
Optimizing Druid with Roaring bitmaps

Samy Chambi
Computer Science, UQAM

Montreal, QC, Canada
chambi.samy@gmail.com

Daniel Lemire
LICEF, TELUQ

Montreal, QC, Canada
lemire@gmail.com

Robert Godin
Computer Science, UQAM

Montreal, QC, Canada
godin.robert@uqam.ca

Kamel Boukhalfa
Computer Science, USTHB

Algiers, Algeria
boukhalk@gmail.com

Charles R Allen
Metamarkets

San Francisco, CA, USA
charles@allen-net.com

Fangjin Yang
Metamarkets

San Francisco, CA, USA
fangjinyang@gmail.com

ABSTRACT
In the current Big Data era, systems for collecting, storing
and efficiently exploiting huge amounts of data are contin-
ually introduced, such as Hadoop, Apache Spark, Dremel,
etc. Druid is one of theses systems especially designed to
manage such data quantities, and allows to perform detailed
real-time analysis on terabytes of data within sub-second la-
tencies. One of the important Druid ’s requirements is fast
data filtering. To insure that, Druid makes an extensive use
of bitmap indexes. Previously, we introduced a new com-
pressed bitmap index scheme called Roaring bitmap that has
shown interesting results when compared to the bitmap com-
pression scheme adopted by Druid : Concise. Since, Roaring
bitmap has been integrated to Druid as an indexing solution.
In this work, we produce an extensive series of experiments
in order to compare Roaring bitmap and Concise time-space
performances when used to accelerate Druid ’s OLAP queries
and other kinds of operations Druid realizes on bitmaps,
like: retrieving set bits from bitmaps, computing bitmap
complements, aggregating several bitmaps with logical ORs
and ANDs operations. Roaring bitmap has shown to im-
prove up to ≈ 5× analytical queries response times under
Druid compared to Concise.

CCS Concepts
•Information systems → Database management sys-
tem engines; Database query processing; Data struc-
tures; •Theory of computation → Data compression;

Keywords: Bitmap indexes, compression, OLAP, perfor-
mance.

1. INTRODUCTION
Nowadays, the massive generation of Big Data that can

come from various sources: organizations, peripheral de-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.

IDEAS ’16 July 11-13, 2016, Montreal, QC, Canada
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4118-9/16/07.

DOI: http://dx.doi.org/10.1145/2938503.2938515

vices, individuals, etc., instigate companies and puts them
in front of a challenge to develop solutions that allow to
effectively collect and organize such masses of data, with
the aim of extracting new knowledge which, in the end, will
play a major role in the company competitiveness. Sev-
eral solutions of this kind have been introduced by famous
companies, such as: Hadoop [12] of Yahoo, PowerDrill [9]
and Dremel [10] of Google, Avatara [16] of LinkedIn, [11] of
Twitter, etc. Druid [17] is one among these systems. It was
proposed recently by the Druid community and allows to
store and analyze in real-time important quantities of data
within low latencies. Previous tests have shown that Druid
was able to scan, filter and aggregate 1 billion of data po-
ints in only few milliseconds [13]. Currently, this system
is deployed in production by several societies, in particular:
Netflix, Yahoo, Alibaba, etc. Besides its colossal computa-
tional capacities, Druid is also proposed as an open source
project for the general public, and leans on a vast commu-
nity of developers.

Druid’s use case is really around powering user-facing ana-
lytic applications, contexts where query performance is very
important. Among the solutions adopted by Druid to im-
prove analytical queries performances are compressed bitmap
indexes. Effectively, Druid makes an extensive use of this
type of indexes to filter data very fast when executing drill-
down OLAP queries by performing several operations on
bitmaps, like logical ORs and ANDs, bitmap complements,
bitmap scans, etc.

Today, several bitmap compression schemes have been
proposed, to cite a few: WAH [15], Concise [4], PLWAH [6],
SPLWAH [2], SECOMPAX and PLWAH+ [3]. These models
and the majority of the bitmap compression schemes intro-
duced these last fifteen years are based on a same hybrid
coding that combines a run-length encoding with bit strings
aligned by CPU words. Recently, we have proposed a new
bitmap compression model, called Roaring bitmap [1]. This
scheme represents a bitmap as a list of 32-bit integers sorted
in ascending order. Each element of the list corresponds to
one set bit position of the represented bitmap. To efficiently
store such a list of integers, Roaring bitmap divides the ele-
ments of the list to chunks of 216 integers, where each chunk
groups integers sharing the same 16 most significant bits.
Chunks are represented with a sorted dynamic array, where
each of its entries stores the common 16 most significant
bits of the group of integers falling within that chunk, and
a pointer to a container which keeps the 16 least significant
bits of the group of integers. A container can take one of two

rodkin
Typewritten Text

rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

rodkin
Typewritten Text

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

forms: an uncompressed bitmap or a sorted dynamic array.
A specific form is selected corresponding to the number of
integers contained within a chunk.

This new compressed bitmap model allows to perform ran-
dom accesses within a bitmap very fast, by performing at
most two binary searches within the structure in a loga-
rithmic time, compared to the linear time needed by the
previous models based on run-length encoding. Also, keep-
ing integers within containers indexed by a sorted dynamic
array generally leads to combine two bitmaps very fast as
it allows to skip the treatments of many integers stored in-
side non accessed containers. The Roaring bitmap scheme
has been implemented with the Java programming language
and is currently shared as an open source project.1

Druid uses bitmap indexes represented with the Concise [4]
scheme. Benchmarks realized during the Roaring bitmap’s
implementation project have shown that this scheme has
been able to significantly improve many types of operations
realized on bitmaps comparing to Concise. After introduc-
ing Roaring bitmap to the literature, it came time to vali-
date the format of the bitmap compression scheme by trying
to integrate it within a real database management system
(DBMS) to observe and analyze the possible advantages and
disadvantages brought by the bitmap compression technique
to the global DBMS’ performances. After a survey over the
literature of such systems, Druid was chosen as it has been
written in Java and it greatly depends on bitmap indexes to
improve OLAP queries running times.

Druid ’s instances use by default a storage engine that
adopts in-memory mapped structures to store and read data
manipulated by the system. However, a heap based storage
engine can also be configured. In order to make Concise op-
erational on this context, an extension of the original library
that could only deal with bitmaps residing entirely in main
memory was produced by Druid developers to make it able
to serialize bitmaps on disk and access them with memory-
mapping. The source code of the developed library is freely
available online.2

Having obtained interesting performances with Roaring
bitmap when compared to Concise during previous experi-
ments realized on in-memory bitmaps, the Roaring bitmap li-
brary was extended to support the management of memory-
mapped bitmaps. Experiments comparing time-space perfor-
mances of Roaring bitmap and Concise in such a context
have followed. Results revealed impressive performances for
the benefit of Roaring bitmap. The source code of these
experiments is shared online.3 This work was proposed to
the community behind Druid, and a close collaboration with
the Druid community followed to integrate Roaring bitmap
as an indexing solution within Druid. Afterward, experi-
ences under Druid were led to compare the performances of
Roaring bitmap to those of the existing bitmap compression
scheme: Concise. Results were decisive for Roaring bitmap.
Indeed, Roaring bitmap improved up to 5× the execution
times of OLAP drill-down queries compared to Concise. To
simplify the reading of the text, the term Roaring will refer
to the Roaring bitmap scheme in the remainder of the paper.

Other systems dedicated to massive data processing have
also integrated Roaring as an indexing solution, like: Apache

1http://roaringbitmap.org/
2https://github.com/metamx/extendedset
3https://github.com/samytto/MemoryMappedBitmaps

Spark [18], Kylin4, Solr5, Elastic [8] and Lucene6, the latter
using an independent implementation of Roaring. We leave
the analysis of Roaring ’s performances under these systems
for future works.

This paper is organized as follows. First, a presentation
of the Druid ’s system is given in section 2. Druid ’s OLAP
queries that exploit bitmaps to accelerate response times
are presented in section 3. Section 4 introduces the bench-
marks done under Druid to compare Roaring and Concise’s
performances. Benchmark results and an analysis follows.
Section 5 presents the conclusion of the work.

2. DRUID
Druid was open sourced by developers from Metamarkets7

in 2012. This system is a data store that guarantees a high
availability, even in super-concurrent contexts (1000 users
and more), and fast running times for analytical queries
(sub-second latencies). One of the Druid ’s challenges is to
allow users to make decisions based on up to date data,
by ingesting newly received events in real-time, within sub-
second latencies. Currently, Druid is adopted in production
by several companies8, such: eBay, Yahoo, Netflix, etc. Fur-
thermore, Druid stores data in a columnar format, adopts
a distributed and a shared-nothing architecture, and makes
a massive use of compressed bitmap indexes to accelerate
OLAP queries as they often require lots of data filtering.
This system was also designed to be fault-tolerant and to
be able to support fast aggregations and flexible filtering
techniques.

Druid stores events data that are never modified and read-
only exposed to the users. The data format consists of three
different components:

A timestamp: the first component represents the date of
a given event.

Dimensions: the second component represents all the at-
tributes used by OLAP queries to filter data (drill-
down queries). So, these attributes play the same role
as the dimensions in a traditional data warehouse.

Metrics: the third component represents all the attributes
playing the same role of the measures in a traditional
data warehouse. These columns contain numerical val-
ues and are used by OLAP queries to make aggre-
gations and calculations, as with the SQL functions,
COUNT, SUM, AVG, etc.

Druid stores an event in a data source. The latter is
similar to the table concept in a relational database. Fur-
thermore, the events of a data source are divided according
to their timestamp attribute into segments. Segments data
are stored in columnar format and dimension columns are
indexed with bitmaps to quickly resolve filters. A segment
stores in general 5− 10 million events that fall within a pre-
cise time interval: minute, hour, day, etc. This interval is
specified in the initial configuration parameters of a Druid
cluster. The length of this interval is the same for all seg-
ments of a data source. The smallest possible granularity
4http://kylin.apache.org/
5http://lucene.apache.org/solr/
6http://lucene.apache.org/core/
7https://metamarkets.com/
8http://druid.io/druid-powered.html

for the timestamp attribute kept inside segments is millisec-
ond, but segments events can also be accumulated into a
larger granularity, for example: minute, hour, a day. How-
ever, this granularity must necessarily be less or equivalent
to the segments granularity. Also, segments data associated
to a specific data source have all the same granularity.

A Druid cluster instance is made up of several types of
nodes, each designed to make a very precise work. In a
distributed architecture, one node runs per machine in a
totally independent way with regard to the other nodes in
the cluster (unless a standalone execution mode is adopted).
So, nodes share neither data nor material resources with
other nodes in a cluster (notion of shared-nothing architec-
ture [14]). The various types of nodes supported by a Druid
cluster and their important roles are presented in what fol-
lows:

Historical node: takes care of loading/deleting segments
maintained in its local space, and executing queries on
them.

Coordinator node: its important task resides in distribut-
ing segments between historical nodes among the clus-
ter.

Broker node: represents the entity which users send their
requests to. These nodes know how segments are dis-
tributed among the cluster. So, once a query is re-
ceived by one of these nodes, it is directly sent towards
all nodes susceptible to serve segments with valid re-
sults for the query. Also, this type of nodes receives
results of its delivered queries and merges them, before
sending the final result to the users.

Real-time node: represents the entry point of the real-
time captured events. This type of nodes is responsible
of building segments and releasing them to historical
nodes after a certain configurable deadline. As it also
answers requests searching about recent data it still
serves.

Overlord and HadoopDruidIndexer nodes: entry po-
ints for batch inserted data. These nodes use the
Hadoop framework to parallelize ingestion tasks and
to reduce latencies.

For more information about the roles of the various nodes,
the reader can refer to the Druid ’s white paper [17].

To execute a request, the user sends it to one of the op-
erational broker nodes in the cluster, which will distribute
the query towards the various historical and/or real-time
nodes selected for that query. A real-time node executes the
request on the recent data still maintained within its local
space, and a historical node executes it on the segments it
stores locally. After this step, each requested node returns
back its calculated results to the broker node from which the
query was sent. OLAP queries often need to perform fast
data filtering, and to improve the processing times of these
operations, Druid adopts a bitmap index for every dimen-
sion attribute figuring inside a segment. Bitmaps turn out
to be very efficient regarding the acceleration of drill-down
operations that filters data according to dimension values.

3. DRUID’S ANALYTICAL QUERIES
Druid supports various types of analytical queries. They

are expressed in JSON and sent by POST requests to can-
didate nodes. These requests can be divided into two great
classes: search and aggregation queries, and metadata queri-
es. Given that only the first class of queries can make use
of bitmaps during execution, we will only study that class
in this work. A particularity of the first group of queries is
that a time interval is always specified in a request body.
This time interval indicates the time partition in which fits
the data targeted by the query.

This section gives a brief description of the Druid query
types figuring in the first class of queries. The reader in-
terested to know more about a specific type of queries can
refer to the documentation published online [7], that gives
further detailed information with query examples.

3.1 The GroupBy query
A GroupBy query has the same objective as that defined

in the SQL language, which is generally to return metric
values aggregated by distinct dimension values. The syntax
of the Druid ’s GroupBy query is presented below:

:

{
"queryType": "groupBy",
"dataSource": <datasource name >,
"granularity": <granularity value >,
"dimensions": [<dimension1 >, <dimension2 >, etc.],
"filter": {<filter >},
"aggregations": [

{ <aggregator1 > }, { <aggregator2 > }, etc.
],
"postAggregations": [

{<postAggregator1 >}, {<postAggregator2 >}, etc
.

],
"intervals": [<query interval >],

"limitSpec": { "type": "default",
"limit": <limit’s integer value >,
"columns ": [{ OrderByColumnSpec1}, {

OrderByColumnSpec2}, etc.]
},

"having ": {
"type": "having clause type",

<Having clause ’s remaining fields >
},

"context": <context ’s properties >
}

A GroupBy query header consists of the “queryType” at-
tribute, which indicates the type of the formulated query,
followed by the “dataSource” field, that represents the data
source on which the request will be executed. The next field
“granularity” specifies the granularity to which final results
would be accumulated. Within the“dimension”field, are de-
clared the dimensions on which groupings would be made.
For example, if two dimensions were specified, “Country”
that possesses n distinct values and “province” that counts
m different values, then the result would be formed of n×m
different groups presented by day aggregations (if “granular-
ity” equals to “day”). The following field allows to specify
filters to use to drill-down more detailed analysis on the re-
quested data. This part plays the same role as the WHERE
clause for an SQL query. Here’s an example of such a filter:

" filter ": {
" type ": " and ",
" fields ": [
{ " type ": " selector ", " dimension ": "job ", "

value ": " student " },

{ " type ": "or",
" fields ": [
{ " type ": " selector ", " dimension ": " city ",

" value ": " Montreal " },
{ " type ": " selector ", " dimension ": " city ",

" value ": " Toronto " }
]}]}

Filters are declared, generally, over dimension attributes,
but they remain also applicable on metric ones. To quickly
reach the data subset targeted by a filter, the bitmaps asso-
ciated with the dimension values specified in the filter come
into play, and several types of operations could be performed
on bitmaps, such: logical ORs, ANDs, or NOTs, bitmap
scans, etc. In this example, a logical OR is executed between
bitmaps associated with both dimension values, “Montreal”
and “Toronto”, then one logical AND is computed between
the resulted bitmap from the previous step and that of the
“student” dimension value. These logical operations are ex-
ecuted on every segment reached in a data source.

Afterward, comes the part specifying the metric attributes,
on which aggregations would be computed. One of the few
operations supported by OLAP engines is the one specified
by the “postAggregations” field. This one allows to generate
new metric values in the result by performing operations on
the aggregated values specified in the “aggregations” field.

The next field“intervals” is used to define the time interval
the requested data fits in. This value helps the OLAP en-
gine to access only segments falling in this time interval. The
next field, “limitSpec”, allows to specify a limit on the num-
ber of returned results and an attribute to sort the resultant
elements with. The last field is “Having”, whose function
remains similar to that of the “HAVING” clause defined in
the SQL language, and which allows to specify restrictions
on the resultant groups.

3.2 Timeseries queries
Timeseries queries are not very different from GroupBy

ones, they also allow to filter data and to calculate aggrega-
tions over a precise time interval, but group results according
to the specified query granularity only, as no grouping di-
mensions can be specified for the query. The formulation of
a Timeseries query differs from the GroupBy one in the im-
possibility to declare dimensions to perform groupings over,
a “limitSpec” field as well as a “HAVING” field.

3.3 TopN queries
The TopN query is also near similar to a GroupBy one,

with the difference that it allows to make groupings only
over a single dimension. In fact, TopN queries have been
proposed as a more efficient alternative to GroupBy queries
when groupings are made over a single dimension. The syn-
tax of the query is similar to that of the GroupBy’s one,
except that it uses two more fields, the “Threshold” which
indicates the maximum number of elements to return in the
result, and the “metric” field that specifies the metric with
which the TopN query results would be sorted. However,
the “Having” and the “limitSpec” fields are not supported
yet for TopN queries.

3.4 Search queries
Search queries allow to select values from attributes (di-

mensions or metrics) that satisfy specific research criteria.
They contain three new fields not met in the previous query
models. The “searchDimensions” field, that indicates the di-

mensions on which the search criteria will be applied to filter
data. These dimensions also form the columns of the resul-
tant elements. The “query” field allows to specify the search
criteria to apply on the “searchDimensions”. Entries from
these dimensions that match the criteria will be returned in
the result. The last one is the “sort” field, which indicates
the sorting type to be applied over the resultant set.

3.5 The Select query
The Select query has the same role as that of the SQL

language. It allows to filter data in order to select a subset
of a data source according to a defined search criteria. The
two fields “filter” and “interval” are used to specify those
criteria. The request also allows to indicate the columns to
return in the result by specifying the two fields, “dimensions”
and “metrics”.

4. BENCHMARKS
Experiments have been performed to compare Roaring

and Concise’s performances under Druid. These bench-
marks use a Druid cluster launched on a single node with an
eight cores AMD FXTM-8150 processor of a 3.60 GHz clock
rate and 32 GB of RAM. We have used a 64-bit Oracle JVM
server on an Ubuntu 12.4.1 LTS Linux system.

A 1 GB relational table containing about 6 million rows
was generated from the TPC-H [5] benchmark as a data
set for these experiments. After that, the Data was loaded
into Druid and stored in two different data sources. The
first data source stores segments indexed by Concise bitm-
aps, and the other one maintains segments indexed with
Roaring bitmaps. First, we measure the average execution
time of every query type previously presented on these both
data sources, in order to compare the query execution times
when accelerated with Concise and Roaring. The attribute
“l shipdate” has been taken as the timestamp on which seg-
ments would be built. Events and segments granularities
were fixed to a day, as the “l shipdate” attribute has a daily
granularity.

Before calculating an average query running time, a warm-
ing-up phase is performed, which consists on repeating a
query execution until stabilization of its running times. In
our tests, 10 repetitions were sufficient. After this step, a
query is launched 100 times, and finally, the average time of
these executions is presented. The code of these benchmarks
is freely available online.9

In order to evaluate Roaring and Concise’s performances
on several types of data, the queries running times are calcu-
lated with bitmaps of four different densities: very low, low,
average and high. In these tests, bitmap density corresponds
to the cardinality of the related bitmap, which refers to the
number of 1 bits contained within the bitmap. To catch re-
liable measures, the “context” field has been specified with
the following values for every benchmarked query, “context”:
{“useCache”: false, “populateCache”: false}. This enforces
Druid to compute a query result at each execution by avoid-
ing it from caching that result after the first query execution
and directly selecting it from cache during the remaining
repetitions, which would corrupt the captured measures.

As an interval value, the following “intervals” field has
been specified for all benchmarked queries, “intervals”: [“

9https://github.com/samytto/
BenchmarkingRoaingOnDruid

1980-12-31T23:59:59.999/2005-01-30T00:00:00.000 ”].

4.1 Experimenting aggregation queries perfo-
rming logical ORs

A first series of experiments was driven to evaluate queries
execution times that first filter data by performing boolean
ORs between bitmaps, then calculate aggregations on the
data subset selected after the first operation. These requests
are of types: GroupBy, TopN and Timeseries.

These first benchmarks start by evaluating the response
times of a GroupBy query that performs logical ORs be-
tween bitmaps of very low densities, with cardinalities that
vary between (200, 3000), to select a reduced data subset
from the requested data source. 22 bitmaps are aggregated
during each query execution. After that, a GroupBy is real-
ized on the attribute dimension “l shipmode” by aggregating
all values of the “l tax” metric attribute appearing with a
same distinct “l shipmode” dimension value. Two attributes
were selected in the results, one of dimension type and the
other one of metric type. This reduced number of attributes
was taken to attenuate the amount of groupings and aggre-
gations performed when answering a query, and to let the
bitmaps aggregations dominate the overall query execution
time, what would otherwise prevent us from distinguishing
between Roaring and Concise’s performances. Due to space
limitation, no example has been presented for the bench-
marked GroupBy queries.

For tests on low cardinality bitmaps, the “filter” part of
the GroupBy query has been changed in order to only select
bitmaps of cardinalities varying between (100 000, 900 000).

In the case of the experiments conducted over average
cardinality bitmaps, eight bitmaps from the previous query
“filter” part have been replaced by new bitmaps of average
cardinalities from (1 000 000, 1 800 000). Only eight bitmaps
have been changed because the tested data set contains only
that number of bitmaps with such cardinalities.

For tests over high cardinality bitmaps, a similar approach
to the previous one has been followed where three average
density bitmaps were replaced by high density ones, with
cardinalities belonging to (2 200 000, 3 000 000). Only three
bitmaps with such cardinalities have been found in the whole
used data set.

The second benchmarked query is TopN. This query seems
nearly identical to a GroupBy query. The same values used
for the previously benchmarked GroupBy query has been
taken in the TopN query fields. For the “metric” part of
the TopN query, the “l tax” metric attribute was used to
determine the order in which results would be presented.
Also, a threshold of 100 was chosen to specify a limit on the
number of the resultant elements, which in this case would
consist of the first 100 returned hits. The same bitmaps
adopted for the GroupBy query have been used to evaluate
the TopN query performances with very low, low, average
and high density bitmaps.

The third evaluated query is Timeseries. The same values
used for the GroupBy query have been adopted for this re-
quest on its various fields. Also, the same bitmaps selected
for the GroupBy query have been used for this query to
evaluate its performances on bitmaps of several densities.

Figure 1 illustrates the graphics representing the running
times of the three various types of aggregation queries sup-
ported by Druid when performing logical ORs between bitm-
aps. The results show that queries executed on segments

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(a) GroupBy queries response times performing logical
ORs between bitmaps of different densities.

 200

 400

 600

 800

 1000

 1200

 1400

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(b) Timeseries queries response times performing logical
ORs between bitmaps of several densities.

 200
 400
 600
 800

 1000
 1200
 1400
 1600

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(c) TopN queries response times computing logical ORs
between bitmaps of several densities.
Figure 1: Aggregation queries response times operating log-
ical ORs between bitmaps.

indexed by Roaring were faster than those launched on seg-
ments indexed with Concise. Indeed, by operating logical
ORs between very low density bitmaps to filter data, queries
that use Roaring were, on average, 16%10 faster in the case of
Timeseries and TopN queries, and 12% more efficient for the
GroupBy query compared to requests using Concise com-
pressed bitmaps.

By increasing the bitmaps density, Roaring became even
more faster than Concise. Effectively, on low density bitm-
aps, Roaring improved by 72%, 67% and 50% the running
times for Timeseries, TopN and GroupBy queries, respec-
tively, compared to the results obtained for the same queries
when running over Concise bitmaps. Similarly, Roaring re-
sults on average cardinality bitmaps exceeds those of Con-
cise ones by 68%, 62% and 43%, respectively, for the follow-
ing requests: Timeseries, TopN and GroupBy. However, on
high density bitmaps, the difference between Roaring and
Concise’s performances shrinks. This is due to the long 1-
bit sequences that compose the bitmaps introduced in this
step. Such bit sequence can be effectively compressed with
the RLE encoding employed by Concise. Also, Druid em-
ploys a strategy to effectively process the union of several
bitmaps compressed by Concise, which consists in handling
first the 1-fill CPU words during logical OR computations,
what allows to jump many treatments of literal and 0-fill
CPU words during such operations, resulting in significant
processing times accelerations. However, Roaring remains
more effective than Concise on these densities, by offering
26%, 22% and 11% better running times than those cal-
culated with Concise for the following queries: Timeseries,
TopN and GroupBy, respectively.

4.2 Benchmarking aggregation queries oper-
ating logical ANDs

A second series of experiments have been realized to com-
pare the execution times of the three previous types of ag-
gregation queries when launched on segments indexed with
Roaring and Concise, but by filtering data this time using
logical ANDs between bitmaps. As for the previous tests,
four sets of bitmaps have been selected, each with a spe-
cific density: very low, low, average and high. A query fil-
ters data by calculating the logical AND of seven bitmaps.
Bitmaps used for a query belong to distinct dimensions, this
ensures to always obtain an non-empty resultant set. An im-
portance is given to that case because if an empty bitmap
is encountered during logical calculations, the OLAP engine
would skip the treatment of the remaining bitmaps non con-
sidered yet, before returning an empty result. Such a case
is to be avoided in order to take reliable measures.

An example of the GroupBy query executed on the Con-
cise indexed data set and that operates logical ANDs be-
tween very low density bitmaps, characterized by cardinali-
ties falling in (0, 3000), is presented below:

{
"queryType" : "groupBy",
"dataSource" : "TPCH_benchmark_concise",
"granularity": "all",
"dimensions": ["l_shipmode"],
"filter": {

"type": "and",

10A percent value, v, is calculated as follows: if x is the
smallest measured average time and y the greater one, than
v = (1− (x/y))× 100. Finally, the result is rounded to the
closest integer.

"fields": [
{"type": "selector", "dimension": "l_shipdate",

"value":"1997 -06 -01"},
{"type": "selector", "dimension": "l_commitdate

", "value":"1997 -05 -12"},
{"type": "selector", "dimension": "

l_receiptdate","value":"1997 -06 -02"},
{"type": "selector", "dimension": "l_suppkey",

"value": "4623"},
{"type": "selector", "dimension": "l_comment",

"value": "c packages"},
{"type": "selector", "dimension": "l_partkey",

"value": "22120"},
{"type": "selector", "dimension": "l_orderkey",

"value": "5050562"}
]

},
"intervals": ["1980 -12 -31 T23

:59:59.999/2005 -01 -30 T00 :00:00.000"],
"aggregations": [

{ "type":"doubleSum", "name":"l_extendedprice",
"fieldName":"L_EXTENDEDPRICE_doubleSum" }

]
}

To test the precedent GroupBy query on low density bitm-
aps, their five least dense bitmaps were replaced by bitmaps
with cardinalities belonging to the interval (100 000, 900 000).
With a similar manner, the three least dense bitmaps of the
query used in low densities have been replaced by average
density bitmaps, with cardinalities from (1 000 000, 1 800 000).
For the tests on high density bitmaps, the query of the av-
erage density tests was modified by replacing its two least
dense bitmaps with 2 high density bitmaps having cardinali-
ties belonging to (2 000 000, 3 000 000). The two added bitm-
aps provide from the two unique dimensions of the bench-
marked data set having bitmaps of such cardinalities.

The two remaining queries, Timeseries and TopN, have
also been benchmarked on the same data sets with the same
bitmaps of varied densities used to test the GroupBy query.
The Timeseries and TopN queries fields have been chosen to
be the same as those of their GroupBy counterpart on each
density, with the following additional fields for the TopN
query: “threshold”: 100, “dimension”: “l shipmode”, “met-
ric”: “l extendedprice”.

Figure 2 presents the average execution times of the three
types of aggregation queries evaluated in these experiments
using bitmaps of various densities. On very low densities,
logical calculations are done very quickly between tiny bitm-
aps, so making queries response times independent from
bitmap logical operations. This statement explains the nearly
identical performances obtained for each query on these den-
sities when executed on segments indexed by Roaring and
Concise.

On little more denser bitmaps, low densities, Concise and
Roaring performances began to distinguish from each other,
and revealed that Roaring allowed to answer 10%, 9% and
6% more quickly than Concise the respective requests: Top-
N, Timeseries and GroupBy. As densities increase, response
times substantially raise for Concise, contrary to Roaring
which is more efficient on denser data. Indeed, on average
density bitmaps, queries answered with Roaring are about
55% faster than those using Concise for each of the three
query types. On high densities, the performance differ-
ence between both compressed bitmap models increases even
more, and Roaring reached a 60% acceleration for the Time-
series query and a 58% one for both TopN and GroupBy
queries compared to Concise.

 60

 80

 100

 120

 140

 160

 180
Ve

ry
Lo

w
Ca

rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(a) GroupBy queries response times performing logical
ANDs between bitmaps of different densities.

 60

 80

 100

 120

 140

 160

 180

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(b) Timeseries queries response times performing logical
ANDs between bitmaps of several densities.

 60

 80

 100

 120

 140

 160

 180

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(c) TopN queries response times performing logical ANDs
between bitmaps of varied densities.
Figure 2: Aggregation queries running times perfoming log-
ical ANDs between bitmaps of varied densities.

 200

 400

 600

 800

 1000

 1200

 1400

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(a) Select queries response times performing logical ORs
between bitmaps of different densities.

 60
 80

 100
 120
 140
 160
 180
 200
 220

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

(b) Select queries response times performing logical
ANDs between bitmaps of various densities.
Figure 3: Select queries response times performing logical
ORs and ANDs between bitmaps of several densities.

4.3 Benchmarking Search queries
In this series of experiments, Roaring and Concise perfor-

mances were compared for answering the two types of search
queries supported by Druid : Select and Search, when filter-
ing data with bitmaps of different densities. Two versions
of experiments have been conducted for the Select query.
In the first one, logical ANDs have been executed between
bitmaps to filter the data set, and in the second one, logical
ORs have been performed. The bitmaps used to benchmark
aggregation queries when performing logical ORs and ANDs
on several densities have been used to test the Select query.
The attributes, “l shipmode” and “l shipdate”, were speci-
fied within the “dimensions” field, and the attributes, “l tax”
and “l quantity”, were mentioned within the “metrics” field
for all Select queries tested. The granularity of the queries
was fixed to a day. Figure 3 presents the response times of
all the Select queries benchmarked.

Results have shown that Roaring has boosted logical ORs
processing by 12% compared to Concise on very low density
bitmaps, by 88% on low and average density ones, and by
80% on high density bitmaps. For Select queries calculating
logical ANDs between bitmaps, Roaring has shown simi-
lar performances with those of Concise on very low density
bitmaps, whereas it has improved the running times by 9%,
53% and 50% with regard to Concise on low, average and
high density bitmaps, respectively.

Experiments were also done to evaluate Search queries
performances on bitmaps of various densities represented
with Roaring and Concise. An example of the request tested

 0

 500

 1000

 1500

 2000

 2500

 3000

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

Ti
m

es
 (

m
s)

Density

Concise
Roaring

Figure 4: Search query running times performing logical
ORs between several density bitmaps

on very low density bitmaps is given below:

{
"queryType": "search",
"dataSource": "TPCH_benchmark_roaring",
"granularity": "all",
"searchDimensions": [

"l_receiptdate",
"l_suppkey"

],
"query": {

"type" : "insensitive_contains",
"value" : "9"
},
"intervals": ["1980 -12 -31 T23

:59:59.999/2005 -01 -30 T00 :00:00.000"],
"context":{"useCache":false ,"populateCache":false

,"finalize":false}
}

To evaluate Search query performances on various den-
sities, we select two different dimension attributes to test
with on each density. On the very low densities, both di-
mensions, “l receiptdate” and “l suppkey”, whose bitmaps
possess average cardinalities of 2645 and 282, respectively,
have been chosen. The pattern “9” has been used as a search
criteria to select bitmaps associated with values from the
chosen dimensions and for which the “9” pattern figures in
their representations. On the low densities, the dimensions,
“l discount” and “l quantity”, have been taken, which are
characterized by bitmaps of 500 000 and 120 000 average car-
dinalities, respectively. The pattern “0” has been adopted as
a search criteria. Bitmaps of 1 500 000 average cardinalities
have been selected from both dimensions, l returnflag and
l shipinstruct, to realize tests with average density bitmaps.
Figure 4 presents the average calculated running times.

On the very low density bitmaps, logical ORs between
992 bitmaps have been performed. The execution times
reached with Roaring were 79% (≈ 5 times) faster than
those calculated with Concise. On the low densities, the
aggregation of 16 bitmaps has been calculated, and Roaring
results have been 79% (≈ 5 times) better than Concise ones.
On average density bitmaps, Roaring calculated logical ORs
between 3 bitmaps 60% (≈ 3 times) faster with regard to
Concise.

4.4 Benchmarking performances for retriev-
ing set bits from bitmaps

Another performance aspect indicating the efficiency of a
compression bitmap library is the speed at which it allows
to iterate over a bitmap to extract the positions of its 1 bits

(set bits). These set bits map the positions of the records
satisfying the query criteria and are used by the OLAP en-
gine to access and retrieve the final query result. A series of
experiments was put into practice to compare the speed of
both Roaring and Concise when performing such operations
under Druid. To evaluate this performance aspect, we have
opted for the Timeseries query, as it is among the requests
allowing to process aggregations and thus can limit itself to
the display of a single aggregated value, that helps to de-
crease the I/O costs needed to return out the final results.
Also, Timeseries queries do not perform groupings on di-
mension values, as it is the case for the GroupBy and TopN
queries, which can consume important processing times and
dominate the global running times. Therefore, the Time-
series query was considered as the ideal request that lets
execution times to entirely depend on the time spent for
scanning bitmaps.

Logical operations have also been moved away to do not
penalize either of the two compared schemes, given that one
of them can sometimes be less efficient than the other one.
So, a single bitmap is used at the filter level for every query.
To verify Roaring and Concise performances on various den-
sities, the tests handle very low, low, average and high den-
sity bitmaps. The code below presents a Timeseries query
filtering data with a bitmap of very low density containing
2707 bits at 1:

{
"queryType" : "timeseries",
"dataSource" : "TPCH_benchmark_roaring",
"granularity": "all",
"context":{"useCache":false ,"populateCache":false

},
"filter": { "type": "selector", "dimension": "

l_shipdate", "value": "1997 -06 -01" },
"intervals": ["1980 -12 -31 T23

:59:59.999/2005 -01 -30 T00 :00:00.000"],
"aggregations": [

{ "type": "count", "name": "count"}
]

}

For tests on the remaining densities, only the bitmap at
the filter level of the request is changed by another one cor-
responding to the tested density. The bitmap of the low den-
sity is the one indexing the value “5” of the “l linenumber”
dimension, and which contains 643 287 set bits. On the av-
erage density, the selected bitmap is associated to the value
“1” of the “l linenumber” dimension, and contains 1 500 000
set bits. For the high densities, the bitmap of the value “N”
belonging to the “l returnflag” dimension has been taken,
which has 3 043 852 set bits. Figure 5 gives an overview of
the average running times captured for the Timeseries query
when using Roaring and Concise bitmaps of various densi-
ties.

On the most weak densities, results of both bitmap com-
pression schemes are almost nil and equivalents. On low
densities, Roaring has iterated over bitmaps 18% faster com-
pared to Concise. On the average densities, response times
obtained with Roaring surpassed those of Concise by 11%.
On the high densities, the Concise’s capacity to compress
long 1-bit sequences allowed this bitmap scheme to answer
queries 11% more quickly than what has been calculated for
Roaring.

4.5 Experimenting times performances to cal-
culate bitmap complements

 60
 80

 100
 120
 140
 160
 180
 200

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

Figure 5: Timeseries queries running times when iterating
over bitmaps of several densities

 0
 50

 100
 150
 200
 250
 300
 350

Ve
ry

Lo
w

Ca
rd

Lo
w

Ca
rd

M
ed

iu
m

Ca
rd

H
ig

hC
ar

d

Ti
m

es
 (

m
s)

Density

Concise
Roaring

Figure 6: Running times of Timeseries queries computing
the complement of bitmaps with several densities

These benchmarks evaluate the average running times of
a Timeseries query aggregating values from the metric at-
tribute “count” reached by means of the bitmap complement
computed from the filter. Bitmaps of the previous evalua-
tions have been used to compare query performances ob-
tained with Roaring and Concise on various bitmap densi-
ties. Results have been reported on figure 6.

Results show that Concise performances are clearly supe-
rior to those of Roaring on the lowest and highest densities
(by 30% and 5%, respectively). This is explained by the
presence of long sequences of 0 bits and 1 bits, respectively
on both densities, that are well compressed by the RLE en-
coding adopted by Concise. Effectively, Concise can com-
press such a bit sequence in a single CPU word, on which it
becomes very easy to derive the complement by only invert-
ing one bit of the CPU word that indicates the sense (value)
of its compressed bits (0 or 1). Whereas, Roaring generally
requires to create new containers representing the unset bits
of the original bitmap (operations very often met on very low
densities), to scan all new containers in order to populate
them with the missing integers, and to convert the existing
containers to another format (arrays to bitmaps or bitmaps
to arrays). However, on the low and average densities, such
bits sequences become very rare. In these cases, Concise
is mainly constituted of literal words that need to be com-
plemented by calculating their opposite, allowing Roaring
to show a light performance advance compared to Concise,
which is about 3% on the low densities and of 7% on the
average ones.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Bitmaps

Si
ze

 (
M

B)

Bitmaps flat files

Concise
Roaring

Figure 7: Roaring and Concise’s disk space consumptions

4.6 Evaluating Roaring and Concise’s mem-
ory usage

After the work realized to evaluate the temporal perfor-
mances of Roaring and Concise when executing analytical
queries under Druid, a question which can not go unnoticed
is the one concerning the space usage of both compression
bitmap techniques. To give a brief idea of both models space
performances, we bring back the total size of the flat files
storing the serialized bitmap indexes of both data sources
(one being indexed with Roaring and the second one with
Concise) used during the previous tests. The figure 7 shows
sizes occupied by flat files storing Roaring and Concise bitm-
aps.

Although Roaring generally offers remarkable answer tim-
es, results show that this scheme is about 15% greedier than
Concise regarding memory space occupation. However, this
very rarely affects the speed of reading bitmaps from the
disk, because Roaring ’s high-level index often avoids load-
ing non-used containers during processing, contrary to Con-
cise for which a bitmap has to be completely loaded into
memory to perform computations on it. Also, Roaring ’s
model allows the CPU to process containers very quickly by
exploiting super-scalar calculations that can handle several
bit sequences in parallel, which is impossible to realize with
Concise as it requires to perform conditional branching for
every represented CPU word, that results on slowing down
the running times.

5. CONCLUSION
After integrating Roaring bitmap as an indexing solution

into the Druid OLAP engine, this work has been realized
in collaboration with Druid developers to evaluate and an-
alyze the time-space performances of Roaring bitmap under
Druid. First, an introduction of the main facts having led
to the realization of this project has been given. Then, a de-
tailed presentation of Druid ’s important concepts has been
made. A section giving a brief overview of the various types
of analytical queries supported by Druid and that require
bitmaps to fast filter data has followed. The last section pre-
sented the benchmarks conducted to evaluate and analyze
the time-space performances of the two compressed bitmap
schemes adopted by Druid, Roaring bitmap and Concise,
under this system. Results have shown that Roaring bitmap
has been able to improve up to ≈ 5× Search queries pro-
cessing times, and up to ≈ 2× aggregation queries running
times when compared to Concise.

Having noticed that it happened to Concise to be more

compact and to run more quickly than Roaring bitmap on
data formed of long 1-bit sequences, a new container model
has been developed for Roaring bitmap which is especially
adapted to this kind of data and is able to compress such
bit sequences by applying an RLE encoding. An evaluation
of this new Roaring bitmap’s version on the Druid OLAP
engine is planned for future work.

6. ACKNOWLEDGEMENTS
This work was supported by NSERC grant number 261437.

We are grateful to Druid developers, specifically X. Léauté
and N. Bangarwa for their help and feedback.

7. REFERENCES
[1] S. Chambi, D. Lemire, K. Owen, and R. Godin. Better

bitmap performance with Roaring bitmaps. Software
Practice and Experience (SPE), 46(5):709–719, may
2016.

[2] J. Chang, Z. Chen, W. Zheng, J. Cao, Y. Wen,
G. Peng, and W. Huang. SPLWAH: A bitmap index
compression scheme for searching in archival internet
traffic. In 2015 IEEE International Conference on
Communications (ICC), pages 7089–7094, London,
England, 2015. IEEE.

[3] Z. Chen, Y. Wen, Y. Cao, W. Zheng, J. Chang,
Y. Wu, G. Ma, M. Hakmaoui, and G. Peng. A survey
of bitmap index compression algorithms for big data.
Tsinghua Science and Technology, 20(1):100–115,
2015.

[4] A. Colantonio and R. D. Pietro. Concise: Compressed
’n’ composable integer set. Information Processing
Letters, 110(16):644–650, jul 2010.

[5] T. P. P. Council. TPC BENCHMARK H.
http://www.tpc.org/tpc documents current versions/
pdf/tpch2.17.1.pdf, 2014.

[6] F. Deliège and T. B. Pedersen. Position list word
aligned hybrid: optimizing space and performance for
compressed bitmaps. In Proceedings of the 13th
International Conference on Extending Database
Technology (EDBT), pages 228–239, New York, NY,
USA, 2010. ACM.

[7] Druid. Querying.
http://druid.io/docs/0.8.2/querying/querying.html,
2015.

[8] A. Grand. Frame of reference and Roaring bitmaps.
https://www.elastic.co/blog/
frame-of-reference-and-roaring-bitmaps, 2015.

[9] A. Hall, O. Bachmann, R. Bussow, S. Ganceanu, and
M. Nunkesser. Processing a trillion cells per mouse
click. In The 38th International Conference on Very
Large Data Bases (VLDB), volume 5, pages
1436–1446, Istanbul, Turkey, 2012. VLDB.

[10] S. Melnik, A. Gubarev, J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of web-scale datasets. In The 36th
International Conference on Very Large Data Bases
(VLDB), volume 3, pages 330–339, Singapore, 2011.
VLDB.

[11] M. Rios and J. Lin. Distilling massive amounts of data
into simple visualizations: Twitter case studies. In
The 6th International AAAI Conference on Weblogs
and SocialL Media (ICWSM), pages 22–25, Dublin,
Ireland, 2012. ICWSM.

[12] K. Shvachko, K. Hairong, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In 26th
Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–10, Incline Village, NV,
USA, 2010. IEEE.

[13] E. TSCHETTER. Introducing Druid: Real-Time
Analytics at a Billion Rows Per Second. http:
//druid.io/blog/2011/04/30/introducing-druid.html,
2011.

[14] Wikipedia. Shared-nothing architecture. https:
//en.wikipedia.org/wiki/Shared nothing architecture,
2015.

[15] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. ACM
Transactions on Database Systems (TODS),
31(1):1–38, March 2006.

[16] L. Wu, R. Sumbaly, C. Riccomini, G. Koo, H. Kim,
J. Kreps, and S. Shah. Avatara: OLAP for web-scale
analytics products. In The 38th International
Conference on Very Large Data Bases (VLDB),
volume 5, pages 1874–1877, Istanbul, Turkey, 2012.
VLDB.

[17] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino,
and D. Ganguli. Druid: a real–time analytical data
store. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data,
pages 157–168, New York, NY, USA, June 2014. ACM.

[18] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker,
and I. Stoica. Spark: cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), pages 1–7, Boston, MA,
USA, 2010. ACM.

