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Consider the class of distributed database systems consisting of a set of nodes connected by a

high bandwidth network. Each node consists of a processor, a random access memory, and a

slower but much larger memory such as a disk. There is no shared memory among the nodes.

The data are horizontally partitioned often using a hash function. Such a description character-

izes many parallel or distributed database systems that have recently been proposed, both

commercial and academic. We study the optimization problem that arises when the query

processor must repartition the relations and intermediate results participating in a multijoin

query. Using estimates of the sizes of intermediate relations, we show (1) optimum solutions for

closed chain queries; (2) the NP-completeness of the optimization problem for star, tree, and

general graph queries; and (3) effective heuristics for these hard cases.

Our general approach and many of our results extend to other attribute partitioning schemes,

for example, sort-partitioning on attributes, and to partitioned object databases.
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1. INTRODUCTION

We consider the class of distributed database systems consisting of a collec-

tion of nodes (sites), each having a processor, local memory, and local disk.

The nodes communicate with one another across a high bandwidth (and high

latency) network. Each relation is horizontally partitioned to different nodes
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Fig. 1. Example of two partitioned relations.

by hashing: use a hash function h whose domain is the domain of some

attribute A of relation R and whose range is the number of processing nodes.

For each tuple t of R, we put t in processing node h( t.A). 1 When performing

joins, we use the same function for any pair of relations that could possibly be

joined together.

Example 1. Suppose we have a system composed of two nodes, node 1 and

node 2, and a hash function h(x) = ( x mod 2) + 1. Figure 1 shows two

relations that are partitioned on the join attribute emp #: R(S) is partitioned

into RI and Rz (Sl and Sz ), which are stored at node 1 and node 2,

respectively.

Such a loosely coupled hash-partitioned architecture characterizes many

parallel or distributed database systems that have recently been developed,

including commercially available ones such as the Teradata machine [33], as

well as research prototypes such as Bubba [91, Gamma [111, Grace [18], and

Sabre [34].

In this paper we are concerned with optimizing equijoin queries in such

systems. We restrict ourselves to queries that retrieve all fields of joined

relations. 2 For our purposes, we assume that relations are not replicated,

that is, each node holds a unique fragment for each relation. We also assume

that there is no answer site in the systems. Thus we mainly concentrate on

join processing, ignoring unioning results at the answer site.

For example, consider doing the join between R and S in Figure 1, based

on the condition R. emp # = S.emp #. Since both relations are partitioned on

emp #, no communication is required. On the other hand, if R is partitioned

on emp #, whereas S on age, each S tuple t needs to be sent to processing

‘Though one may partition on a set of attributes, for the purpose of this paper, we assume

partitioning on a single attribute only. Some partitioning schemes (see, eg., [181) also allow the

range to be k times the number of processing nodes, with each node having k buffers that can

receive data. In that case, h(t. A) designates a buffer as well as a node. The results in this paper

hold for that generalization,

2This restriction is made mainly for simplifying cost computation. It M not difficult, however, to

extend our techniques to handle queries whose outputs contain only certain fields of joined

relations
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Table I. Effect of Repartitioning on Join Performance

With Repartitioning Without

Join Size (seconds) (seconds)

10,000 with 1,000 35.4 180

100,000 with 10,000 2864 122.0

1,000,000 with 100,000 3,144,0 1,143.0

Source: DeWitt et al. [121

node h( t.emp # ). Such data transmission is called repartitioning. The over-

head caused by repartitioning is not negligible, If communication among

nodes is slow, then most time will be spent in routing data in a network when

repartitioning occur. Even if communication is fast, repartitioning may

reduce throughput because it entails more disk accesses.

To understand the importance of such overhead, let us review an experi-

ment by DeWitt et al. on the Teradata machine [12]. The machine consisted

of 20 nodes and 40 disk storage units, which were interconnected with a

12-Mbyte/second-bandwidth network. The data consisted of 200 byte tuples.

DeWitt et al. performed joins between two relations having different sizes

(10,000 tuples with 1,000 tuples, 100,000 tuples with 10,000 tuples, 1,000,000

tuples with 100,000 tuples, respectively) and recorded the time for executing

these joins with and without repartitionings. Table I shows the result of their

experiment. By comparing the values listed in the second and third columns

of the table, we see that there exist ratios of between 2 or 3 to 1 for the same

size joins. This indicates that when processing queries in a loosely coupled

multiprocessor system, the repartitioning cost can dominate the local process-

ing cost. The authors also measured the influence of the bandwidth of the

network. They observed that repartitioning a relation of 200 Mbyte took

2,000 seconds and used less than 1 percent of network capacity on the

average. This result reveals that repartitioning large relations is expensive

even when a network is fast.

But can we control the repartitionings necessary to process a query,

thereby minimizing response time in such an environment?

Example 2. Suppose we have a suppliers-and-parts database containing

relations SUP(S #, sname, city), PART(P #, pname, city), and SUP-PART(S #,

P #, city). Suppose that SUP is partitioned ons #, PART on p #, and SUP-PART

on

. -.
s #. Consider the following SQL query:

SELECT SUP.*, PART.*, SUP-PART. *

FROM SUP, PART, SUP-PART
WHERE SUP.s# = SUP-PART.s#

AND SUP-PART. P# = PART. P#

One way to process this query is to join SUP-PART with PART first, obtaining

a result Tl, and then join TI with SUP. Assume that joining two relations

takes 100 seconds and repartitioning a relation takes 100 seconds, as indi-

cated in Table I. The cost of this strategy would be (the cost of repartitioning

SUP-PART) + (the cost of joining SUP-PART with PART) + (the cost of
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repartitioning 7’1) + (the cost of joining 7’1 with SUP) = 100 + 100 + 100 +

100 = 400 seconds. On the other hand, joining SUP with SUP-PART first

requires no repartitioning. Then joining the intermediate result Tz with

PART requires repartitioning Tz. The cost of this strategy is thus 100 + 100

+ 100 = 300 seconds.

Clearly, the second strategy is better for processing the given query. This

example demonstrates that by properly arranging the order of joins among

relations, better performance can be achieved. Exactly how to do this to

minimize the cost for various important queries is the main concern of this

paper. In Section 2, we present an overview of previous work in the area.

Section 3 discusses basic assumptions and formally defines the optimization

problem. Section 4 then gives a dynamic programming algorithm to solve the

problem in the context of closed chain queries. Section 5 establishes the

NP-completeness of the problem for star, tree, and general graph queries.

Section 6 presents and analyzes heuristic procedures. In Section 7, we report

the results of computational experiments. Finally we conclude the paper with

some directions for future research in Section 8.

2. RELATED WORK

A considerable amount of work has been performed in the area of query

processing using partitioning schemes. Bernstein et al. [31, Stonebraker and

Neuhold [311, and Williams et al. [351 discussed horizontal partitioning

(fragmentation) in the context of distributed database management systems

(DDBMSS). In these systems, fragmentation is used as part of processing

strategy to increase parallelism, thus increasing throughput and saving

response time.

A common objective adopted by researchers in the area of DDBMS is to

minimize the communication cost incurred in processing a query. Segev [251,

for example, introduced the notion of remote semijoin, which can signifi-

cantly reduce the communication cost while incurring higher processing cost.

Fragments may also be replicated at different sites. Yu et al. [38] distin-

guished queries as locally processable and nonlocally processable. If a query

is locally processable, then the query can be processed without data transfer.

They proposed a linear time “fragment and replicate” algorithm for nonlo-

cally processable queries. Relevant work has also been discussed by Apers et

al. [1], Wong [36], Pramanik and Vineyard [22], Stamos and Young [30], and

others. What distinguishes us from these workers is that we seek the optimal

join order when processing queries, starting with partitioned data and ending

with partitioned data. Moreover, our main concern is on the environment

without data replication. We defer to Section 8 the possibility of replicating

data.

The idea of using hash partitioning for joins in multiprocessor systems

comes from [2]. This scheme is then adopted by Kitsuregawa et al. on the

Grace database machine project [181, though their emphasis is on the speed of

the sort engine rather than on the performance of the join algorithm,

Valduriez and Gardarin [34] described also various join and semijoin strate -
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gies, but hashing is applied only during the partition phase. 13eWitt and

Gerber [10] proposed two algorithms that exploit hashing thoroughly in both

partition and join phases. They applied the algorithms to a number of simple

join operations and concluded that both algorithms have satisfactory perfor-

mance.

In contrast to the previous work on hash partitioning, this paper examines

multijoin queries arising in systems that use hash methods to execute joins

and partition data. Thus, we are not concerned with the particular hash-join

strategy used, but rather with reducing the cost of a query involving many

joins by minimizing communication, 1/0, and processing time. In [281, we

developed a model for processing such queries without considering the size of

relations and intermediate results participating in a join. Here, we address

more general cases and explore strategies for taking size into account. We

present a polynomial time algorithm for optimizing queries whose closure is

a chain. We then show that finding optimal solutions to a simpler problem is

NP-complete for star and tree queries. In view of the NP-hardness for the

simpler problem, we consider various heuristics for the general problem. We

find that combining our chain algorithm with a heuristic related to Kruskal’s

spanning tree algorithm [201 achieves the best performance over a wide range

of query topologies and cost assumptions.

3. FORMULATION OF THE PROBLEM

3.1 Basic Assumptions

Our objective is to minimize response time when processing a query. We

approximate this goal by considering both processing and repartitioning

costs. Processing cost refers to the time spent for performing joins at each

node. Repartitioning cost refers to the time spent for reparti tionings, which is

determined by (1) the total amount of data transmitted in the network, and

(2) system parameters of a given architecture. System parameters include

the bandwidth of the network, as well as the speed of the 1/0 and processors.

To simplify the model developed in this paper, we make the following

assumptions.

Assumption 1. The processing speeds and 1/O speeds at different nodes

are the same. The bandwidth of the network is a constant.

Assumption 2. Each processing node uses the same hashing technique to

execute joins (e. g., DeWitt and Gerber’s).

Assumption 3. For each repartition (or partition) of a relation, the hash

function applied to its attribute evenly distributes tuples to each node.

Assumptions 1 and 2 deal with parameters related to a given system. The

two assumptions, together with Assumption 3, ensure that the processors

complete joins and transfer data at the same time. (Tlhe data could be

transferred either in pipelined fashion or one batch at a tinne.) Assumption 3

is reasonable when the attribute is a key and the hash function is “good,”

that is, it acts as a random function from the set of tuples to the set of n
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nodes such that each tuple has probability I/n of being sent to any node.

This has been established analytically in [291 where we show that the

probability that any of the n nodes has more than twice the average number

of tuples is very small, provided that the number of tuples >4 n log n. If the

attribute is not a key or the hash function is biased, our results should be

taken as heuristics.

3.2 Terminology

we assume the reader is familiar with the standard terms, attribute, tuple,

join, used in relational database systems. Define a relation schema R as a

finite set of attributes { Al, AZ, . . . . A.} [16]. Associated with each attribute

AZ, 1 s i s n, is a domain, denoted dom( A ,). A relation instance (or simply

reldiorz) R on schema R is a finite set of mappings { tl, t2, . , tm} from R to

the set of domains such that for each te R, t(Al) e dom(AZ), 1< i s n. Let B

be an attribute in R. We write t.B for t(B). We define R. B to be

{tl. B,t2. B,..., tn. B}.

An equijoin clause, or clause for short, is a pair of the form {R. B, S. C;

where B and C are attributes of R and S, respectively. This clause repre-

sents the join condition R. B = S. C. We are only interested in queries whose

qualification is a conjunction of such join conditions. Therefore, we define a

query as a set of clauses. 3 To represent a join that links different tuples of the

same relation, we consider the two arguments of the join to be different

relation instances for the purpose of the query. For example, to find the

salary of each employee’s current manager, given an EM P(name, sal, manager)

schema, we assume two employee relation instances EM PI and EMP2. These

would be represented as distinct relations in the query.

In order to find an optimal join strategy, it is helpful to consider the query

graph QGq = ( QV~, QEQ) for a query q, where

QV, = {relations referenced by the clauses in q}

QEq = {{R, S} fsome member of q references both R and S}

An example of a query graph is given in Figure 2a. Notice that a query

graph is never a Multigraph, though there may be many clauses associated

with each edge. we write clauses({ R, S}, q) to denote the set of equijoin

clauses referencing both R and S in q. We assume that the query graph of a

query is connected. Otherwise we consider the queries to correspond to the

connected components of the query graph; the resulting query would then be

a Cartesian product of these individual queries.

Observe that in processing a query graph, one can always execute a

spanning tree of it, treating all other clauses as selections. Furthermore, in

executing a spanning tree, we can take only one clause, for each edge, as the

~Because all attributes of joined relations appear in the output of a query, as marked in Section

1, we exclude the target list in defining a query,
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SELECT s.*, T.+, R.*

S, T, R

v

cl! C2
FROM

c1 = {S. C, T.I?}
s T

WHERE S.C= T.B
Ci = {S. G, T.Hj

C3 ~4
AND s.G= T.H C3 = {SF, R.E}

AND S.F=RE
R

Cb = {TB, R.D}

AND T. B=R. D

(a)

(1) Consider the query graph in Figure 2a just above. We can execute the graph by joining S

with T first, and then S2’ with R. (The juxtaposition of two relation names represents the

join result of the relations.)

(2) While joining S and T based on, say {S. C, T. B}, the selection condition S. G = T. El is also

processed.

(3) Then when joining ST with R based on, say {S. F, R. E}, the clause {T. B, R. D) enforces

another selection condition on tuples of ST and R (see Figure 2c).

(b)

T
c1

s T

C3

R

(c)

(4) Consider the query graph in Figure 2a. When joining S and T on the clause {S.C, 2’. B}, S

needs to be partitioned on C and T on B. Then in joining ST and R,

(i) if {S. F, R. E} is used as the join clause, ST needs to be repartitioned on F, such a

repartitioning causes part(T) to be empty;

(ii) if {7’. B, R. D. } is used as the join clause, since no repartitioning of ST is needed,

part(T) = {1?}.

Fig. 2. Example of query graph and its single-clause spanning tree.

join clause, applying the other clauses as selections (see Figure 2b). This

motivates us to introduce the following.

Definition 1. A spanning tree of a query graph QG~ = (QVq, QEq) is a

~aph QGT,,.q = (QvT,,.q, QETreeq ) with the following properties:

(i) QvT,..q = Qvq.

(ii) QET,..q ~ QEq and (QvTrceq, QET,,eq) is a tree.

(iii) For each e G QETr,eq, clauses(e, ~reeq) G clauses( e, q) and clauses(e,

Treeq) # ~.

If clauses(e, Treeq) is a singleton set for each e ~ QETre.q, QGT,.,q is called a

single-clause spanning tree (ss tree) of QGq.

Figure 2C shows an ss tree for the query graph in Figure 2a, which

corresponds to the execution sequence in Figure 2b.

3.3 Cost Model

We denote as part(R) the set of attributes on which a relation R is parti-

tioned sometime in the query execution. By the assumption stated in Section
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1, the initial value of part(R) is always a singleton set. However, when

repartitionings occur, part(R) may become empty. Figure 2d illustrates such

a case.

In order to evaluate a join strategy effectively, we need to have a measure

that reflects the cost. we begin with the definition of the cost for a clause.

Definition 2. Let I R I denote the number of tuples in relation R and I tRI

the width (in bytes) of a tuple in R. The cost of a clause {R. A, S. B} equals

PC+ RC; PC=ax(l Rlxlt~l +lSlxlts l)isthe processing cost, and

RC = P x Move is the repartitioning cost, where a, @ are nonzero constants

(e.g., in the Teradata case ~ = 2 a), and

P if (Aepart( R)) ~ (Bepart(S))

Moue =

1

lslxlt~l

/Rlx/t~l

if (A cpart(R)) ~ (B ~part(S))

if (A~part(R)) A (Be part(S))

II Rlxlt~l+l Sl xltsl otherwise.

Thus we are assuming that both PC and RC are linearly proportional to the

sizes of the relations. This assumption is consistent with the Teradata

benchmarks shown in Section 1 and the Grace measurements [18, 191; it is

also consistent with the cost equations derived elsewhere [271. Moue repre-

sents the amount of data transmitted in the network, where case 1 refers to

the situation in which neither R nor S will be repartitioned; cases 2 and 3

represent the situation where one of’ the relations will be repartitioned, and

case 4 represents the situation where both relations need to be repartitioned.

Also, we consider the measure of processing cost to be the number of bytes

moved from disks, as opposed to the number of page fetches from disks often

assumed in the literature [4, 17, 24], though the two measures differ by only

a constant additive factor. By including factors such as page size, 1/0 speed,

and bandwidth, one can convert the byte units to corresponding time unit.

Next, as noted in Section 1, in executing the same ss tree of a graph,

joining nodes in different order can yield different costs.4 We thus introduce

the foHowing.

Definition 3. A clause string, or string for short, associated with an ss

tree QGTr,P~ = (QvT,.eq, QETreeq ) is an ordered clause sequence

C,l CLZ. . C?,n

where QE~r,.q = {e, j 1 s i s n}, il, i2, . . . , in is a permutation of

1,2, . . . . n, and c,, ~clauses(eL,, Treeq).

The order of clauses in a string indicates the order in which nodes of the

associated tree are joined. There are n ! strings associated with QGT,e.~ if

there are n edges in it.

4Since the results obtained in this paper depend on the properties of graphs, we use the terms

node and relation interchangeably,
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El--@
Fig. 3. Join graph of query shown in Figure 2a.

@---@

We define the cost of a string as the sum of the costs of its component

clauses. However, since the cost of a clause is dependent on the sizes and

partition attributes of its two corresponding relations, which in turn are

influenced by the order in which relations of the query tree are joined, it is

required that, when calculating the cost of a string, one follow the exact order

specified in the string.

Finally, we define the cost of an ss tree QG~,,,~ as

Cost( QG~,,eq) = ,&& {COSt(cs) }

where CS is the set of all strings associated with QG~,,,~. A minimum cost

spanning tree of a query graph QG~ is an ss tree of QG~ such that no other ss

tree of QG~ has a smaller cost. For a given query graph, executing its

minimum cost spanning tree yields minimum response time.

3.4 Exploiting Redundant Clauses to Optimize Queries

Our goal is to minimize response time when processing a query. Thus far we

have concentrated on query graphs, rather than on queries. However, differ-

ent query graphs may refer to the same query. To have a clear view of this,

we need another graph model.

Define the join graph for a query q, denoted JGq, as a pair ( JV,, JE,),

where

JVq = {R. A I R. A is an attribute of R that occurs in some clause of q)

JEq= {{ R. A, S. B}l{R. A, S. B}issome clause in q}.

Intuitively a join graph represents an equivalence relation on attributes

from different relations. (This is because we consider only queries with

equijoin clauses. ) Each equivalence class of attributes is a connected compo-

nent of the graph. Figure 3 shows the join graph of the query in Figure 2a.

We say two queries are equivalent if their join graphs have the same

connectivity y. For any state of a database, equivalent queries give the same

result. A clause c of a query q is redundant if c is an edge in a cycle of JGq.

The closure of a query q is an equivalent query, denoted q+, to which one

cannot add more redundant clauses. Figure 4 illustrates the above concepts.

A query is a chain query (star query, tree query, respectively) if it is

equivalent to some query whose query graph is a chain (star, tree,

ACM Transactions on Database Systems, Vol 16, NO 2, June 1991
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(1) Consider the query q = {{ R. A,’l’ B}, {2’ B,S C}, {R. A,S C}, {T. B, U. D}}

(2) q’s Jom graph

(3) q’ = {{R A, T.B}, {7’ B,S C}, {T, B,U D}} is equivalent to q,

(4) { It, A,S. C} is redundant,

(5) q+= {{ R, A, T. B}, {T, B, S. C}, {R A,S C}, {T, B, U, D}, {R A, U. D},

Fig. 4, Join graph representation of a query and its closure

{S C, U. D}}

(1) Consider the query q and Its closure (expressed in terms of them query graphs):

QGV:
c1 = {R. A,S. B}

Cz = {S B,T D}

‘G”+:T
(2) Assume that all relations and intermediate results

part(R) = A, part(S) = C, part( ?’) = D, and part(U) =

C3= {SC, T E}

Cj = {T. E,UF}

C5 = {R A,T. Dj

CG= {S. C, U.F]

have the same size, K. Moreover,

F

(3) lf we only co&ider QG,, we get the best .&-mgs (e,g., {R. A,S B}{S. B, T. D}{7’ E, U. F})

with cost 10K.

(4) If we consider the redundant clauses In QG, +, we can get the string

{R A, T. D}{ T. E, S. C}{ T.E, U F} with cost SK.

Fig. 5. Example showing the need to compute the query closure

respectively). The importance of these queries and their processing in dis-

tributed database systems have been discussed extensively in the literature

[5-7, 16,371.

In order to minimize costs when processing a query, one might conjecture

that it is enough to look at the spanning trees of its query graph. But this is

wrong. Figure 5 illustrates such a case. 5 This example highlights an impor-

tant idea: redundant clauses may lead to cheaper strings (and ss trees). It

also suggests that when processing a query, we should begin with the closure

of the query.

5For concreteness, in thm and subsequent examples, we set the constants a and ~ in the cost

model (cf. Defimtion 2) to 1 and 2, respectively (two values that are consistent with the Teradata

benchmark result)
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Computing closures may sometimes introduce selfiloops (i.e., edges from

nodes to themselves) in the query graph. For example, suppose a given query

q has clauses {R. A, S. B}, {S. B, T. C}, and {T. C, R. D}. Then QG~+ will

contain { R. A, R. D}, an edge from R to R. In general, one can eliminate a

loop {R. X, R.Y) by replacing either R.X by R.Y or R.Y by R.X in all

clauses of the query. The choice is arbitrary unless one of them, say R. Y, is

the initial partition attribute of R, in which case we replace R. X by R. Y.

{R. X, R. Y} will then be removed from the query graph and used as a

selection condition. Eliminating self-loops is useful, since by renaming identi -

cal attributes we may reduce costs. Henceforth, we restrict our attention to

loop-free query graphs.

Based on the above formulation, the problem of minimizing response time

(MRP) becomes

Given a query q,

Find (1) QG~+; (2) a minimum cost spanning tree :?- of QGq+ and the clause

string es that yields ~–’s cost.

In the following sections, the problem is addressed for chain, star, tree, and

general graph queries. It is important to note that when processing these

queries, once the spanning tree .7 and associated string cs are found, we can

process them by executing Y- based on the clauses and join order specified

in cs.

4. CLOSED CHAIN QUERIES

As shown in Figure 5, the closure of a chain in the query graph does not

necessarily remain a chain. If it is not a chain, it will contain a cycle.6 In this

section, we focus on queries q whose QG~+ is a chain. (Such a class of

queries are called closed chain queries.) More general queries are treated in

the next section.

A dynamic programming technique is used to solve the MRP problem for

closed chain queries. The dynamic programming algorithm computes the best

order of joins. The algorithm, in its style, is similar to that proposed indepen-

dently by Sun et al. [321 for optimizing chain queries in object-oriented

database systems.

The following notation is needed to describe our algorithm. For 1< i <

jsn,

(1) cs(i, j): a minimum cost string associated with the chain segment

R,, R ~+1,...> R,;

(2) Cost(i, j): the cost of cs(i, j);

(3) R,J: the intermediate relation obtained by joining the relations

R,, R ,+ ~, . . . . R, based on the clauses and join order specified in CS(i, j).

In general, when joining any two (possibly intermediate) relations, say R,p

and Rp ~~~ for some p, i s p <j, among the clauses between the two

6T0 see this, notice that connecting two nonadjacent nodes on a single path results in a node

becoming a descendant of the two nodes.
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relations, we want to choose a pair with the lowest cost as the join clause.

Observe that the processing cost depends solely on the sum of the sizes of the

two relations, and hence is the same for all these clauses. We thus choose an

attribute, if any, on which no repartitioning is needed, thereby minimizing

the communication cost.

After joining the two relations on a clause { RP. X, RP+ ~. Y}, the cardinal-

ity of the new intermediate relation R,~ is I R ,P I x I RP+ ~j I x a, where a is

the selectivity factor between R ,P and Rp +~1,7and the width of tuples in R,]

is I t~ZPl + I ‘RP+lI 1.8 Algorithm CHAIN summarizes the procedure.

Algorithm CHAIN

1. (Initialization) For 1 s i s n, cs(i, i) = null, Cost(i, i) = O, R,, = R,, part(R) is

the attribute that R is initially partitioned on;

Z. fork= lton–ldo

3. fori=lton–kdo

4. j=i+k;

5. forp=itoj–ldo

6. choose clause { Rp. X, Rp+ ~.Y] such that

Cost({RP. X, RP+l. y}) = min.,cl~u,esf{~,. ~P+,}, q]{cost(c)};

7’. concatenate CS(Z, p), cs(p + 1, J“), { Rp. X, Rp+l. Y} to form a string CS;

set Cost(cs) = Cost(i, p) + Cost(p + 1, j) + Cost({RP. X, RP+I. Y});

put cs in set( i, j);

end for

8. construct CS(i, J“) where C08t( i, j) = min .,=,et(,,,,{cost( es)};

compute the size of R ,J as described above;

end for

end for

It should be noted that CS(l, n) is not unique if all the clauses (strings) with

the same minimum cost are selected at steps 6 and 8.

To show that the algorithm solves the MRP problem for closed chain

queries, it suffices to prove the following.

THEOREM 1. Given a chain segment with relations R,, R,+ ~, . . . . R], algo -

rith m CHAIN finds a minimum cost string of the segment.

PROOF. The proof is by induction on j – i, the length of the segment. The

base case (j – i = 1) is straightforward. Assume the theorem holds for any

chain with length less than or equal to k – 1. Let 3s( i, j) be a string of the

segment with the actual minimum cost, where j – i = k. It will be proved

that Cost(i5s( i, j)) = Cost( i, j). Note that 5s( i, j) is not necessarily equal to

71t may happen that, when joining two (intermediate) relations, there exist clauses whose

selectivities differ from that of the chosen join clause. As an example, consider the optimal string

{R. A, 7’. D} { 2’. E, S. C} { 2’. E, U. F} m Figure 5. When joining RT with S, the selectivity of the

clause {R. A, S. B} may differ from that of { T’. E, S. C}. For simplicity, we define the selectivity

factor between two (intermediate) relations R and S as the fract]on of tuple pairs from R and S

satisfying all clauses between them. Note that, under this definition, the cardinality of a join

result is independent of which clause M used as the jom clause.

‘Strictly speaking, the width should be I tR, <,I + I tRP+ ~1 I – I X I —it is sufficient to retain one

join attribute m the resulting relation because equijoins are involved For exposition purpose, we

omit the last term and include It only in the simulation study (Section 7),

ACM TransactIons on Database Systems, Vol. 16, No 2, June 1991



Optimizmg Equljoin Queries . 291

cl = {R1. A, R2. B}

Cz = {R2. C,R3 D}

C8 = {R2. E, R3. F}

cd = {Rz. G, Rd. H)

Fig. 6. Query graph for closed chain query example.

CS(i, j), the minimum cost string obtained by algorithm CHAIN for this

segment.

Assume that the last clause joined in Es(i, j) is { Rp. U, Rp+ ~.V }. Let

:s( i, p) be the string obtained by concatenating the clauses from Es( i, j) that

are on the edges between R, and Rp, and Es( p + 1, j) be the string formed

by concatenating the remaining clauses except { Rp. U, Rp+ ~.V }, with the

constraint that the order of clauses in the two strings obeys that in Fs( i, j).

By induction hypothesis, Cost(Es(i, p)) > Cost(i, p) and Cost(&(p + 1, j)) =

Cost(p + l,j).

Now, Cost(&(i, j)) = Cost(Es(i, p)) + Cost(&( p + 1,j))+ Cost({ R,. U,

R ~+l. V}) z Cost(i, p) + Cost(p + l,j) + Cost({RP. U, RP+I. V}) > Cost(Z, j)

(steps 6 and 8). Since Cost(&( i, j)) is the known minimum, we have

Cost(3s(i, j)) = Cost(i, j). El

The following shows the time complexity of the algorithm.

THEOREM 2. Algorithm CHAIN runs in 0(n3 + n21) time, or 0(n3) when

n is greater than 1, where n is the number of nodes in a closed chain and 1 is

the maximum number of clauses on an edge.

PROOF. Consider the following two cases. When k = 1, we are joining two

relations rather than intermediate results. Thus in order to find the lowest

cost clause, we need to examine all clauses between the two relations,

checking whether their component attributes are the same as the initial

partition attributes of the two relations. This requires 0( nl) time.

When k >1, in joining R,p and Rp+l~ for some p, i s p <j, we need to

examine all clauses between them only when i = p but p + 1 < j (or i < p

but p + 1 = j), because in such situations we are joining a relation with an

intermediate result, and we need to check whether any attribute matches the

initial partition attribute of the relation. In the other situations, in which we

are joining two intermediate relations, we can arbitrarily choose a clause,

since a closed chain does not allow the same attribute to occur on distinct

edges (because then the closure would not be a chain). Therefore, both

intermediate relations need to be repartitioned anyway. Thus, this requires

0(n2 + nl) time.

The value of k ranges from 1 to n. Hence, there are 0( n3 + n21) operations

to be performed in total. ❑

Example 3. Consider the query graph in Figure 6. Both the initial data

and results obtained by applying algorithm CHAIN to this graph are shown
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Table 11. Data for the Closed Chain Query Example

L 1 2 3 4

Cardinality of Relation

IRII 30 10 10 20

Initial Partition Attribute

part( R, ) u c D v

Tuple Size

I ‘R, I 3 2 1 4

Selectivity Factor

Results

.i cost(i, J)

1

2

3

1

2

1

2

3

4

3

4

4

330

30

270

390

360

1470

cs(2, j) IR,,I I ‘R,, I

c1 60 5

C2 10 3

C4 40 5
q c1 60 6

C2c~ 40 7

C2C4c1 240 10

‘a, ~ is the selectivity factor between R, and R,

in Table II. Thus the minimum cost required to process the query is 1470 and

the corresponding string is {R2. C, Rz. D}{ R~. G, R4. H}{ Rg. B, RI, A}

5. MORE GENERAL QUERIES

Solving the MRP problem for a complex query whose graph has multiple

edges, with each edge being associated with multiple clauses, is NP-complete.

The difficulty stems from simultaneous choices among multiple clauses for

multiple edges. In this section, we address the time complexity of the MRP

problem for such complex queries. In particular, we focus on star queries, a

particularly simple form of tree queries.

THEOREM 3. Given a star query q without redundant clauses, finding a

minimum cost spanning tree from QG~ is NP-complete.

PROOF. The proof that this problem can be solved by a nondeterministic

algorithm in polynomial time is straightforward: given a target cost, just

guess a single-clause spanning tree and see whether its cost is less than the

target cost. To show that the problem is NP-hard, we consider the following

easier case. The size of each relation in QG~ is the same, and the result of

each join is as large as the relations participating in the join. Under these

restrictions, minimizing response time is equivalent to minimizing the num-

ber of repartitionings.
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We therefore modify the cost of an ss tree QG~,,,~ = (QV~,,e~, QE~rC,q) to be

cost(Q%e,q) = ~e~~,,,e,nodecost( R)

where the nodecost of a relation is the number of nonpartitioning attributes

in clauses touching that relation.

Intuitively this cost reflects the smallest number of repartitionings that

the execution of an ss tree requires. To show this, consider some node R in

QGTreeq Since QG~r~e~ is a single-clause spanning tree, if R. A appears in a

clause, then R or an intermediate result containing R will have to be

partitioned on A at some point in the query execution. If A is the partition

attribute of R, then R may not have to be repartitioned to allow the joins

associated with R. A to occur. Thus, the nodecost of R is in fact the

minimum number of times R will have to be repartitioned during the

execution of the query. The same holds for any other relation in the tree.g So

the number of repartitioning must be at least the sum of these nodecosts.

We show that the special case is NP-hard by transforming the following

hitting set problem [14] to it.

Hitting Set. Given a collection T of subsets of a finite set S and a positive

integer K, decide whether there is a subset S’ of S with IIS II s K such that

S’ contains at least one element from each subset in z’.

We construct a query graph QG by the following steps:

(1) For each subset CL e 6, create a node R,. Create an additional distin-

guished node R.

(2) If C, contains members B,l, B,z, . . . . B,k,, associate the edge {R, R,}

with the clauses {R. B,l, RZ. B,l}, {R. B,Z, RZ. B,Z},. . .,{ R. BZk,, R,. BlkL}.

See Figure 7 for an example of the above construction, where II w II = m.

Assume that none of the B,J are partition attributes. It is easy to verify that

the resulting graph has the following properties.

(a) All clauses between R and each R, are of the form {R. X, R,. X} for

some attribute X.

(b) None of the clauses are redundant.

(c) Each R, has a nodecost of one in any ss tree of QG.

Consider QG as the query graph of a certain star query q. Let us suppose

that there is a single-clause spanning tree of QGq with cost II t II + K. It is

then easily seen that there is a hitting set of %’ with K elements (by property

(c) above and the fact that R has a nodecost of K). Conversely if ‘f’ has a

‘One might think that repartitioning intermediate relations might achieve two repartitionings

at the cost of one. For example, if the A and B attributes are equal in some intermediate

relation created by the join R. A = S. 1?, any repartitioning on A would also cause a repartition-

ing of B. This is true but irrelevant, since immediately after the join corresponding to R. A =

S B, the intermediate relation was already partitioned on those attributes.
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CII, . .,clk L ) Crnkm

c~l,. , “2k2 rr-ll>. ,,cm-lk,,z .,

Flg 7. Transformmg i = {CI, C2, ,Cm}, where CL = {B,l, B,z, . ., 11, ~,}, 1< i s m, into

QG. R is a distinguished relation; each R, corresponds to C,; each clause c,~ corresponds to the

jom condition R,. BL, = R. B,~, 1 s j s k,, that is, c,, = {R, B,,, R. B,,}, 1 <j <k,, 1<, s m

hitting set H with K elements, we can construct a single-clause spanning

tree of QGq by associating one clause {R. X, R,. X } with each edge where

X G H f’ C,. (Note that if H includes more than one element from a subset

C,, we arbitrarily choose one element as the attribute in the corresponding

clause. ) The cost of this tree is at most II %’ II + K. Thus, the special case is

NP-hard. It follows that our problem is also NP-hard. ❑

The above theorem says that it is already hard when only considering the

query, rather than its closure. The next theorem shows that the same result

holds for the query’s closure.

THEOREM 4. Problem ( MRP) is NP-complete for star queries.

PROOF. We adopt the cost formula in Theorem 3 and again transform the

hitting set problem to the current problem; that is, we must show that there

is an ss tree of QGq+ with cost II % II + K iff there is a hitting set with K

elements.

(1) If. This follows from the proof in Theorem 3 since there would then be

an ss tree of QGq with cost II ‘8 II + K. That tree would also be an ss tree of

QG,+.

(2) (lnly if. Let Y- be an ss tree of QGq+ with cost II K II + K. We construct

an ss tree of QGq with the same or less cost. The proof in Theorem 3 then

implies the existence of a hitting set of %’ with at most K elements.

Observe that the cost of any ss tree in QG,+ or QGq is the sum of the

number of distinct attributes touching each node. Let us make the dist in -

guished relation R be the root of the given ss tree Y-. Let the nodes of depth 1

in Y– be the neighbors of R. In general, the nodes of depth i, i = 1, in :?- will

be those whose shortest simple path to R contains i edges. Now, for each

attribute X, we reconnect edges by the following steps. As a result, certain

nodes that were not neighbors of R will become R‘s neighbors.
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For each clause { Rkl. X, Rkz. X } that connects the depth i + 1 node R ~1 to

the depth i (i > 1) node Rkz (we know that the two nodes share a common

attribute, here X, by the construction of q and the definition of redundancy),

— eliminate that clause and its corresponding edge;

—create the edge { Rkl, R}, associating the edge with { R ~1.X, R. X}. (We

know that q has {Rkl. X, R.X} and {Rk2. X, R. X}, because q and qt are

equivalent and { Rkl. X, Rkz. X} could not be inferred from q otherwise. )

Two cases may arke.

Case 1. There is already a clause connecting to R using attribute X. So,

the nodecost of R does not change, and the nodecost of Rkl may or may not

decrease, but certainly will not increase.

Case 2. There is no clause connecting to R using attribute X. Therefore,

some edge in the path from Rkz to R does not have X on it; say the edge

from Rk, to R ~4 is the first one. In that case, removing the edges leading to

Rk, that contain a clause with attribute X will reduce the noclecost of Rk, by

one. At most, the nodecost of R can increase by one, so the cost of the

resulting tree cannot increase.

We perform such reconnection for each attribute in turn, so that each node

other than R in the resulting tree is connected only to R by a single clause

in q. Thus, the resulting tree is an ss tree of QGq. Furthermore, since the

reconnection for each attribute do not increase any cost, the cost of the ss

tree will be at most II % II + K. ❑

Because stars are subcases of trees and general graphs, we obtain the

following immediately.

COROLLARY 1. Problem ( MRP) is NP-complete for tree queries

COROLLARY 2. Problem ( MRP) is NP-complete for general graph queries.

The results obtained so far give us a picture for various queries shown in

Figure 8. 10 These resu]ts are cliscouraging as they indicate that even for

simple queries, an enumerative algorithm must be used to find the optimal

join strategy. In the next section, we develop heuristics that approximate the

optimal solution while having a polynomial time complexity.

6. HEURISTIC ALGORITHMS

Our general approach to processing a complex query is as follows. Given a

query q, we first construct the query graph of its closure, QGq+. We then

1°Closed tree queries in the figure are defined in a similar way as closed chain queries: namely,

they refer to tree queries whose closures are trees. As the reader may have noticed, the

construction of QGV in Theorem 3 implies that QGq + may contain a cycle. This then raises an

interesting question as to whether there exists a polynomial time algorlthm for closed tree

queries. The problem remains open and deserves further investigation
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Fig. 8. Complexity of problem MRP for vari-

ous queries. Note that the problem of finding

the best join strategy for queries whose closure

is a tree (closed trees) remains open

closed tree

\

~Q )

N1’-com ~lete

closed chain

Polynomial

Time

T
RI C5 R2

c1 ~2

Rz
Fig. 9. Initial query graph for heuris-

tics examples C3

R.

C4

R5

Table III Data for the Heuristic Examples

i 1 2 3 4

c1 = {RI. A, R3 C}

Cz= {R2. B, R3C}

C3 = {R3 D, R1. E}

c~ = {Rl F, R6. G}

C5= {RI A, Rz B}

5

Cardinality of Relation

IR,I 10 60 95 30 50

Tuple Size

I ‘R, I 4 4 3 1 5

Note. Initially, part(RL) = X, 1 s z s 5 Selectivity factor between any two relations 1s O 02,

apply the algorithms developed in this section to construct a clause string

from the graph. The behavior of the heuristics is analyzed in Section 7. One

of our heuristics is a consistent generalization of algorithm CHAIN in the

sense that an optimal solution will be found if q is a closed chain.

For each algorithm, a numerical example and graphical description are

given based on the query graph in Figure 9 and data presented in Table III.

6.1 Kruskal Heuristic

The Kruskal heuristic (KH) is a greedy strategy similar to Kruskal’s algo-

rithm [20] for finding a minimum cost spanning tree from a weighted graph.

Each time a lowest cost clause, say {R. A, S. B}, is selected; the two nodes R
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T“
RI C5 Rz

c1 C2

R~

C3

R4

C4

R5

(a) (b)

C2

E
VI

cl>

R3

C3

Uz

(c)

8

U3

f-’3

U2

(d)

oU4

(e)

Fig. 10. Query graph reduction by algorithm KH.

and S are then collapsed to a single node U. Since U represents

result of l? and S, its cardinality with be I R I x I S I x a, where

the join

CY is the,,,
selectivity factor between R and S, and the width of its tuples is I tR I + I t~\

The partition attributes of U are calculated as follows:

(1)

(2)

(3)

If R needs to be repartitioned (such a repartitioning destroys the original

partition attributes of R), set newpart( R) to { A}; otherwise newpart( R)

= part(R).

Similarly, if S needs to be repartitioned, set newpart(S) to { B}; other-

wise newpart(S) = part(S).

part(U) = newpart(R) U newpart(S).

The algorithm repeats the above steps until the query graph becomes a single

node.

Since clauses on an edge share common relations, it is likely that

many clauses have the same minimum cost. The essence of the algorithm is

to assign a number value to each clause {R. A, S. B}, where

number({ R. A, S. B} ) is defined as the total number of clauses on distinct

edges (after collapsing R and S) that have R. A or S. B as a component

attribute. Among the clauses with the same minimum cost, the algorithm

selects among those with the largest number value. Performing a join on

such a clause is good, because its two component attributes become the

partition attributes of the new node and other clauses may be able to exploit

them.

Example 4. Figure 10 shows the application of algorithm KH to the query

graph in Figure 9. First, since both { RI. A, R2. B} and { R1. F, R5. G} have

the lowest cost, 840, and number({ RI. A, R2. B}) = 1> number({ RA. F,

R5. G}) = O, { RI. A, R2. B} is selected. RI and Rz are collapsed to U1 (Figure

10b). We get I ~1 I = 12; \ tulI = 8; part(Ul) = {A, B}. Next, {R4. F, RS. G}

is selected. RA and R5 are collapsed to U2 (Figure 10c). We get \ Uz I = 30;

I tu,I = 6; part(~,) = {F, G}. Then, since both {Rl. A, R~. C} and

{ Rz. B, R~. C} have cost 951 and number value O, we arbitrarily choose one,
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(5
C4

R5

(a)

2?”
RI C5 Rp

c1 C2

R3

C3

U1
R?

RI c’ R2

c1 C2

U2

(b) (c)

Fig. 11. Query graph reduction by algorithm PH

(d)

oU4

(e)

say { RI. A, R~. C}. U1 and R~ are collapsed to Us (Figure 10d). We get I Us I

= 22; I tu, I = 11; part(U3) = {A, B, C}. Finally, the clause {l?3. D, 124. E}

with cost 1266 is selected. The string produced by the algorithm is

{RI. A, R,. B}{ R,. F, R,. G){ R1. A, R,. C}{ R~. D, R.. E} and the cost is 840

+ 840 + 951 + 1266 = 3897.

6.2 Prim Heuristic

The Prim heuristic (PH) is similar to Prim’s algorithm [231 for finding a

minimum cost spanning tree from a weighted graph. At each step, a node in

the graph is designated as a “pivot. ” (Heuristically, the initial pivot is a

relation of smallest size. ) The algorithm considers only the clauses that are

on the edges connected to the pivot and selects a clause, say {R. A, S. B},

with the lowest cost and largest number value. R and S are then collapsed to

a single node U. U becomes the new pivot, and its size and partition

attributes are calculated as described previously. The algorithm repeats the

above steps until the graph is reduced to a single node.

Example 5. Figure 11 shows the application of algorithm PH to the query

graph in Figure 9. Initially, pivot = R1. The clause { R1. F, R~. G} with cost

840 is selected. Rb and R~ are collapsed to U1 (Figure 1 lb). We get

I U1 I = 30; I tu, I = 6; part(Ul) = {F, G}. The pivot becomes U1. Next,

{ R3. D, R,. E} with cost 1395 is selected. U, and R, are collapsed to U,

(Figure Ilc). We get I Ua I = 57; I tuz I = 9; part(U2) = {D, E); pivot = Uz.

Then { R1. A, RB. C} with cost 1659 is selected. Uz and RI are collapsed to Us

(Figure lld). We get I Us I = 11; Itu,] = 13; part(U3) = {A, C}; pivot = U~.

Finally, since both { R1. A, Rz. B) and { RZ. B, R~. C} have cost 863 and

number value O, we arbitrarily choose one, say { RI. A, Rz. B}. The string

produced by the algorithm is {R4. R, R~. G}{ R~. D, Rd. E){ Rl. A,

R3. C]{ RI. A, RZ. B] and the cost is 840 + 1395 + 1659 + 863 = 4757.

6.3 Hybrid Heuristics

A given graph may have several chains, that is, paths on which all nodes

except the (distinct) endpoints (referred to as boundaries) are connected with
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(a)

oR5

oU2

o
R~

oU3

(b) (c) (d) (e)

Fig. 12. Query graph reduction by algorithm HKH; dashed line represents generalized clause.

exactly two other nodes. It may be beneficial to process these chains based on

algorithm (3HAIPJ while applying the previous heuristics to the remaining

part of the graph. This is also intuitively reasonable because by so doing, the

optimal solution can be achieved when the given graph is a closed chain.

The algorithm first replaces each chain with a generalized clause. The

component attributes of the generalized clause are the partition attributes of

the boundaries after executing the chain’s minimum cost string, and the cost

of it is given by that of the string, which is calculated (by algorithm C~AIN)

as a function of the sizes and partition attributes of the boundaries. Notice

that, because it depends on the current sizes and partition attributes of a

chain’s boundaries, the generalized clause may vary during the execution of

the algorithm (see the example below).

The algorithm then simulates algorithm KH or PH on the resulting graph.

(The former is referred to as algorithm HKH, and the latter as HPH). During

the course of execution, if a generalized clause is selected, its corresponding

chain is collapsed to a single node. Since several chains may share the same

two boundaries, collapsing one of them may cause the generalized clauses of

the other chains to become self-loops in the query graph. When the algorithm

detects this situation, it removes the loops, putting back nodes on their

corresponding chains into the graph.

Example 6. Figure 12 shows the application of algorithm HKH to the

query graph in Figure 9. First, the chain { { R3, Rl}, { RA, R5} } is replaced by

the generalized clause { R3. D, R5. _L} with cost 2235, where L indicates

that after executing the minimum cost string { RA. F, R5. G} { RA. E, R~. D},

part( R5) is empty (Figure 12b). Next, the clause { RI. A, Rz. B} with cost 840

is selected. RI and Rz are collapsed to U1 (Figure 12c). We get I U1 \ = 12;

I tull = 8; part(~l) = {A, B}. Then, since both {R1. A, R~.C} and

{ R,. B, R~. C} have cost 951 and number value O, we arbitrarily pick one, say

{ R,. B, R,. C}. U, and R, are collapsed to U, (Figure 12d). We get I U,\ =

22; I tu,I = 11;part(U2) = {A, B, C}. Since the size of one of the boundaries

of the chain is changed, the generalized clause now becomes { 12{1. L , l?~. G}

with cost 2034. Finally, Uz and R5 are collapsed to U3 (Figure 12e). The
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string produced by the algorithm is {Rl. A, RZ. B}{ RZ. B, R~. C}{ R~. D,

R4. E}{ Rh. F, R~. G} and the cost is 840 + 951 + 2034 = 3825.

7. PERFORMANCE ANALYSIS

In this section we discuss experiments to compare the results produced by

each heuristic with the optimums obtained from exhaustive search and

evaluate the relative performance of these heuristics.

7.1 Experimental Parameters

Parameters used in the experiments can be classified into two categories:

those related to databases and those specific to a query graph.

(1) Database-Dependent Parameters

[Rl Number of tuples in relation R

ltRi Width (in bytes) of a tuple in R

part(R) Initial partition attribute of R

aR, S Join selectivity factor between relations R and S.

(2) Query-Dependent Parameters

IQGI Size (in number of nodes) of a query graph QG

Icnl Size (in number of nodes) of a chain in the graph (includ-

ing boundaries)

Num Number of chains in the graph

\ clauses(e, QG) I Number of clauses on edge e in the graph.

To construct a query graph, we used a random-number generator to pro-

duce edges between nodes and to choose nodes in chains. Clauses on edges

were also generated randomly and join attributes were drawn randomly from

the range A to D. Such a range was chosen because in actual applications,

relations generally contain no more than this number of join attributes, even

in a fairly complex query. 11 After generating a query graph, we used its

closure as a test graph for the algorithms.

In all the experiments presented here, the constants a and ~ for processing

cost and repartitioning cost (cf. Definition 2) were fixed at 1 and 2, respec-

tively. In fact, the constants have little effect on the relative behavior of our

algorithms. In further experiments, we ran the algorithms with various

constants (e. g., with a = 1, /3 = 10; a = 10, /3 = 1, etc.). It was found that

both the relative performance of the heuristics and their performance rela-

tive to optimums are insensitive to these parameters.

7.2 Heuristic Performance Relative to Optimal Value

Suppose there are m spanning trees for a given graph, named TI, Tz, . . . . T~,

and edges in T~, 1 ~ j s m, are denoted by e;, 1 s i s 1QGI – 1. The

11Part( R) used in the experiments was drawn randomly from the range A to G, as relations may

not be partitioned on any of their join attributes imtlally.
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Table IV, Heuristic Performance/Optimal Performance

KH PH HKH HPH

Size of graph Mean Variance Mean Variance Mean Variance Mean ‘Variance

6 1.04 0.00628 1.09 0.01292 1.02 0,01314 1.06 0.00823

7 1.05 0.01034 1.10 0.01125 1.04 0.00909 1.07

8

0.00931

1.07 0.01045 1.09 0.01296 1.05 0.00825 1,08 0.00911

9 1.06 0.01172 1.10 0.01325 1.04 0,00877 1.08

10

0.01175

1.09 0.01188 1.12 0.01475 108 0.00984 1.11 0.00928

11 1,08 0.01081 1.11 0.01407 1.07 0.00866 1.09

12

0.01318

1.10 0.01562 1.13 0.01368 1.08 0.02182 1.11 0.01236

Notes. (1) Query parameters: Number of chains = 1; chain size = k x graph size, where k was

drawn from [1/2, 2/3]; number of clauses on an edge was drawn from [1, 3 I

(2) Database parameters: Relation’s cardinality was drawn from [1 x 10a, 2 x 10 a], where a

can vary; tuple’s width was drawn from [1, 10]; selectivity factor from [0.1 x 10-a, 1 x 10-a];

part(R) from [A, G].

number of clause strings that need to be examined by exhaustive search is

{(
IQGI-1ii ) }~ lclauses(e;, QG)l x (] QGI - 1)!

J=l ~=1

As can be seen from the formula, the price paid for examining all possible

strings becomes prohibitively high when the size of a graph is large. To keep

the experiments manageable, the data were drawn from the following moder-

ate ranges.12 I QG \ was ranged from 6 to 12, Num was fixed at 1, I cn I was

drawn from the range [1/2, 2/3] of I QG 1, I R I was drawn from the range

[1 x 10’,2 x 10’1, I tRIfrom the range [1, 101, and Iclauses(e, QG) I from the

range [1, 3] for any edge e in the graph. The selectivity factor between each

two relations was drawn from the range [0. 1 x 10-a, 1 x 10-a]. Special care

was taken to generate the selectivity factors to ensure that joining nodes in

different order yields the same size result.

The experimental results are summarized in Table IV. Each mean in the

table represents the average value of the relative costs obtained by applying

an algorithm to ten test graphs. A relative cost is the quotient of the

solution’s cost of the algorithm divided by the optimum. The means show

that all the algorithms have satisfactory performance for random spanning

trees and low selectivity factors, and in many situations, algorithms KH and

HKH seem a bit superior to the other two algorithms. In addition, the small

variances for each algorithm indicate that the algorithms exhibit consistent

behavior.

7.3 Effect of Database Parameters

The purpose of this subsection is to analyze the effect of varying the

database-dependent parameters on the relative performance of the heuristic

—
121n the sequel, “a parameter was drawn from the range [a, b]” actually means that the

parameter was drawn randomly from a uniform distribution with the range [a, b].
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Fig. 13. Effect of selectivity factors (relation’s cardinality was drawn from [10,000, 20,000],

tuple’s width from [1, 10], graph size = 12, chain numbers = 2, chain size = 4, number of clauses

on an edge = 2)

procedures. To avoid the mutual influence of parameters, the analysis was

carried out by fixing the parameters related to query graphs, which were set

as follows: \ QG I = 12, Num = 2, I en I = 4, Iclauses(e, QG) I = 2 for any

edge e in QG. The chains have been included in order to distinguish the

simple heuristics from their hybrid counterparts.

Figure 13 illustrates the behavior of the algorithms for varying join

selectivity factors. 13 Examining the figure, we see that all the heuristics

have close behavior for low selectivity factors (LYR ~ s 0.00005).

Notice also that algorithm PH deteriorates significantly as the selectivity

factors increase. When selectivity factors are high, the more nodes are joined,

the larger the pivot becomes. Consequently, joining the pivot with even more

nodes will incur an intolerable cost.

Figure 14 shows the effect of varying the relation sizes on the relative

performance of the algorithms. The figure shows clearly that algorithm PH

becomes unattractive when the sizes of relations increase.

7.4 Effect of Query Parameters

The main distinction between the hybrid heuristics and simple ones lies in

the way they handle chains. The objective of this subsection is to explore the

effect of varying chains in a query graph on the behavior of the heuristics.

The following parameters’ values were assumed throughout the experiments:

I R I was drawn from the range [100, 1,000,000], I t~ I was drawn from [1, 10],

CYR,~ was fixed at 0.1, and Iclauses(e, QG) I was fixed at 2.

131n subsequent experiments, ten query graphs were tested for each algorithm and the average

value of the solutions’ costs produced by each algorithm was plotted.
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Fig. 14. Impact of relation size, where relation size = relation’s cardinality x tuple’s width

(the first item of each label on the x axis gives the range of relation’s cardinality and the second

item gives the range of tuple’s width; selectivity factor = 0.1, graph size = 12, chain numbers =

2, chain size = 4, number of clauses on an edge = 2).

A H KH
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110 - HI<H

HPH
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cost 70
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‘“ . . . . . . . . .,. ., .,,, ,,,

of bytes) so

0

30
____
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I I I I I >
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Chain size

Fig. 15. Cost of heuristics as a function of chain size (graph size = 20, number of chains = 1,

selectivity factor = 0.1, number of clauses on an edge = 2, relation’s cardinality was drawn from

[100, 1,000,0001, tuple’s width from [1, 101).

Figure 15 shows the effect of changing the chain size in a graph, where the

size of the graph was fixed at 20 and Num at 1. It is apparent that as the

chain becomes a major portion of a graph, the hybrid heuristics become better

than the simple ones. One expects this because the hybrid heuristics guaran-
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Fig. 16 Cost ofheuristics asafunction of~aphslze (chain size = 1/2 x graph size, number of

chains = 1, selectivity factor = 0.1, number of clauses on an edge = 2, relation’s cardmality was

drawn from [100, 1,000,0001, tuple’s width from [1, 10])

tee that an optimal solution can be achieved on a chain. The poor perfor-

mance of algorithm PH when the chain size becomes large is due to the way

it picks clauses, which is limited by its inherently local view. This situation

tends to be worse if it starts searching inside a chain—very few choices can

be made in determining which of the clauses should be picked at each step.

On the other hand, the size of a graph has very little impact on the

performance of the heuristics. Figure 16 illustrates the effect of varying the

size of a graph while fixing the portion of the chain in it (this portion was

fixed at 1/2). It is clear that increasing only the graph size does not affect the

relative performance of the heuristics—the gaps between these algorithms

remain and gradually become larger.

Figure 17 shows the effect of varying the number of chains in a graph

(where I QG I was fixed at 20 and I en I at 4). Although the number of chains

also influences the performance of the hybrid heuristics, it has a less signifi-

cant effect than the size of a chain. The big gap between algorithms HPH and

KH (HKH) may be due to the fact that the chosen size of chains is too small,

as compared with that of the whole graph. Notice that there is a slight

increase of the gap between algorithms HKH and KH when the number of

chains is 4. This indicates that the existence of many short chains in a graph

can have a negative effect on the performance of algorithm HKH. A possible

explanation for this is that these chains decrease the number of nonchain

edges in the graph and consequently restrict the total number of choices that

can be made when globally picking a clause.

In conclusion, when selectivity factors are low, the proposed heuristics

have close performance. In the presence of high selectivity factors, algorithm

PH becomes less competitive while algorithm KH (and HKH) remain good. If
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o 1 2 3 4

Number of chains

Fig. 17. Cost of heuristics as a function of number of chains (graph size = 20, chain size = 4,

selectivity factor = 0.1, number of clauses on an edge = 2, relation’s cardinality was drawn from

[1OO,1,000,0001, tuple’s width from [1, 10]).

a graph contains long chains (with size being over half of the number of

nodes in the graph), we suggest to use the hybrid Kruskal heuristic (HKH).

8. SUMMARY

In this paper, we investigated ways of minimizing response time for various

important queries in loosely coupled multiprocessor systems using a hash-

partitioned data distribution scheme. First, we developed a dynamic

programming algorithm for closed chain queries. Next, we proved the NP-

completeness for more general queries and proposed four heuristics for them.

Our simulation results show that an algorithm similar to Kruskal’s spanning

tree algorithm performs well when chains in a query graph are small. When

chains are long, then a hybrid algorithm using the chain algorithm with

Kruskal’s is best.

Like other relevant work [15, 25], the heuristics presented in the paper

relied on the knowledge of selectivity factors, which were used to find out the

sizes of intermediate results. This information, however, is not known a
14 Fortunately, our qualitative conclusionspriori in actual environments.

were independent of the selectivity factors.

Our results have all assumed that relations were partitioned on a single

attribute. Generalizing beyond this is not difficult. For example, consider a

join between R and S based on the clauses {{R. A, S. C}, { R. B, S. D} },

where R is partitioned on A and S on C. One can process the join based on

“A practical approach would be to estimate the selectivity factors like those used in most real

systems (see, e.g., [26]). Readers may also refer to Gardy and Puech [13] and Lipton and

Naughton [21] for theoretical analyses of the sizes of intermediate relations.
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{R. A, S. C}, treating {R. B, S. D} as a selection condition. On the other

hand, if the join were based on {R. A, S. C} and R were partitioned on AB

and S on CD, both relations would have to be repartitioned to A and C’,

respectively. Therefore, the set of repartitionings required when R is parti-

tioned on A alone is always a subset of those required when R is partitioned

on AB. To handle multiattribute partitions, we can treat the partition

attributes (e. g., AB) as if they were a single attribute. Thus, to perform the

join having clauses {R. A, S. C}, { R.B, S. D}, and {R. E, S. F}, given AB and

CD as partition attributes, we process { {R. A, S. C}, {R. B, S. D} ) and use

{R. E, S. F} as a selection condition.

We have not discussed the possibility of using multiple copies of relations,

perhaps partitioned on different attributes. Often, keeping multiple copies at

each node reduces the cost of repartitionings considerably. As an example,

consider again the suppliers-and-parts database and SQL query presented in

Section 1. Suppose one copy of SUP is partitioned on s #, one copy of PART on

p #, one copy of SUP-PART on s #, and another copy of SUP-PART on p #.

When repartitioning Tz to SUP-PART. p #, instead of sending its complete

tuples, the second strategy could send the surrogates [8] of tuples in SUP-PART,

along with the complete tuples in SUP. These surrogates would then be

materialized at each node by consulting the local fragment of SUP-PART that

is partitioned on p #. Suppose sending surrogates takes 10 seconds. Then the

cost of this scheme would be 100 + 10 + 100 = 210 seconds, which achieves a

significant improvement over the original scheme. Investigating how queries

can be optimized in such a highly parallel environment with replicated data

seems to be a very interesting problem for future research.
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