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Abstract— Parkinson’s disease is a neurodegenerative 

movement disorder resulting in rigidity, bradykinesia 

(slowness), tremor and gait disorder. Deep brain stimulation 

(DBS) of the subthalamic nucleus has been shown to be 

effective in managing symptoms, but quantitative methods to 

facilitate the adjustment of the stimulator settings are needed. 

In this paper, we present preliminary results from a study 

aimed at investigating the use of wearable sensors to 

quantitatively track changes in the severity of symptoms in 

patients with Parkinson’s disease undergoing programming of 

the stimulator. We developed a technique that relies upon 

features derived from wearable sensors to track changes in the 

severity of symptoms over a period during which patient’s 

motor activities are monitored. Preliminary results indicate 

that wearable sensors could be utilized to help clinicians 

achieve optimal settings of the stimulator by providing 

quantitative feedback concerning the impact of different 

settings on the severity of Parkinsonian symptoms. 

 
Keywords- Parkinson’s Disease; Wearable Technology; Deep 

Brain Stimulation  

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disease, affecting about 3% of the 

population over the age of 65 years and more than 500,000 

US residents. The characteristic motor features of PD are 

development of rest tremor, bradykinesia, rigidity, and 

impairment of postural balance. The primary biochemical 

abnormality in PD is deficiency of dopamine due to the 

degeneration of neurons in the substantia nigra pars 

compacta. As a result, abnormal patterns of neural activity 

are present within the basal ganglia, including overactivation 

of the subthalamic nucleus, which contributes to 

development of tremor and other typical motor features. 

Current therapy of PD is based on augmentation or 

replacement of dopamine, using levodopa or other drugs, 

which activate dopamine receptors. These therapies are often 

successful for some time, but in late stage PD most patients 

develop motor complications such as wearing off and 

dyskinesias. STN DBS is an effective way to manage late 

stage PD motor complications that develop over time in this 

patient population. 

While STN DBS has shown dramatic results both in the 

short and the long term, several hypotheses have been put 

forth as possible causes of symptom reduction, but none of 

them is universally accepted. Although some attempts to 

systematically explore the DBS settings have been pursued 

[1][2], postoperative management in patients undergoing 

DBS for treating PD does not rely on methods that are 

grounded on proven models of the underlying mechanisms. 

The complex process of adjusting the neurostimulator 

parameters is rather driven by empirical observations that do 

not guarantee an optimal choice of the neurostimulator 

setting. 

 

In earlier work by Ushe et al [3], the authors reported on 

the use of a single accelerometer to monitor tremor 

suppression in patients with essential tremor with changing 

DBS parameters. Our research team [4] used wearable 

sensors to monitor motor fluctuations in PD patients 

undergoing medication treatment. In a pilot study [5] on 5 

patients, we tracked changes in the severity of symptoms as 

the DBS was turned from ON to OFF and back ON. In this 
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Figure 1 Schematic representation of the decision support system we 
envision to choose optimal DBS settings. 
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paper, we present preliminary results from a new study in 

which we used wearable sensors to record data from patients 

undergoing DBS programming. The long-term objective of 

this study is to develop a decision support system (Figure 1) 

to provide feedback to clinicians regarding the efficacy of 

the stimulator settings thus reducing the time and effort 

required to achieve optimal outcomes. 

II. DBS PROGRAMMING 

DBS systems consist of a quadripolar electrode with an 

inter-contact distance of 1.5 or 0.5 mm, an extension cable 

and an internal pulse generator (IPG) either controlling one 

(SOLETRA
TM

, Medtronic) or two (KINETRA
TM

, 

Medtronic) DBS electrodes. Current is delivered through 

cylindrical electrode contacts of 1.27 mm diameter and 

1.5 mm length. The relevant stimulation parameters, which 

can be controlled by means of an external console after 

implantation of the IPG, are electrode polarity and 

amplitude, duration, and frequency of the pulses. Each 

electrode contact can be programmed as anode or cathode in 

bipolar settings or as cathode for monopolar stimulation. 

Bipolar stimulation creates a more focused current field thus 

providing specificity. However, physicians often favor 

monopolar stimulation because it typically requires lower 

stimulation intensity than bipolar stimulation to achieve the 

same clinical benefit. Therapeutic amplitudes for DBS 

normally range between 1 and 3.5 V. The commercial IPGs 

by Medtronic allow one to vary voltage in 0.1 V steps 

between 0 and 10.5 V. However, current consumption of the 

neurostimulators by Medtronic is linear up to 3.6 V and rises 

abruptly above this value because a voltage doubler circuit is 

activated. The increase in amplitude raises significantly the 

current requirement and shortens battery life. Pulse width 

can be varied in steps between 60 and 450 µs however the 

typical values are between 60 and 90 µs. The pulse 

frequency can be set between 2 and 185 Hz. However, the 

beneficial effects of stimulation are only observed at high 

frequencies, i.e. above 100 Hz. 

These general criteria for choosing the parameters of the 

neurostimulator result in a “decision space” defined by pulse 

amplitude ranging between 1 and 3.5 V, pulse width 

between 60 and 90 µs, frequency between 110 and 150 Hz, 

and a choice of monopolar or bipolar stimulation across the 

quadripolar electrode. To make this decision space more 

difficult to explore, responses related to different target 

symptoms are associated with different time constants. For 

instance, while tremor and rigidity respond within seconds, 

the effect of stimulation on bradykinesia and dystonia 

evolves over hours to days, and dyskinesia may show 

changes over weeks. Furthermore, a complex dynamic 

behavior marks postoperative management of medications. 

Levodopa therapy and dopamine agonist treatment need to 

be adjusted after implant of the neurostimulator. Cyclical 

variations of the response to STN stimulation are observed 

with medication intake. Fluctuations of the target symptoms 

are also observed over days and weeks. To accomplish the 

goals of adjusting the stimulator parameters, namely 1) to 

maximize symptom suppression, 2) to minimize side effects, 

and 3) to maximize neurostimulator battery life, becomes 

therefore a very challenging task. 

III. METHODS 

A. Data Collection 

We used the SHIMMER wireless system by Intel® 

(Figure 2) for data collection. This platform consists of a TI 

MSP430 microprocessor; a Chipcon CC2420 IEEE 802.15.4 

2.4 GHz radio; a MicroSD card slot; and a tri-axial MEMS 

accelerometer (Freescale MMA7260Q). Compared with 

other wireless sensors, SHIMMER achieves a smaller 

footprint using conventional board technology and integrates 

a lithium-polymer battery. 

So fat, in the ongoing study herein described, we have 

collected data from 4 patients. Tri-axial accelerometer data 

was recorded at 100 Hz while subjects performed 

standardized motor tasks from the Unified Parkinson’s 

Disease Rating Scale (UPDRS). Each motor task was 

performed for about 30 s or for a fixed number of 

repetitions. Each subject’s movements were recorded using 

9 accelerometers. The accelerometers were placed bilaterally 

at the midpoint of the forearm and the upper arm, on the 

shank approximately 10 cm above the ankle, on the thigh 

approximately 10 cm above the knee and on the upper back 

(see Figure 2). 

Figure 3 shows schematically the sequence of the testing 

sessions. Video recordings of each session were gathered for 

later review and UPDRS scoring. Data collection was 

performed before, during and after DBS programming on the 

day of clinical adjustment of DBS settings. During the 

clinical visit, data was collected before any adjustment was 

made, after testing each electrode contact, and at the end of 

the adjustment session before the patient was ready to leave 

the clinic. Also, two weeks after each session of DBS 

adjustments we gathered data for 3-4 hrs over 7 testing 

(a)

Figure 2 Sensor setup utilized for the data collection and 

(a) SHIMMER wireless sensor unit. 
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session. Each session was about 5-10 min long. Between 

each two testing sessions, patients were allowed to rest for 

about 20-25 min. During the course of the study, data was 

collected during 4 DBS adjustment visits and 3 times in 

between DBS programming visits.  
 

 

 

B. Data Analysis 

Before extracting features, the raw accelerometer data was 

high-pass filtered with a cutoff frequency of 1 Hz to 

attenuate components associated with gross changes in the 

orientation of body segments. Also the data was low-pass 

filtered with a cutoff frequency of 15 Hz to remove the high 

frequency noise. The data from the x-, y- and z-axis of each 

accelerometer was combined by taking the square root of the 

sum of squares of each axis. 

Sets of 30 epochs of 4 s were randomly selected from the 

sensor data recorded during performance of each motor task, 

for each trial. We chose features that represent 

characteristics of movements such as intensity, modulation, 

rate, periodicity, and coordination of movement. Intensity 

was measured as the root-mean-square (RMS) value of the 

detrended accelerometer signal. The modulation of the 

output of each sensor was used to represent dynamic 

characteristics of the tasks, and was calculated as the range 

of the auto-covariance function of each channel. Large 

values of this feature were indicative of intervals of rapid 

movements interspersed with intervals of slow movements. 

Rate of movement was represented by the dominant 

frequency component below 10 Hz. Periodicity was 

measured by computing the ratio of the energy of the 

dominant frequency component to the total energy below 

10 Hz. Coordination between body segments on the left and 

right side and proximal and distal segments was captured in 

three aspects: magnitude (obtained by calculating the 

correlation coefficient), delay (estimated as the time lag 

corresponding to the peak of the cross-correlation function) 

and similarity (measured by the value of the peak of the 

cross-correlation function). An estimate of entropy of the 

signal [7] was used as a measure of signal complexity. 

The results presented in this abstract are based on visual 

inspection of the data. First we correlated the changes in 

clinical scores of severity of symptoms with changes in 

feature value. Secondly we inspected the feature space using 

the Sammons mapping technique. Sammons mapping [6] is 

a nonlinear transformation technique that reduces data 

dimensionality by preserving the distance between points in 

lower dimensions. It is a useful method for achieving visual 

examination of the data structure. We utilized this technique 

to derive two-dimensional projections of the feature sets. 

IV. RESULTS 

Analysis of the feature space shows that distinct patterns 

of feature values are associated with changes in the severity 

of Parkinsonian symptoms. In the following, we provide a 

detailed description of the results derived from the analysis 

of data from one patient. Similar results were obtained from 

other patients. Figure 4 shows changes in clinical scores for 

tremor, bradykinesia and dyskinesia over a period of several 

days. It also shows measures of the RMS value derived from 

the accelerometer time series recorded from the right 

forearm during the same sessions from which the clinical 

scores were derived. During the first session, we performed 

DBS adjustments. Data was gathered before and after 

adjusting the DBS settings. During the second session, we 

recorded multiple trials during a period of several hours to 

capture changes in the severity of symptoms that mark motor 

fluctuations. The second session was scheduled about 2 

weeks following the first DBS programming visit. The third 

session (the last for which results are shown in Figure 4) 

corresponded to the second DBS programming visit and was 

scheduled about one month after the first visit. Data is 

shown for the recordings performed before (pre-DBS) and 

after (post-DBS) the actual DBS programming during the 

first session, for the 7 trials performed during the second 

Figure 4 Plot of the RMS value, extracted from the right forearm, 

relative to the clinical score for (a) tremor (data recorded during steady 
holding of arms out front while seated), (b) dyskinesia (data recorded 

during the finger to nose task with left hand), and (c) bradykinesia 

(data recorded during finger to nose with right hand). RMS value is 
shown by the bold blue line and clinical scores are shown by the 

dashed green line. 
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session, and for the recordings performed before (pre-DBS) 

the DBS programming visit during the third session.  

Figure 4 suggests that changes in RMS value are highly 

correlated with changes in the clinical scores for all three 

symptoms we monitored during the experiments (i.e. tremor, 

bradykinesia and dyskinesia). Tremor and dyskinesia are 

symptoms related to involuntary movement; hence, as the 

clinical score goes down the intensity of movement 

(represented by the RMS value in figure 4(a) & 4(b)) goes 

down as well. Bradykinesia represents the rigidity or 

slowness of movement; hence, as the clinical score goes 

down the ability of a patient to perform a task improves 

(indicated by the increased RMS value in figure 4(c)). Also, 

it appears that the severity of tremor and bradykinesia 

changed significantly in response to the adjustment in DBS 

settings performed during the first session.  

It is worth emphasizing that, when patients undergo the 

first DBS programming visit, they are instructed to withdraw 

their medications for about 12 hours prior to the visit (this 

procedure is referred to as “practically-defined off”). 

Consequently, it is expected that patients show virtually no 

dyskinesia during the first session and therefore seeking 

correlation between dyskinesia scores and RMS values for 

this session is practically meaningless. During the second 

session, patients are observed during a period of normal 

medication intake. Therefore, a correlation between the 

clinical score for dyskinesia and the RMS values can be 

meaningfully sought. Figure 4 shows that clinical scores for 

dyskinesia and RMS values are highly correlated during the 

second recording session. Such correlation is maintained 

when data from all the sessions (including the pre-DBS 

observations during the third session) is considered. 

Although a visual correlation cannot be used to draw 

conclusions, it indicates the ability of features derived from 

accelerometer data to capture changes in severity of 

symptoms over a period of several days. 

A Sammons’ map for the data collected over the three 

visits is shown in Figure 5. The points in Figure 5 are 

labeled by clinical score for bradykinesia. By visual 

inspection, it is apparent that there is a good separation 

between clusters associated with different clinical scores. 

These results suggest that information extracted from 

accelerometer data can be used to build models that can 

provide an accurate prediction of clinical score values. 

V. DISCUSSION AND FUTURE WORK 

The results obtained so far provide preliminary evidence 

of the potential of wearable sensors for facilitating the 

process of seeking optimal stimulator settings in patients 

with Parkinson’s disease undergoing DBS. The observations 

performed over multiple visits allowed us to explore the 

hypothesis that features extracted from wearable sensor data 

change in a way that correlates with clinical scores. Our 

results suggest that the hypothesis we formulated holds, thus 

indicating that wearable sensors could be used to track 

changes in Parkinsonian symptoms over long periods 

therefore providing clinical feedback concerning the effect 

of different DBS settings. If future clinical studies confirm 

our preliminary results, we could envision utilizing a 

wearable system during the DBS programming period. 

Information gathered with such system could be of great 

help during the initial phases of the DBS programming 

period as clinicians could be provided with reliable 

quantitative information concerning the impact of 

exploratory adjustments in DBS settings. Availability of this 

information would be expected to facilitate the process 

aimed to achieve optimum outcomes. 
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Figure 5 Sammons mapping projection of the feature set. The patient 

is performing pronation-supination movements of the hand. The points 

are labeled by clinical score for bradykinesia. 
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