the benefits clearly outweigh the

pitfalls. We observed some interesting results that showed

Trinity reduced the number of fused transcripts by taking

use of strand-specific read information in assembly, which

suggested that strand-specific sequencing was useful to

tease apart overlapping transcripts on opposite strands.

The benefits of MK strategy were most demonstrated by

the results from de novo assembly of RNA-Seq data from

C. sinensis. The numbers of transcripts (≥100bp) and

long-transcripts (≥1kb) were doubled or even tripled with

MK strategy for different assemblers. There is certainly

much room for improvement on reducing the artifact and

redundant transcripts, which remains the main focus of

future study on MK methods.

Effects of coverage depth and genome complexity

The effect of sequence coverage depth on assembly out-

come showed some interesting patterns. With the excep-

tion of SOAPdenovo and Oases, the others had generally

increased number of full-length genes corresponding to

increased coverage depth. Such positive correlation seems

to reach plateaus at 3G data point for fruit fly. The 3G

data point is also the turning point for SOAPdenovo and

Oases, where the number of full-length gene assemblies

started to decrease. For S. pombe, which has a much smal-

ler genome compared to that of fruit fly, the turning point

was between 1 and 3G. These results suggest the turning

point is intrinsic to each organism, probably related to the

complexity of their genome: number of genes/transcripts,

average size, gene density, range of expression levels, etc.

The genome properties of fruit fly and fission yeast were

most related to their numbers of genes (22680 vs. 5174).

The estimated number of genes is certainly important

basis for designing a transcriptome experiment.

Useful guidelines for de novo transcriptome assembly

It is impossible to choose an optimal tool and computa-

tion parameters for transcriptome assembly without

comprehensive understanding the performance of var-

ious tools and program settings at work. By comparing

the performance of these tools and assembly outcomes

from variable test conditions, we recommended some

basic and useful guidelines to help people choose the

best tools and strategy, and to optimize program settings

for transcriptome assembly work. We also summarized

some shortcomings and limitations for programs and

methods, hopefully for people to avoid or improve on

them. In light of our results, the followings are recom-

mended for selecting the optimal tools and conditions for

de novo transcriptome assembly studies:

1) Generally, MK approach should be considered to

achieve better assembly results.

2) Trinity is the best SK assembler for transcriptome

assembly for both small and large data set across various

conditions. But don’t choose Trinity if long running

time is to be avoided.

3) Oases-MK and trans-ABySS produce the most

diverse long transcripts. But one must avoid Oases if

machine memory is limited.

4) SOAPdenovo uses smallest memory and shortest

runtime. But one should avoid SOAPdenovo in general

if full-length genes and complete transcriptome are

desired, especially for large amounts of sequence inputs

with high coverage depth.

5) Large data set can be divided into a serious of 0.5,

1, 3G subsets to test for the optimal conditions for

assembly.

6) For design a transcriptome study, usually 100× aver-

age coverage on estimated size of expressed transcripts is

recommended to start with for de novo assembly.

Additional material

Additional file 1: Basic statistics for de novo assembly with D.

melanogaster data sets. The outcomes of transcript assemblies by each

method: SOAPdenovo, SOAPdenovo-MK, ABySS, trans-ABySS, Oases,

Oases-MK and Trinity. Assembled transcripts with no less than 100 bases

are included. Low quality transcripts are defined as transcripts with more

than 5% ambiguous nucleotides. #Since scaffolding system hasn’t been

built in Trinity yet, the measure of low quality transcripts for Trinity is left

as “-”.

Additional file 2: Basic statistics for de novo assembly with S.

pombe data sets. The outcomes of transcript assemblies by each

method are shown.

Additional file 3: Basic assembly statistics and BLASTX hits to

Uniprot database using C. sinensis 2.3g data set. The outcomes of

transcript assemblies by each method and measurements in the previous

study are shown. §Some measurements are not available in the previous

study, which are left as “-” in the table.

Additional file 4: List of C4H related transcripts assembled by

Trinity and Oases-MK. BLAST results against the KEGG database with E-

value ≤ 1.0e-5, and only transcripts with top blastx hits to Cinnamate 4-

hydroxylase (EC1.14.13.11) are shown.

Additional file 5: Sequences of C4H related transcripts assembled

by Trinity and Oases-MK. Fasta formatted sequences of C4H related

transcripts that were listed in Additional file 4 are shown.
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SK: single k-mer; MK: multiple k-mer; NCBI: National Center for Biotechnology
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