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Optimizing Dominant Time Constant in RC Circuits
Lieven Vandenberghe, Stephen Boyd, and Abbas El Gamal

Abstract—Conventional methods for optimal sizing of wires
and transistors use linear resistor-capacitor (RC) circuit models
and the Elmore delay as a measure of signal delay. If the RC
circuit has a tree topology, the sizing problem reduces to a convex
optimization problem that can be solved using geometric pro-
gramming. The tree topology restriction precludes the use of these
methods in several sizing problems of significant importance to
high-performance deep submicron design, including for example,
circuits with loops of resistors, e.g., clock distribution meshes
and circuits with coupling capacitors, e.g., buses with crosstalk
between the wires. In this paper, we propose a new optimization
method that can be used to address these problems.

The method is based on the dominant time constant as a
measure of signal propagation delay in an RC circuit instead
of Elmore delay. Using this measure, sizing of any RC circuit can
be cast as a convex optimization problem and solved using re-
cently developed efficient interior-point methods for semidefinite
programming. The method is applied to three important sizing
problems: clock mesh sizing and topology design, sizing of tristate
buses, and sizing of bus line widths and spacings taking crosstalk
into account.

Index Terms—Circuit optimization, circuit topology, clocks,
crosstalk, delay effects, dominant time constant, integrated circuit
interconnections, nonlinear programming, RC circuits, semidef-
inite programming.

I. INTRODUCTION

T HE CLASSICAL approach to optimal sizing of wires
and transistors assumes a linear resistor-capacitor (RC)

circuit model and usesElmore delayas a measure of signal
propagation delay. This approach finds its origins in [1]–[3].
In particular, Fishburn and Dunlop [3] were first to observe
that if the resistors form a tree with the input voltage source
at its root and all capacitors are grounded, the Elmore delay
of a RC circuit is a posynomial functionof the conduc-
tances and capacitances. This observation has the important
consequence that convex programming, specificallygeometric
programming, can be used to optimize Elmore delay subject
to area and power constraints. Geometric programming forms
the basis of the TILOS program and of several extensions and
related programs developed since then [3]–[8]. See [9] also
for a comprehensive recent survey.
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The tree topology restriction, however, precludes the use
of these Elmore delay methods in several sizing problems of
significant importance to high performance deep submicron
design including circuits with capacitive coupling between
the nodes, e.g., buses with crosstalk and circuits with loops
of resistors, e.g., clock meshes. In this paper, we present
a new optimal sizing method that can be used to address
these problems. The method uses thedominant time constant
as a measure of signal delay instead of Elmore delay. The
motivation for this choice is that the dominant time constant
of a general RC circuit is a quasi-convex function of the
conductances and capacitances. In particular, we show that it
can be optimized using recently developed efficient methods
for semidefinite programming. The Elmore delay, on the other
hand, has no useful convexity properties except when the RC
circuit has a tree topology.

We apply our method to three important sizing problems.
The first is the problem of sizing a clock mesh (Section V).
This problem is difficult to handle using Elmore delay methods
because of the presence of resistor loops. The results also
illustrate that, to a certain extent, our method can be used
to design the interconnecttopology (in addition to sizing).
The second problem we consider is the sizing of a tristate
bus (Section VI). The interconnect network in this example
is driven by multiple sources and therefore it does not have
the tree topology required by the Elmore delay methods.
The third problem is the simultaneous sizing of bus line
widths and spacings taking into account coupling capacitances
between neighboring bus wires, i.e., crosstalk (Section VII).
This problem is particularly important in deep submicron
design where the coupling capacitance can be significantly
higher than the plate capacitance. The results illustrate that
optimizing dominant time constant allows us to control not
only the signal propagation delay, but also indirectly the
crosstalk between the wires. Since the circuit has nongrounded
capacitors, this is not possible using Elmore delay.

The outline of the paper is as follows. In Section II, we
describe the RC circuit model considered in the paper. In
Section III, we discuss three definitions of signal propagation
delay and define the dominant time constant. In Section IV, we
show that sizing problems using the dominant time constant as
a measure of delay lead to semidefinite programming problems
for which efficient methods have recently been developed.
In Sections V–VII, we describe the three applications. We
conclude in Section VIII with a discussion of the compu-
tational complexity of the method and with an overview
of its advantages and disadvantages compared to Elmore
delay methods. An extended version of this paper containing
additional examples and mathematical background is available
as an internal report [22].
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Fig. 1. General RC circuit withn+ 1 nodes shown as a resistive network,
a capacitive network, and voltages sources.

II. CIRCUIT MODELS

A. General RC Circuit

We consider linear RC circuits that can be described by the
differential equation

(1)

where is the vector of node voltages, is
the vector of independent voltage sources, is the
capacitance matrix, and is the conductance matrix
(see Fig. 1). Throughout the paper we assume thatand
are symmetric and positive definite (i.e., that the capacitive
and resistive subcircuits are reciprocal and strictly passive).
The case in which and are only positive semidefinite,
i.e., possibly singular, is considered in Appendix A.

We are interested in design problems in whichand
depend on some design parameters Specifically we
assume that the matricesand areaffinefunctions of i.e.,

(2)

where and are symmetric matrices.
We will refer to a circuit described by (1) and (2) as a

general RC circuit. We will also consider several important
special cases, for example, circuits composed of two-terminal
elements, circuits in which the resistive network forms a tree,
or all capacitors are grounded. We describe these special cases
now.

B. RC Circuit

When the general RC circuit is composed of two-terminal
resistors and capacitors (and the independent voltage sources)
we will refer to it as anRC circuit. More precisely, consider
a circuit with branches and nodes, numbered 0 to
where node 0 is the ground or reference node. Each branch
consists of a capacitor and a conductance in
series with a voltage source (see Fig. 2). Some branches
can have a zero capacitance or a zero conductance, but we will
assume that both the capacitive subnetwork (i.e., the network
obtained by removing all resistors and voltage sources) and the
resistive subnetwork (i.e., the network obtained by removing
all capacitors) are connected.

We denote the vector of node voltages by , the vector
of branch voltages by , and the vector of branch

Fig. 2. Orientation of thekth branch voltageVk and branch currentIk in
an RC circuit. Each branch consists of a capacitorck � 0 and a resistor with
conductancegk � 0 in series with an independent voltage sourceUk:

Fig. 3. Example of a grounded capacitor RC tree.

currents by The relation between branch voltages
and currents is

(3)

To obtain a description of the form (1), we introduce the
reduced node-incidence matrix and define and

as

diag diag (4)

Obviously, and are positive semidefinite. Both matrices
are nonsingular if the capacitive and resistive subnetworks are
connected. It can also be shown that the matrices
and are elementwise nonnegative.

Using Kirchhoff’s laws and , it is
straightforward to write the branch equations (3) as (1) with

diag
From the expressions for the matricesand (4), we see

that they are affine functions of the design parametersif
each of the conductances and capacitances is.

C. Grounded Capacitor RC Circuit

It is quite common that all capacitors in the RC circuit are
connected to the ground node. In this case, the matrixis
diagonal and nonsingular if there is a capacitor between every
node and the ground. We will refer to circuits of this form as
grounded capacitor RC circuits.

D. Grounded Capacitor RC Tree

The most restricted class of circuits considered in this
paper consists of grounded capacitor RC circuits in which the
resistive branches form a tree with the ground node as its root.
Moreover, only one resistive branch is connected to the ground
node and it contains the only voltage source in the circuit. An
example is shown in Fig. 3.
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Note that the resistance matrix for a circuit of
this class can be written down by inspection

resistances upstream from nodeand node

(5)

i.e., to find we add all resistances in the intersection of the
unique path from nodeto the root of the tree and the unique
path from node to the root of the tree. For the example in
Fig. 3, we obtain that is equal to (see the equation located
at the bottom of this page) where

One can also verify that in a grounded capacitor RC tree
with input voltage , the vector in (1) is equal to

where is the vector with all components
equal to one.

E. Applications

Linear RC circuits are often used as approximate models
for transistors and interconnect wires. When the design pa-
rameters are the physical widths of conductors or transistors,
the conductance and capacitance matrices are affine in these
parameters, i.e., they have the form (2).

An important example is wire sizing, where denotes the
width of a segment of some conductor or interconnect line. A
simple lumped model of the segment consists of asection:
a series conductance with a capacitance to ground on each
end. Here the conductance is linear in the widthand the
capacitances are linear or affine. We can also model each
segment by many such sections and still have the general
form (1), (2).

Another important example is an MOS transistor circuit
where denotes the width of a transistor. When the transistor
is “on” it is modeled as a conductance that is proportional
to and a source-to-ground capacitance and drain-to-ground
capacitance that are linear or affine in

III. D ELAY

We are interested in how fast a change in the input
propagates to the different nodes of the circuit and in how
this propagation delay varies as a function of the resistances
and capacitances. In this section, we introduce three possible
measures for this propagation delay: the threshold delay,
which is the most natural measure but difficult to handle
mathematically; the Elmore delay, which is widely used in
transistor and wire sizing; and the dominant time constant.
We will compare the three delay measures in the examples
(Sections V–VI) where we will observe that their numerical
values are usually quite close. More theoretical details on the

relation between these three measures will be presented in
Appendix B, including some bounds that they must satisfy.

We assume that for , the circuit is in static steady state
with For , the source switches to the
constant value As a result, for we have

(6)

which converges as to (since our assumption
implies stability). The difference between the

node voltage and its ultimate value is given by

and we are interested in how largemust be before this is
small.

To simplify the notation, we will relabel as and from
here on study the rate at which

(7)

becomes small. Note that this satisfies the autonomous
equation

It can be shown that for a grounded capacitor RC circuit
the matrix is elementwise nonnegative for all
(see [23, p. 146]). Therefore, if (meaning,
for in (7), the voltages remain nonnegative, i.e.,
for we have

Also note that in a grounded capacitor RC tree, the steady-
state node voltages are all equal. When discussing RC trees,
we will therefore assume without loss of generality that the
input switches from zero to one at , i.e.,
in (6), or for the autonomous model, that in (7).

A. Threshold Delay

In many applications the natural measure of the delay at
node is the first time after which stays below some given
threshold level , i.e.,

for

We will call the maximum threshold delay to any node the
critical threshold delayof the circuit

for

where denotes the infinity norm, defined by
The critical threshold delay is the first time after

which all node voltages are less than
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Fig. 4. Graphical interpretation of the Elmore delay at nodek: T thres

k
is

the threshold delay at nodek: The area belowvk; which is shaded lightly,
is T elm

k
: The darker shaded box, which lies belowvk; has area�T thres

k
:

From this it is clear that when the voltage is nonnegative and monotonically
decaying�T thres

k
� T elm

k
:

The critical threshold delay depends on the design
parameters through (7), i.e., in a very complicated way.
Methods for direct optimization of are inefficient and
also local, i.e., not guaranteed to find a globally optimal design.

B. Elmore Delay

In [1], Elmore introduced a measure of the delay to a node
that depends on and (hence, in a simpler way than the
threshold delay and often gives an acceptable approximation
to it. The Elmore delay to node is defined as

While is always defined, it can be interpreted as a
measure of delay only when for all , i.e., when
the node voltage is nonnegative. (Which is the case, as we
mentioned, in grounded capacitor RC circuits with )

In the common case that the voltages decay monotonically,
i.e., for all , we have the simple bound

which can be derived as follows. Assuming is positive
and nonincreasing, we must have for
Hence the integral of must exceed (see Fig. 4). The
monotonic decay property holds, for example, for grounded
capacitor RC trees [2, Appendix C]. (See also [24] for sharper
bounds between the threshold delay and the Elmore delay in
grounded capacitor RC trees.)

We can express the Elmore delay in terms of , and
as

where is the th unit vector. Thus the vector of Elmore
delays is given by the simple expression where

is the resistance matrix. We define thecritical
Elmore delayas the largest Elmore delay at any node, i.e.,

For a grounded capacitor RC circuit with , we can
express the critical Elmore delay as

by noting that the matrix is elementwise
nonnegative. If (as in a grounded-capacitor RC tree)

we can also write

(8)

(For a matrix is the maximum row sum of
i.e.,

C. Dominant Time Constant

In this paper, we propose using thedominant time constant
of the RC circuit as a measure of the delay. We start with
the definition. Let denote the eigenvalues of the
circuit, i.e., the eigenvalues of or equivalently, the
roots of the characteristic polynomial They are
real and negative since they are also the eigenvalues of the
symmetric, negative definite matrix

(which is similar to We assume they are sorted in
decreasing order, i.e.,

The largest eigenvalue is called thedominant eigenvalue
or dominant poleof the RC circuit.

Each node voltage can be expressed in the form

(9)

which is a sum of decaying exponentials with rates given by
the eigenvalues. We define thedominant time constantat the

th node as follows. Let denote the index of the first nonzero
term in the sum (9), i.e., for and
(Thus, the slowest decaying term in is We call

the dominant eigenvalueat node , and the dominant time
constant at node is defined as

In most cases, contains a term associated with the largest
eigenvalue in which case we simply have

The dominant time constant measures the asymptotic
rate of decay of and there are several ways to interpret
it. For example, is the smallest number such that

holds for some and all
The (critical) dominant time constantis defined as

Except in the pathological case when is
deficient in the eigenvector associated with, we have

(10)

In the sequel we will assume this is the case. Note that the
dominant time constant is a very complicated function
of and i.e., the negative inverse of the largest zero of
the polynomial

The dominant time constant can also be expressed in another
form that will be more useful to us.

(11)
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This form has another advantage: it provides a reasonable
measure of delay in the case whenand are only positive
semidefinite (i.e., possibly singular). The details are given in
Appendix A.

IV. DOMINANT TIME CONSTANT OPTIMIZATION

In this section, we show how several important design
problems involving dominant time constant, area, and power
can be cast as convex or quasi-convex optimization problems
that can be solved efficiently.

A. Dominant Time Constant Specification
as Linear Matrix Inequality

As a consequence of (11), we have

(12)

This type of constraint is called alinear matrix inequality
(LMI): the left-hand side is a symmetric matrix, the entries
of which are affine functions of It can be shown that the
set of vectors that satisfy (12) is convex regardless of the
topology of the circuit. In other words, an upper bound on the
dominant time constant is a convex constraint in the variables

This means that is a quasi-convexfunction of , i.e.,
the sublevel sets

are convex sets for all Quasiconvexity can also be
expressed as: for

i.e., as the design parameters vary on a segment between two
values, the dominant time constant is never any more than the
larger of the two dominant time constants at the endpoints.

Linear matrix inequalities have recently been recognized
as an efficient and unified representation of a wide variety
of nonlinear convex constraints. They arise in many different
fields such as control theory and combinatorial optimization
(for surveys, see [26]–[30]). Most importantly for us, many
convex and quasi-convex optimization problems that involve
LMI’s can be solved with great efficiency using recently
developed interior-point methods.

B. Semidefinite Programming

The most common optimization problem involving LMI’s
is the semidefinite programmingproblem (SDP) in which we
minimize a linear function subject to a linear matrix inequality

minimize

subject to (13)

where and the
inequality means is positive semidefinite. Semidefinite
programs are convex optimization problems and can be solved
very efficiently (see, e.g., [27]–[29]). We can also handle
multiple LMI constraints in the SDP (13) by representing them
as one big block diagonal matrix.

As an example, suppose the area of the circuit described by
(2) is an affine function of the variables This occurs when
the variables represent the widths of transistors or conductors
(with lengths fixed as in which case the circuit area has
the form

where is the area of the fixed part of the circuit. We can
minimize the area subject to a bound on the dominant time
constant and subject to upper and lower bounds
on the widths by solving the SDP

minimize

subject to

(14)

The solutions of (14) are on the globally optimal tradeoff
curve, i.e., they arePareto optimal for area and dominant
time constant. By solving this SDP for a sequence of values
of , we can compute the exact globally optimal tradeoff
between area and dominant time constant.

In Section V we will see that tradeoffs between power
dissipation and dominant time constant can be computed in
a similar way by solving a series of SDP’s.

C. Generalized Eigenvalue Minimization

Another common problem involving LMI’s has the form

minimize

subject to

(15)

where and are symmetric matrices that are affine
functions of and the variables are and This
problem is called thegeneralized eigenvalue minimization
problem(GEVP). GEVP’s are quasiconvex and can be solved
efficiently. See [25], [31], [27], [32], and [33] for details on
specialized algorithms.

As an example, the problem of minimizing the dominant
time constant, subject to an upper bound on the area and upper
and lower bounds on the variables, can be cast as a GEVP

minimize

subject to

with variables and

V. SIZING OF CLOCK MESHES

The possibility of optimizing RC circuits with loops of
resistors is of importance to high-performance microprocessor
design where the clock signal is distributed using a mesh
instead of a tree. In [34], Desai, Cvijetic, and Jensen describe
the design of the clock distribution network on a DEC-
alpha processor and note, “there is a need for algorithms for
sizing large nontree networks.” Minimizing the dominant time
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Fig. 5. Clock distribution network modeled as an RC mesh. Each rectangular
element represents a wire, which we model as a single�-segment as in Fig. 6.
The drivers switch simultaneously. We are interested in the tradeoff between
delay (dominant time constant) and total dissipated power. The variables are
the widths of theN2 segments, whereN is the number of segments in each
column and row.

Fig. 6. A segment of an interconnect wire with widthx is modeled as a
conductance�x and two capacitances to the ground�x:

constant instead of Elmore delay is a promising technique to
achieve exactly that goal.

Fig. 5 shows the example that we consider. The circuit
consists of a mesh of interconnect wire, withsegments per
row and column (so the number of nodes in the circuit is equal
to Each interconnect segment (the rectangular
elements in Fig. 5) is modeled as a-segment, as in Fig. 6.
Each node of the mesh has a capacitive loadThe network is
driven by voltage sources with output conductance Note
that this circuit is a grounded capacitor RC circuit, but not
an RC tree, since it contains loops of resistors and multiple
sources. The optimization variables are thesegment widths

(with constraints
The sources switch between zero and one simultaneously

and at a fixed frequency. Therefore the energy dissipated in
once cycle is equal to

which is a linear function of the variables This means we
can minimize the dissipated power subject to a bound on the

Fig. 7. RC mesh example with4� 4 segments and the numerical values of
the load capacitances used in the calculation.

Fig. 8. Tradeoff between dissipated power and dominant time constant.

dominant time constant by solving the SDP

minimize

subject to

(16)

By solving this problem for different values of , we
can trace the exact globally optimal tradeoff curve between
dissipated power and dominant time constant. This tradeoff
curve is shown in Fig. 8 for the numerical values

and for load capacitances as indicated in Fig. 7. Fig. 9 shows
the solution for two different points on the tradeoff curve

and
We note that the topology is different in the two cases.

More segments are used in the circuit on the left, which has
a small dominant time constant and large power consumption
(large total capacitance). In the solution on the right, fewer
segments are used and they are smaller which reduces the
power dissipation but increases the dominant time constant.

Fig. 10 shows the fastest and the slowest step responses in
both circuits when a step input is applied simultaneously to
the five voltage sources in the middle row. Note in particular
that the values of the three delay measures are very close (and
in fact, the dominant time constant approximates the 50%-
threshold delay better than the Elmore delay). This observation
is confirmed by many other examples (see the following
sections and the report [22]).
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Fig. 9. Optimal solution for two points on the tradeoff curve:T
dom

= 50 (left) and T
dom

= 100 (right). The numbers indicate the optimal widths
xi of the segments; the segments with widthxi = 0 are not shown.

Fig. 10. Step responses for the two solutions in Fig. 9. The plots show the responses at the fastest (a) and the slowest (b) node in Fig. 9. We also show
the critical 50%-threshold delay, the critical Elmore delay, and the dominant time constant.

Fig. 11. Tristate bus sizing and topology design. The circuit on the left represents a tristate bus connecting six nodes. Each pair of nodes is connected
through a wire, shown as a dashed line, modeled as a� segment shown at right. The bus can be driven from any node. When nodei drives the bus,
the ith switch is closed and the others are all open. Note that we have 15 wires connecting the nodes, whereas onlyfive are needed to connect them. In
this example, as in the previous example, we will use dominant time constant optimization to determine the topology of the bus as well as the optimal
wire widths xij : optimal xij ’s which are zero correspond to unused wires.

VI. TRI-STATE BUS SIZING AND TOPOLOGY DESIGN

In this example we optimize a tristate bus connecting six
nodes. The example will again illustrate that dominant time
constant minimization can be used to (indirectly) design the
optimal topology of a circuit.

The model for the bus is shown in Fig. 11. Each pair of
nodes is connected by a wire (shown as a dashed line) which
is modeled as a-segment, as shown on the right in the figure.

(Since in the optimal designs many of the wire segments will
have width zero, it is perhaps better to think of the fifteen
segments aspossiblewire segments.) The capacitance and the
conductance of the wire segment between nodeand node

depend on its physical dimensions, i.e., on its length
and width : the conductance is proportional to the
capacitance is proportional to The lengths of the wires
are given; the widths will be our design variables. The total
wire area is
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Fig. 12. Position of the six nodes. The lengthlij of the wire between each
two nodesi andj in Fig. 11 is thè 1-distance (Manhattan-distance) between
the pointsi andj in this figure. The squares in the grid have unit size.

The bus can be driven from any node. When nodedrives
the bus, the th switch is closed and the others are all open.
Thus we really have six different circuits, each corresponding
to a given node driving the bus. To constrain the dominant time
constant, we require that the dominant time constant of each of
the six drive configuration circuits has dominant time constant
less than In other words, if is the dominant time
constant of the RC circuit obtained by closing the switch at
node and opening the other switches, then
is the measure of dominant time constant for the tristate bus.

The numerical values used in the calculation are

The wire widths are limited to a maximum value of 1.0. We
assume that the geometry of the bus is as in Fig. 12 and that
the length of the wire between nodesand is given by
the -distance (Manhattan distance) between pointsand
in Fig. 12.

Fig. 13 shows the tradeoff curve between maximum domi-
nant time constant and the bus area. This tradeoff curve
was computed by solving the following SDP for a sequence
of values of

minimize

subject to

Here denotes the vector with components (in any
indexing order), denotes the conductance matrix of the
circuit when all switches are open, and is the diagonal
matrix with its th element the total capacitance at node. The
matrix is zero except for theth diagonal element, which
is equal to one. The six different LMI constraints in the above
SDP correspond to the six different RC circuits we have to
consider. The conductance matrix for the circuit with switch

closed is with added to its th diagonal element, so
the th LMI constraint states that the dominant time constant
of the circuit with switch closed is less than

Fig. 14 shows the optimal widths for two solutions on the
tradeoff curve. The connections in the figure are drawn with
a thickness proportional to (Note however that the scales
are not the same in the left and right figure.) We note that
the topology of both designs are different. The left solution,
which is faster, uses more connections than the solution on

Fig. 13. Area-delay tradeoff.

the right. Also note that in both cases the optimal topologies
have loops.

Fig. 15 shows the step responses for the first solution
The results confirm what we expect. The

smallest delay arises when the input node is one or two (the
first two plots in the left column) since they lie in the middle.
The delay is larger when the input node is one of the four
other nodes. Note that is equal in four of the six cases.

Again, the Elmore delay is slightly higher than dominant
time constant and the dominant time constant is slightly higher
than the 50%-threshold delay.

VII. COMBINED WIRE SIZING AND SPACING

The third application demonstrates another important advan-
tage of using dominant time constant instead of Elmore delay:
the ability to take into account nongrounded capacitors.

The problem is to determine the optimal wire widthsand
spacings for a bus taking into account the coupling capaci-
tances between the wires. We consider an example with three
wires, each consisting of five segments, as shown in Fig. 16.
The optimization variables are the widths and the distances

and between the wires.
The RC model of the three wires is shown in Fig. 17.

The wires are connected to a voltage source with output
conductance at one end and to capacitive loads at the other
end. As in the previous example, each segment is modeled as a

-segment with conductance and capacitance proportional to
the segment width We include a parasitic capacitance
between the wires. We assume that there is a capacitance
between the th segments of wires 1 and 2, and between the
th segments of wires 2 and 3, with total values inversely

proportional to the distances and respectively. To
obtain a lumped model, we split this distributed capacitance
over two capacitors: the capacitance between segmentsof
wires 1 and 2 is lumped in two capacitors with value
and the total capacitance between segmentsof wires 2 and
3 is lumped in two capacitors with value This leads to
the RC circuit in Fig. 17.

We also impose the constraints that the distancesbe-
tween the wires must exceed a value and that wire widths
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Fig. 14. Two solutions on the tradeoff curve. The left figure shows the line widths for the solution withTdom = 410: The width of the wires is proportional
to xij : The width of the wires between (1, 5), (2, 4), (3, 4), and (3, 6) is equal to the maximum allowed value of one. There is no connection between
node pairs (2, 6), (3, 5), (4, 5), and (4, 6). The right figure is the solution on the tradeoff curve forTdom = 2000: The widest connection is between
nodes (3, 4) and has width 0.14. Again all connections are drawn with a width proportional toxij : In this solution the connections between (1, 4), (2,
3), (2, 5), (2, 5), (2, 6), (3, 5), (4, 5), and (4, 6) are absent. (Note when comparing both figures, that a different scale was used for the widths in both
figures. The sizes in the right figure are roughly seven times smaller than in the left figure.)

Fig. 15. Step responses for the solution on the tradeoff curve with
Tdom = 410 (i.e., the solution shown on the left in Fig. 14). The top
left figure is the step response when switch 1 is closed, the second figure
in the left column is the step response when switch 2 is closed, etc. Each
shows the fastest and the slowest of the six responses. We also indicate
the values of the dominant time constant, the critical Elmore delay, and the
critical 50%-threshold delay.

Fig. 16. Wire sizing and spacing. Three parallel wires consisting of five
segments each. The conductance and capacitance of thejth segment of wirei
is proportional towij : There is a capacitive coupling between theith segments
of wires 1 and 2, and between theith segments of wires 2 and 3, and the
value of this parasitic capacitance is inversely proportional tos1i; and s2i;
respectively. The optimization variables are the 15 segment widthswij and
the distancess1 and s2:

are less than We can minimize the total width
of the three wires subject to a bound on the dominant time

Fig. 17. RC model of the three wires shown in Fig. 16. The wires are
connected to voltage sources with output conductanceG at one end
and to load capacitorsCi at the other end. The conductancesgij and
capacitancescij are part of the�-models of the wire segments. The
capacitanceŝcij model the capacitive coupling. The conductances and
capacitances depend on the geometry of Fig. 16 in the following way:
gij = �wij ; ci1 = �wi1; cij = �(wij + wi(j�1)) (1<j < 6); ci6
= �wi5; ĉi1 = =si1; ĉij = =sij + =si(j�1) (1<j < 6); ĉi6 = =si5:

constant of the circuit by solving the optimization problem

minimize

subject to

(17)

in the variables Note that the capacitance
matrix contains terms that are inversely proportional to the
variables and therefore problem (17) isnot an SDP.
However, by a change of variables , problem (17)
can be reformulated as a convex optimization problem

mimimize

subject to

(18)
with variables and Note that we replace the
equalities in the second and third constraints by inequalities.
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Fig. 18. Solution of (17) forTmax = 130: Note that the distance between
the wires is equal to its minimal allowed value of 1.0.

We first argue that this can be done without loss of general-
ity. Suppose are feasible in (18) with a certain
objective value and that one of the nonlinear inequalities in

, e.g., the inequality

is not tight. Decreasing increases the smallest eigenvalue of
the matrix (This is readily shown from
the Courant–Fischer minimax theorem. It is also quite intu-
itive: reducing coupling decreases the dominant time constant.)
Therefore we can replace by the value

while still retaining feasibility in (18) and without changing the
objective value. Without loss of generality, we can therefore
assume that at the optimum the second and third constraints
in (18) are tight. Hence problem (18) is equivalent to (17).

Problem (18) can be readily cast as an SDP by expressing
the second and third constraints as the LMI’s

and

Figs. 18–21 illustrate the solution of (17) for two values of
assuming the parameter values

Figs. 18 and 19 illustrate a solution for The
widest wire is number three since it drives the largest load, and
the narrowest wire is number one which drives the smallest
load. We also see that the smallest distance between the wires
is equal to its minimum allowed value of 1.0 which means that
the cross coupling did not affect the optimal spacing between
the wires. Fig. 19 shows the output voltages for steps applied
to one of the wires, while the two other input voltages remains
zero.

Figs. 20 and 21 illustrate a solution for Here
the distance between the second and third wires is larger than
the minimum allowed value of 1.0. Fig. 21 shows the output
voltages for the same situations as above.

As an interesting variation, we consider the same circuit,
but with the signal direction of the second wire reversed, i.e.,

we place the driver at the right end of the second wire and
the capacitance at the left. The rest of the circuit and the
paramaters are left unchanged (Figs. 22–25).

Note in the application of this section that we cannot
guarantee that the peak due to crosstalk stays under a certain
level. This would be a specification in practice, but it is
difficult to incorporate into the optimization problem. However
we influence the level indirectly: minimizing the dominant
time constant makes the crosstalk peak shorter in time (since
the dominant time constant determines how fast all voltages
settle around their steady-state value). Indirectly, this also
tends to make the magnitude of the peak smaller (as can be
seen by comparing the crosstalk levels for the two solutions
in the examples).

A practical heuristic based on the dominant time constant
minimization that would guarantee a given peak level is as
follows. We first solve problem (17) for a given value of
Then we simulate to see if the crosstalk level is acceptable.
If not, we increase the spacing of the wires until it is. Then
we determine the optimal wire sizes again, keeping the wires
at least at this minimum distance. This iteration is continued
until it converges. The dominant time constant of the final
result will be at least as good as the first solution and the
crosstalk level will not exceed the maximum level.

VIII. C ONCLUSIONS

We have presented a new method for wire and transistor
sizing based on using the dominant time constant as a measure
of signal delay in RC circuits. The main advantage of using
this measure is that RC circuits with general nontree topologies
can be optimally sized using convex optimization. This is in
contrast to Elmore delay sizing methods, which only work
for RC trees. We demonstrated the power of this method
by applying it to several important examples of significant
practical importance: sizing of clock meshes, sizing of a tristate
bus, and sizing and spacing of a bus, taking crosstalk into
account.

A. Computational Complexity of Dominant
Time Constant Minimization

The method we described uses the recently developed
interior-point methods for semidefinite programming (see,
e.g., [27], [28]). Since real world sizing problems are likely
to be very large, we briefly discuss the complexity of the
SDP methods. Two factors determine the overall complexity
of these methods: the total number of iterations and the
complexity of an iteration. It can be shown that the number
of iterations to solve an SDP to a given accuracygrows at
most as where is the size of the matrix
in (13) [27]. In practice, the performance is even better than
suggested by this worst-case bound. The number of iterations
usually lies between 5 and 50 and is almost independent of
problem size. For practical purposes it is therefore fair to
consider the total number of iterations as constant and to regard
the complexity of an iteration as the key factor in the overall
complexity.
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(a) (b) (c)

Fig. 19. Responses for the solution of Fig. 18. (a) The voltages at the output nodes due to a step applied to the first wire, (b) second wire, or (c)
third wire. The dashed line marks the dominant time constant.

Fig. 20. Solution of (17) forTmax = 90:

Each iteration involves solving a large system of linear
equations to compute search directions. Little can be said about
the complexity of this computation since it largely depends
on the amount of problem structure that can be exploited.
If the problem has no structure, i.e., if the matrices in
(13) are completely dense, then the cost of one iteration is

. This is the case for the general-purpose
SDP softwareSP and SDPSOL [35], [36], which were used
for the numerical examples in this paper. These codes solve
problems up to several hundred variables without difficulty,
but become impractical for larger problems since they do
not exploit the problem structure. In all practical applications,
however, there is a great deal of structure that can be exploited,
and specialized codes are orders of magnitude more efficient
than the general-purpose software (for a few examples see
[37] and [38]).

SDP problems arising in dominant time constant minimiza-
tion possess two forms of sparsity that should be exploited
in a specialized code. First, the capacitance and conductance
matrices and are usually sparse matrices (indeedis
often diagonal). Secondly, each variableaffects only a very
small number of elements of and (i.e., the different
matrices and in (2) are extremely sparse).

We can also comment on the current status of SDP software.
Several general-purpose software packages for SDP’s are now
available, e.g., [35], [36], [39]–[45]. These packages exploit
little or no sparse structure and are therefore only useful for
circuits of small size (several hundred nodes). The examples
in this paper were produced using theSP-package of [35]. To
give an idea of the run time, solving one instance of the SDP
(16) of Section V takes about 15 s on a 120 Mhz Pentium
machine.

Semidefinite programming is a very active area of research
in optimization, and much of this activity is directed at
developing general-purpose software for large sparse SDP’s
(see [46], [42], 47] for a few recent reports in this topic). One

can expect that this research will lead to software capable of
handling much larger circuits (several thousand nodes).

For even larger problems (more than 10 000 nodes), it may
be necessary to develop special-purpose techniques. These
techniques can take advantage of the fact that the function

and its (sub)-gradients can be evaluated very effi-
ciently using the Lanczos algorithm for computing the largest
eigenvalue of a sparse symmetric matrix. In other words, the
problems we described in this paper are not only convex,
and hence fundamentally tractable, there also exist extremely
efficient algorithms for evaluating the objective and constraint
functions and their derivatives. Reference [48] describes recent
work in this direction.

B. Comparison with Elmore Delay

We conclude with an overview of the differences between
Elmore delay and the dominant time constant. The most impor-
tant difference is that the dominant time constantalwaysleads
to tractable convex or quasi-convex optimization problems
with no restrictions on circuit topology. This follows from (12)
which holds regardless of the circuit topology. Specifically, we
note the following advantages.

• Elmore delay optimization applies only to circuits with
one input source. The dominant time constant can be
applied to circuits with multiple sources, a problem that
has only recently received attention [17], [49].

• The circuits may contain loops of resistors, e.g., clock
meshes. Although for grounded capacitor RC circuits with
loops of resistors, the Elmore delay is still a meaningful
approximation of signal delay [13], [11], [14], it does not
have the simple posynomial form as it does for RC trees,
and convex optimization cannot be used to minimize it.

• The possibility of handling nontree topologies allows us
to design the topology of the interconnection itself. For
example, in the optimization of a clock mesh we start
with a full grid of possible wire segments. After optimal
wire sizes are computed, some (and often, many) of the
wires have zero widths, which means they are not needed
in the circuit (see also [17] for problems of designing
interconnection topology).

• Dominant time constant minimization handles circuits
with capacitive coupling between the nodes (see
Section VII).

The Elmore time constant, in addition to being quite useful
as a measure of delay when sizing RC trees, is sometimes
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(a) (b) (c)

Fig. 21. Responses for the solution shown in Fig. 20. (a) The voltages at the output nodes, due to a step applied to the first wire, (b) second wire, or
(c) third wire. The dashed line marks the dominant time constant.

Fig. 22. Solution of (17) with the signal direction of the second wire
reversed, and forTmax = 130:

more appropriate to use than the dominant time constant. We
give here two examples where this is the case.

• Consider a path consisting of several stages of buffered
wire segments. The total Elmore delay of the path is
the sum of the Elmore delays of the segments and
is still a posynomial function that can be efficiently
minimized by geometric programming. In contrast, it
is not possible to efficiently minimize the sum of the
dominant time constants since in general the sum of
quasi-convex functions is not quasiconvex.

• The dominant time constant is useful as an alternative to
the critical Elmore delay, i.e., the Elmore delay to the
node with the slowest response. It is not a good measure
for the delay to the other nodes.

Fishburn and Dunlop make an interesting remark in the
conclusion of their paper on the TILOS program [3,10]. They
address the question whether it is justified to assume perfect
step inputs, or whether the program should take into account
a more realistic input waveform: “although there exist several
static timing analyzers and a transistor sizer that take into
account input waveform shape, we hesitate to do so without a
convexity proof in hand. If a more accurate model turns out
to be nonconvex, there is always the danger that the optimizer
might become trapped in a local minimum that is not a global
minimum, resulting in a more pessimal solution than the less
acurate model.”

A similar argument can be made in favor of the approach
in this paper. Accurate expressions for the delay in transistor
circuits are important for simulation and timing verification,
and approximations based on the first few moments seem to be
very well suited for this purpose (see, for example, [50]–[53]).
For delay optimization, however, these expressions lead to
complicated nonconvex optimization problems, with possibly
many local minima. This is already the case for the Elmore
delay (the first moment of the transfer function) of a grounded

capacitor RC circuit with loops of resistors. Optimizing the
dominant time constant on the other hand leads to tractable
convex optimization problems even in general RC circuits.

APPENDIX I
SINGULAR OR

We now come back to the assumption in Section II that
the capacitance matrix and conductance matrix are
both strictly positive definite. This assumption simplified the
definition and interpretation of the dominant time constant
since it ensures that the number of generalized eigenvalues,
i.e., the number of roots of the polynomial is
exactly equal to

When both and were singular, the dominant time con-
stant minimization still leads to meaningful results provided
we do not define the dominant time constant in terms of the
largest generalized eigenvalue, but use the LMI definition

(19)

(we should add that if there is no with
In this appendix we show that this definition is

indeed meaningful and valid when and are only positive
semidefinite, i.e., possibly singular.

Given arbitrary positive semidefinite and , one can
always change coordinates to bring the circuit equations

into the form

(20)

with and strictly positive definite. Note that these
equations are a combination of differential and algebraic
equations.

Assume The circuit equation (20) is equivalent
to

and completely arbitrary. Let be the
eigenvalues of the matrix
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(a) (b) (c)

Fig. 23. Responses for solution of Fig. 22. (a) The voltages at the output nodes due to a step applied to the first wire, (b) second wire, or (c) third wire
(right). The dashed line marks the dominant time constant. The voltagev2 is the voltage across the capacitorC2 which is placed at the left end of the wire.

Fig. 24. Solution of (17) with the signal direction of the second wire
reversed, and forTmax = 90:

sorted in decreasing order. Then all solutions of (20) have the
form

arbitrary

The components of correspond to nodes that are not
connected by capacitors or resistors to the rest of the circuit.
It is therefore natural to ignore when defining the dominant
time constant (or, equivalently, to impose the extra assumption
that and to say that (and

if
Finally, to see that this definition coincides with (19), note

that if and only if the LMI

holds. This can be easily shown by using a Schur complement
(see e.g., [28]).

APPENDIX II
SOME RELATIONS BETWEEN THE DELAY MEASURES

In this section we derive several bounds between the three
delay measures. The results allow us to translate upper bounds
on into upper bounds on Elmore delay and threshold de-
lays. Some of the bounds will turn out to be quite conservative.
As the examples in the paper show, the 50% threshold delay,
the Elmore delay, and the dominant time constant are much
closer in practice than the bounds derived here would suggest.

A. Bounds on Node Voltages

We start by rewriting (7) as

and use the second form to derive an upper bound on

(21)

where the condition number is defined as
and denotes the spectral norm of, i.e.,

its largest singular value. The first inequality follows from
the submultiplicative property of the matrix norm

and the definition of the infinity-induced matrix
norm The second inequality follows
from the relation between the infinity-induced and the spectral
norm of a matrix for In the
last line we used the fact that the largest eigenvalue of the
symmetric matrix is and that the
largest eigenvalue and the spectral norm of a positive definite
symmetric matrix coincide.

Note that for diagonal we have

For grounded capacitor RC circuits with we can
also derive a lower bound on Recall that for a
grounded capacitor RC circuit the matrix is elemen-
twise nonnegative. We therefore have

(22)

where is the smallest component of The last
inequality follows from the Gershgorin disk theorem [59, p.
341], which together with the elementwise nonnegativity, im-
plies that the eigenvalues of the matrix are bounded
above by largest row sum In a grounded-
capacitor RC tree we can assume and therefore

(23)

B. Threshold Delay and Dominant Time Constant

From (21), we see that for
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(a) (b) (c)

Fig. 25. Responses for the solution shown in Fig. 24. (a) The voltages at the output nodes, due to a step applied to the first wire, (b) second wire, (c)
or third wire. The dashed line marks the dominant time constant.

TABLE I
BOUNDS FOR GROUNDED CAPACITOR RC TREES � STANDS FOR C

1=2
max=C

1=2
min

we have so we conclude

In a similar way, we can derive from (22) the lower bound

(24)

on the critical threshold delay of a grounded capacitor
circuit. If , we obtain

C. Dominant Time Constant and Elmore Delay

From (21), we have for each

(25)

Thus we have a bound between critical Elmore delay and
dominant time constant. For grounded capacitor circuits we
obtain the lower bound from (23)

and for a grounded capacitor RC tree

D. Threshold Delay and Elmore Delay

We have already seen that when the
voltage decays monotonically.

For a grounded capacitor circuit we can also put together
bounds (25) and (24), which yields

and for a grounded capacitor RC tree

E. Summary

Table I summarizes the bounds for grounded-capacitor RC
trees for which we have a complete set of upper and lower
bounds.
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