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Abstract. This paper treats the coordination of Emergency Medical Assistance

(EMA) and hospitals for after-hours surgeries of urgent patients arriving by am-

bulance. A standard hospital approach during night-shifts is to have standby

surgery teams come to hospital after alert to cover urgent cases that cannot be

covered by the in-house surgery teams. This approach results in a considerable

decrease in staffing costs in respect to having sufficient permanent in-house staff.

Therefore, coordinating EMA and the hospitals in a region with their outhouse

staff with the objective to have as fast urgent surgery treatments as possible with

minimized cost is a crucial parameter of the medical system efficiency and as

such deserves a thorough investigation. In practice, the process is manual and the

process management is case-specific, with great load on human phone commu-

nication. In this paper, we propose a decision support system for the automated

coordination of hospitals, surgery teams on standby from home, and ambulances

to decrease the time to surgery of urgent patients. The efficiency of the proposed

model is proven over simulation experiments.

1 Introduction

Most hospitals that perform emergency surgery service provide also after-hours surgery

for urgent patients whose conditions are not critical but might result in increased prob-

ability of morbidity or mortality. Out-of-hours is a period which is generally defined

to be between 6 PM to 8 AM weeknights and the whole weekend, even though the

definition might vary from one hospital to another. The growing demand of simulta-

neous multiple patients for emergency medical assistance (EMA) and urgent surgery

treatment provided by hospitals puts a strong focus on the combined EMA and hospi-

tal surgery treatment coordination effectiveness and efficiency. The management of the

hospital network and the emergency medical assistance in each region, city or town is

challenged to deal with the seemingly conflicting objectives of fast, efficient and effec-

tive urgent patient response minimizing total system cost and maximizing the quality

of care.

In this paper, we develop a decision-support system for the coordination of EMA

and hospitals for after-hours urgent surgery patients. We assume that there are multiple

hospitals available for urgent cases surgery treatment and for each hospital there is a

sufficient number of in-house surgery teams needed to care for in-house and emergency

patients safely. A surgery team consists of the individuals needed to adequately staff one

operating room (OR) (e.g., a surgeon, an anesthetist, two nurses and a nurse anesthetist).

Furthermore, we assume that there is a number of surgery teams on standby from home,



coming to hospital after alert. The savings in staff expenditure between having sufficient

staff in-house for urgent cases in respect to having them taking call from home might

be considerable [5]. Hence, a good balance between the efficiency and the flexibility in

hospital and EMA network management is a prerequisite for providing optimal care to

patients.

The decision-support system proposed in this paper is based on the coordination

of the assignment of idle ambulances to pending patients, and a simultaneous assign-

ment of ambulances assisting patients in-situ to adequate hospitals together with the

assignment of standby out-of-hospital surgery teams to the same. The multi-objective

optimization of arrival times of multiple actors is solved for the minimization of pa-

tients’ surgery waiting times. Responding to a possibility of occurrence of multiple

simultaneous patients and based on the relative positions of the patients, surgery teams,

and available hospitals, our approach is based on a system’s view, not concentrating

only on minimizing single patient delay, but concentrating on the system best solution

in respect to the (temporal and spatial) multitude of patients. Simulated emergency sce-

narios demonstrate the efficiency of the coordination procedure and significant decrease

in the urgent patients waiting time to surgery treatment.

This paper is organized as follows. In Section 2, we describe the the State-of-the-Art

practice in the EMA coordination for urgent surgery patients. In Section 3 we formulate

the EMA coordination problem for urgent surgery patients arriving by ambulance. Sec-

tion 4 describes briefly the proposed multi-agent architecture with the modified auction

algorithm for EMA urgent surgery coordination. Section 5 contains simulation results

comparing the proposed coordination approach and the benchmark urgent surgery co-

ordination procedure first-come-first-serve. We draw conclusions in Section 6.

2 State-of-the-Art practice and related work

The emergency medical system for the assistance of urgent surgery patients is made

of the following participants: out-of-hospital patients, hospitals with after-hours urgent

and emergency surgery option, Medical Emergency Coordination Center (ECC), am-

bulances staff, and standby out-of-hospital surgery teams. Usually, each hospital has

assigned to it one or more out-of-hospital standby surgery teams positioned at alert out-

side hospital and obliged to come to the hospital in the case of emergency. The reason

for their outside hospital position are staffing costs which make a large portion of costs

in surgical care services [6]. Significant cost savings can be achieved by increasing

staffing flexibility [3] and assignability to multiple hospitals.

The standard approach used in most of out-of-hospital after-hours urgent surgeries

is the following. Patients are diagnosed in the place of emergency: at their momentary

out-of-hospital location or at a health center without after-hours urgent surgery option.

In both cases the ECC applies First-Come-First-Served (FCFS) strategy and locates

the nearest available (idle) ambulance with ALS and dispatches it to pick up the pa-

tient. The use of ambulance for urgent patients is proven to increase patient chances in

respect to the use of private transportation. The concrete example is infarct treatment

[18] where ambulance should be considered a place for initial diagnosis, triage and

emergency treatment since pre-hospital triage in the ambulance reduces infarct size and



improves clinical outcome [16]. After the ambulance arrives to the scene and diagnoses

the urgency at patient’s momentary out-of-hospital location, ambulance confirms the

diagnosis to the ECC which has a real time information of the states of ambulances.

ECC sequently applies FCFS strategy for hospital assignment by locating the nearest

available hospital with operating room working after-hours. The hospital then alerts the

closest surgery team of the urgent surgery case.

The process for urgent surgery treatment coordination usually used in the ECCs

is manual and the management is based on case by case principles with high human

load necessary for telephonical arrangements to find a solution. This can significantly

worsen the total delay time for patients awaiting surgery. In the case of a simultaneous

presence of multiple urgent patients, hospitals and surgery teams located in multiple

sites, support for optimized EMS coordination based on information updated in real

time is necessary for efficient surgery planning and scheduling.

There is a vast Operations Research and Multi-Agent Systems literature in medical

emergency assistance coordination. There exist different ambulance deployment, relo-

cation and dispatch models, e.g., [9], operating room planning and scheduling, e.g., [3],

and patient scheduling solutions, e.g., [15]. The proposed methods are mostly based on

queuing theory, simulations and mathematical programming, e.g., [8, 13, 14, 17].

Henderson in [8] outlines some of the key challenges EMS providers face, such as

traffic congestion, increasing call volumes, hospital diversion, and increasing transfer

times at emergency departments. Ingolfsson in [10] surveys research on planning and

management for emergency medical services. In [1], Bandara et al. study optimal dis-

patch of paramedic units to emergency calls to maximise patients’ survivability. Their

computational results show that dispatching the closest vehicle is not always optimal

and that dispatching vehicles considering the priority of the call leads to an increase in

the average survival probability of patients.

Emergency medical assistance literature is abundant also in the multi-agent system

community, e.g., [4, 11]. Domnori et al. in [4] discuss the fitness of agent-based applica-

tions to managing healthcare emergences and large scale disasters and their application

to problems where the main challenge is coordination and collaboration between com-

ponents. López et al. in [11] propose a multiagent system using an auction mechanism

based on trust to coordinate ambulances for emergency medical services. The auction

mechanism here is based on three individual patient priority cases, where the winning

ambulance is the one with the best estimated arrival time and a good trust degree. Lu-

jak and Billhardt in [12] proposed an organization-based multi-agent application for

emergency medical assistance (EMA) based on a distributed relaxation method for the

assignment problem called auction algorithm [2] and the mechanism based on trust.

The experiments results confirm the reduction of the average response times of EMA

services.

Considering out-of-hours emergency surgery, in [19] the balance between hospi-

tal costs and patient safety was examined to determine the optimal size of emergency

surgery teams that are on-call after-hours, including medical and nursing staff. The

study found that the use of defined procedure-based safety intervals to plan on-call ros-

ters can reduce the number of staff rostered on-call without jeopardising patient safety.



The key premise of this argument is that fewer nighttime staff will be sufficient if pa-

tients wait a little longer for surgery, but not so long as to exceed safety intervals.

For the ambulance assignment problem, not infrequently applied dispatching method

is first-come-first-served (FCFS) policy which is the method temporally discriminating

patients and not considering the availability of hospitals or hospital staff. However, dif-

ferent centralized and distributed Operations Research optimization methods can be

applied for the multi-agent task allocation and coordination problem encountered in

this context. Since in this scenario, scalability, robustness and flexibility are of outer-

most importance, distributed methods, such as auction algorithm [2] are of preference.

To the best of our knowledge, the literature on integrated mutual coordination of EMA,

multiple hospitals operating rooms and out-of-hospital surgery teams is lacking which

is the reason why in this paper we propose an integrated solution model for this prob-

lem.

3 Problem formulation

In this paper, we treat the problem of after-hours out-of-hospital urgent surgery patient

assignment to ambulance assistance, and consecutive patient transfer to adequate hos-

pital with minimal waiting time for surgery. We assume that after transferring a patient

to hospital, ambulance is redirected to the base station where it waits for the next emer-

gency patient call.

In Figure 1, we present patient delay time components:

• Call response and resource assignment time spent by the ECC (the time of analyz-

ing the problem and giving it the highest priority category deciding on the ambu-

lance and the hospital assignment);

• Mobilization of the ambulance and transportation time of the ambulance from its

momentary position to the patient;

• Time of patient assistance in situ by ambulance staff;

• Transportation time of the ambulance with the patient to the hospital;

• Transportation time of the surgery team members from their momentary positions

to the hospital;

• Expected waiting time due to the operating room occupancy of other prior pending

patient(s) in the hospital (if any).

Hesitation of patients to search for medical help together with the delays which are

the result of the manual centralized coordination of multiple actors in EMA sometimes

might average several hours and thus can prevent the early application of life-saving

procedures and contribute substantially to a diminished effectiveness of surgery treat-

ment. In the case of multiple simultaneous pending patients, the right combination and

the individual choice of the ambulances to be assigned can significantly improve overall

patients’ chances and reduce the resulting morbidity and mortality. After a patient gets

assisted in situ by ambulance staff, individually minimal expected time to surgery is the

time resulting from the following three parameters, Figure 1:

• transportation time of the ambulance with the patient from the initial patient loca-

tion to assigned hospital,



Fig. 1: Temporal sequence of six medical emergency events necessary for PCI treatment

• transportation time of the surgery team to the same,

• expected waiting time until the operating hall gets available.

The patient’s and surgery team’s arrival time to the hospital depends on their dis-

tance from the hospital and the driving conditions on the road. The availability of the

operating hall depends on the previous patients (if any) booked for the operation hall

with higher or equal urgency level to the patient in question.

In the case of multiple simultaneously appearing urgent patients, the objective is to

find the minimum of the sum of all the patient delay times such that the system results

in as high utilitarian value as possible. The objective is, therefore, twofold:

• to assign ambulances to simultaneous pending patients such that the assignment

results in the minimum average time of transport of ambulances to simultaneous

patients momentary locations considering their individual maximum allowed wait-

ing times,

• to assign ambulances with patients to hospitals minimizing the combined times of

patients transport to hospitals, and arrival times of surgery teams positioned outside

hospitals, such that the difference between the expected arrival times of patients and

surgery teams to hospitals is minimum.

In the following, we give the multi-agent system model and the mathematical program-

ming definition of the problem inspired by [7].

Multi-Agent System representing EMS Considering a time horizon made of T time

periods, given are four distinct agent sets. Let Ξ = {ξ1, . . . , ξNp
} be a pending patient

set. Let Ψ = {ψ1, . . . , ψNc
} be a set of surgery teams, each one made of at least one sur-

geon, one anaesthetist, two nurses and an anaesthetist assistant. LetA = {a1, . . . , aNa
}

be the set of identical, capacitated ALS ambulance vehicles to be routed and scheduled

to assist patients based on one-to-one assignment and let H = {h1, . . . , hNh
} be after-

hours urgent surgery-capable hospitals. Furthermore, all agent sets are represented by



points in the plane. Np, Nc, Na, Nh and Nb represent (not necessarily equal) cardi-

nality of each set respectively. Agents initial coordinates are positioned, w.l.o.g., in a

square environment E = [0, l]2 ⊂ R
2 of side length l > 0. The abbreviation p(t) is

used for the position of any kind of agent at time t = 1, . . . , T ; e.g., pa(t) ∈ E being

the position of agent a ∈ A at the beginning of each time period t = 1, . . . , T , where

T is the last period of the planning time horizon we are interested in.

Mathematical Formulation We concentrate on the problem of the minimization of the

average total delay time of urgent patients to get surgery treatment. No patient should

be discriminated positively or negatively for his/her location. In the case that there is

only one pending patient in the system, then the best ambulance is the ambulance which

will arrive in the shortest time possible and the problem is to find ambulance a ∈ A,

surgery team ψ ∈ Ψ and hospital h ∈ H that in combination minimize patient ξk ∈ Ξ

time to hospital:

min
a∈A

t(a, ξk) + min
h∈Hav

(

max
h∈Hav

(

t(ξk, h), min
ψ∈Ψav

t(ψ, h)
)

,min ρh,ξk

)

, (1)

where hospital hξk chosen for patient ξk, k = 1, . . . , Np is

hξk = argmin

(

max
h∈Hav

(

t(ξk, h), min
ψ∈Ψav

t(ψ, h)
)

,min ρh,ξk

)

, (2)

and Ψav is a set of available surgery teams and Hav set of available hospitals with

necessary equipment. Furthermore, t(x, y) is travel time from position x to position y

and ρh,ξk available time periods of hospital h for patient ξk and min ρh,ξk is a first time

period hospital h will be free for patient ξk. The objective for each patient ξk ∈ Ξ , thus,

is to choose a triple 〈a, h, ψ〉 minimizing Equation 1.

From the global point of view, multiple-patient problem is to assign patients in

order to optimize the global waiting time for the treatment for all patients, i.e., find

assignments of a ∈ A and h ∈ H such that:

min
a∈A

Np
∑

k=1

t(a, ξk) + min
h∈H

Np
∑

k=1

(

max
h∈Hav

(

t(ξk, h), min
ψ∈Ψav

t(ψ, h)
)

,min ρh,ξk

)

. (3)

Waiting time or patient delay is the sum of the time needed for the arrival of the ambu-

lance to the patient, and the minimum value between the maximum of the arrival time

of the patient to hospital and the arrival time of surgery team to the same (if not in-situ),

and the minimum waiting time due to the pending patients booked for the operation

room before patient ξk.

4 Solution approach

To improve the response times of the emergency management system towards urgent

surgery patients, we present the dynamic resource assignment model for ambulances,



surgery teams and hospitals assignment to patients performed over iterative combinato-

rial auctions, e.g. [2, 12]. The proposed solution is founded on the collaborative multi-

agent system (MAS) organizational structure and MAS coordination model with four

classes of agents seen as autonomous and independent decision makers. There exists a

determined sequence of steps and message exchanges which is performed in order to

resolve each urgent surgery case. The agents are described based on their characteristics

and states as follows:

Patient: Each patient agent ξ ∈ Ξ represents a real pending urgent surgery patient

in the medical emergency assistance. When calling ECC, from his/her initial location,

he/she gets assisted in-situ by ambulance crew, and gets transferred to hospital where

he/she receives the urgent surgery treatment. Each patient is described over a tuple

ξ = {pξ(t), ∆ξ, t
in
ξ }, where ∆ξ is patient ξ ∈ Ξ status which can be: pending patient

waiting ambulance ξwa, being assisted in-situ ξais, moving in ambulance to hospital

ξath, in hospital ξinh, and tinξ is patient ξ detection time. The latter is defined as the

time when the ECC is informed about the incident. New patient requests continuously

unfold over time and must be assigned in real time to ambulances.

After-hour urgent surgery capable hospital: Hospital agents h ∈ H collaborate

with ambulances and emergency coordinator to receive patients for treatment. Further-

more, they are responsible of managing and coordinating their operation room(s) to-

gether with the assignable surgery team(s). Hospitals can be described over a touple

h = {ph, ρh,ξ}, where ph is the position and ρh,ξ is the temporal availability of hos-

pital h ∈ H for patient ξ ∈ Ξ . It is assumed that each hospital has a booking list

for urgent and emergency surgery, i.e., information of the availability of the operation

room within some future time. Hospitals have at the disposal the updated assignability

of surgery teams ρψ,h(t) at every time period t ∈ T .

Ambulance: Ambulance agents a ∈ A represent ALS ambulance vehicles (ambu-

lances with advanced life support) together with their relative ambulance human crews.

Ambulances communicate to ECC agent for patient and base station assignment and

to hospitals for patient transfer. Furthermore, each ambulance is described over the tou-

ple a = {pa(t), v
[a]
avg, sa(t), ba(t)}, where pa(t) is the current position at time period

t ∈ (1, . . . , T ) and v
[a]
avg is the average velocity of ambulance a. sa(t) is its estimated

end-of-service time with the current patient, if any. The dummy value −1 is used when

the vehicle is free. ba(t) indicates the destination, i.e., the next station at which the am-

bulance vehicle will stop. Ambulances statuses can be: idle ambulance ai, moving to

incident position, aip, and ambulance moving to a hospital, ah. At every time period t,

idle ambulances ai are considered for commitment to pending patients ξwa, and in case

no patient assignment is made, they remain at their last assigned position.

In our model we assume that after arriving at patient location, the vehicle cannot be

redirected elsewhere until transferring the patient to the hospital. However, at any time

before getting to the patient location, the vehicle can be dispatched elsewhere.

Medical Emergency-Coordination Center: ECC receives emergency calls from

patients and assigns the ambulance and hospital for each case, thus performing the high-

level management of the urgent surgery logistic procedure.

Surgery team: ψ ∈ Ψ is responsible of the urgent surgery treatment. The team’s

members are positioned outside of hospital, generally at different locations, and move



towards assigned hospital when needed. The combined arrival time to the hospital is the

highest value of the members’ arrival times. The touple which describes each surgery

team is ψ = {pψ(t), ρψ,h(t), bψ(t)} where ρψ,h(t) is the temporal availability of

surgery teams ψ ∈ Ψ in hospital h ∈ H . It is assumed that each surgery team has

its expected time of arrival to the hospital based on their momentary position pψ(t)
and the position of a hospital). The status of a surgery team can be: idle ψi, moving

to an assigned hospital ψmh, in the assigned hospital ψih. In general, the team can be

assignable to different number of hospitals. Therefore, binary vector ρψ,h(t) expresses

the assignability of the team for each time period t ∈ T and for each hospital h ∈
H . Traditionally each surgery team is assigned to one hospital only. However, staff

utilization and patient assistance can be significantly improved if all the regional surgery

teams are at the disposal of all the region’s hospitals.

4.1 Auction algorithm

The relaxation method for the assignment problem called auction algorithm [2] is used

to resolve the problem of the assignment of ambulances, hospitals and surgery teams to

urgent surgery patients. Auction algorithm is a coordination mechanism guaranteed to

find the best assignment solution for the system; furthermore, it is an effective method

for solving the classical assignment problem. It admits an intuitive economic interpre-

tation and is well suited for implementation in distributed and decentralized computing

systems as is the one in emergency medical assistance. Moreover, it is an iterative proce-

dure related to a sales auction where multiple bids are iteratively compared to determine

the best offer for the system, with the final sales going to the highest bidders. The orig-

inal form of the auction algorithm is an iterative method to find the optimal prices and

an assignment that maximizes the net benefit in a bipartite graph, the maximum weight

matching problem (MWM). This algorithm was first proposed by Dimitri Bertsekas [2].

In auctions, it is important that the number of bidders is equal or higher than the

number of bided objects. This is why, if the number of patients is lower than the num-

ber of ambulances, and the number of hospitals, then patients bid for ambulances and

hospitals in the iterative auction algorithm based on the starting available patient assis-

tance time described above. Otherwise, i.e., if the number of ambulances is lower than

the number of patients, then ambulances bid for patients, and similarly higher number

of hospitals bid for lower number of patients.

In the patient hospital assignment, we consider all pending patients who called the

ambulance and are waiting for ambulance or are in the process of ambulance assis-

tance and/or arriving to hospital but still haven’t reached the same. In the following, we

present the algorithm steps for hospital patient assignment. The assignment of ambu-

lances to patients is performed in a similar way.

In each iteration

• Each hospital receives updated pending patients virtual prices (those are dual vari-

ables of the primal problem).
• Each hospital gives a bid based on the virtual prices of the patients.
• The hospital with the highest bid wins in the momentary iteration.
• If at the end of the bidding, all the patients received at least one bid and the bidding

hospitals don’t bid for the same patients, then there are no more unassigned patients.



• The algorithm updates the patients’ prices and continues in iterations until all the

patients are assigned and all the conflicts are resolved.

If each surgery team is assignable to more hospitals, preferably all, then the combi-

natorial result of multiple assignments gives a globally optimal solution while if each

team is assigned only to one hospital, this can limit significantly the arrival time of the

team to the hospital and therefore, in the case of unexpected prolonged arrival times,

jeopardize the urgent surgery success.

The additional parameters of the simulation algorithm are Nsim
ξ being the total

number of patients in the simulation and Nξ(t) representing the number of patients

assisted in hospital until time period t ∈ [1, . . . , T ]. The complete simulation algorithm

for emergency medical assistance of angioplasty patients follows the proceeding steps.

At each time t ∈ [1, . . . , T ]
While Nξ(t) ≤ Nsim

ξ

• assign all pending patients ξwa to idle ambulances ai using auction algorithm;

• assign patients moving in ambulance to hospital ξath to hospitals and standby

surgery teams considering the arrival times of the teams;

• move ambulances aip to unassisted patients one step∗;

• move ambulances with assisted patients to hospitals one step∗;

• move surgery teams outside hospitals to assigned hospitals one step∗;

• when a patient gets assisted in hospital, inform ECC of the availability of ambu-

lance;

• introduce new patients based on the frequency of patient appearance.

∗ the step is calculated based on the average ambulance velocity and the duration of a

time period.

5 Simulation experiments

In this Section, we describe the simulation setting, experiments, and results. The aver-

age patient waiting times resulting from the proposed optimized reassignment model

are compared with the same based on the First-Come-First-Served principle used actu-

ally in many medical emergency coordination centers (e.g., SUMMA 112 in Madrid,

Spain) and described previously.

In the simulation model, we follow a mesoscopic view of the emergency medical

system and without loss of generality, ambulance velocities are set to an average system

value. Together with the simplification of substituting the function of road travel time

t(x, y) between positions x = (x1, x2) and y = (y1, y2) in Euclidean 2-space with Eu-

clidean distance d(x, y) =
√

∑2
i=1(xi − yi)2, we convert the road time minimization

problem to Euclidean distance minimization problem which is independent of a road

network structure different for each city and region.



Simulation setting We test the proposed strategy of optimized reassignment of am-

bulances and hospitals to patients looking at the average patient waiting times in the

case of multiple pending patients and compare it with the benchmark First-Come-First-

Served (FCFS) strategy of patient assignment. To demonstrate the scalability of our

solution and possible application to small, medium and large cities and regions, in all

of the experiments we vary the number of ambulances with ALS from 5 to 100 with

increment 5 and the number of hospitals from 2 to 50 with increment 2. For simplic-

ity and without the loss of generality, the number of surgery teams in each experiment

equals the number of hospitals. The medical emergency system together with patients

is positioned in the environment which dimensions are [0, 50]2 ⊂ R.

Each simulation is run over 300 patients. The number of experimented setup config-

urations combining different numbers of ambulances and hospitals with surgery teams

sums up to 500. For each configuration, we simulate 5 instances of different random

positions of ambulances, hospitals, surgery teams, and patients. Patients’ positions are

modeled based on the uniform distribution while patients’ appearance frequency varies

from low (1 new patient every 10 time periods) over medium (1 new patient every 2 time

periods) to saturated one (1 new patient appearing in every time period). Time period

can be considered here as a minimum time interval in which the assignment decisions

are made; usually it is from 1 to 15 minutes.

In the proposed optimized reassignment model, surgery teams can be dynamically

(re-)assigned to any hospital in every time period depending on the actual patient de-

mand. Furthermore, we assume that the hospitals have at the disposal sufficient number

of operating rooms so that the only optimization factor from the hospital point of view is

the number of available surgery teams. If there are more patients with the same urgency

already assigned waiting for treatment in the same hospital, they are put in a queue.

In the proposed model, surgery teams re-assignment to hospitals is performed as

soon as an idle ambulance arrives to a pending patient. The former is made having in

consideration all idle surgery teams, available hospitals, and new patients assisted by

ambulances but still out of hospital.

For the surgery team arrival times to hospitals, we tested two assignment strategies:

the first one minimizes the sum of the differences between the patients and the surgery

teams arrival times to hospitals at the global level, while the second one concentrates

only on the minimization of the arrival times of surgery teams to assigned hospitals

independently of the arrival times of the assigned patients to the same.

We present the results of the latter since it gives significantly lower patient waiting

times in all of the performed experiments. Even though the former considers a time

window between surgery teams and patients arrival times, thus increasing the available

time for surgery teams to arrive to the hospital when the patient has still not arrived, this

strategy showed inferior to the minimization of arrival times of surgery teams without

the reference to the assigned patients times. The reason for this is that without forecast-

ing capabilities of new patients, the system is myopic towards new patients frequency

appearance and positions and on the long run, the system suffers significant delays.

In the following, we present the results of the simulation tests.



Simulation results In the experiments, we test the performance of the proposed op-

timized reassignment strategy in respect to the FCFS benchmark model. For each out

of 500 configurations, we use 5 instances of different patient, surgery team, hospital

and initial ambulance coordinates. We compare the average patient waiting time of the

proposed optimized reassignment method tOR with the same of the benchmark FCFS

model tFCFS . Relative performance function P of the proposed in respect to the bench-

mark model is calculated as:

P =
tFCFS − tOR

tOR
· 100 , [%]. (4)

The simulation results of the performance function P for the three simulated cases

of frequency of patient appearance of 1, 5, and 10 patients over 10 time periods are

presented in Figures 2, 3, 4, and Table 1. The Figures show the increase of performance

in average as the number of hospitals increases from slightly negative values up to more

than 1000 % as seen in Table 1.

Fig. 2: Average patient waiting time performance of optimized reassignment strategy in

respect to the FCFS strategy [%] for the frequency of appearance of 1 new patient every

10 time periods.

Observing the performance dynamics in respect to the varying number of hospitals,

it is evident from Figures 2, 3, and 4 that with a relatively low number of after-hour

urgent-surgery available hospitals, optimized reassignment gives similar results to the

FCFS method. As the number of the hospitals increases, the performance increases in

average up to the maximum of 38,52% for the frequency of patient appearance of 1 new

patient every 10 time periods, Figure 2, and up to more than 1000 % in the cases with

higher frequency of patient appearance, Figures 3 and 4.

Looking at the optimized reassignment performance dynamics in respect to the

varying number of ambulances, in Figures 2, 3, and 4, two regions are evident: the first



Fig. 3: Average patient waiting time performance of optimized reassignment strategy in

respect to the FCFS strategy [%] for the frequency of appearance of 1 new patient every

2 time periods.

Fig. 4: Average patient waiting time performance of optimized reassignment strategy in

respect to the FCFS strategy [%] for the frequency of appearance of 1 new patient every

time period.



one with very low number of ambulances where the performance of the optimized reas-

signment is significantly better than the FCFS method, and the other region where the

values do not change significantly in respect to the change of the number of ambulances.

The performance values of the first region steeply decrease to the steady values of the

valey region. It can be seen that as the frequency of patient appearance increases, thus

the size of the region of significantly higher performance when the number of ambu-

lances is low, increases starting at frequency 1/10 with 5 ambulances, in 5/10 frequency

going up to 10 ambulances, and in frequency 1/1 arriving to 20 ambulances, Figures

2, 3, and 4. This implies that the optimized reassignment performance in respect to the

FCFS method when the number of ambulances is low improves as the frequency of

patient appearance increases.

Table 1: Experiments minimum and maximum values of performance function P

Frequency of patient

appearance

1/10 5/10 10/10

P min.value, [%] -2,92 -80,47 -74,62

P max. value, [%] 38,52 1067,6 1004,1

From Figures 2, 3, and 4, it is also visible that when the number of hospitals is

low, minimum values of the optimized reassignment method performance increase as

the patient appearance frequency increases. The number of hospitals for which the first

two cases show strictly positive performance is 8, while for the case 3, it is 10. Pro-

portionally to the increase of the number of hospitals, there is a constant increase of

performance up to the maximum values as seen in Table 1.

Furthermore, as can be seen from Figure 2, when the frequency of new patient ap-

pearance is relatively low, 1 over every 10 consecutive time periods, the performance

of the proposed optimized reassignment method increases in average proportionally to

the increase of the number of hospitals. However, when the number of hospitals is rela-

tively low, i.e., lower than 8, the optimized reassignment approach does not necessarily

give a better patient waiting time solution. The reason is that by reassignment of surgery

teams, they move from one hospital to the other, and are in the time of travel unavailable

for patient assistance which worsens the patient waiting time. However, when the num-

ber of ambulances is relatively low, (lower than 20), the reassignment approach gives

better results since with high number of ambulances, their geographical distribution

compensates for the availability of surgery teams at all hospitals at all times and no ad-

ditional combinatorial technique is necessary to improve the assignment performance.

With lower number of ambulances and hospitals, since ambulances are not equally dis-

tributed in the area, the reassignment method compensates for their unequal distribution

thus giving better results. This tendency is even more emphasized in the cases of higher

new patient appearance frequency as seen in Figures 3 and 4 reaching up to more than

1000 % of improvement, Table 1.



6 Conclusions

In this paper, we proposed a heterogeneous multiagent system coordination model that

facilitates a seamless coordination among the participants in the emergency medical as-

sistance for the minimization of delay times of after-hours urgent surgery patients. The

proposed model implies the change of the current functioning based on a manual coor-

dination through communications via phone calls, towards an automated coordination

process where the basic decisions are taken (or proposed) by software agents. The pro-

posed multi-agent system model enables a better control of the availability of stand-by

surgery teams and gives a decision making tool for ambulance and hospital assignment.

In order to reduce the transfer and waiting times of after-hours urgent surgery pa-

tients, we integrated in the multiagent model a multi-objective optimisation tool based

on iterative auctions for the minimization of ambulances and surgery teams arrival

times. The proposed solution results in the provably increased flexibility and respon-

siveness of the emergency system.

Simulation results prove the efficiency of the proposed solution resulting in signif-

icantly lower urgent surgery waiting times. The proposed auction mechanism enables

spatially and temporally optimized resource assignment in the cases with multiple pa-

tients.

In real life, assumption on ambulances’ equal velocities cannot be made so the es-

timation of arrival times should be made based on the more sophisticated methods and

tools as, e.g., Google maps. For the usage of our technology, ambulances should have a

GPS and a navigator for localizing the patient and navigating the way to him/her. ECC

should have a digitalized map with localized ambulances, patients and hospitals and

hospitals should have a receptionist service or personnel for admittance of patients.

As a future work, we plan to develop heterogeneous MAS coordination model for

participants in Emergency Medical Assistance with integrated future patients forecast

over a receding horizon.
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