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Abstract. Epochal dynamics, in which long periods of stasis in an evolving population are punctuated by a
sudden burst of change, is a common behavior in both natural and artificial evolutionary processes. We analyze the
population dynamics for a class of fitness functions that exhibit epochal behavior using a mathematical framework
developed recently, which incorporates techniques from the fields of mathematical population genetics, molecular
evolution theory, and statistical mechanics. Our analysis predicts the total number of fitness function evaluations to
reach the global optimum as a function of mutation rate, population size, and the parameters specifying the fitness
function. This allows us to determine the optimal evolutionary parameter settings for this class of fitness functions.

We identify a generalized error threshold that smoothly bounds the two-dimensional regime of mutation rates
and population sizes for which epochal evolutionary search operates most efficiently. Specifically, we analyze the
dynamics of epoch destabilization under finite-population sampling fluctuations and show how the evolutionary
parameters effectively introduce a coarse graining of the fitness function. More generally, we find that the optimal
parameter settings for epochal evolutionary search correspond to behavioral regimes in which the consecutive
epochs are marginally stable against the sampling fluctuations. Our results suggest that in order to achieve optimal
search, one should set evolutionary parameters such that the coarse graining of the fitness function induced by the
sampling fluctuations is just large enough to hide local optima.

Keywords: genetic algorithm, statistical dynamics, evolutionary search, optimization, error threshold, marginal
stability

1. Designing evolutionary search

Evolutionary search algorithms are a class of stochastic optimization procedures inspired
by biological evolution, see for instance Bäck (1996), Goldberg (1989), Koza (1992), and
Mitchell (1996): A population of candidate solutions evolves under selection and random
“genetic” diversification operators. Evolutionary search algorithms have been successfully
applied to a diverse variety of optimization problems, as illustrated by Belew and Booker
(1991), Chambers (1995), Davis (1991), Eshelman (1995), and Forrest (1993) and ref-
erences therein. Unfortunately, and in spite of a fair amount of theoretical investigation,
the mechanisms constraining and driving the dynamics of evolutionary search on a given
problem are often not well understood.
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There are very natural difficulties that are responsible for this situation. In mathematical
terms, evolutionary search algorithms are population-based discrete stochastic nonlinear
dynamical systems. In general, the constituents of the search problem, such as the struc-
ture of the fitness function, selection, finite-population fluctuations, and genetic operators,
interact in complicated ways to produce a rich variety of dynamical behaviors that cannot
be easily understood in terms of the constituents individually. These complications make a
strictly empirical approach to the question of whether and how to use evolutionary search
problematic.

The wide range of behaviors exhibited by nonlinear population-based dynamical systems
have been appreciated for decades in the field of mathematical population genetics. Unfor-
tunately, this appreciation has not led to a quantitative predictive theory that is applicable to
the problems of evolutionary search; something desired, if not required, for the engineering
use of this stochastic search method.

We believe that a general, predictive theory of the dynamics of evolutionary search can
be built incrementally, starting with a quantitative analytical understanding of specific prob-
lems and then generalizing to more complex situations. In this vein, the work presented
here continues an attempt to unify and extend theoretical work in the areas of evolution-
ary search theory, molecular evolution theory, and mathematical population genetics. Our
strategy is to focus on a class of problems that, despite their simplicity, exhibit some of
the rich behaviors encountered in the dynamics of evolutionary search algorithms. Us-
ing analytical tools from statistical mechanics, dynamical systems theory, and the above
mentioned fields, we developed a detailed and quantitative understanding of the search
dynamics for a class of problems that exhibit epochal evolution. On the one hand, as we
show here, this allows us to analytically predict optimal parameter settings for this class of
problems. On the other hand, the detailed understanding of the behavior for this class of
problems provides valuable insights into the emergent mechanisms that control the dynam-
ics in more general settings of evolutionary search and in other population-based dynamical
systems.

In previous papers (van Nimwegen & Crutchfield, 2000; van Nimwegen, Crutchfield, &
Mitchell, 1997, 1999) we analyzed in some detail the metastable population dynamics of
what we call epochal evolution. In epochal evolution, long periods of stasis in the average
fitness of the population are punctuated by rapid innovations to higher fitness. This punctu-
ated equilibrium behavior is a common occurrence in both natural and artificial evolutionary
processes, see for instance Adami (1995), Crutchfield and Mitchell (1995), Elena, Cooper
and Lenski (1996), Fontana and Schuster (1998), Gould and Eldredge (1977), Mitchell,
Crutchfield and Hraber (1994a).

For populations evolving under a static fitness function, which is typically the case in evo-
lutionary search, it has been commonly assumed that local optima in the fitness “landscape”
are responsible for metastability in the population dynamics. The geographic metaphor of
a population crawling up the slopes of a fitness or adaptive landscape was originally intro-
duced by the evolutionary biologist Sewall Wright, see e.g. Wright (1982). More recently,
it has been assumed by several authors, such as Kauffman and Levin (1987), and Macken
and Perelson (1989), that the typical fitness functions of combinatorial optimization and
biological evolution can be modeled as “rugged landscapes”. Rugged landscapes are fitness
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functions with wildly fluctuating fitnesses even at the smallest scales of single-point muta-
tions. It is natural to assume that such rugged landscapes possess a large number of local
optima. With this picture in mind, one would explain punctuated equilibria as the result of
the population getting “pinned” at a local optimum in the landscape, until a rare lineage of
mutants crosses a valley of low fitness to a different, higher local optimum.

In contrast, there has been an increasing realization in recent years that the large de-
generacies that occur in biological fitness functions play an important role in evolutionary
dynamics, as originally argued by Huynen, Stadler, and Fontana (1996). Such degeneracies
have also been observed in evolutionary search problems—see for instance Crutchfield and
Mitchell (1995)—and typically occur when there is redundancy in the genetic represen-
tation (genotype) of candidate solutions to a combinatorial optimization problem. When
these degeneracies are operating, the set of all genotypes breaks into a relatively small
number of distinct fitness classes of genotypes with approximately equal fitness. Moreover,
due to the high dimensionality of genotype spaces, sets of genotypes with approximately
equal fitness tend to form simply connected components—the members of which can be
reached via paths made of single-mutation steps. Such components are generally referred
to as neutral networks in molecular evolution theory (Fontana & Schuster, 1998; Huynen
Stadler & Fontana 1996; Huynen, 1995; Reidys, Forst, & Schuster, 2001; Weber, 1996).
Epochal behavior occurs in evolution under these fitness functions because members of the
evolving population must search through most of the network of neutral variants before a
connection to a neighboring network of higher fitness is discovered; during this time the
average fitness is constant, up to fluctuations.

In our analysis of epochal evolution (van Nimwegen, Crutchfield, & Mitchell, 1997,
1999) we view large degeneracies in the genotype-to-fitness mapping as the main source
of the epochal nature of the evolutionary dynamics. We have constructed a wide class of
fitness functions that realize our view of genotype space decomposing into a relatively small
collection of entangled neutral networks and analyzed the resulting evolutionary population
dynamics. In a previous paper (van Nimwegen & Crutchfield, 2000) we showed how this
detailed dynamical understanding can be turned to practical advantage by analytically de-
termining the mutation rates to reach, in the fewest number of fitness function evaluations,
the global optimum in this class of fitness functions. Here we recount our basic analyti-
cal approach and extend it to incorporate population-size-dependent dynamical effects. As
will be explained below, population-size effects enter primarily through the dependence
of the stability of an epoch’s metastable population on finite-population sampling fluctua-
tions. The result is a more general and accurate theory that analytically predicts the total
number of fitness function evaluations needed on average for the algorithm to discover the
global optimum of the fitness function as a function of both mutation rate and population
size.

In addition, we develop a detailed understanding of the operating regime in parameter
space for which the search is performed most efficiently. We believe this will provide
useful guidance on how to set search algorithm parameters for more complex problems. In
particular, our theory explains how optimal search occurs in the parameter regime where
metastable populations are only marginally stable. The results raise the general question of
whether it is desirable for optimal search to run in dynamical regimes that are a balance of
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stability and instability. More specifically, we show how the interplay of mutation, selection,
and finite-population sampling fluctuations effectively induces a coarse graining of the
fitness function. That is, genotypes with fitnesses within a narrow range of each other are
effectively treated as equal by the evolutionary dynamics. Based on this, we conjecture that
optimal search occurs when the level of this coarse graining is just enough to hide local
optima by rendering them dynamically unstable.

2. Royal Staircase fitness functions

Choosing a class of fitness functions, whose population dynamics one wishes to analyze,
is a delicate compromise between generality, mathematical tractability, and the degree to
which the class is representative of problems often encountered in evolutionary search. A
detailed knowledge of the fitness function is very atypical of evolutionary search problems.
If one knew the fitness function in detail, one would not have to run an evolutionary search
algorithm to find high-fitness solutions in the first place. The other extreme of assuming
complete generality, however, cannot lead to enlightening results either, since averaged
over all problems, all optimization algorithms perform equally well (or badly), as shown
in Wolpert and Macready (1997). We thus focus on a specific subset of fitness functions,
somewhere between these extremes, that we believe at least have ingredients typically
encountered in evolutionary search problems and that exhibit dynamical behaviors widely
observed in both natural and artificial evolutionary processes.

As explained in the previous section, we focus on fitness functions that induce a collection
of entangled neutral networks: genotype space decomposes into a set of (large) networks of
isofitness genotypes that are connected via point mutation steps. Consequently, the number
of different fitness values that genotypes can take is much smaller than the number of differ-
ent genotypes. We also assume that higher-fitness networks are smaller, i.e., contain fewer
genotypes, than low-fitness networks. Finally, we assume that from any neutral network
there exist connections to higher-fitness networks such that, taken as a whole, the fitness
landscape has no local optima other than the global optimum.

Under these assumptions, genotype space takes on a particular type of architecture:
subbasins of the neutral networks are connected by portals leading between them and so to
higher or lower fitness. Stated in the simplest terms possible, the evolutionary population
dynamics then becomes a type of diffusion constrained by this architecture. For example,
individuals in a population diffuse over neutral networks until a portal to a network of higher
fitness is discovered and the population moves onto this network.

Viewed from a somewhat different perspective, such neutral network architectures in
genotype space may be induced from any fitness function by coarse graining the fitness
values into a small number of fitness classes. Under such coarse graining, genotypes whose
fitnesses fall into the same fitness class are treated as mutually neutral under selection.
For instance, neutral networks in “NK fitness landscapes” (Kauffman, 1993) have been
constructed in this way by Barnett (1997) and Newman and Engelhardt (1998). As we show
below, explicit constructions may not be necessary: the evolutionary parameters themselves
effectively induce a coarse graining of the fitness function. To some extent, this justifies
our grouping fitness values into a relatively small number of fitness classes. Moreover, we
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will argue that an optimal setting of evolutionary parameters for efficient search is achieved
when, in effect, these parameters induce the “right” coarse graining of the fitness function.

In order to model the evolutionary behavior associated with neutral network architec-
tures, we defined, in a previous paper (van Nimwegen & Cruthchfield, 1999), the class of
Royal Staircase fitness functions that capture the essential elements sketched above. Impor-
tantly, this class of fitness functions is simple enough to admit a fairly detailed quantitative
mathematical analysis of the associated epochal evolutionary dynamics.

The Royal Staircase fitness functions are defined as follows.

1. Genotypes are specified by binary strings s = s1s2 · · · sL , si ∈ {0, 1}, of length L = NK.
2. Reading the genotype from left to right, the number I (s) of consecutive 1s is counted.
3. The fitness f (s) of genotype s with I (s) consecutive ones, followed by a zero, is f (s) =

1 + 
I (s)/K �. The fitness is thus an integer between 1 and N + 1.

Note the following with regard to this definition.

1. The fitness function has two parameters, the number N of blocks and the number K of
bits per block. Fixing them determines a particular optimization problem.

2. There is a single global optimum: the genotype s = 1L—namely, the string of all 1s—
with fitness f (s) = N + 1.

3. The proportion ρn of genotype space filled by strings of fitness n is given by:

ρn = 2−K (n−1)(1 − 2−K ), (1)

for n ≤ N . Thus, high-fitness strings are exponentially more rare than low-fitness strings.
4. For each block of K bits, the all-1s pattern is the one that confers increased fitness

on a string. Without loss of generality, any of the other 2K − 1 configurations could
have been chosen as the “correct” configuration, including different patterns for each of
the N blocks. Furthermore, since the evolutionary search here does not use crossover,
arbitrary permutations of the L bits in the fitness function definition leave the evolutionary
dynamics unchanged.

By implementing the architecture of neutral networks in this way, high-fitness neutral
networks are nested inside lower-fitness networks. Higher fitness strings are rarer since
they require more bits in the genotype to be set “correctly”. Each step upward in fitness
is associated with setting an additional K bits in the genotype correctly. One can only set
correct bit values in sets of K bits at a time, creating an aligned block, and in blocks from
left to right. A genotype’s fitness is proportional to the number of such aligned blocks. Since
the (n +1)st block only confers fitness when all n previous blocks are aligned as well, there
is contingency between blocks.

Using the same analysis as presented below one can analyze more complex cases in
which different blocks have different numbers of bits and networks are entangled in more
complicated ways than the simple nesting chosen here. However, the main conclusions of
our analysis can be more transparently presented using this relatively simple Royal Staircase
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class. The reader is referred to Crutchfield and van Nimwegen (1999) for an outline of the
application of our analysis to a broad class of more complex fitness functions.

3. The genetic algorithm

For our analysis of evolutionary search we have chosen a simplified form of a genetic
algorithm (GA) that does not include crossover and that uses fitness-proportionate selection.
The GA is defined by the following steps.

1. Generate a population of M bit-strings of length L = NK with uniform probability over
the space of L-bit strings.

2. Evaluate the fitness of all strings in the population.
3. Stop, noting the generation number topt, if a string with optimal fitness N + 1 occurs in

the population. Else, proceed.
4. Create a new population of M strings by selecting, with replacement and in proportion

to fitness, strings from the current population.
5. Mutate, i.e., change each bit in each string of the new population with probability q.
6. Go to step 2.

When the algorithm terminates there have been E = Mtopt fitness function evaluations.
Notice that this algorithm omits the often-used crossover operator. The main reason for

excluding crossover is that it greatly simplifies the analysis. However, with respect to epochal
evolution, the addition of crossover does not significantly alter or improve the evolutionary
search behavior. We will provide some arguments for this claim below. For a more detailed
discussion of crossover’s lack of effectiveness in improving in epochal evolutionary search,
the reader is referred to van Nimwegen and Crutchfield (2000).

Our GA effectively has two parameters: the mutation rate q and the population size M . A
given optimization problem is specified by the fitness function in terms of N and K . Stated
most prosaically, then, the central goal of the following analysis is to find those settings
of M and q that minimize the average number 〈E〉 of fitness function queries for given N
and K required to discover the global optimum genotype of fitness N + 1. Our approach
is to develop analytical expressions for E as a function of N , K , M , and q and then to
study the search-effort surface E(q, M) at fixed N and K . Before beginning the analysis,
however, it is helpful to develop an appreciation of the basic dynamical phenomenology of
evolutionary search on this class of fitness functions. Then we will be in a position to lay
out the evolutionary equations of motion and analyze them.

4. Observed population dynamics

The typical behavior of a population evolving under a fitness function that induces connected
neutral networks, such as defined above, alternates between long periods (epochs) of stasis
in the population’s average fitness and sudden increases (innovations) in the average fitness.
We now briefly recount the experimentally observed behavior of typical Royal Staircase
GA runs in which the parameters q and M are set close to their optimal setting. The reader
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Figure 1. Examples of the Royal Staircase GA population dynamics with different parameter settings. The four
plots show best fitness in the population (upper lines) and average fitness in the population (lower lines) as a
function of time, measured in generations. The fitness function and GA parameters are given in each plot. In each
case we have chosen q and M in the neighborhood of their optimal settings (see later) for each of the four values
of N and K .

is referred to van Nimwegen, Crutchfield, and Mitchell (1999) for a detailed discussion of
the other dynamical behaviors this type of GA exhibits over a range of different parameter
regimes.

Figure 1 illustrates the GA’s behavior at four different parameter settings. Each individual
figure plots the best fitness in the population (upper lines) and the average fitness 〈 f 〉
in the population (lower lines) as a function of the number of generations. Each plot is
produced from a single GA run. In all of these runs the average fitness 〈 f 〉 in the population
goes through stepwise changes early in the run, alternating epochs of stasis with sudden
innovations in fitness. Later in each run, especially for those in figure 1(b) and (d), 〈 f 〉 tends
to have higher fluctuations and the epochal nature of the dynamics becomes unclear.

In the GA runs, the population starts out with strings that only have relatively low fitness,
say fitness n. Selection and mutation then establish an equilibrium in the population until a
string aligns the nth block and descendants of this string with fitness n + 1 spread through
the population. A new equilibrium is then established until a string of fitness n + 2 is
discovered and so on, until finally a string of fitness N +1 is discovered. In the figure we let
the runs continue past the generation at which the global optimum was first discovered. One
observes that, except for the run in figure 1(a), the strings of fitness N + 1 do not manage
to stabilize themselves in the population.
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Notice that the behavior of the average fitness 〈 f 〉 roughly tracks the epochal behavior
of the best fitness in the population. Every time a newly discovered higher-fitness string has
spread through the population, 〈 f 〉 reaches a new, higher equilibrium value around which
it fluctuates. As a run progresses to higher epochs, 〈 f 〉 tends to have higher fluctuations
and the epochal nature of the dynamics is obscured. This is a result of the fact that for
the highest epochs the difference between 〈 f 〉 in consecutive epochs is smaller than the
average fitness fluctuations induced by the finite-population sampling; see van Nimwegen,
Crutchfield, and Mitchell (1999) for an analytical treatment of this particular phenomenon.

Notice, too, that often the best fitness shows a series of brief jumps to higher fitness
during an epoch. When this occurs, strings of higher fitness are discovered but, rather than
spreading through the population, are lost within a few generations.

For each of the four settings of N and K we have chosen values of q and M such that
the average total number 〈E〉 of fitness function evaluations to reach the global optimum
for the first time is minimal. Thus, the four plots illustrate the GA’s typical dynamics close
to optimal (q, M)-parameter settings.

Despite what appears at first blush to be relatively small variations in fitness function and
GA parameters, there is a large range, almost a factor of 10, in times to reach the global
optimum across the runs. One concludes that there can be a strong parameter dependence
in search times. It also turns out that the standard deviation σ of the mean total number
〈E〉 of fitness function evaluations is of the same order as 〈E〉. (See Table 1.) Thus, there
are large run-to-run variations in the time to reach the global optimum. This is true for all
parameter settings with which we experimented, of which only a few are reported here.

Having addressed the commonalities between runs, we now turn to additional features
that each illustrates. Figure 1(a) shows the results of a GA run with N = 8 blocks of K = 8
bits each, a mutation rate of q = 0.005, and a population size of M = 200. During the later
epochs, the best fitness in the population hops up and down several times before it finally
jumps up and the new more-fit strings stabilize in the population. In this particular run,
it took the GA approximately 3.4 × 105 fitness function evaluations (1700 generations) to
discover the global optimum for the first time. Over 500 runs, the GA takes on average
5.3 × 105 fitness function evaluations to reach the global optimum for these parameters.
The inherent large per-run variation means in this case that some runs take fewer than 105

fitness function evaluations and that others take more than 106. As our analysis will make
clear, these large run-to-run variations are endogenous to the GA dynamics and cannot be

Table 1. Mean 〈E〉 and standard deviation σ of the expected number of fitness function evaluations for the Royal
Staircase fitness functions and GA parameters shown in the runs of figure 1.

N K M q 〈E〉 σ

8 8 200 0.005 5.3 × 105 2.1 × 105

6 6 150 0.016 5.5 × 104 3.0 × 104

4 10 150 0.014 1.9 × 105 1.0 × 105

10 5 100 0.008 1.2 × 105 4.9 × 104

The estimates were made from 500 GA runs and so the standard
error in our estimates for 〈E〉 are the values of σ divided by

√
500.
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reduced by changes in the parameters q and M . In fact, the run-to-run variations are minimal
where the mean 〈E〉 itself is minimal.

Figure 1(b) plots a run with N = 6 blocks of length K = 6 bits, a mutation rate of
q = 0.016, and a population size of M = 150. The GA discovered the global optimum
after approximately 4.8 × 104 fitness function evaluations (325 generations). For these pa-
rameters, the GA uses approximately 5.5 × 104 fitness function evaluations on average
to reach the global fitness optimum. Notice that the global optimum is only consistently
present in the population between generations 530 and 570. After that, the global optimum
is lost again until after generation 800. As we will show, this is a typical feature of the GA’s
behavior for parameter settings close to those that give minimal 〈E〉. The global fitness
optimum often only occurs in relatively short bursts after which it is lost again from the
population. Notice also that there is only a small difference in 〈 f 〉 depending whether the
best fitness is either 6 or 7 (the optimum).

Figure 1(c) shows a run for a small number (N = 4) of large (K = 10) blocks. The
mutation rate is q = 0.014 and the population size is again M = 150. As in the three other
runs we see that 〈 f 〉 goes through epochs punctuated by rapid increases in 〈 f 〉. We also see
that the best fitness in the population typically jumps several times before the population
fixes on a higher-fitness string. The GA takes about 1.9 × 105 fitness function evaluations
on average to discover the global optimum for these parameter settings. In this run, the GA
first discovered the global optimum after 2.7 × 105 fitness function evaluations. Notice that
the optimum never stabilized in the population.

Finally, figure 1(d) shows a run with a large number (N = 10) of relatively small (K = 5)
blocks. The mutation rate is q = 0.008 and the population size is M = 100. Notice that in this
run, the best fitness in the population alternates several times between fitnesses 8–10 before
it reaches (fleetingly) the global fitness optimum of 11. Quickly after it has discovered the
global optimum, it disappears again and the best fitness in the population largely alternates
between 9 and 10 from then on. It is notable that this intermittent behavior of the best fitness
is barely discernible in the behavior of 〈 f 〉. It appears to be lost in the “noise” of the average
fitness fluctuations. The GA takes about 1.2 × 105 fitness function evaluations on average
at these parameter settings to reach the global optimum; while in this particular run the GA
took 1.6 × 105 fitness function evaluations (1640 generations) to briefly reach the optimum
for the first time.

5. Statistical dynamics of evolutionary search

In previous papers (van Nimwegen, Crutchfield, & Mitchell, 1997, 1999) we developed the
statistical dynamics of genetic algorithms to analyze the behavioral regimes of a GA search-
ing the Royal Road fitness functions, which are closely related to the Royal Staircase fitness
functions that we study here. The analysis here builds on those results and, additionally,
is a direct extension of the optimization analysis and calculations that we published pre-
viously (van Nimwegen & Crutchfield, 2000). We briefly review the essential points from
these previous papers. We refer the reader to van Nimwegen, Crutchfield, and Mitchell
(1999) for a detailed description of the similarities and differences of our theoretical ap-
proach with other theoretical approaches such as the work by Prügel-Bennett, Rattray, and
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Shapiro (Prügel-Bennett & Shapiro, 1994, 1997; Rattray & Shapiro, 1996), the diffusion
equation methods from mathematical population genetics developed by Kimura (Kimura,
1964, 1983), and the quasispecies theory of molecular evolution (Eigen, McCasKill, &
Schuster, 1989).

5.1. Macrostate space

Formally, the state of a population in an evolutionary search algorithm is only specified when
the frequency of occurrence of each of the 2L genotypes is given. Since 2L is typically very
large, the dimension of the corresponding microscopic state space is very large as well.
One immediate consequence is that the evolutionary dynamic, on this level, is given by
a stochastic (Markovian) operator of size (at least) O(2L × 2L). Generally, using such a
microscopic description makes analytical and quantitative predictions of the GA’s behavior
unwieldy. Moreover, since the practitioner is generally interested in the dynamics of some
more macroscopic statistics, such as best and average fitness, a microscopic description
is uninformative unless an appropriate projection onto the desired macroscopic statistic is
found.

With these difficulties in mind, we choose to describe the macroscopic state of the pop-
ulation by its fitness distribution, denoted by a vector �P = (P1, P2, . . . , PN+1), where the
components 0 ≤ Pf ≤ 1 are the proportions of individuals in the population with fitness
f = 1, 2, . . . , N + 1. We refer to �P as the phenotypic quasispecies, following its analog
in molecular evolution theory (Eigen, 1971; Eigen, McCaskill, & Schuster, 1989; Eigen &
Schuster, 1977). Since �P is a distribution, it is normalized:

N+1∑
f =1

Pf = 1. (2)

The average fitness 〈 f 〉 of the population is given by:

〈 f 〉 =
N+1∑
f =1

f Pf . (3)

5.2. The evolutionary dynamic

The fitness distribution �P does not uniquely specify the microscopic state of the population.
That is, there are many microstates (genotype distributions) with the same fitness distribu-
tion. An essential ingredient of the statistical dynamics approach is to assume a maximum
entropy distribution over microstates conditioned on the macroscopic fitness distribution.
Note that our approach shares a focus on fitness distributions and maximum entropy meth-
ods with that of Prügel-Bennett, Rattray, and Shapiro (Prügel-Bennett & Shapiro, 1994,
1997; Rattray & Shapiro, 1996). In our case, the maximum entropy assumption entails that,
given a fitness distribution �P(t) at generation t , each microscopic population state with this
fitness distribution is equally likely to occur.
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A few comments on this maximum entropy method are in order. For the maximum entropy
assumption to be useful it is not strictly necessary that the population takes on all genotype
distributions equally often over the ensemble of instances for which a given fitness distribu-
tion occurs. (In fact, it is not difficult to find counterexamples for which this is almost cer-
tainly false—and false for several reasons.) In order for the method to work we only require
that the dynamics on the level of the fitness distributions, as calculated using the maximum
entropy assumption, corresponds to the actual dynamics of the fitness distribution. That is, as
long as the deviations of the actual genotype distributions from the maximum entropy distri-
bution do not introduce a “bias” on the level of fitness distributions, the predictions will not
be affected. Deciding whether or not the maximum entropy assumption works follows from
comparing the theoretical predictions to data from simulations. In the case that the maxi-
mum entropy assumption does break down, it simply points out that additional macroscopic
variables are needed to describe the macroscopic dynamics in which we are interested. For
instance, in the following, ultimately we are only interested in the dynamics of the best
fitness in the population. However, taking the best fitness as the only variable describing the
population and then introducing the maximum entropy assumption leads to unacceptably
poor theoretical predictions. Rather we need to use the entire fitness distribution.

Given the maximum entropy assumption on the level of fitness distributions, we can
construct a generation operator G that acts on the current fitness distribution and gives
the expected fitness distribution of the population at the next time step. In the limit of
infinite populations, which is similar to the thermodynamic limit in statistical mechanics,
the fluctuations due to the finite size of the population are damped out, and this expected
distribution is always exactly realized at the next generation. That is, the operator G maps
the current fitness distribution �P(t) deterministically to the fitness distribution �P(t + 1) at
the next time step;

�P(t + 1) = G[ �P(t)].

Simulations indicate that for very large populations (M >∼ 2L ) the dynamics on the level
of fitness distributions is indeed deterministic and given by the above equation; thereby
justifying the maximum entropy assumption at least in this infinite-population limit.

The operator G consists of a selection operator S and a mutation operator M:

G = M · S.

The selection operator encodes the fitness-level effect of selection on the population; and
the mutation operator, the fitness-level effect of mutation. Appendices A and B review the
construction of these operators for our GA and the Royal Staircase fitness functions.

For now, we note that the infinite-population dynamics can be obtained by iteratively
applying the operator G to the initial fitness distribution �P(0). Thus, the solutions to the
macroscopic equations of motion, in the limit of infinite populations, are formally given by

�P(t) = G(t)[ �P(0)]. (4)
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Recalling Eq. (1), it is easy to see that the initial fitness distribution �P(0) is given by:

Pn(0) = 2−K (n−1)(1 − 2−K ), 1 ≤ n ≤ N ,

and

PN+1(0) = 2−K N .

As we showed previously (van Nimwegen, Crutchfield, & Mitchell, 1997, 1999), the equa-
tions of motion of Eq. (4) can be linearized in a straightforward manner by introducing a
linearized generator operator G̃. The t th iterate G(t) can then be directly obtained by solving
for the eigenvalues and eigenvectors of the linearized version G̃.

For large (M >∼ 2L ) and infinite populations the dynamics of the fitness distribution is
qualitatively very different from the behavior shown in figure 1: 〈 f 〉 increases smoothly
and monotonically to an asymptote over a small number of generations. That is, there are
no epochs. The reason is that for an infinite population, all genotypes are present in the
initial population. Instead of the evolutionary dynamics discovering fitter strings over time,
it essentially only expands the proportion of globally optimal strings already present in
the initial population at t = 0. In spite of the qualitatively different dynamics for large
populations, the (infinite population) operator G is the essential ingredient for describing
the finite-population dynamics with its epochal dynamics as well, as we will now discuss.

5.3. Finite-population sampling

There are two important differences between the finite- and infinite-population dynamics.
The first is that with finite populations the components Pn cannot take on continuous
values between 0 and 1. Since the number of individuals with fitness n in the population
is necessarily an integer, the values of Pn are quantized in multiples of 1/M . Thus, the
space of allowed finite-population fitness distributions turns into a regular lattice in N + 1
dimensions with a lattice spacing of 1/M within the simplex specified by the normalization
Eq. (2).

Second, due to the sampling of members in the finite population, the dynamics of the
fitness distribution is no longer deterministic. In general, we can only determine the con-
ditional probabilities Pr[ �Q | �P] that a given fitness distribution �P leads to another �Q in the
next generation. These probabilities Pr[ �Q | �P] are given by a multinomial distribution with
mean G[ �P]:

Pr[ �Q | �P] = M!
N+1∏
n=1

(Gn[ �P])mn

mn!
, (5)

where the components Qi are multiples of 1/M : Qi = mi/M , with integers 0 ≤ mi ≤ M .
Equation (5) can be most easily understood as follows. The population for the next

generation is created by selecting, copying, and mutating M times in the same way from
the current population �P . This implies that each of the M individuals in the next generation
has equal and independent probabilities qi to be of fitness i . These probabilities qi also
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give the expected proportions qi of individuals with fitness i in the next generation. The
actual proportions Qi of individuals with fitness i in the next generation are then given by
a multinomial sample of size M from the distribution of expected proportions qi . Since in
the limit M → ∞ of infinite populations we have that the expected proportions equal the
actual proportions, we necessarily have that qi = Gi [ �P]. In other words, the probabilities
Pr[ �Q | �P] are given by a multinomial sampling distribution of sample size M with mean
G[ �P]; just as Eq. (5) expresses. In mathematical population genetics, such multinomial
sampling Markov models are known as Wright-Fisher models (Hartl & Clark, 1989, pp.
66–70) and (Ewens, 1979).

Thus, for any finite-population fitness distribution �P the (infinite population) operator G
still gives the GA’s average dynamics over one time step. Note that the components Gi [ �P]
need not be multiples of 1/M . Therefore, the actual fitness distribution �Q at the next time
step is not G[ �P], but is instead one of the allowed lattice points in the finite-population state
space. Since the variance around the expected distribution G[ �P] is proportional to 1/M ,
�Q tends to be one of the lattice points close to G[ �P]. This finite-population dynamics is

illustrated in figure 2.

5.4. Epochal dynamics

We will now discuss how the epochal behavior of the dynamics for a finite population comes
about within the mathematical framework presented above.

For finite populations, the expected change 〈d �P〉 in the fitness distribution over one
generation is given by:

〈d �P〉 = G[ �P] − �P.

Assuming that some component 〈dPi 〉 and its variance are much smaller than 1/M , the
actual change in component Pi is likely to be dPi = 0 for a long succession of generations.
That is, if the size of the flow 〈dPi 〉 in some direction i is much smaller than the lattice

Figure 2. Illustration of the stochastic dynamics involved in going from one generation to the next with a finite
population. The arrow points from the current distribution �P to the expected next generation distribution G[ �P].
The large dots indicate points of the lattice of allowed finite-population fitness distributions. The columns above
these lattice points indicate the size of Pr[ �Q | �P]. The width of this distribution is inversely proportional to the
population size M . Note that the expected distribution G[ �P] (small dot) does not occur at a lattice point.
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spacing (1/M) for the finite population, we expect the fitness distribution to not change in
direction (fitness) i . In earlier work (van Nimwegen, Crutchfield, & Mitchell, 1997, 1999)
we showed that, from a mathematical point of view, this is the mechanism by which finite
populations cause epochal dynamics.

For the Royal Staircase fitness functions, we have that whenever fitness n is the highest
in the population, such that Pi = 0 for all i > n, the rate at which higher-fitness strings
are discovered, is very small. More precisely, for population sizes M that are not too large,
the expected number of higher-fitness individuals that are created per generation is much
smaller than 1, i.e. 〈dPi 〉 � 1/M for all i > n. A period of stasis (an evolutionary epoch)
thus corresponds to the time the population spends before it discovers a string of fitness
higher than n. More formally, each epoch n corresponds to the population being restricted
to a region in the n-dimensional lower-fitness subspace consisting of fitnesses 1 to n of
the macroscopic state space. Stasis occurs because the flow out of this subspace is much
smaller than the finite-population induced lattice spacing.

As the experimental runs of figure 1 illustrated, each epoch in the average fitness is
associated with a (typically) constant value of the best fitness in the population. More
detailed experiments reveal that not only is 〈 f 〉 constant on average during the epochs, in
fact the entire fitness distribution �P fluctuates in an approximately Gaussian way around
some constant fitness distribution �Pn during the epoch n—the generations when n is the
highest fitness in the population.

Each epoch fitness distribution �Pn is the unique fixed point of the operator G restricted
to the n-dimensional subspace of strings with 1 ≤ f ≤ n, as shown in van Nimwegen,
Crutchfield, and Mitchell (1999). That is, if Gn is the projection of the operator G onto the
n-dimensional subspace of fitnesses from 1 up to n, then we have:

Gn[ �Pn] = �Pn. (6)

Intuitively, the operator Gn gives the average change in the fitness distribution conditioned
on no strings of fitness higher than n being generated. The epoch distribution is then the
fixed point of this operator. The uniqueness and construction of these fixed points will be
discussed further below. By Eq. (3), then, the average fitness fn in epoch n is given by:

fn =
n∑

j=1

j Pn
j .

To summarize at this point, the statistical dynamics analysis is tantamount to the following
qualitative picture. The global dynamics can be viewed as an incremental discovery of
successively more (macroscopic) dimensions of the fitness distribution space. Initially, only
strings of low fitness are present in the initial population. The population stabilizes on the
epoch fitness distribution �Pn corresponding to the best fitness n in the initial population. The
fitness distribution fluctuates around the n-dimensional vector �Pn until a string of fitness
n + 1 is discovered and spreads through the population. The population then settles into the
(n+1)-dimensional fitness distribution �Pn+1 until a string of fitness n+2 is discovered, and
so on, until the global optimum at fitness N +1 is found. In this way, the global dynamics can
be seen as stochastically hopping between the different epoch distributions �Pn , unfolding



OPTIMIZING EPOCHAL EVOLUTIONARY SEARCH 91

a new macroscopic dimension of the fitness distribution space each time a higher-fitness
string is discovered.

Whenever mutation creates a string of fitness n+1, this string may either disappear before
it spreads, seen as the transient jumps in best fitness in figure 1, or it may spread, leading
the population to fitness distribution �Pn+1. We call the latter process an innovation. Through
an innovation, a new (macroscopic) dimension of fitness distribution space becomes stable.

Figure 1 also showed that it is possible for the population to fall from epoch n (say)
down to epoch n − 1. This happens when, due to fluctuations, all individuals of fitness n
are lost from the population. We refer to this as a destabilization of epoch n. Through a
destabilization, a dimension can, so to speak, collapse. For some parameter settings, such
as shown in figure 1(a) and (c), this is very rare. In these cases, the time for the GA to reach
the global optimum is mainly determined by the time it takes to discover strings of fitness
n + 1 in each epoch n. For other parameter settings, however, such as in figure 1(b) and (d),
the destabilizations play an important role in how the GA reaches the global optimum. In
these regimes, destabilization must be taken into account in calculating search times. This
is especially important in the current setting since, as we will show, the optimized GA often
operates in this type of marginally stable parameter regime where later epochs destabilize
quite easily.

6. Quasispecies distributions and epoch fitness levels

During epoch n the quasispecies fitness distribution �Pn is given by a fixed point of the
(projected) operator Gn . To obtain this fixed point we linearize the generation operator by
taking out the factor 〈 f 〉, thereby defining a new operator G̃n via:

Gn = 1

〈 f 〉 G̃n, (7)

where 〈 f 〉 is the average fitness of the fitness distribution that Gn acts upon; see Appendix
A. The operator G̃n is just an ordinary (linear) matrix operator and therefore, the fixed
point equation (6) simply becomes an eigenvector equation. Since all components of G̃n are
positive, this fixed point is unique, from the positive matrix theorem of Perron (Gantmacher,
1959). The quasispecies fitness distribution �Pn is given by the principal eigenvector of
the matrix G̃n (normalized in probability). From Eq. (7) it also follows that the principal
eigenvalue fn of G̃n equals the average fitness of the quasispecies distribution. In this way,
obtaining the quasispecies distribution �Pn reduces to calculating the principal eigenvector
of the matrix G̃n; see Appendix C.

The matrices G̃n are generally of modest size: i.e., their dimension is smaller than the
number of blocks N and substantially smaller than the dimension of genotype space. Due
to this we can easily obtain numerical solutions for the epoch fitnesses fn and the epoch
quasispecies distributions �Pn . For a clearer understanding of the functional dependence of
the epoch fitness distributions on the GA’s parameters, however, App. C recounts analytical
approximations to the epoch fitness levels fn and quasispecies distributions �Pn .
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The result is that the average fitness fn in epoch n is

fn = n(1 − q)(n−1)K (8)

The epoch quasispecies is given by:

Pn
i = (1 − λ)nλn−1−i

nλn−1−i − i

i−1∏
j=1

nλn− j − j

nλn−1− j − j
, (9)

where λ = (1 − q)K is the probability that a block will undergo no mutations. For the
following, we are actually interested in the most-fit quasispecies component Pn

n in epoch
n. For this component, Eq. (9) reduces to

Pn
n = λn−1

n−1∏
j=1

fn − f j

fn − λ f j
, (10)

where we have expressed the result in terms of the epoch fitness levels f j = jλ j−1.

7. Mutation rate optimization

In the previous sections we argued that the GA’s behavior can be viewed as stochastically
hopping from one epoch to the next—when the search discovers a string with increased
fitness that spreads in the population. Assuming that the total time to reach this global opti-
mum is dominated by the time the GA spends in the epochs, we developed (van Nimwegen
& Crutchfield, 2000) a way to tune the mutation rate q such that the time the GA spends in
an epoch is minimized. We briefly review these results here before moving on to the more
general theory that includes population-size effects and epoch destabilization.

To move from epoch n to epoch n + 1, a string of fitness n + 1 has to be discovered and
spread through the population. During epoch n, the population is in a metastable state where
it fluctuates around a constant fitness distribution �Pn . To a good approximation, we can
assume that in each generation there is an equal and independent probability that epoch n
will end by creating a fitness n +1 string that spreads through the population. Note that this
immediately implies that the distribution of epoch times is geometric for each individual
epoch.

The creation of a fitness n + 1 string is most likely to occur through a string of fitness
n mutating its nth block to the correct configuration of all 1s. Optimizing the mutation
rate now amounts to finding a balance between two opposing effects of varying mutation
rate. On the one hand, when the mutation rate is increased, the average number of muta-
tions in the unaligned blocks goes up, thereby increasing the probability of creating newly
aligned blocks. On the other hand, due to the increased number of deleterious mutations,
the equilibrium proportions Pn

n of individuals in the highest fitness class during each epoch
n decreases and so the number of individuals that are likely to discover a string of fitness
n + 1 decreases.

We previously (van Nimwegen & Crutchfield, 2000) derived an expression for the prob-
ability Cn+1 to create, over one generation in epoch n, a string of fitness n + 1 that will
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stabilize by spreading through the population. This is given by

Cn+1 = MPn
n Paπn(λ), (11)

where Pa = (1 − λ)/(2K − 1) is the probability of aligning a block (see Appendix B)
and πn(λ) is the probability that a string of fitness n + 1 will spread, as opposed to being
lost through a fluctuation or a deleterious mutation. This spreading probability πn can
be calculated using a diffusion-equation approximation similar to the ones developed in
population genetics by Kimura (1964). In van Nimwegen, Crutchfield, and Mitchell (1999)
we showed how to adapt this diffusion-equation method to the present type of problem.
We found that the spreading probability πn largely depends on the relative average fitness
difference of epoch n + 1 over epoch n. Denoting this difference as

γn = fn+1 − fn

fn
=

(
1 + 1

n

)
λ − 1, (12)

where we have used Eq. (8), one finds:

πn(λ) = 1 − (
1 − 1

M

)2Mγn+1

1 − (
1 − Pn+1

n+1

)2Mγn+1 . (13)

If Pn+1
n+1 � 1/M , this reduces to a population-size independent estimate of the spreading

probability

πn ≈ 1 − e−2γn . (14)

If one were to allow for changing mutation rates between epochs, one would minimize
the time spent in each epoch by maximizing Cn+1 of Eq. (11) using Eqs. (10), (12), and
(14). Note that Cn+1 depends on q only through λ. The optimal mutation rate in each epoch
n is determined by estimating the optimal value λo of λ for each n. We found that λo is well
approximated (van Nimwegen & Crutchfield, 2000) by

λo(n) ≈ 1 − 1

3n1.175
.

For large n this gives the optimal mutation rate as

qo ≈ 1

3K n1.175
, n � 1. (15)

Thus, the optimal mutation rate drops as a power-law in both n and K . This implies that if
one is allowed to adapt the mutation rate during the run, the mutation rate should decrease as
a GA run progresses so that the search will find the global optimum as quickly as possible.

We now turn to the simpler problem of optimizing mutation rate for the case of a constant
mutation rate throughout a GA run. In van Nimwegen and Crutchfield (2000) we used
Eq. (11) to estimate the total number E of fitness function evaluations the GA uses on
average before an optimal string of fitness N + 1 is found. As a first approximation, we
assumed that the GA visits all epochs, that the time spent in innovations between them
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is negligible, and that epochs are always stable. The epoch stability assumption entails
that it is assumed to be highly unlikely that strings with the current highest fitness will
disappear from the population through a fluctuation, once such strings have spread. These
assumptions appear to hold for the parameters of figure 1(a) and (c). They may hold even for
the parameters of figure 1(b), but they most likely do not for figure 1(d). For the parameters
of figure 1(d), we see that the later epochs (n = 9 and 10) easily destabilize a number of
times before the global optimum is found. Although we will develop a generalization that
addresses this more complicated behavior in the next sections, it is useful to work through
the optimization of mutation rate under the stability assumption first.

The average number Tn of generations that the population spends in epoch n is simply
1/Cn+1, the inverse of the probability that a string of fitness n + 1 will be discovered and
spread through the population. For a population of size M, the number of fitness function
evaluations per generation is M, so that the total (average) number En of fitness function
evaluations in epoch n is given by MTn . More explicitly, we have:

En = (
Pn

n Paπn
)−1

. (16)

That is, the total number of fitness function evaluations in each epoch is independent of
the population size M . This is due to two facts, given our approximations. First, the epoch
lengths, measured in generations, are inversely proportional to M , while the number of
fitness function evaluations per generation is M . Second, since for stable epochs Pn

n � 1/M ,
the probability πn is also independent of population size M ; recall Eq. (14).

The total number of fitness function evaluations E(λ) to reach the global optimum is
simply given by substituting into Eq. (16) our analytical expressions for Pn

n and πn , Eqs. (10)
and (14), respectively, and then summing En(λ) over all epochs n from 1 to N . We then
have:

E(λ) =
N∑

n=1

1

Paπn(λ)

n−1∏
i=1

nλn−i−1 − i

nλn−i − i
. (17)

Note that in the above equation we set πN = 1 by definition because the algorithm terminates
as soon as a string of fitness N +1 is found. That is, strings of fitness N +1 need not spread
through the population, they just need to be discovered once. The optimal mutation rate for
an entire run is then obtained by minimizing Eq. (17) with respect to λ.

Figure 3 shows for N = 4 blocks of length K = 10 bits the dependence of the average
total number E(q) of fitness function evaluations on the mutation rate q. The dashed line
is the theoretical prediction of Eq. (17); while the solid lines show the experimentally
estimated values of 〈E〉 for four different population sizes. Each experimental data point is
an estimate obtained from 250 GA runs. Figure 3 illustrates in a compact form our previous
findings (van Nimwegen & Crutchfield, 2000), which can be summarized as follows.

1. At fixed population size M , there is a smooth cost function E(q) as a function of mutation
rate q . It has a single and shallow minimum qo, which is accurately predicted by the
theory.

2. The curve E(q) is everywhere concave.
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Figure 3. Average total number 〈E〉 of fitness function evaluations as a function of mutation rate q, from the
theory (dashed), Eq. (17), and from experimental estimates (solid). The fitness function parameter settings are
N = 4 blocks of length K = 10 bits. The mutation rate runs from q = 0.001 to q = 0.028. Experimental data points
are estimates over 250 runs each. The experimental curves show four different population sizes; M = 80, M = 140,
M = 230, and M = 380.

3. The theory slightly underestimates the experimentally obtained 〈E〉.
4. The optimal mutation rate qo roughly occurs in the regime (between q = 0.01 and

q = 0.015) where the highest epochs are marginally stable; see figure 1.
5. For mutation rates lower than qo the experimentally estimated total number of fitness

function evaluations 〈E〉 grows steadily and becomes almost independent of the popu-
lation size M . (This is where the experimental curves in figure 3 overlap). For mutation
rates larger than qo the total number of fitness function evaluations does depend on M ,
which is not explained by the preceding theory.

6. There is a mutational error threshold in q that bounds the upper limit in q for which
the GA can discover the optimum at all. Above the threshold, which is population-size
independent, suboptimal strings of fitness N cannot stabilize in the population, even for
very large population sizes. This error threshold is also correctly predicted by the theory.
It occurs around qc = 0.028 for N = 4 and K = 10.

Before embarking on the population-size dependent analysis, it is useful to make a few
comments about the role of crossover if it had been included in our GA. As is explained
in more detail in van Nimwegen and Crutchfield (2000), during epoch n all individuals in
the population are relatively recent descendants from a string of fitness n. More precisely,
strings with fitness i < n, have on average less than 1 offspring with fitness i . Therefore,
lineages entirely consisting of suboptimal strings tend to be short lived. This, in turn, implies
that all individuals are relatively recent descendants of a fitness n string. This means that all
strings in the population share the genetic content of most of their blocks. That is, they differ
only by a relatively small number of mutations. In particular, all strings in the population
are unlikely to have their nth block aligned. This implies that it is almost impossible for
a crossover event to create a string of fitness n + 1. Such an event can only occur when
strings of fitness n are crossed over, the crossover point falls within the nth block, and
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the corresponding subblocks form a new aligned block. In general, the contribution of
such beneficial events is marginal, especially taking into account the deleterious effects
that crossover also produces, when high- and low-fitness parents combine to form two
low-fitness offspring. Thus, the role of crossover during epochal evolution is marginal.

One should note that these observations extend to fitness functions such as Royal Road
fitness functions—see the discussion in van Nimwegen, Crutchfield, and Mitchell 1999—
that are explicitly constructed such that crossover may recombine structurally different
genotypes of fitness n to create genotypes with fitness larger than n. Each epoch n is
founded by a single individual of fitness n. All individuals of fitness n that occur in the
population during epoch n are therefore descendants of a single genotype of fitness n. It
is thus very unlikely, in epochal evolution, that structurally different fitness-n individuals
occur side by side in the population. This in turn implies that “recombining building blocks”
(Holland, 1975) is unlikely to play a major role in epochal evolution.

8. Epoch destabilization: Population-size dependence

We now extend the above analysis to account for E’s dependence on population size. This
not only improves the parameter-optimization theory, but also leads us to consider a number
of issues and mechanisms that shed additional light on how GAs work near their optimal
parameter settings. Since it appears that optimal parameter settings often lead the GA to
run in a behavioral regime were the population dynamics is marginally stable in the higher
epochs, we consider how epoch destabilization dynamics affects the time to discover the
global optimum.

We saw in figure 1(b) and (d) that, around the optimal parameter settings, the best fitness
in the population can show intermittent behavior. Apparently, fluctuations sometimes cause
an epoch’s current best strings (of fitness n) in the population to disappear. The best fitness
then drops to n − 1. Often, strings of fitness n are rediscovered later on. What happens is
that for these higher epochs, the fluctuations in the proportion Pn of strings with fitness n
becomes comparable to the average Pn

n of this proportion. That is, a fluctuation may bring Pn

very close to 0, and so all strings of fitness n may be lost. As we will see, the probability of a
destabilization is sensitive to the population size M , introducing population-size dependence
in the average total number 〈E〉 of fitness function evaluations.

As we just noted, the theory for E(q) used in van Nimwegen and Crutchfield (2000)
assumed that destabilizations do not occur, leading to a population-size independent theory.
However, as is clear from figure 1(d), it is possible that epoch n destabilizes several times
to epoch n − 1 before the population moves to epoch n + 1, and this will considerably
alter E . For example, if during epoch n the population is 3 times as likely to destabilize to
epoch n − 1 compared to innovating to epoch n + 1, then we expect epoch n to destabilize
three times on average before moving to epoch n + 1. Assuming that epoch n − 1 is stable,
this means that epoch n has to be rediscovered 3 times on average before epoch n + 1 is
discovered. This will effectively increase the time spent in epoch n by 3 times the average
number of generations spent in epoch n − 1.

To make these ideas precise we introduce a Markov chain model to describe the “hopping”
up and down between the epochs. The Markov chain has N + 1 states, each representing
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an epoch. In every generation there are probabilities p+
n to innovate from epoch n to epoch

n + 1 and p−
n to destabilize, falling from epoch n to epoch n − 1. The globally optimum

state N + 1 is an absorbing state. Starting from epoch 1 we calculate the expected number
T of generations for the population to reach the absorbing state for the first time.

The innovation probabilities p+
n to move from epoch n to n +1 are just given by the Cn+1

of Eq. (11):

p+
n = Cn+1 = M

En
,

where En is given by the approximation of Eq. (16). Note that when MPn
n approaches 1 the

spreading probability πn , as given by Eq. (13), becomes population-size dependent as well,
and we use Eq. (13) rather than Eq. (14). To obtain the destabilization probabilities p−

n we
assume that in each generation the population has an equal and independent probability to
destabilize to epoch n − 1. This probability is given by the inverse of the average time until
a destabilization occurs.

To calculate the average time Dn that the population spends in epoch n before it desta-
bilizes we have to analyze the dynamics of fluctuations in the proportion Pn of individuals
with fitness n. This can be done most easily using a diffusion-equation approximation. (See
Kimura (1964) for an introduction to using diffusion equations in these settings). Below we
sketch this diffusion-equation analysis, which is described in more detail in van Nimwegen,
Crutchfield, and Mitchell (1999).

We introduce the deviation x(t) from the mean proportion Pn
n of individuals with fitness

n by defining Pn(t) = Pn
n + x(t). We then calculate the expected change 〈δx〉 = 〈x(t + 1)〉

− x(t) and the second moment 〈(δx)2〉 of the expected change in x . The dynamics of the
probability distribution Pr(x, t) that the deviation will be x at time t is then approximated
by the Fokker-Planck equation:

∂

∂t
Pr(x, t) = − ∂

∂x
〈δx〉Pr(x, t) + 1

2

∂2

∂x2
〈(δx)2〉Pr(x, t). (18)

Once we have expressions for 〈δx〉 and 〈(δx)2〉 we can use this diffusion equation to solve
for such statistics as the variance Var(Pn) of the proportion of highest fitness individuals
during epoch n and the average time Dn for Pn to reach values smaller than 1/M—the time
at which all strings of fitness n are lost. See, for instance, Gardiner (1985) for the details of
such calculations.

For small x , the values 〈(δx)2〉 can be approximated by the value of 〈(δx)2〉 when x is
zero. When x = 0, we have that Pn = Pn

n , and the variance in Pn over one generation is
simply given by the variance due to the multinomial sampling of Eq. (5):

〈(δx)2〉 = Pn
n

(
1 − Pn

n

)
M

.

This is the approximation we will use for 〈(δx)2〉 in Eq. (18).
The calculation of 〈δx〉 is somewhat more involved and will not be presented here in

detail because of space constraints. The reader is referred to van Nimwegen, Crutchfield,
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and Mitchell (1999) for the details of this calculation. In general we find the intuitive result
that the deviation x is expected to be scaled down by a constant factor each generation:

〈δx〉 = −µn x .

The scale factor µn is a function of the epoch distributions �Pi and epoch fitnesses fi . Said
simply, the fluctuations in Pn are the result of fluctuations in the directions of all lower lying
epochs �Pi with i < n. The fluctuations in the direction of epoch i are scaled down at an
average rate ( fn − fi )/ fn per generation. Thus, fluctuations in the direction of low epochs
are scaled down most rapidly. The quantity µn is then a weighted sum:

µn =
∑n−1

i=1 ( fn − fi )Bi

fn
∑n−1

i=1 Bi

,

where Bi is a measure of how much of the multinomial sampling fluctuations occur in the
direction of epoch i . The expected fluctuations in components i and j due to multinomial
sampling are given by

〈dPi dP j 〉 = Pn
i

(
δij − Pn

j

)
M

,

when x = 0. We calculate the weights Bi by calculating the overlap of these fluctuations
with the epoch distributions �Pi for each i < n. These can be calculated by introducing a
matrix R that contains the epoch distributions in its columns:

Rij = P j
i ,

The overlaps Bi are then calculated using the inverse of R:

Bi = 1

M

n−1∑
k,m=1

R−1
ik R−1

im Pn
k

(
δkm − �Pn

m

)
.

Generally, µn decreases monotonically as a function of n since fluctuations in the proportion
Pn

n of individuals in the highest-fitness class n decay more slowly for higher epochs.
Continuing at this level of summary, the variance Var(Pn) is simply given by Var(Pn) =

Pn
n (1 − Pn

n )/(Mµn), and the average time until destabilization is approximately given by

Dn = MPn
n

1 − Pn
n

+ π

2µn
erfi

[√
Mµn Pn

n

1 − Pn
n

]
erf

[√
Mµn(1 − Pn

n )

Pn
n

]
, (19)

where erf(x) is the error function and erfi(x) = erf(ix)/ i is the imaginary error function.
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Notice that the argument of erfi(x),
√

Mµn Pn
n /(1 − Pn

n ), is the ratio between the mean
proportion Pn

n and standard deviation of the number of individuals with fitness n. The
function erfi(x) is a very rapidly growing function of its argument: erfi(x) ≈ exp(x2)/x
for x larger than 1. Therefore,

√
Mµn Pn

n /(1 − Pn
n ) being either smaller (larger) than 1 is a

reasonable criterion for the instability (stability) of an epoch. When the standard deviation
of Pn is (much) smaller than the mean Pn

n , epochs are stable for a very long time; while
they become unstable very quickly as the ratio of the standard deviation and the mean
approaches 1.

The above formula Eq. (19) is analogous to error thresholds in the theory of molecular
evolution. Generally, error thresholds denote the boundary in parameter space between a
regime where a certain high fitness string, or an equivalence class of high-fitness strings,
is stable in the population and a regime where it is unstable. In the case of a single high-
fitness master sequence one speaks of a genotypic error threshold, see Alves and Fontanari
(1998), Eigen, McCaskill, and Schuster (1989), Nowak and Schuster (1989), Swetina and
Schuster (1982). In the case of an equivalence class of high-fitness strings, one speaks of
a phenotypic error threshold, see Huynen, Stadler, and Fontana (1996), Reidys, Forst, and
Schuster (2001).

A sharply defined error threshold generally only occurs in the limit of infinite populations
and infinite string length (Leuthäusser, 1987), but extensions to finite population cases have
been studied by Alves and Fontanari (1998), Nowak and Schuster (1989), and Reidys, Forst,
and Schuster (2001). In Reidys, Forst, and Schuster (2001), for example, the occurrence of
a finite-population phenotypic error threshold was defined by the equality of the standard
deviation and the mean of the number of individuals of the highest-fitness class. This
definition is in accord with Eq. (19), as we explained above.

The average time until destabilization is thus given by Dn of Eq. (19), and so the average
probability per generation for a destabilization to occur is simply its inverse:

p−
n = 1

Dn
.

Finally, note that the probability to remain in epoch n is 1 − p+
n − p−

n .
We now have expressions for all of the Markov chain’s transition probabilities. With

these it is straightforward to calculate the average number T of generations before the GA
discovers the global optimum for the first time. This is done by calculating the average time
for the Markov chain to reach its absorbing state, starting from epoch 1. Following, for
instance, Section 7.4 of Gardiner (1985) the result is

T =
N∑

n=1

φn

n∑
k=1

1

p+
k φk

, (20)

where φn is defined as:

φn =
n∏

k=2

p−
k

p+
k

, n ≥ 2,
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and

φ1 = 1.

Since Eq. (20) gives the average number T of generations, the average number of fitness
function evaluations E(q, M) is given by:

E(q, M) = MT

= EN + EN−1

(
1 + EN

MDN

)

+ EN−2

(
1 + EN−1

MDN−1

(
1 + EN

MDN

))
+ . . . , (21)

where the En are given by Eq. (16) and where the last equality is obtained by rewriting the
sums in Eq. (20). As epochs become arbitrarily stable (Dn → ∞), the terms with Dn in the
denominator go to zero, and Eq. (21) reduces to Eq. (17), as it should.

9. Theory versus experiment

We can now compare this population-size dependent approximation, Eq. (21), with the
experimentally measured dependence on M of the average total number 〈E〉 of fitness
function evaluations. Figure 4 shows the dependence of 〈E〉 on the population size M for
two different parameter settings of N and K and for a set of mutation rates q.

The upper figures, figure 4(a) and (c), give the dependence of the experimentally es-
timated 〈E〉 on the population size M . The lower figures, figure 4(b) and (d), give the
theoretical predictions from Eq. (21). The upper left figure, figure 4(a), shows 〈E〉 as
a function of M for N = 4 blocks of length K = 10 for four different mutation rates:
q ∈ {0.013, 0.015, 0.017, 0.019}. The population size ranges from M = 50 to M = 320.
The total number of fitness function evaluations on the vertical axis ranges from 〈E〉 = 0 to
〈E〉 = 15 × 105. Each data point was obtained as an average over 250 GA runs. Figure 4(b)
shows the theoretical predictions for the same parameter settings. Figure 4(c) gives the ex-
perimental estimates for N = 6 blocks of length K = 6, over the range M = 30 to M = 300,
for four mutation rates: q ∈ {0.018, 0.02, 0.022, 0.024}. The total number of fitness function
evaluations on the vertical axis range from 〈E〉 = 0 to 〈E〉 = 7 × 105. Figure 4(d) shows the
theoretical predictions for the same range of M and the same four mutation rates.

We see that as the population size becomes “too small” destabilizations make the total
number of fitness function evaluations increase rapidly. The higher the mutation rate, the
higher the population size at which the sharp increase in 〈E〉 occurs. These qualitative
effects are captured accurately by the theoretical predictions from Eq. (21). Although our
analysis involves several approximations (e.g. as in the calculations of Dn), the theory
does quantitatively capture the population-size dependence well, both with respect to the
predicted absolute number of fitness function evaluations and the shape of the curves as a
function of M for the different mutation rates. From figure 4(c) and (d) it seems that the
theory overestimates the growth of 〈E〉 for the larger mutation rates as the population size
decreases. Still, the theory correctly captures the sharp increase of 〈E〉 around a population
size of M = 50.
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Figure 4. Average total number 〈E〉 of fitness function evaluations as a function of the population size M for two
different fitness function parameters and four mutation rates each, both experimentally (figure (a) and (c), top row)
and theoretically (figure (b) and (d), bottom row). In each figure each solid line gives E(M) for a different mutation
rate. Each experimental data point is an average over 250 GA runs. Figures (a) and (b) have N = 4 blocks of length
K = 10. The upper figure (a) shows the experimentally estimated E(M) as a function of M for the mutation rates
q ∈ {0.013, 0.015, 0.017, 0.019}. The lower figure (b) shows the theoretical results, as given by Eq. (21), for the
same parameter settings. In both, the population size ranges from M = 50 to M = 320 on the horizontal axis.
Figures (c) and (d) have N = 6 blocks of length K = 6. Figure (c) shows the experimental averages and figure (d)
the theoretical predictions for the same parameter settings. The population sizes on the horizontal axis run from
M = 30 to M = 300. The mutation rates shown in (c) and (d) are q ∈ {0.018, 0.02, 0.022, 0.024}.

As the population size increases beyond approximately M = 200, we find experimentally
that the average total number of fitness function evaluations 〈E〉 starts rising very slowly
as a function of M . This effect is not captured by our analysis. It is also barely discernible
in figure 4(a) and (c). We believe that the slow increase of 〈E〉 for large population sizes
derives from two sources.

First, by the maximum entropy assumption, our theory assumes that all individuals in
the highest fitness class are genetically independent, apart from the sharing of their aligned
blocks. Under that assumption, the average number of fitness function evaluations to dis-
cover a string of fitness n + 1 in epoch n is independent of M . A population of size 2M is
assumed to take half as many generations to discover a higher-fitness string as a population
of size M . This is not true in general. The sampling during the selection process introduces
genetic correlations in the individuals of the highest fitness class. Due to these correlations,
the MPn

n strings of fitness n are not searching for a higher fitness string independently and
therefore the probability (per generation) to discover a higher-fitness string grows somewhat
slower than linearly with M . Since the number of fitness function evaluations does grow
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linearly with M , the correlation effect leads to a slow growth of 〈E〉 with M . Unfortunately,
this effect is very hard to address analytically and quantitatively.

The second reason for the increase of E with increasing population size comes from the
time the population spends in the short innovations between the different epochs. During
the innovation, the single mutant of fitness n + 1 amplifies in the population until its epoch
equilibrium value Pn+1

n+1 is reached. Up to now, we have neglected these innovation periods.
Generally, they only contribute marginally to E . We previously (van Nimwegen, Crutchfield,
& Mitchell, 1999) calculated the approximate number gn of generations that the population
spends in the innovation from epoch n to epoch n + 1 and found that:

gn = 2 + γn

γn
log [M],

where γn is the fitness differential given by Eq. (12). That is, the number of generations
taken is proportional to the logarithm of the population size and grows with decreasing
fitness differentials γn . The GA expends a total of

I = M log[M]
N−1∑
n=1

2 + γn

γn
, (22)

fitness function evaluations in the innovations. Notice that this number grows as M log[M].
This is the second source for the increase of E with M . Since the terms in the above sum
are generally much smaller than En , the contribution of I only leads to a slow increase.

10. Search-effort surface and generalized error thresholds

We summarize our theoretical and experimental findings for the entire search-effort surface
E(q, M) of the average total number of fitness function evaluations in figure 5.

The figure shows the average total number E(q, M) of fitness function evaluations for
N = 4 blocks of length K = 10 bits; the same fitness function as used in figures 1(c), 3
and 4(a), and (b). The top plot shows the theoretical predictions, which now include the
innovation-time correction from Eq. (22); the bottom, the experimental estimates. The

−→
Figure 5. Contour plots of the search-effort surface E(q, M) of the average total number of fitness function
evaluations for the theory (upper), Eqs. (21) and (22), and for experimental estimates (lower). The parameter
settings are N = 4 blocks of length K = 10 bits. The population size M runs from M = 1 to M = 380 on the
horizontal axis on the upper plot and from M = 20 to M = 380 on the lower. The mutation rate runs from q = 0.001
to q = 0.029 on the vertical. The contours are plotted over the range E(q, M) = 0 to E(q, M) = 2 × 106 with a
contour at each multiple of 105. The experimental surface was interpolated from 195 equally spaced data points,
13 increments of �M = 30 on the horizontal axis by 15 increments of �q = 0.002 on the vertical. The theoretical
surface was interpolated over a grid using �M = 1 and �q = 0.00025. The optimal theoretical parameter setting,
(qo, Mo) = (0.011, 60), and the estimated optimal experimental parameter setting, (qo, Mo) = (0.011, 140), are
marked in their respective plots with a dot.
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horizontal axis ranges from a population size of M = 1 (M = 20, experimental) to a popula-
tion size of M = 380 with steps of �M = 1 (�M = 30, experimental). The vertical axis runs
from a mutation rate of q = 0.001 to q = 0.029 with steps of �q = 0.00025 in the theoretical
plot and �q = 0.002 in the experimental. The experimental search-effort surface is thus an
interpolation between 195 data points on an equally spaced lattice of parameter settings.
Each experimental data point is an average over 250 GA runs. The contours range from
E(q, M) = 0 to E(q, M) = 2 × 106 with each contour representing a multiple of 105. Note
that the lowest values of E lie between 105 and 2 × 105. Lighter gray scale corresponds to
smaller values of E(q, M).

The first observations that can be made from figure 5 were already implied in the data from
figures 3 and 4. First, the theory correctly predicts the relatively large region in parameter
space where the GA searches most efficiently. Second, the theory predicts the location of the
optimal parameter settings, indicated by the dot in the upper plot of figure 5 approximately
correctly. The optimum occurs for somewhat higher population size in the experiments, as
indicated by the dot in the lower plot of figure 5. Due to the large variance in E from run
to run (recall Table 1) and the rather small differences in the experimental values of 〈E〉
near this regime, however, it is hard to infer from the experimental data exactly where the
optimal population size occurs. Third, the theory underestimates the absolute magnitude of
E(q, M) somewhat. Fourth, at small mutation rates the theory underestimates the increase
of E(q, M) for decreasing q (moving down vertically in figure 5). Apart from this, though,
the plots illustrate the general shape of the search-effort surface E(q, M) and indicate that
the theory accurately captures this shape.

There is a relatively large area of parameter space around the optimal setting (qo, Mo)

for which the GA runs efficiently. Moving away from this optimal setting horizontally
(changing M) increases E(q, M) only slowly at first. For decreasing M one reaches a
“wall” relatively quickly around M = 30. For population sizes lower than M = 30, the
higher epochs become so dynamically unstable that it is difficult for the population to reach
the global optimum string at all. In contrast, moving in the opposite direction, increasing
population size, E(q, M) increases slowly over a relatively large range of M . Thus, choosing
the population size too small is far more deleterious than setting it too large.

Moving away from the optimal setting vertically (changing q) the increase of E(q, M)

is also slow at first. Eventually, as the plots make clear, increasing q one reaches the same
“wall” as encountered in lowering M . This occurs at q ≈ 0.02 in figure 5. For larger mutation
rates the higher epochs become too unstable in this case as well, and the population is barely
able to reach the global optimum.

The wall in (q , M)-space is the two-dimensional analogue of a phenomenon known as
the error threshold in the theory of molecular evolution. As pointed out in Section 8, in
our case, error thresholds form the boundary between parameter regimes where epochs
are stable and unstable. Here, the error boundary delimits a regime in parameter space
where the optimum is discovered relatively quickly from a regime, in the black upper-left
corners of the plots, where the population essentially never finds the optimum. For too-high
mutation rates or too-low population sizes, selection is not strong enough to maintain high
fitness strings—in our case those close to the global optimum—in the population against
sampling fluctuations and deleterious mutations. Strings of fitness N will not stabilize in
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the population but will almost always be immediately lost, making the discovery of the
global optimum string of fitness N + 1 extremely unlikely.

Note that the error boundary rolls over with increasing M in the upper-left corner of
the plots. It bends all the way over to the right, eventually running horizontally, thereby
determining a population-size independent error threshold. For our parameter settings this
occurs around q ≈ 0.028. Thus, beyond a critical mutation rate of qc ≈ 0.028 the population
almost never discovers the global optimum, even for very large populations.

The value of this horizontal asymptote qc can be roughly approximated by calculating
for which mutation rate qc the spreading probability π(N − 1) goes to 0—i.e., find qc such
that fN ≈ fN−1. For those parameters, strings of fitness N will generally not spread in the
population and the population is thus under no selective pressure to move from epoch N −1
to epoch N . Using our analytic approximations, we find that the critical mutation rate qc is
simply given by:

qc = 1 − K

√
N − 1

N
.

For the parameters of figure 5 this gives qc = 0.0284. This asymptote is indicated there by
the horizontal line in the top plot.

Similarly, below a critical population size Mc, it is also practically impossible to reach the
global optimum, even for low mutation rates. This Mc can also be roughly approximated by
calculating the population size for which the sampling noise is equal to the fitness differential
between the last two epochs. Formally, this occurs when 1/

√
M becomes equal to γN−1.

We then find:

Mc =
(

N − 1

Nλ − N + 1

)2

.

For the parameters of figure 5 this gives Mc ≈ 27 around (the optimum) q = 0.011. This
threshold estimate is indicated by the vertical line in figure 5.

Further, notice that for small mutation rates, at the bottom of each plot in figure 5, the
contours run almost horizontally. That is, for small mutation rates relative to the optimum
mutation rate qo, the total number E(q, M) of fitness function evaluations is insensitive to
the population size M . Decreasing the mutation rate too far below the optimum rate increases
E(q, M) quite rapidly. According to our theoretical predictions it increases roughly as 1/q
with decreasing q . The experimental data indicate that this is a slight underestimation. In
fact, E(q, M) appears to increase as 1/qα where the exponent α lies somewhere between
1 and 2.

Globally, the theoretical analysis and empirical evidence indicate that the search-effort
surface E(q, M) is everywhere concave. That is, for any two points (q1, M1) and (q2, M2),
the straight line connecting these two points is everywhere above the surface E(q, M). We
believe that this is always the case for mutation-only genetic algorithms with a static fitness
function that has a unique global optimum. This feature is useful in the sense that a steepest
descent algorithm on the level of the GA parameters q and M will always lead to the unique
optimum (qo, Mo).
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Finally, it is important to emphasize once more that there are large run-to-run fluctuations
in the total number of fitness evaluations to reach the global optimum. (Recall Table 1).
Theoretically, each epoch has a geometrically distributed length since there is an equal and
independent innovation probability of leaving it at each generation. The standard deviation
of an exponential distribution is equal to its mean. Since the total time E(q, M) is dominated
by the last epochs, the total time E(q, M) has a standard deviation close to its mean.

One conclusion from this is that, if one is only going to use a GA for a few runs on a
specific problem, there is a large range in parameter space for which the GA’s performance
is statistically equivalent. In this sense, fluctuations lead to a large “sweet spot” of GA
parameters. On the other hand, these large fluctuations reflect the fact that individual GA
runs do not reliably discover the global optimum within a fixed number of fitness function
evaluations. Notice that this is not a feature of the parameter settings or the analysis that we
perform but a feature of the GA dynamics itself.

11. Conclusions

We derived explicit analytical approximations to the total number of fitness function eval-
uations that a GA takes on average to discover the global optimum as a function of both
mutation rate and population size. The class of fitness functions so analyzed describes a
general subbasin-portal architecture in genotype space. The GA’s dynamics on this class of
fitness functions consists of alternating periods of stasis (epochs) in the fitness distribution
of the population, with short bursts of change (innovations) to higher average fitness. During
the epochs the most-fit individuals in the population diffuse over neutral networks of iso-
fitness strings until a portal to a network of higher fitness is discovered. Then descendants
of this higher-fitness string spread through the population.

The time to discover these portals depends both on the fraction of the population that is
located on the highest-fitness neutral net in equilibrium and the speed at which these popu-
lation members diffuse over the network. Although increasing the mutation rate increases
the diffusion rate of individuals on the highest neutral network, it also increases the rate of
deleterious mutations that cause these members to “fall off” the highest-fitness network. The
mutation rate is optimized when these two effects are balanced so as to maximize the total
amount of explored volume on the neutral network per generation. The optimal mutation
rate, as given by Eq. (15), is dependent on the neutrality degree (the local branching rate)
of the highest-fitness network and on the fitnesses of the lower lying neutral networks onto
which the mutants are likely to fall.

With respect to optimizing population size, we found that the optimal population size
occurs when the highest epochs are just barely stable. That is, given the optimal mutation
rate, the population size should be tuned such that only a few individuals are located on
the highest-fitness neutral network. The population size should be large enough such that
it is relatively unlikely that all the individuals disappear through a deleterious fluctuation,
but not much larger than that. In particular, if the population is much larger, so that many
individuals are located on the highest-fitness network, then the sampling dynamics causes
these individuals to correlate genetically. Due to this genetic correlation, individuals on the
highest-fitness network do not independently explore the neutral network. This leads, in
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turn, to a deterioration of the search algorithm’s efficiency. Therefore, the population size
should be as low as possible without completely destabilizing the last epochs. Given this,
one cannot help but wonder how general the association of efficient search and marginal
stability is.

11.1. Genetic algorithms versus hill climbers

It would appear that the GA wastes computational resources when maintaining a population
quasispecies that contains many suboptimal fitness members; that is, those that are not likely
to discover higher-fitness strings. This is precisely the reason that the GA performs so much
more poorly than a simple hill climbing algorithm on this particular set of fitness functions,
as originally reported in Mitchell, Holland, and Forrest (1994b). To be more specific, let’s
compare the GA at its optimal parameter settings with a Random Mutation Hill Climber,
which performs a random bit flip at each time step and accepts this change when no lowering
of fitness occurs. When the fitness of the string is n, mutations in blocks 1 through n − 1
are always deleterious, and mutations in blocks n + 1 through N are always neutral. Only
1 in every N mutations occurs in block n. Roughly 2K mutations have to occur in a block
before it is aligned for the first time. Thus, aligning block n takes the random mutation
hill climber roughly N2K time steps on average, independent of n. In other words, the hill
climber spends N2K time steps on average in each “epoch”. Since N blocks have to be
aligned in total, the random mutation hill climber takes roughly N 22K time steps to reach
the global optimum.

In contrast, by numerically determining the optimal parameter settings from Eq. (21)
we find that at its optimal parameter settings, the GA takes approximately E ≈ 2.2N 3.12K

fitness function evaluations to reach the global optimum. That is, roughly a factor N more
than the random mutation hill climber. This factor N is the result of the many suboptimal
fitness individuals that are maintained in the population. The deleterious mutations together
with the nature of the selection mechanism drive up the fraction of lower-fitness individuals
in the quasispecies, and this fraction of the population plays no role in the search for
higher-fitness strings.

If we allowed ourselves to tune the selection strength, we could have tuned selection
so high that only the most-fit individuals would ever be selected. In this “infinite selec-
tion” limit, we would have only strings of fitness n being selected during epoch n. It is
easy to calculate the optimal parameter settings for this regime. With λ = (1 − q)K , we
have that the probability Pdisc for a fitness n string to turn into a fitness n + 1 string is
Pdisc ≈ λn−1(1 − λ)/2K . This probability is maximal for λ = (1 − 1/n). Using this as op-
timal parameter settings, the average number of fitness function evaluations during epoch
n becomes

En ≈ n2K

(
1 − 1

n

)1−n

.

For n not too small, the last factor is roughly equal to e. We can then sum over n from 1 to N
and have for the total time E ≈ eN (N + 1)2K /2. In short, in the limit of infinite selection
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strength, both hill climbing algorithms and the GA have a scaling of the total number of
fitness function evaluations E as O(N 22K ).

11.2. Coarse graining the fitness function

For the fitness functions we analyzed, setting the selection strength infinitely high thus turns
out to be the best strategy. Of course, this is largely the result of the fact that none of the fitness
functions in our set has local optima. However, it is a common belief that fitness functions
typical of combinatorial optimization problems possess many local optima. In general,
tuning the selection strength infinitely high causes the population to become “pinned” on
the tiniest of local peaks. Thus, this cannot be a good general strategy. With this in mind, let
us step back from our detailed analysis and consider the broader implications of our results.

We believe that the results point to an interesting interplay between neutrality, local
optima, and marginal stability—an interplay that is potentially quite general. Neutrality
refers to the phenomenon that, for any genotype, there are always some single-mutant
neighbors that have the same fitness. When neutrality is present, a population does not
become pinned to any particular point or island in genotype space, but instead has the
possibility of diffusing through genotype space. In the Royal Staircase functions used
here, this neutrality was explicitly built in from the start. Epochs corresponded to times
during which the population diffused over the current highest-fitness network in search of
a connection to higher-fitness networks.

We found that the GA searches most efficiently when population size and mutation
rate are set such that these epochs are marginally stable. That is, the GA dynamics is as
“stochastic” as possible without destabilizing the current and later epochs. Strings of the
current highest fitness are (only slightly) preferentially reproduced over strings with lower
fitness, and the population size is just large enough to protect these highest-fitness strings
from disappearing through deleterious sampling fluctuations. Thus, for fitness functions
consisting of interwoven neutral networks, our analysis shows that marginal stability of the
highest-fitness strings corresponds to optimal search.

The role of marginal stability in more general cases, involving fitness functions with
many local optima, can be best understood by perturbing away from our Royal Staircase
class. Assume, for instance, that we add small fitness fluctuations to the fitnesses of each
genotype. That is, a genotype that previously had fitness n, now receives fitness n +ε where
ε is some small (random) number. These fluctuations are likely to induce many local optima
in the fitness function. The random mutation hill climber will easily become pinned on this
type of “landscape”. However, the GA, in the regime of optimal parameter settings, will
hardly be affected in its search dynamics. The reason for this is that selection simply does
not “notice” these small fitness differences. In the optimal parameter regime, strings of
fitness n are barely distinguished from strings with fitness n − 1, let alone from strings of
fitness n + ε. That is, fitness differentials between strings have to be above some minimal
size to be “noticed” by the dynamics.

This intuitive idea, which is closely related to the nearly neutral theories of molecular
evolution (Ohta, 1973; Ohta & Gillespie, 1996), can be made more precise. Let us assume
that the current most-fit strings in the population have a fitness f and that strings with
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fitness f typically have d defining bits—i.e., these bits are deleterious when changed.
Under the assumption that mutations from low- to high-fitness strings are negligible, this
leads to an average fitness of 〈 f 〉 = f (1−q)d in the population. Assume that the population
discovers one or more strings of higher fitness f + δ f , which themselves have an additional
b defining bits. If strings of fitness f + δ f were to stabilize, the average fitness would
become 〈 f 〉 = ( f + δ f )(1 − q)d+b. However, such strings can only stabilize when the
relative difference between these two average fitnesses is larger than the finite-population
sampling fluctuations; and the latter are of order 1/

√
M . Thus, for the higher-fitness strings

to be noticed by the dynamics, the condition

δ f ≥ f

(1 − q)b

(
1√
M

+ 1 − (1 − q)b

)

must be met. Below this fitness differential, strings of fitness f + δ f are effectively neutral
with respect to strings with fitness f .

The net result is that the search parameters, such as q and M , determine a coarse graining
of fitness levels, where strings in the band of fitness between f and f + δ f are treated as
having equal fitness. This is important since it shows that even for fitness functions that do
not have explicit neutrality, neutrality may still be effectively induced by the dynamics.

By tuning the evolutionary parameters q and M one effectively coarse grains the fitness
“landscape”, as if one were squinting at it. What we found in the preceding analysis is that
for the Royal Staircase fitness functions, search was optimal when the staircase fitness steps
were just discernible in this sense. It seems intuitive then that fitness functions containing
many local optima, but that by definition have no neutrality, might still be searched efficiently
by a genetic algorithm provided that there exists a level of coarse graining which turns the
“rugged fitness landscape” into an architecture of interwoven neutral networks. These would
be fitness functions that, at the smallest scales, possess many local optima, but that at some
well chosen scale have their local optima hidden by the induced coarse graining. To put
it somewhat differently, a fitness function may be efficiently searched by a GA if there is
some scale of coarse graining at which higher-fitness strings “point the way” to strings of
even higher fitness.

With these observations in mind, our analysis suggests that the question of what fitness
functions can be efficiently searched by evolutionary methods translates into the question of
what fitness functions can be turned into neutral network architectures by a suitable coarse
graining.

Appendix A: Selection operator

Since the GA uses fitness-proportionate selection, the proportion Ps
i of strings with fitness

i after selection is proportional to i and to the fraction Pi of strings with fitness i before
selection; that is, Ps

i = ciPi . The constant c can be determined by demanding that the
distribution remains normalized. Since the average fitness 〈 f 〉 of the population is given by
Eq. (3), we have Ps

i = iPi/〈 f 〉. In this way, we define a (diagonal) operator S that acts on



110 E. VAN NIMWEGEN AND J.P. CRUTCHFIELD

a fitness distribution �P and produces the fitness distribution �Ps after selection by:

(S · �P)i =
N+1∑
j=1

δij j

〈 f 〉 Pj .

Notice that this operator is nonlinear since the average fitness 〈 f 〉 is a function of the
distribution �P on which the operator acts.

Appendix B: Mutation operator

The component Mij of the mutation operator gives the probability that a string of fitness j
is turned into a string with fitness i under mutation.

First, consider the components Mij with i < j . These strings are obtained if mutation
leaves the first i − 1 blocks of the string unaltered and disrupts the i th block in the string.
Multiplying the probabilities that the preceding i − 1 blocks remain aligned and that the i th
block becomes unaligned we have:

Mij = (1 − q)(i−1)K (1 − (1 − q)K ), i < j.

The diagonal components Mjj are obtained when mutation leaves the first j − 1 blocks
unaltered and does not mutate the j th block to become aligned. The maximum entropy
assumption says that the j th block is random and so the probability Pa that mutation will
change the unaligned j th block to an aligned block is given by:

Pa = 1 − (1 − q)K

2K − 1
.

This is the probability that at least one mutation will occur in the block times the probability
that the mutated block will be in the aligned configuration. Thus, the diagonal components
are given by:

Mjj = (1 − q)( j−1)K (1 − Pa).

Finally, we calculate the probabilities for increasing-fitness transitions Mij with i > j .
These transition probabilities depend on the states of the unaligned blocks j through i .
Under the maximum entropy assumption all these blocks are random. The j th block is
equally likely to be in any of 2K − 1 unaligned configurations. All succeeding blocks are
equally likely to be in any one of the 2K configurations, including the aligned one. In order
for a transition to occur from state j to i , all the first j − 1 aligned blocks have to remain
aligned, then the j th block has to become aligned through the mutation. The latter has
probability Pa . Furthermore, the following i − j − 1 blocks all have to be aligned. Finally,
the i th block has to be unaligned. Putting these together, we find that:

Mij = (1 − q)( j−1)K Pa

(
1

2K

)i− j−1(
1 − 1

2K

)
, i > j.
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The last factor does not appear for the special case of the global optimum, i = N + 1, since
there is no (N + 1)st block.

Appendix C: Epoch fitnesses and quasispecies

The generation operator G is given by the product of the mutation and selection operators
derived above; i.e. G = M ·S. The operators Gn are defined as the projection of the operator
G onto the first n dimensions of the fitness distribution space. Formally:

Gn
i [ �P] = Gi [ �P], i ≤ n,

and, of course, the components with i > n are zero.
The epoch quasispecies �Pn is a fixed point of the operator Gn . As in Section 6, we take out

the factor 〈 f 〉 to obtain the matrix G̃n . The epoch quasispecies is now simply the principal
eigenvector of the matrix G̃n and this can be easily obtained numerically.

However, in order to obtain analytically the form of the quasispecies distribution �Pn

during epoch n we approximate the matrix G̃n . As shown in Appendix B, the components
Mij (and so of G̃n) naturally fall into three categories. Those with i < j , those with i > j ,
and those on the diagonal i = j . Components with i > j involve at least one block becoming
aligned through mutation. These terms are generally much smaller than the terms that only
involve the destruction of aligned blocks or for which there is no change in the blocks.
We therefore approximate G̃n by neglecting terms proportional to the rate of aligned-block
creation—what was called Pa in Appendix B. Under this approximation for the components
of G̃n , we have:

G̃n
ij = j (1 − q)(i−1)K (1 − (1 − q)K ), i < j,

and

G̃n
jj = j (1 − q)( j−1)K .

The components with i > j are now all zero.
Note first that all components of G̃n only depend on q and K through λ ≡ (1 − q)K ,

the probability that an aligned block is not destroyed by mutation. Note further that in this
approximation G̃n is upper triangular. As is well known in matrix theory, the eigenvalues
of an upper triangular matrix are given by its diagonal components. Therefore, the average
fitness fn in epoch n, which is given by the largest eigenvalue, is equal to the largest diagonal
component G̃n . That is,

fn = n(1 − q)(n−1)K = nλn−1.

The principal eigenvector �Pn is the solution of the equation:

n∑
j=1

(
G̃n

ij − fnδij
)
Pn

j = 0.
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Since the components of G̃n depend on λ in such a simple way, we can analytically solve
for this eigenvector; finding that the quasispecies components are given by:

Pn
i = (1 − λ)nλn−1−i

nλn−1−i − i

i−1∏
j=1

nλn− j − j

nλn−1− j − j
.

For the component Pn
n this reduces to

Pn
n =

n−1∏
j=1

nλn− j − j

nλn−1− j − j
.

The above equation can be re-expressed in terms of the epoch fitness levels f j :

Pn
n = λn−1

n−1∏
j=1

fn − f j

fn − λ f j
.
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