
Ecological Applications, 18(5), 2008, pp. 1200–1211
� 2008 by the Ecological Society of America

OPTIMIZING DISPERSAL CORRIDORS FOR THE CAPE PROTEACEAE
USING NETWORK FLOW

STEVEN J. PHILLIPS,1,4 PAUL WILLIAMS,2 GUY MIDGLEY,3 AND AARON ARCHER
1

1AT&T Labs–Research, 180 Park Avenue, Florham Park, New Jersey 07932 USA
2Entomology Department, Natural History Museum, Cromwell Road, London SW75BD UK

3Kirstenbosch Research Center, South African National Biodiversity Institute, P/Bag X7, Claremont 7735, Cape Town, South Africa

Abstract. We introduce a new way of measuring and optimizing connectivity in
conservation landscapes through time, accounting for both the biological needs of multiple
species and the social and financial constraint of minimizing land area requiring additional
protection. Our method is based on the concept of network flow; we demonstrate its use by
optimizing protected areas in the Western Cape of South Africa to facilitate autogenic species
shifts in geographic range under climate change for a family of endemic plants, the Cape
Proteaceae. In 2005, P. Williams and colleagues introduced a novel framework for this
protected area design task. To ensure population viability, they assumed each species should
have a range size of at least 100 km2 of predicted suitable conditions contained in protected
areas at all times between 2000 and 2050. The goal was to design multiple dispersal corridors
for each species, connecting suitable conditions between time periods, subject to each species’
limited dispersal ability, and minimizing the total area requiring additional protection. We
show that both minimum range size and limited dispersal abilities can be naturally modeled
using the concept of network flow. This allows us to apply well-established tools from
operations research and computer science for solving network flow problems. Using the same
data and this novel modeling approach, we reduce the area requiring additional protection by
a third compared to previous methods, from 4593 km2 to 3062 km2, while still achieving the
same conservation planning goals. We prove that this is the best solution mathematically
possible: the given planning goals cannot be achieved with a smaller area, given our modeling
assumptions and data. Our method allows for flexibility and refinement of the underlying
climate-change, species-habitat-suitability, and dispersal models. In particular, we propose an
alternate formalization of a minimum range size moving through time and use network flow to
achieve the revised goals, again with the smallest possible newly protected area (2850 km2). We
show how to relate total dispersal distance to probability of successful dispersal, and compute
a trade-off curve between this quantity and the total amount of extra land that must be
protected.

Key words: climate change; connectivity; corridor; dispersal; minimum range size; network flow;
Proteaceae; reserve design; Western Cape, South Africa.

INTRODUCTION

Habitat connectivity is a basic concept in protected

area design and more generally in landscape ecology

(Margules and Pressey 2000, Turner et al. 2001).

Ensuring habitat connectivity is an important element

of conserving biodiversity, especially since global climate

change will tend to cause many species to disperse along

climate gradients (Noss 2001, Honnay et al. 2002).

Climate change can contribute to habitat fragmentation

(Bawa and Dayanandan 1998), increasing the need for

explicit modeling of species dispersal and the spatial

arrangement of habitat (Vos et al. 2002, Del Barrio et al.

2006). Here we show that an optimization paradigm

called network flow (Ahuja et al. 1993) provides a

powerful new approach for measuring connectivity and

for multispecies optimization of protected areas and

corridors. Our approach takes into account species’

varying dispersal abilities and the spatial and temporal

distribution of suitable habitat, while making efficient

use of conservation funds by minimizing the total area

requiring new protection.

Our application of network flow falls within the

general framework of systematic conservation planning

(Margules and Pressey 2000). Our work mainly applies

to the selection of additional conservation areas to meet

the previously identified conservation goals (Stage 4 of

Margules and Pressey 2000). It also applies to the review

of existing conservation areas (Stage 3), as we use

network flow to determine species’ effective range size

over time within areas with existing protection. More

generally, we use network flow to evaluate the cost and

impact of a specific set of conservation goals. Our
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findings can therefore inform the prioritization of

conservation goals.

Network flow is a novel approach for measuring

connectivity in a landscape, i.e., the degree to which

components of the landscape such as habitat patches or

protected areas are linked. A variety of other methods

have been used to measure connectivity, and we outline

them here in order to contrast them with network flow.

The simplest notion of connectivity forms the basis of

the patches-in-matrix model of landscape ecology

(Turner et al. 2001): for a given species, two sites are

considered connected, and therefore part of the same

patch, if there is a path between them that uses only

suitable habitat. Some species and ecological processes

are better modeled by considering non-contiguous

patches to be ‘‘functionally connected’’ if they are

separated by a small gap that the species is likely to be

able to cross (With 2002). The geographic distance of

such a gap can vary depending on the quality of

intervening areas between patches (the matrix) which

may be more or less inhospitable for the given species.

The effective distance between patches (also referred to

as ‘‘least-cost path’’ or ‘‘cost-distance’’) can be calculated

using weighted shortest-path computations (Graham

2001, Ray 2005). Similarly, patch isolation measures the

patch’s distance from other patches, and effective

isolation uses potentially varying resistance in the matrix

to weight paths between patches (Ricketts 2001). These

models all involve questions of the form ‘‘Are two

components of the landscape linked?’’ or ‘‘What is the

effective distance between components?’’, and the

answers depend only on the shortest (possibly weighted)

path between the components.

The network flow approach differs in that it addresses

the question: ‘‘What is the capacity of the connection

between two components?’’ It therefore considers the

combined contribution of multiple paths between the

components, and it is applicable when studying ecolog-

ical processes involving quantification of flows of

individuals or genes across the landscape (McRae

2006). Distance measures alone cannot effectively model

such flows. For example, two elongated patches of

suitable habitat a given distance apart in a landscape will

likely have more interchange of organisms if they are

arranged side by side rather than end to end, even

though they have the same least-cost path distance in

both cases. Therefore, there has been recent encourage-

ment for the development of methods for modeling

flows of organisms and genes directly (Forman 2002,

Vos et al. 2002).

There are some existing methods for modeling the

capacity of connections between components of the

landscape. The conductance (or equivalently, the resis-

tance) of electrical networks has been used to model

gene flow and genetic differentiation among populations

in heterogeneous landscapes (McRae 2006). Simulation

models of dispersal use random walks on unweighted

graphs (corresponding to binary habitat suitability) or

weighted graphs (for continuous habitat suitability),

measuring, for example, the time to disperse to a distant

part of the modeled landscape (Malanson 2003). This

measure (mean dispersal time) is closely related to

electrical conductance (Doyle and Snell 1984, Tetali

1991). Landscape connectivity, defined as ‘‘the degree to

which the landscape facilitates or impedes movement

among resource patches’’ (Taylor et al. 1993) focuses on

deriving a single measure of the capacity of all

connections in the landscape. It has been measured in

simulation models by randomly moving individuals and

counting successful immigrants into habitat patches, i.e.,

dispersal success; and measuring the expected time to

move between habitat patches, i.e., search time (Ti-

schendorf and Fahrig 2000). These methods all model

random movement of organisms or genes. In contrast,

flow-based models measure how large or efficient a flow

is possible, without assuming a particular model of

organism movement.

We apply network flow to the task of designing

protected areas for the Cape Proteacea. The Proteaceae

are the most charismatic plants of the South African

Cape Floristic Region, a narrow mountainous coastal

belt with an extremely high degree of richness, ende-

mism, and diversity. For many species of Cape

Proteaceae, the greatest threat to persistence is the low

probability of dispersing from currently occupied areas

to distant areas of predicted future suitable conditions,

since many of the species are known not to disperse and

establish easily over long distances (Midgley et al. 2002).

We focus on autogenic shifts in species ranges because

the ability to actively assist species migration is limited

by lack of understanding and the complexity of the

broader ecological system (Malcolm and Pitelka 2000).

Williams et al. (2005) formalized and gave a heuristic

solution for the task of designing protected areas to

facilitate species shifts in geographic range in response to

climate change. Here we use network flow to construct a

set of protected areas achieving exactly the same

conservation goals as Williams et al. (2005), while

requiring only two-thirds as much additional protected

area. Moreover, we prove that ours is the best solution

mathematically possible, given this model and data.

Network flow thus yields a much better assessment of

the cost of planning for climate change. We also describe

a number of ways that network flow supports general-

izations of this design problem.

METHODS

The overall purpose of our method is to select a set of

areas to receive additional protection so that a collection

of species can maintain viable populations, taking into

account their dispersal limitations and changing habitat

suitability under climate change. We use a quantitative

model introduced by Williams et al. (2005) and applied

to the Proteaceae of the Cape Floristic Region of South

Africa, in which viability is ensured by protecting a

minimum range size of 100 km2 through time for each
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species, based on the area criterion of the World

Conservation Union (IUCN); this translates to 35 10 3

10 cells in the Western Cape.

Selecting protected areas to allow for dispersal

To model protection through time, Williams et al.

(2005) introduced the concept of dispersal chains. For a

given species, a dispersal chain is a sequence of six cells

(possibly with repetitions), c2000, c2010, . . . , c2050, such

that each cell has predicted suitable conditions in the

corresponding subscripted year (or is a presently

occupied cell, for c2000), and such that consecutive cells

in the sequence are separated in the grid by no more

than the distance that the species can disperse in a 10-

year period. A dispersal chain therefore represents a

feasible pathway for the species to disperse from cells

where it is currently found to cells where it is predicted

to have suitable conditions in 2050, using only suitable

cells along the way. A set of chains represents a

collection of independent pathways if the chains are

‘‘nonoverlapping’’ (Fig. 1). Combining the ideas of

minimum range size and dispersal chains, Williams et al.

(2005) model the task of designing dispersal corridors as

follows:

1) Find dispersal chains for all species. For each species,

the set of chains must:

a) be nonoverlapping;

b) use only untransformed cells with existing or

proposed protection;

c) have at least 35 chains, if possible; if less than 35

nonoverlapping chains exist, then the set should

have the maximum possible size.

2) Subject to these requirements, the number of cells

with proposed protection should be as small as

possible.

The nonoverlapping requirement is important, as it

imposes the minimum area criterion. Without it, the set

of chains for a species may occupy much less than 35

grid cells during some time period, compromising the

species’ viability (see Discussion for more analysis of this

requirement). However, there are at least two reasonable

ways to define nonoverlapping chains:

1) No two chains use the same cell in the same year.

2) No two chains ever use the same cell, even in

different years.

Under the first definition, two nonoverlapping chains

may use the same cell, but only in different years. Fig. 1

shows an example that highlights the difference between
these two definitions. The second (stricter) definition is

the one used by Williams et al. (2005). We will focus

primarily on the first definition, and then show how our

methods extend to the second definition. The two

definitions provide different levels of resilience against

modeling errors. In the case of an incorrect prediction

that a certain cell will be suitable at some particular

future time slice, at most one chain will be affected (will

not contribute to survival of the species) under both

definitions. On the other hand, if a cell can be rendered

permanently unsuitable despite being ‘‘protected,’’ then

for the first definition, multiple chains may be affected,

possibly leaving as many as five fewer pathways for the

species to disperse to future suitable conditions (in the

case where a different chain used that cell in each of the

time slices c2010, c2020, . . . , c2050).

Network flow concepts

We now introduce the basic concepts of network flow

that we will need for designing dispersal corridors.

Network flow is an optimization paradigm that is widely

used in computer science and operations research

(Ahuja et al. 1993). It has seen applications in such

diverse areas as telecommunication networks, transpor-

tation networks such as roads and railways, warehous-

ing and distribution, and production line and crew

scheduling, though we believe it is new to ecology. These

applications can all be seen as having an underlying

graph (also called a network), and a commodity that

flows over the graph (for example, telephone calls routed

over a network of fiber-optic cables). Movements of

species between habitat patches in a landscape or

between protected areas can be seen in the same way,

as flows in a graph that models the spatial and temporal

FIG. 1. Example chains and alternative definitions of nonoverlapping chains. A small area is divided into a 3 3 8 grid, shown
for the years 2000 through 2030. Years 2040 and 2050 have been omitted for simplicity. Some of the cells, colored gray, have
suitable conditions for a hypothetical species that can disperse at most one cell per decade. For the year 2000, only the three cells in
row 2, columns 2 through 4 are suitable. Each decade, the suitable conditions are predicted to move a single cell to the right. There
are three chains pictured, labeled a, b, and c, respectively: chain a uses cell (2,2) in year 2000, cell (2,3) in year 2010, cell (2,4) in year
2020, and cell (2,5) in year 2030. These three chains are nonoverlapping according to Definition 1 of nonoverlapping, which
requires only that no two chains use the same cell in the same year. However, any two of the three chains overlap according to
Definition 2 of nonoverlapping, which requires that no two chains ever use the same cell. For example, chains a and b overlap by
Definition 2 since they both use cell (2,3): chain a uses it in year 2010, while chain b uses it in year 2000.
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relationship between the patches or protected areas. Just

as a telephone network should be designed to allow

efficient routing of phone calls, networks of protected
areas should be designed to facilitate flows of organisms.

In this section, we give a brief introduction to two

network flow problems that will be useful for optimizing

dispersal corridors, namely ‘‘maximum flow’’ and

‘‘minimum-cost flow’’ (min-cost). For more details on
these and other flow problems and their applications, see

the comprehensive textbook by Ahuja et al. (1993). We

will use only maximum flow to address the dispersal

corridor design task introduced by Williams et al.
(2005), and mention later how min-cost flow may be

useful for variations on the model. We first define

network flow in general terms for arbitrary graphs, then

give an example where the graph represents a matrix of
cells in a landscape. For the dispersal corridor applica-

tion, we will use a more complex graph that represents a

landscape changing over time.

LetG be a directed graph, consisting of nodes connected

by directed arcs, and let each arc have a nonnegative value
called its capacity (Fig. 2A). A flow from one or more

nodes in the graph (sources) to one or more other nodes

(sinks) is a function f that gives a nonnegative value f(a)

for each arc a, satisfying two constraints:

1) a capacity constraint, such that for each arc a, f (a) �
capacity(a);

2) flow conservation, such that at each node other than
the sources and the sinks, the net flow is 0; i.e., the

flow into the node equals the flow out of it.

For an analogy, arcs can be thought of as pipes, and
the flow as the rate of water flowing through them. The

nodes represent junctions where pipes meet, and the flow

conservation constraint says that the amount of water

flowing into any junction must equal the amount flowing
out, unless the junction is a source (where water is being

injected) or a sink (where water is escaping from the

system). The capacity of an arc corresponds to the

maximum flow rate allowed by that pipe. Directed arcs
would correspond to pipes with unidirectional valves

allowing flow only in the direction of the arc. Of course,

ordinary water pipes allow flow in both directions, and

we can model this by a pair of arcs between the same
two nodes, pointing in opposite directions.

The value of a flow is defined as the total net flow out

of the source nodes, or equivalently, the total net flow

into the sink nodes. For our example graph, Fig. 2B

shows a flow of value 3 from node a (the source) to node

e (the sink). The most basic network flow problem is the
maximum flow problem, where we seek a flow of

maximum value, among all flows from a given set of

sources to a given set of sinks. It is easily verified that the

flow shown in Fig. 2B is a maximum flow. Each arc may
also have an associated cost, and the cost of a flow is

then defined as the sum over all arcs of cost times flow.

This leads to the minimum cost flow problem, where we

seek a flow of minimum cost, among all flows of a

specified value between a given source and sink. For

example, if the flow represents goods being trucked

across a road network, arc costs may represent road

lengths, so the cost of a flow is proportional to the

amount of fuel required to transport the goods.

A fundamental property is that if all arc capacities are

integers (and, in the case of min-cost flow, the specified

flow value is also integral), there is always a maximum

flow or min-cost flow that is integral, and that can

therefore be decomposed into a set of paths from

sources to sinks (Ahuja et al. 1993: Theorem 6.5). If the

arc capacities are all equal to 1, such an integral flow can

be decomposed into a set of arc-disjoint paths from

sources to sinks; ‘‘arc-disjoint’’ means that no arc is in

more than one path. Moreover, any set of arc-disjoint

paths from sources to sinks constitutes a flow, so we

have the following properties for any graph with unit

capacities:

1) Finding the maximum flow is equivalent to finding

the maximum number of arc-disjoint paths from

sources to sinks.

2) Finding a minimum-cost flow of integer value F is

equivalent to finding a set of F arc-disjoint paths

from sources to sinks with minimum total cost.

In our example flow of Fig. 2B, the flow as pictured is

integral. It can be decomposed into three paths from the

source to the sink, namely the paths (a, b, d, e), (a, c, d,

e), and (a, c, e). The paths are not arc-disjoint, because

FIG. 2. (A) An example directed graph has five nodes (a, b,
. . . , e) and six directed arcs. Each arc is labeled with a
nonnegative ‘‘capacity.’’ In (B), the graph has been labeled to
show an example ‘‘flow’’ from a single source node (a) to a
single sink node (e). Each arc is labeled first with its capacity,
then with the flow. The flow satisfies the following defining
properties: it is nonnegative, obeys the capacity constraint on
each arc, and satisfies flow conservation (flow in equals flow
out) at each node that is not a source or sink. The flow has
value 3, since that is the net flow out of the source (node a), or
equivalently, the net flow into the sink (node e).
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the first and second share the arc (d, e) and the second

and third share the arc (a, c).

Another useful property of flows is the ‘‘max-flow

min-cut theorem,’’ which says that the maximum flow

from a set of source nodes to a set of sink nodes is equal

to the minimum capacity among all cuts. A cut means a

partition of the nodes into two subsets, one containing

all of the sources and the other all of the sinks, and the

capacity of a cut is the sum of the capacities of arcs

crossing the cut from the source side to the sink side. In

other words, the max-flow min-cut theorem says that

finding the maximum flow value is the same as finding

the bottleneck cut that most constrains flow from

sources to sinks. This equivalence may find ecological

applications, since the bottleneck that most constrains

connectivity between areas of habitat for a species often

warrants conservation attention; habitat corridors are

examples of this.

Our second example uses min-cost flow to measure

connectivity between two elongated habitat patches in a

matrix (Fig. 3). The cost of a flow from one patch to the

other is lower if the patches are arranged side by side

(Fig. 3A) than if they are arranged end to end (Fig. 3B).

Min-cost flow therefore allows us to model the

availability and length (or more generally, some cost

measure) of multiple paths between the patches, in

contrast to least-cost path measures that depend only on

a single path.

There are a number of efficient algorithms to compute

optimal solutions for the maximum flow and min-cost

flow problems (Ahuja et al. 1993). Network flow type

problems are also easily represented as linear programs,

because flow conservation and capacity requirements are

naturally represented as linear constraints. Some com-

mercial linear program solvers can take advantage of the

special structure of network flow constraints to quickly

solve large flow problems.

Modeling dispersal chains as flow

Here we show how to represent nonoverlapping

dispersal chains as flows in a directed graph that

represents dispersal ability in the landscape. We focus

on the first definition of nonoverlapping (see Appendix

for modifications to represent the second definition). We

assume that each species can disperse either one cell or

three cells per time slice (as is the case with the Cape

Proteaceae; see Methods: The Cape Proteaceae). There

are therefore two versions of the graph, called G1 and G3,

corresponding to the maximum dispersal distance per

time slice being either one cell (see Fig. 4) or three cells.

The nodes of the graph consist of 2 3 NYEARS layers

(where NYEARS ¼ 6), numbered starting with layer 0;

each layer l has one node nl,c for each grid cell c. The graph

has the following collection of arcs, each with capacity 1:

1) In-year arcs. For each y 2 f0 . . . NYEARS� 1g, and
for each grid cell c, there is an arc from n2y,c to n2yþ1,c.

The arc represents the ability of a species to establish

and persist in the cell c during the yth time slice.

2) Between-year arcs. For each y 2 f0 . . . NYEARS �
2g, and for each pair of cells c1, c2 that are within the

maximum dispersal distance (one for G1 and three for

G3), there is an arc from n2yþ1; c1
to n2yþ2; c2

. The arc

represents the ability of a species to disperse from cell

c1 to the cell c2 by the end of the yth time slice.

FIG. 3. Example of the use of network flow to measure connectivity between two patches in a matrix. An area is divided into a
grid of cells (gridlines shown in gray). There are two 133 patches of suitable conditions for a hypothetical species (shown in black),
arranged (A) side by side or (B) end to end. The cells are in a uniform matrix that has conditions that are unsuitable for the species,
but that can be traversed. For each arrangement, the black arrows show a minimum-cost flow of value 8, for the graph defined as
follows: there is a node for each cell, with unit-capacity arcs from each cell to each of its four neighboring cells. Cells in the left
patch are sources, while cells in the right patch are sinks. If all arcs have unit cost, the flow in (A) has cost 52, while the flow in (B)
has cost 68. Both flows are maximum flows, since there is a cut of value 8 (the boundary of either patch). A minimum-cost flow of
value 3 has cost 6 for (A) vs. 10 for (B).
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The nodes in layers 0 and 1 represent the time slice

2000, layers 2 and 3 represent the time slice 2010, layers

4 and 5 represent the time slice 2020, and so on. A path

through G1 (or G3) from the first layer to the last

corresponds to a dispersal chain, constrained by a

dispersal distance of 1 (or 3). For the graph G1, between-

year arcs are analogous to the arcs in Fig. 3, the

difference being that here the arcs all move forward in

time (and that there are arcs to the four diagonal spatial

neighbors in addition to the two horizontal and two

vertical neighbors).

To model a particular species s, we choose G1 or G3

according to the maximum dispersal distance for s, and

then delete nodes (and all adjacent arcs) corresponding

to cells predicted to be unsuitable for s. In symbols, if a

cell c is unsuitable for s in the ith time slice, we delete

nodes n2i,c and n2iþ1,c and all adjacent arcs. We call the

resulting graph G(s). To model a set P of protected

areas, we delete from G(s) all nodes corresponding to

cells not in P. We call the resulting graph G(s, P).

For any species s and set P of cells, let the maximum

flow from the first layer to the last in G(s, P) be denoted

maxflow(s, P). This is the maximum number of disjoint

chains possible if exactly the cells in P are protected. Let

P0 be the set of already-protected cells, and let N be the

set of all non-transformed cells. Define required flow(s)

for a species s to be the smaller of 35 and maxflow(s, N ).

We call a set P of cells feasible for a species s if P is a

superset of P0 and maxflow(s, P) � required flow(s), or

equivalently, if there exists a set of required flow(s)

nonoverlapping dispersal-constrained chains within P.

A set P of cells is feasible if it is feasible for all species.

The task at hand is to find a feasible set whose size is as

small as possible.

A similar graph was used by Williams et al. (2005), the

essential difference being that we have doubled the

number of nodes and added in-year arcs. The reason for

doing this doubling is that network flow induces arc-

disjoint paths. Arc-disjoint paths in the doubled graph

correspond to node-disjoint paths (i.e., with no nodes

being in two paths) in the graph of (Williams et al.

2005), i.e., nonoverlapping dispersal-constrained chains.

This method of mapping node-disjoint paths into arc-

disjoint paths is called ‘‘node splitting’’ (Ahuja et al.

1993: Section 2.4). Finally, we note that there is no

restriction on multiple species occupying a single cell,

since the flow for a species is constrained only by

suitable conditions for that species, and by the set of

protected cells. The network flow for each species takes

place in a different graph tailored for that species. The

only element that ties these graphs together is that they

use the same set of protected cells.

Optimizing flow via integer programming

We now show how to use the flow-based character-

ization of dispersal chains to formulate an integer

program that minimizes the required protected area,

while meeting the conservation goals. A linear program

consists of a linear objective and a set of linear

constraints, i.e., it takes the following form:

maximize d � x
subject to Ax � b

where b and d are fixed real-valued vectors, A is a fixed

real-valued matrix, and x denotes the vector of

variables. Here, � denotes the vector dot product, and

the inequality Ax � b is meant to apply component-wise

to the vectors Ax and b. An integer program takes the

same form, with the added constraint that the variables

in x must have integer values, and a mixed integer

program has some subset of the variables in x

constrained to be integral.

Flow problems can be readily formulated as linear or

integer programs, because the capacity and flow

conservation constraints are all linear. We therefore

formalize the corridor design task as a mixed integer

program, with two types of variables:

1) Flow variables fsa for each species s and each arc a

of G1(s) or G3(s), depending on the maximum

dispersal distance of s.

2) A preserve variable pc for each non-transformed cell

c indicating its protected status, with 0 representing

unprotected, and 1 representing protected.

FIG. 4. The graph G1, representing dispersal
and persistence possibilities for a species with
maximum dispersal distance equal to 1. There are
12 layers, two for each of the years 2000, 2010,
2020, 2030, 2040, and 2050. Each layer has a
node for each non-transformed cell. An example
cell is shown as a black circle in some layers.
White circles represent cells that are neighbors of
the example cell. Representative examples of two
types of arcs are shown. An in-year arc (labeled
a) is present if the example cell is predicted to be
suitable for the species in that year. Between-year
arcs (labeled b) represent the ability of the species
to disperse from the example cell to nearby cells.
All arcs are left to right (arrowheads omitted for
clarity) and have unit capacity.
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The objective is to minimize the sum of the pc
variables, i.e., the total number of protected cells. The

constraints are of four types:

1) Flow conservation. For each species s, these con-

straints ensure that the variables fsa constitute a flow.

2) Required flow. These enforce the minimum area

requirement. For each species s, the constraint is that

the flow out of the source nodes (or equivalently, into

the sink nodes) must be at least required flow(s).

3) Capacity. These ensure that the flows use only

protected cells. For each in-year arc a corresponding

to a cell c in time slice y, there is a constraint fsa � pc
for each species s for which cell c is suitable in year y.

In other words, in the flow network for each species for

which this arc exists, the capacity of the arc is set to pc.

4) Existing protection. For all cells c that are already

protected, pc ¼ 1. The preserve variables pc must be

explicitly constrained to be integers. Because of the

integrality property of flows (mentioned earlier),

having integer capacities pc will automatically make

the flow variables fsa solve to integers.

The Cape Proteaceae

To demonstrate our approach, we apply it to the

Proteaceae of the Cape Floristic Region of South Africa,

using exactly the same data as Williams et al. (2005). The

relevant data on these species consist of:

1) A grid of 32 400 10 310 cells covering the western part

of the Cape Floristic region as far east as 208480 E, as

far north as 318530 S, and all the way to the coast on

the west and south (see Fig. 5).

2) The current (2000) distributions of 282 species of

Proteaceae (presence or absence in each grid cell).

3) Predicted areas of suitable conditions for each species

in years 2010, 2020, 2030, 2040, and 2050, derived

from Schulze and Perks (1999), based on climate

predictions from the general circulation model

HadCM2 (Johns 1997). The climate predictions were

fed into models of the species’ bioclimatic require-

ments (trained on the current distributions) to predict

areas of future suitable conditions. The bioclimatic

models use the following variables, chosen for their

direct physiological impact: mean minimum temper-

ature of the coldest month, annual sum of daily

FIG. 5. Map of the western part of the Cape Floristic Region of South Africa showing areas chosen to allow dispersal of 282
species of Proteaceae along at least 35 paths, where possible, within areas of predicted suitable conditions under climate change.
Key: pale gray, areas with 66% or more transformation of habitat; medium gray, existing protected areas; black, goal-essential cells
(required by any feasible solution); dark gray, additional cells requiring protection, as determined by solving an integer program.
There are 994 dark gray or black cells, and this is the minimum possible number for which the conservation goal is achievable.
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temperatures exceeding 188C, annual potential evap-

oration, and summer and winter soil moisture days

(days where soil moisture is above a critical level for

plant growth; Midgley et al. 2002).

4) A list of 1525 ‘‘already protected’’ cells (those with

adequate existing statutory protection).

5) A list of 6036 ‘‘transformed’’ cells, for which more

than two-thirds of the area in the cell has been

transformed to an unsuitable state by human activity.

6) For each of the 282 species, a ‘‘dispersal distance’’ of

one or three cells (for ant/rodent-dispersed or wind-

dispersed species, respectively), representing the

distance the species can reasonably be expected to

disperse in a 10-year period. If the dispersal distance

is one, the species can disperse from a given cell to

any of the nine cells forming a square around the

given cell; if the dispersal distance is three, the

species can disperse from a given cell to any of the

25 neighboring cells arranged in a diamond around

the given cell. (The nine and 25 numbers include the

cell itself, modeling dispersal or survival within the

cell.)

RESULTS

We solved the integer programs for the Cape

Proteaceae to obtain solutions with the smallest possible

number of protected cells, given the constraints (see

Appendix for computational details). For the first

definition of nonoverlapping, 994 cells are necessary

and sufficient (Fig. 5), while for the second definition,

1068 cells are required (Fig. 6). The difference in the

number of cells reflects the fact that the second

definition gives resilience to more types of uncertainty

in the input data, thus requiring more protected area for

some species. For comparison, Williams et al. (2005)

required additional protection for 1602 cells, which is

50% greater than our solution that meets the same

conservation goals (using the second definition of

nonoverlapping).

For 26 species, the required flow under the second

definition of nonoverlapping is smaller than under the

first definition, because fewer nonoverlapping chains are

possible. For those species, therefore, a smaller mini-

mum area is maintained over time in the solution to the

integer program. The species with the largest difference

is Serruria bolusii Phill. & Hutch. (Protea Atlas Code:

FIG. 6. Map of the western part of the Cape Floristic Region of South Africa showing areas chosen to allow dispersal of 282
species of Proteaceae along at least 35 paths obeying the Williams et al. (2005) definition of nonoverlapping, where possible, within
areas of predicted suitable conditions under climate change. Key: pale gray: areas with 66% or more transformation of habitat;
dark gray, existing protected areas; black, additional cells requiring protection, as determined by solving an integer program. There
are 1068 black cells, and this is the minimum possible number for which the conservation goal is achievable. Goal-essential cells
could be determined as in Fig. 5, if necessary, by solving additional integer programs.
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sebolu), which has at least 35 nonoverlapping paths by

Definition 1, while only 25 nonoverlapping paths that

satisfy Definition 2 are possible. The largest propor-

tional decrease is for Paranomus longicaulis Salisb. ex

Kn. (Protea Atlas Code: palong), which drops from 17

nonoverlapping paths to 8 nonoverlapping paths under

Definition 2.

We note that the heuristic of Williams et al. (2005)

does not find the true maximum possible number of

chains for some species, including five of the 18 species

(shown in their Table 2) that are obligate dispersers

under the second definition of nonoverlapping. Our

application of network flow does find the true maxi-

mum, thus allowing us to achieve stronger conservation

goals for some of the species that are likely to be most

vulnerable to climate change.

Despite being produced according to different re-

quirements, the solutions of Figs. 5 and 6 are broadly

similar: more than 80% of the newly protected cells in

Fig. 5 are also protected in Fig. 6. The two solutions

both contain cells clustered in a number of distinct areas,

especially in the hills between Hermanus and Napier, the

Piketberg, the peninsula east of Simon’s Town, and the

Langeberg Mountains. These areas were also highlight-

ed by the solution of Williams et al. (2005). However,

their solution also contains a large cluster in the

Cedarberg, roughly doubling the existing amount of

protected land, and in contrast, our solutions reveal that

very little additional protection is required in the

Cedarberg for the given conservation goals.

DISCUSSION

We have used network flow to exactly characterize the

number of nonoverlapping dispersal constrained paths,

which captures the notion of a species’ range size during

the time that its range is experiencing a geographic shift.

Using network flow constraints in a mixed integer

program, we found the optimum configuration of

protected areas to support a minimum range size

conservation goal simultaneously for 282 species of

Cape Proteaceae, reducing by one-third the number of

cells required to achieve the same conservation goal,

compared to a previous study (Williams et al. 2005). The

same method can be applied to any other group of

species, as long as maps of predicted future suitable

conditions can be generated for them. Similarly, the

method can be used with updated future climate

scenarios, as models of climate change evolve. Our

results show that network flow can be a powerful tool

for modeling and optimizing the capacity of connections

between different components of a landscape, and we

expect that it will find more applications in landscape

ecology and reserve design.

Sources of uncertainty and potential errors

The optimization we have described depends on a

number of levels of modeling, each of which comes with

some potential sources of error. A major source of

uncertainty derives from the modeling of future climate

conditions, especially since there is little agreement

among climate models on likely future precipitation

trends, and the distribution of Cape Proteaceae is

strongly influenced by precipitation. A second major

source of uncertainty is the projection of species

distribution models onto future climate conditions.

Models produced by different modeling methods may

give very different future predictions (Pearson et al.

2006). Furthermore, we have assumed that the relation-

ship between suitability for each species and climatic

conditions is constant over time, and that generation

times for the modeled species are similar to the 10-year

duration of time slices. Continuous models were thresh-

olded to give predictions of future suitable areas, so the

predictions are sensitive to the choice of thresholding

rule. The modeling of species’ dispersal abilities and

minimum area requirements and the treatment of

habitat transformation are all quite simplistic, and open

to future revision when more information is available

(Williams et al. 2005). The similarity of our two

solutions for different formalizations of the minimum-

area requirement suggest that this detail of the approach

is not a major source of uncertainty. However, given the

significant uncertainties in climate and species models

and their interaction, and other simplistic details of our

modeling approach, the solutions that we have produced

should be considered tentative, and subject to revision as

the underlying models and data are improved. Never-

theless, our solutions identify areas that may be

important for persistence of the Cape Proteaceae, given

our current knowledge. By focusing on optimization, we

have eliminated one source of uncertainty, the uncer-

tainty due to the use of computational heuristics rather

than exact optimization in the design of dispersal

corridors. Indeed, we find that expanding the amount

of protected area in the Cedarberg is not as important as

was suggested by Williams et al. (2005), so more priority

can be given to other areas.

Choice of optimization criterion

We note that it is possible to model more complicated

dispersal mechanisms than we have considered here, for

example allowing populations to branch and merge.

However, to insure against stochastic events eliminating

small populations or rendering small areas unsuitable,

and to insure against uncertainty in the underlying data,

it is important that a minimum number of separate

populations be able to migrate along independent

pathways that maintain suitable climatic conditions.

Chains constitute the minimum requirement that en-

sures species viability through the existence of such

independent pathways. By focusing on chains, we are

primarily answering the question: ‘‘How much land

must be protected to ensure viability during climate

change?’’ However, given sufficient resources, we may

desire protected area configurations that offer more than

simple viability: we may prefer to maximize expected
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population sizes, subject to the viability constraints we

have modeled here. The latter optimization problem

would probably require more explicit modeling of

populations than the present study. We may also

combine requirements on flows and chains with other

optimization criteria, such as preferring contiguous

protected areas.

Bi-criteria optimization

In this paper, we are primarily trying to minimize the

number of additional grid cells requiring protection.

That is, we seek a solution of minimum cost that satisfies

the survival requirements, where each grid cell we use is

assigned a cost of one. The model could also accom-

modate different costs for each grid cell, simply by

changing the coefficient in the mixed integer program’s

objective function that corresponds to that cell. Here we

also consider attaching costs to the arcs, in order to

model how likely the species is to survive and disperse at

each step in a dispersal chain. We set the cost of each

between-year arc to be the Euclidean distance between

the endpoints of the arc; in-year arcs had cost 0. This

results in the cost of a chain being the sum of the

Euclidean distances of its implied dispersal events.

Adding the flow cost to the objective function of our

mixed integer program combines the financial cost of

creating new protected areas with the biological cost of

requiring the species to disperse further. On its face, it

seems that adding these costs is comparing apples and

oranges. This is a common difficulty in bi-criterion

optimization problems. We want to maximize the

chances of species survival, but protecting grid cells is

difficult and has other costs that push us to minimize the

number of grid cells we protect. We need to somehow

balance these two criteria. One approach is to place a

hard limit on one of the two costs while optimizing the

other. Another approach is to multiply one of the costs

by a scaling parameter and add it to the other. Both

approaches allow us to vary the appropriate parameter

over a range, in order to fill out a trade-off curve of total

dispersal distance required (and implied reduction of

survival probability) vs. grid cell protection cost; we

chose to implement the former approach. We started

with the number of protected cells at 994, the minimum

for which the goal is achievable, and then increased it in

steps of 10 from 1000 to 1340, the point at which adding

more protected cells does not help to reduce the flow

cost (Fig. 7). On the left of the plot we see that a 5%

increase in the number of protected cells allows the flow

cost to be reduced 20%. Conversely, the right end of the

plot shows that many more cells must be protected if we

want to keep the flow cost at or near its minimum

possible value. A lower flow cost means that the species

are not required to disperse as far, so their probability of

successfully dispersing along the chains is increased.

Therefore, we conclude that a small increase above the

absolute minimum number of protected cells may be

justified, in order to increase the probability of the

species’ survival, but that maximizing survival proba-

bility (by minimizing flow cost) is not likely to be a cost-

effective use of conservation funding.

Variable dispersal likelihood and habitat suitability

The network flow and integer programming approach

offers some new possibilities for solving variations of the

corridor design task. We have seen this already in the

use of two notions of nonoverlapping; here we describe

some variations that use min-cost flow instead of

maximum flow. One possibility is to represent species

ranges with continuous values rather than binary ones,

denoting varying levels of suitability for the species. In

addition, a given species may be more likely to disperse

to nearby cells than to further away cells, or to cells in a

certain direction, due to prevailing winds. A simple way

of modeling varying dispersal likelihood is given by the

bi-criteria optimization described above, where there is

an implied cost for each dispersal event, proportional to

the dispersal distance. We can represent varying

probabilities of persistence and dispersal more explicitly

and with more detail by varying arc costs. For example,

we can make the cost of an in-year arc be the negative

log probability that the species would persist in the

corresponding cell for the corresponding 10-year period.

Similarly, we can make the cost of a between-year arc be

the negative log probability that the species would

disperse between the corresponding two cells in a 10-

year period. The cost of a source–sink path, being the

sum of the costs of its arcs, is then equal to the negative

log probability that the species manages to persist and

then disperse as required at each step in the correspond-

FIG. 7. Trade-off curve for the bi-criteria optimization of
the number of protected cells and the flow cost. The flow cost is
the sum of the Euclidean distances of the dispersal chains. The
minimum possible number of protected cells is 994, while the
minimum possible flow cost is 1794.37. The points on the graph
show selected solutions trading off the two measures. At each
point, the y-value gives the minimum possible flow cost for the
given number of protected cells, if CPLEX solved the
corresponding mixed integer program within a few days;
otherwise the upper and lower bounds found for the minimum
flow cost are shown with an error bar.
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ing dispersal chain, assuming each of these events is

statistically independent. Finding a min-cost flow of a

particular value v would then be equivalent to finding a

set of v dispersal chains that maximizes the probability

of successful dispersal along all the chains simultaneous-

ly. Cost here represents biological cost; economic costs

(such as variations in land price) can also easily be

modeled.

Alternatively, we may be able to estimate the size of

the population that each cell can sustain in each time

slice. If we set the capacity of in-year arcs to this

estimate, then a flow can be interpreted as modeling the

dispersal of a whole population. Such a flow may no

longer be decomposable into nonoverlapping chains,

and it might use a different number of cells in each layer.

For example, it might use 35 highly suitable cells in one

year, and 50 fairly suitable cells in the next.

Another possibility for adding realism to the model is

to use what is known as generalized flow. In ordinary

network flow, the flow entering an arc is the same as the

flow leaving the arc. Generalized flow allows for there to

be multiplicative gains or losses. (For a multiplicative

loss, think of the arc as a leaky pipe.) This would be

another potential way to model the probability of

dispersal between two grid cells. Generalized flow has

also been well-studied in the operations research and

computer science communities, and there are efficient

computational techniques known for dealing with it.

Varying conservation goals

If model outputs will be used to prioritize new areas

for conservation, it may be useful to propose more

contiguous or compact areas of new protection. This can

be achieved by adding a boundary length modifier,

which adds a penalty to the objective function for each

pair of neighboring cells with different protection status

(Possingham et al. 2000). The mixed integer program

will then compute the optimum trade-off between

boundary length and number of proposed sites. A larger

penalty value will produce more contiguous designs.

Similarly, it may be useful to propose protection only

for sites that are needed by multiple species. This can be

achieved by making the required flow value for each

species be a variable, rather than a constant, and adding

a penalty to the objection function for flow values that

are less than the conservation goal. The penalty can vary

per species, depending on the maximum achievable

number of chains, or other measures of the conservation

importance of each species. This will allow the mixed

integer program to find the optimal trade-off between

the conservation goals and number (or economic cost)

of proposed sites.

Long-range dispersal events

The potential usefulness of the approach we describe

relates to the ongoing debate about the migration

capacity of species under climate change. For example,

fossil pollen records have been interpreted as indicating

that tree populations migrated much faster during post-

glacial warming in North America and Europe than our

current knowledge of seed dispersal mechanisms would

suggest (Davis 1981, Huntley and Birks 1983). Rare and

poorly understood long-distance dispersal events could

therefore be an important factor in the ability of these

and other species’ ranges to track suitable conditions

during periods of rapid climate change (Clark 1998,

Pearson and Dawson 2005), but such events are not

included in the dispersal models considered in this

paper. However, there is recent genetic evidence that tree

migration rates at the end of the last glacial period were

much slower than fossil pollen data suggests, reducing

the need to posit rare long-distance dispersal events

(McLachlan et al. 2005). Indeed, range expansion into

areas predicted to become suitable may be slow, lagging

trailing edge population extinction (Foden et al. 2007).

It is clear that further research is warranted to

understand the full range of dispersal mechanisms. This

is especially true for any species expected to undergo

pronounced range shifts, like many Proteaceae (Midgley

et al. 2003). Meanwhile, conservation planning must be

done with respect to our current understanding of

species’ dispersal abilities, and flexible planning methods

must be developed to be able to incorporate and adapt

to future insights into species’ dispersal abilities. In

general, we prefer to err on the side of caution, and use

conservative estimates of species’ dispersal abilities.
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APPENDIX

Modeling the second definition of nonoverlapping chains (Ecological Archives A018-043-A1).
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