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Abstract 
 

Extraction-Transformation-Loading (ETL) tools 
are pieces of software responsible for the extraction of 
data from several sources, their cleansing, 
customization and insertion into a data warehouse. 
Usually, these processes must be completed in a 
certain time window; thus, it is necessary to optimize 
their execution time. In this paper, we delve into the 
logical optimization of ETL processes, modeling it as a 
state-space search problem. We consider each ETL 
workflow as a state and fabricate the state space 
through a set of correct state transitions. Moreover, we 
provide algorithms towards the minimization of the 
execution cost of an ETL workflow. 

1. Introduction 

For quite a long time in the past, research has 
treated data warehouses as collections of materialized 
views. Although this abstraction is elegant and 
possibly sufficient for the purpose of examining 
alternative strategies for view maintenance, it is not 
enough with respect to mechanisms that are employed 
in real-world settings. Indeed, in real-world data 
warehouse environments, instead of automated 
mechanisms for the refreshment of materialized views, 
the execution of operational processes is employed in 
order to export data from operational data sources, 
transform them into the format of the target tables and 
finally, load them to the data warehouse. The category 
of tools that are responsible for this task is generally 
called Extraction-Transformation-Loading (ETL) 
tools. The functionality of these tools can be coarsely 
summarized in the following prominent tasks, which 
include: (a) the identification of relevant information at 
the source side; (b) the extraction of this information; 
(c) the customization and integration of the information 
coming from multiple sources into a common format; 
(d) the cleaning of the resulting data set, on the basis of 
database and business rules, and (e) the propagation of 
the data to the data warehouse and/or data marts.  

So far, research has only partially dealt with the 
problem of designing and managing ETL workflows. 

Typically, research approaches concern (a) the 
optimization of stand-alone problems (e.g., the 
problem of duplicate detection [16]) in an isolated 
setting and (b) problems mostly related to web data 
(e.g., [7]). Recently, research on data streams [1], [2] 
has brought up the possibility of giving an alternative 
look to the problem of ETL. Nevertheless, for the 
moment research in data streaming has focused on 
different topics, such as on-the-fly computation of 
queries [1], [2]. To our knowledge, there is no 
systematic treatment of the problem, as far as the 
problem of the design of an optimal ETL workflow is 
concerned. 

On the other hand, leading commercial tools [9], 
[10], [13], [14] allow the design of ETL workflows, 
but do not use any optimization technique. The 
designed workflows are propagated to the DBMS for 
execution; thus, the DBMS undertakes the task of 
optimization. Clearly, we can do better than this, 
because, an ETL process cannot be considered as a 
“big” query. Instead, it is more realistic to treat an ETL 
process as a complex transaction. In addition, in an 
ETL workflow, there are processes that run in separate 
environments, usually not simultaneously and under 
time constraints.  

One could argue that we can possibly express all 
ETL operations in terms of relational algebra and then 
optimize the resulting expression as usual. In this paper 
we demonstrate that the traditional logic-based 
algebraic query optimization can be blocked, basically 
due to the existence of data manipulation functions. 
Consider the example of Fig. 1 that describes the 
population of a table of a data warehouse DW from two 
source databases S1 and S2. In particular, it involves 
the propagation of data from the recordset 
PARTS1(PKEY,SOURCE,DATE,COST) of source S1 
that stores monthly information, as well as from the 
recordset PARTS2(PKEY,SOURCE,DATE,DEPT, 

COST) of source S2 that stores daily information. In 
the DW, PARTS(PKEY,SOURCE,DATE,COST) stores 
monthly information for the cost in Euros (COST) of 
parts (PKEY) per source (SOURCE). We assume that 
both the first supplier and the data warehouse are 
European and the second is American; thus, the data 
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coming from the second source need to be converted to 
European values and formats. 

Figure 1. A simple ETL workflow 
 
In Fig. 1, activities are numbered with their 

execution priority and tagged with the description of 
their functionality. The flow for source S1 is: (3) a 
check for Not Null values is performed on attribute 
COST. The flow for source S2 is: (4) Dollar costs 
($COST) are converted to Euros (€COST); (5) dates 
(DATE) are converted from American to European 
format; (6) an aggregation for monthly supplies is 
performed and the unnecessary attribute DEPT (for 
department) is discarded from the flow. The two flows 
are then unified (7) and before being loaded to the 
warehouse, a final check is performed on the €COST 
attribute (8), ensuring that only values above a certain 
threshold are propagated to the warehouse. 

There are several interesting problems and 
optimization opportunities in the example of Fig. 1: 
- Traditional query optimization techniques should 

be directly applicable. For example, it is desirable 
to push selections all the way to the sources, in 
order to avoid processing unnecessary rows. 

- Is it possible to push the selection for values above 
a certain threshold early enough in the workflow? 
As far as the flow for source PARTS1 is concerned, 
this is straightforward (exactly as in the relational 
sense). On the other hand, as far as the second 
flow is concerned, the selection should be 
performed after the conversion of dollars to Euros. 
In other words, the activity performing the 
selection cannot be pushed before the activity 
applying the conversion function. 

- Is it possible to perform the aggregation, before 
the transformation of American values to 
Europeans? In principle, this should be allowed to 
happen, since the dates are kept in the resulting 
data and can be transformed later. In this case, the 
aggregation operations can be pushed, before the 
function (as opposed to the previous case).  

- How can we deal with naming problems? 
PARTS1.COST and PARTS2.COST are homonyms, 
but they do not correspond to the same entity (the 
first is in Euros and the second in Dollars). 
Assuming that the transformation $2€ produces 
the attribute €COST, how can we guarantee that 
corresponds to the same real-world entity with 
PARTS1.COST?  

 
Figure 2. An equivalent ETL workflow 

In Fig. 2, we can see how the workflow of Fig. 1 
can be transformed in an equivalent workflow 
performing the same task. The selection on Euros has 
been propagated to both branches of the workflow so 
that low values are pruned early. Still, we cannot push 
the selection, neither before the transformation $2€, 
nor before the aggregation. At the same time, there was 
a swapping between the aggregation and the DATE 
conversion function (A2E). In summary, the two main 
problems that can be highlighted in this setting are (a) 
to determine which operations over the workflow are 
legal and (b) to determine the best workflow 
configuration in terms of performance gains. 

We take a novel approach to the problem by taking 
into consideration the aforementioned peculiarities. 
Moreover, we employ a workflow paradigm for the 
modeling of ETL processes, i.e., we do not strictly 
require that an activity outputs data to some persistent 
data store, but rather, activities are allowed to output 
data to one another. In such a context, I/O 
minimization is not the primary problem. In this paper, 
we focus on the optimization of the process in terms of 
logical transformations of the workflow. To this end, 
we devise a method based on the specifics of an ETL 
workflow that can reduce its execution cost by 
changing either the total number or the execution order 
of the processes. Our contributions can be listed as 
follows: 
- We set up the theoretical framework for the 

problem, by modeling the problem as a state space 
search problem, with each state representing a 
particular design of the workflow as a graph. The 
nodes of the graph represent activities and data 



 

stores and the edges capture the flow of data among 
the nodes.  

- Since the problem is modeled as a state space 
search problem, we define transitions from one 
state to another that extend the traditional query 
optimization techniques. We prove the correctness 
of the introduced transitions. We also provide 
details on how states are generated and the 
conditions under which transitions are allowed.  

- Finally, we provide algorithms towards the 
optimization of ETL processes. First, we use an 
exhaustive algorithm to explore the search space in 
its entirety and to find the optimal ETL workflow. 
Then we introduce greedy and heuristic search 
algorithms to reduce the search space that we 
explore, and demonstrate the efficiency of the 
approach through a set of experimental results.  
The rest of this paper is organized as follows. 

Section 2 presents a formal statement for our problem 
as a state space search problem. In Section 3 we 
discuss design issues and correctness of our setting. In 
Section 4, we present algorithms for the optimization 
the ETL processes, along with experimental results. In 
Section 5 we present related work. Finally, in Section 6 
we conclude with our results and discuss topics of 
future research. A long version of the paper, with all 
the proofs is found at [19]. 

2. Formal Statement of the problem 

In this section, we show how the ETL optimization 
problem can be modeled as a state space search 
problem. First, we give a formal definition of the 
constituents of an ETL workflow and we describe the 
states. Then, we define a set of transitions that can be 
applied to the states in order to produce the search 
space. Finally, we formulate the problem of the 
optimization of an ETL workflow. 

2.1. Formal definition of an ETL workflow 

An ETL workflow is modeled as a directed acyclic 
graph. The nodes of the graph comprise activities and 
recordsets. A recordset is any data store that can 
provide a flat record schema (possibly through a 
gateway/wrapper interface); in the rest of this paper, 
we will mainly deal with the two most popular types of 
recordsets, namely relational tables and record files. 
The edges of the graph denote data provider (or 
input/output) relationships: an edge going out of a 
node n1 and into a node n2 denotes that n2 receives data 
from n1 for further processing. In this setting, we will 
refer to n1 as the data provider and n2 as the data 

consumer. The graph uniformly models situations 
where (a) both providers are activities (combined in a 
pipelined fashion) or (b) activities interact with 
recordsets, either as data providers or data consumers.  

Each node is characterized by one or more 
schemata, i.e., finite lists of attributes. Whenever a 
schema is acting as a data provider for another schema, 
we assume a one-to-many mapping between the 
attributes of the two schemata (i.e., one provider 
attribute can possibly populate more than one 
consumers while a consumer attribute can only have 
one provider). Recordsets have only one schema, 
whereas activities have at least two (input and output). 
Intuitively, an activity comprises a set of input 
schemata, responsible for bringing the records to the 
activity for processing and one or more output 
schemata responsible for pushing the data to the next 
data consumer (activity or recordset). An activity with 
one input schema is called unary, and an activity with 
two input schemata is called binary.  

Formally, an activity is a quadruple A=(Id,I,O,S), 
such that: (a) Id is a unique identifier for the activity; 
(b) I is a finite set of one or more input schemata, 
receiving data from the data providers of the activity; 
(c) O is a finite set of one or more output schemata that 
describe the placeholders for the rows that are 
processed by the activity; and (d) S is one or more 
expressions in relational algebra (extended with 
functions) characterizing the semantics of the data flow 
for each of the output schemata. This can be one 
expression per output schema or a more complex 
expression involving intermediate results too. 

In our approach, we will model an ETL workflow 
as a graph. Assume a finite list of activities A, a finite 
set of recordsets RS, and a finite list of provider 
relationships Pr.  

Formally, an ETL Workflow is a directed acyclic 
graph (DAG), G(V,E) such that V=A∪RS and E=Pr.  

A subset of RS, denoted by RSS, contains the 
sources of the graph (i.e., the source recordsets) and 
another subset of RS, denoted by RST, contains the 
sinks of the graph (representing the final target 
recordsets of the warehouse). G(V,E) can be 
topologically ordered, therefore a unique execution 
priority can be assigned to each activity as its unique 
identifier.  

Finally, all activities of the workflow should have a 
provider and a consumer (either another activity or a 
recordset). Each input schema has exactly one provider 
(many providers for the same consumer are captured 
by UNION activities). 



 

Figure 3. Abstract examples of transitions 

2.2. The problem of ETL workflow optimization 

We model the problem of ETL optimization as a 
state space search problem.  

States. Each state S is a graph as described in 
Section 2.1, i.e. states are ETL workflows; therefore, 
we will use the terms ‘state’ and ‘ETL workflow’ 
interchangeably.  

Transitions. Transitions T are used to generate 
new, equivalent states. In our context, equivalent states 
are assumed to be states that based on the same input 
produce the same output.  Practically, this is achieved 
in the following way:  
(a) by transforming the execution sequence of the 

activities of the state, i.e., by interchanging two 
activities of the workflow in terms of their 
execution sequence; 

(b) by replacing common tasks in parallel flows with 
an equivalent task over a flow to which these 
parallel flows converge; 

(c) by dividing tasks of a joint flow to clones applied 
to parallel flows that converge towards the joint 
flow. 

Next, we introduce a set of logical transitions that 
we can apply to a state. We use the notation S΄= T(S) 
to denote the transition T from a state S to a state S’. 
The introduced transitions include: 
- Swap. This transition can be applied to a pair of 

unary activities a1 and a2 and interchange their 
sequence, i.e., we swap the position of the two 
activities in the graph (see Fig. 3a). Swap concerns 
only unary activities, e.g., selection, checking for 
nulls, primary key violation, projection, function 
application, etc. We denote this transition as 
SWA(a1,a2). 

- Factorize and Distribute. These operations involve 
the interchange of a binary activity, e.g., union, 
join, difference, etc., and at least two unary 
activities that have the same functionality, but are 

applied over different data flows that converge 
towards the involved binary activity. This is 
illustrated in Fig. 3b. In the upper part, the two 
activities a1 and a2 have the same functionality, but 
they are applied to different data flows that 
converge towards the binary activity ab. The 
Factorize transition replaces the two activities a1 
and a2 with a new one, a, which is placed right 
after ab. Factorize and Distribute are reciprocal 
transitions. If we have two activities that perform 
the same operation to different data flows, which 
are eventually merged, we can apply Factorize in 
order to perform the operation only to the merged 
data flow. Similarly, if we have an activity that 
operates over a single data flow, we can distribute it 
to different data flows. One can notice that 
Factorize and Distribute essentially model 
swapping between unary and binary activities. We 
denote Factorize and Distribute transitions as 
FAC(ab,a1,a2) and DIS(ab,a) respectively. 

- Merge and Split. We use these two transitions to 
“package” and “unpackage” a pair of activities 
without changing their semantics. Merge indicates 
that some activities have to be grouped according to 
the constraints of the ETL workflow; thus, for 
example, a third activity may not be placed 
between the two, or these two activities cannot be 
commuted. Split indicates that a pair of grouped 
activities can be ungrouped; e.g., when the 
application of the transitions has finished, we can 
ungroup any grouped activities. The benefit is that 
the search space is proactively reduced without 
sacrificing any of the design requirements. Merge 
transition is denoted as MER(a1+2,a1,a2) and split 
transition is denoted as SPL(a1+2,a1,a2). 
The reasoning behind the introduction of the 

transitions is quite straightforward.  
- Merge and split are designated by the needs of 

ETL design as already described.  

   

(a) Swap (b) Factorize and Distribute (c) Merge and Split 



 

- Swapping allows highly selective activities to be 
pushed towards the beginning of the workflow, in 
a meaning similar to the case of traditional query 
optimization.  

- Factorization allows the exploitation of the fact 
that a certain operation is performed only once (in 
the merged workflow) instead of twice (in the 
converging workflows). For example, if an activity 
can cache data (like in the case of surrogate key 
assignment, where the lookup table can be 
cached), such a transformation can be beneficial. 
On the other hand, distributing an activity in two 
parallel branches can be beneficial in the case 
where the activity is highly selective and is pushed 
towards the beginning of the workflow. Observe 
Fig. 4. Consider a simple cost model that takes 
into account only the number of processed rows in 
each process. Also, consider an input of 8 rows in 
each flow, and selectivities equal to 50% for 
process σ and 100% for the rest processes. Given 
nlog2n and n as the cost formulae for SK and σ 
respectively (for simplicity, we ignore the cost of 
U), the total costs for the three cases are: 
c1=2nlog2n+n=56, c2=2(n+(n/2)log2(n/2))  
=32, c3=2n+(n/2)log2(n/2)=24. Thus, DIS 
(case 2) and FAC (case 3) can reduce the cost of a 
state.  

 
Figure 4. Factorization benefits 

Due to lack of space we omit the details regarding 
the formal definitions of the above transitions. The 
interested reader is referred to the long version of the 
paper [19]. 

So far, we have demonstrated how to model each 
ETL workflow as a state and how to generate the state 
space through a set of appropriate transformations 
(transitions). Naturally, in order to choose the optimal 
state, the problem requires a convenient discrimination 
criterion. 

Such a criterion is a cost model. Given an activity 
a, let c(a) denote its cost (possibly depending not 
only on the cost model, but also on its position in the 
workflow graph). Then, the total cost of a state is 
obtained by summarizing the costs of all its activities. 
The total cost C(S) of a state S is given by the next 
formula: 

C(S) = 
n

i 1=
Σ c(ai) 

The problem of the optimization of an ETL 
workflow involves the discovery of a state SMIN, such 
that C(SMIN) is minimal.  

In the literature [8], [11], [15] there exists a variety 
of cost models for query optimization. Our approach is 
general in that it is not in particular dependent on the 
cost model chosen. 

3. State generation, transition 
applicability and corrrectness 

In this section, we will deal with several non-trivial 
issues in the context of our modeling for the 
optimization of ETL processes as a state space search 
problem. We consider equivalent states as workflows 
that, based on the same input, produce the same output. 
To deal with this condition, we will first discuss in 
detail how states are generated and then we will deal 
with the problem of transition applicability.  

3.1. Naming principle  

As we have already seen in the introduction, an 
obvious problem for the optimization of ETL 
workflows is that different attributes names do not 
always correspond to different entities of the real world 
and vice versa. 

To handle this problem, we resort to a simple 
naming principle: (a) all synonyms refer to the same 
entity of the real world, and (b) all different attribute 
names, at the same time, refer to different things in the 
real world. Since it is possible that the employed 
recordsets violate this principle, we map the original 
attribute names of the involved recordsets to a set of 
reference attribute names that do not suffer from this 
problem. Formally, we introduce: 
(a) a set of reference attribute names at the conceptual 

level, i.e., a finite set of unique attribute names Ωn, 
and a mapping of each attribute of the workflow to 
this set of attribute names; 

(b) a simple naming principle: all synonymous 
attributes are semantically related to the same 
attribute name in Ωn; no other mapping to the same 
attribute is allowed. 
In the example of Fig. 1, we can employ the same 

reference attribute name for both American and 
European dates, since we will treat them equivalently 
as groupers. At the same time, COST attributes, 
expressed in Dollars and in Euros should be mapped in 
different reference attributes (due to the presence of the 
selection predicate on Euros). In the sequel, we will 



 

employ only reference attribute names in our 
discussions. 

3.2. Issues around activity schemata  

In [18] we have presented a set of template 
activities for the design of ETL workflows. Each 
template in this library has predefined semantics and a 
set of parameters that tune its functionality: for 
example, when the designer of a workflow materializes 
a Not Null template he/she must specify the attribute 
over which the check is performed. In order to 
construct a certain ETL workflow, the designer must 
specify the input and output schemata of each activity 
and the respective set of parameters. Although this is a 
manual procedure, in the context of this paper, the 
different states are automatically constructed; 
therefore, the generation of the input and output 
schemata of the different activities must be automated, 
too. For lack of space, the automation of this procedure 
is presented in the long version of the paper [19]. 

For the purpose of state transitions, (e.g., swapping 
activities), apart from the input and output schemata, 
each activity is characterized by the following 
schemata: 
1. Functionality (or necessary) schema. This schema 

is a list of attributes, being a subset of (the union 
of) the input schema(ta), denoting the attributes 
which take part in the computation performed by 
the activity. For example, an activity having as 
input schema si=[A,B,C,D] and performing a Not 
Null(B) operation, has a functionality schema sf 
=[B]. 

2. Generated schema. This schema involves all the 
output attributes being generated due to the 
processing of the activities. For example, a 
function-based activity $2€ converting an attribute 
dollar_cost to Euros, i.e., euro_cost = 
$2€(dollar_cost), has a generated schema sg= 
[euro_cost]. Filters have an empty generated 
schema. 

3. Projected-out schema. A list of attributes, 
belonging to the input schema(ta), not to be 
propagated further from the activity. For example, 
once a surrogate key transformation is applied, we 
propagate data with their new, generated surrogate 
key (belonging to the generated schema) and we 
project out their original production key (belonging 
to the projected-out schema).  
These auxiliary schemata are provided at the 

template level. In other words, the designer of the 
template library can dictate in advance, (a) which are 

the parameters for the activity (functionality schema) 
and (b) which are the new or the non-necessary 
attributes of the template. Then, these attributes are 
properly instantiated at the construction of the ETL 
workflow. 

Local Groups. A local group is a subset of the 
graph (state), the elements of which form a linear path 
of unary activities. In the example of Fig. 1, the local 
groups of the state are {3}, {4,5,6} and {8}.  

Homologous Activities. Also, we introduce the 
notion of homologous activities to capture the cases of 
activities. Two activities are homologous if: (a) they 
are found in converging local groups; (b) they have the 
same semantics (as an algebraic expression); (c) they 
have the same functionality, generated and projected-
out schemata.  

3.3. Transition applicability 

In this subsection, we define the rules which allow 
or prohibit the application of a transformation to a 
certain state.  

Swap. One would normally anticipate that 
swapping is already covered by traditional query 
optimization techniques. Still, this is not true: on the 
contrary, we have observed that the swapping of 
activities deviates from the equivalent problem of 
“pushing operators downwards”, as we normally do in 
the execution plan of a relational query. The major 
reason for this deviation is the presence of functions, 
which potentially change the semantics of attributes. 
Relational algebra does not provide any support for 
functions; still, the “pushing” of activities should be 
allowed in some cases, whereas, in some others, it 
should be prevented.  

Remember the two cases from the introductory 
example of Fig. 1 and 2. It is not allowed to push 
selection on Euros before their transformation and 
aggregation. On the contrary, it should be permitted to 
push the aggregation on DATE before a function 
transforming the DATE from American to European 
format. 

Formally, we allow the swapping of two activities 
a1 and a2 if the following conditions hold: 
1. a1 and a2 are adjacent in the graph (without loss of 

generality assume that a1 is a provider for a2) 
2. both a1 and a2 have a single input and output 

schemata and their output schema has exactly one 
consumer 

3. the functionality schema of a1 and a2 is a subset of 
their input schema (both before and after the 
swapping) 



 

4. the input schemata of a1 and a2 are subsets of their 
providers, again both before and after the swapping 
Conditions (1) and (2) are simply measures to 

eliminate the complexity of the search space and the 
name generation. The other two conditions though, 
cover two possible problems. The first problem is 
covered by condition (3). Observe Fig. 5, where 
activity $2€ transforms Dollars to Euros and has an 
input attribute named dollar_cost, a functionality 
schema that contains dollar_cost and an output 
attribute named euro_cost. Activity σ(€), at the same 
time, is specifically containing attribute euro_cost in its 
functionality schema (e.g., it selects all costs above 
100€). When a swapping has to be performed and 
activity σ(€) is put in advance of activity $2€, the 
swapping will be rejected.  

The guard of condition (3) can be easily 
compromised if the designer uses the same name for 
the attributes of the functionality schemata of activities 
$2€ and σ(€). For example, if instead of dollar_cost 
and euro_cost, the designer used the name cost, then 
condition (3) would not fire. To handle this problem, 
we exploit the usage of the naming principle described 
in subsection 3.1. 

 

 
Figure 5. Necessity for swap-condition (3) 
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Fig. 6. Necessity for swap-condition (4) 

The second problem, confronted by condition (4) is 
simpler. Assume that activity a2 is a πout (projected-

out) activity, rejecting an attribute at its output schema 
(Fig. 6). Then, swapping will produce an error, since 
after the swapping takes place, the rejected attribute in 
the input schema of activity a1 (now a consumer of a2) 
will not have a provider attribute in the output schema 
of a1. 

Factorize/Distribute. We factorize two 
homologous activities a1 and a2, if we replace them by 
a new activity a that does the same job to their 
combined flow. Formally, the conditions governing 
factorization are as follows: 
1. a1 and a2 have the same operation in terms of 

algebraic expression; the only thing that differs is 
their input (and output) schemata 

2. a1 and a2 have a common consumer, say ab, which 
is a binary operation (e.g., union, difference, etc.) 
Obviously, a1 and a2 are removed from the graph 

and replaced by a new activity a, following ab. In other 
words, each edge (x,a1) and (x,a2) becomes 
(x,ab) for any node x, edges (a1,ab) and (a2,ab) 
are removed, the nodes a1 and a2 are removed, a node 
a is added, the edge (ab,a) is added and any edge 
(ab,y) is replaced by (a,y) for any node y. 

The distribution is governed by similar laws; an 
activity a can be cloned in two paths if: 
1. a binary activity ab is the provider of a and two 

clones, activities a1 and a2 are generated for each 
path leading to ab 

2. a1 and a2 have the same operation in terms of 
algebraic expression with a 
Naturally, a is removed from the graph. The node 

and edge manipulation are the inverse from the ones of 
factorize. 

Merge/Split. Merge does not impose any 
significant problems: the output schema of the new 
activity is the output of the second activity and the 
input schema(ta) is the union of the input schemata of 
the involved activities, minus the input schema of the 
second activity linked to the output of the first activity. 
Split requires that the originating activity is a merged 
one, like, for example, a+b+c.  In this case, the activity 
is split in two activities as (i) a and (ii) b+c.  

3.4. Correctness of the introduced transitions 

In this section, we prove the correctness of the 
transitions we introduce. In other words, we prove that 
whenever we apply a transition to a certain state of the 
problem, the derived state will produce exactly the 
same data with the originating one, at the end of its 
execution.  



 

There are more than one ways to establish the 
correctness of the introduced transitions. We have 
decided to pursue a black-box approach and in our 
setting, we annotate each activity with a predicate, set 
to true whenever the activity successfully completes its 
execution (i.e., it has processed all incoming data and 
passed to the following activity or recordset). 
Otherwise, the predicate is set to false. The predicate 
consists of a predicate name and a set of variables. We 
assume fixed semantics for each such predicate name. 
In other words, given a predicate $2€(COST) we 
implicitly know that the outgoing data fulfill a 
constraint that the involved variable (attribute COST) is 
transformed to Euros.  

Once a workflow has executed correctly, all the 
activities’ predicates are set to true. Within this 
framework, it is easy to check whether two workflows 
are equivalent: (a) they must produce data under the 
same schema and (b) they must produce exactly the 
same records (i.e., the same predicates are true) at the 
end of their execution. 

An obvious consideration involves the 
interpretation of the predicate in terms of the semantics 
it carries. Assume the function $2€ of Fig. 1 that is 
characterized by the post-condition $2€(COST). One 
would obviously wonder, why is it clear that we all 
agree to interpret the semantics of $2€ as the 
conversion of Dollars costs to Euros over the 
parameter variable (here, COST)? To tackle this 
problem, we build upon the work of [18], where 
template definitions are introduced for all the common 
categories of ETL transformations. In this case, every 
template has a “signature” (i.e., a parameter schema) 
and a set of well-defined semantics in LDL. For 
example, $2€(#vrbl1) is the definition of the post-
condition for $2€ function at the template level. In Fig. 
1 this is instantiated as $2€(COST), where COST 
materializes the #vrbl1. The scheme is extensible 
since, for any other, new activity, that the designer 
wishes to introduce, explicit LDL semantics can be 
also given. For our case, it is sufficient to employ the 
signature of the activity in a black box approach, both 
for template-based or individual activities. 

A second consideration would involve the 
commonly agreed upon semantics of variables. We 
tackle this problem by introducing the common 
scenario terminology Ωn, and the naming principle of 
Section 3.1. 

Next, we give the formal definitions of the activity 
and workflow post-conditions. 

Activity Predicate. Each activity or recordset is 
characterized by a logical post-condition, which we 
call activity predicate or activity post-condition, having 
as variables: (a) the attributes of the functionality 
schema in the case of activities or (b) the attributes of 
the recordset schema, in the case of recordsets. 

For each node n∈V of a workflow S = G(V,E) 
there is a predicate p that acts as post-condition condn 
for node n.  

p ≡ condn(#vrbl1,…,#vrblk,#vrblk+1,…,#vrblN) 

Since n∈V=A∪RS, we discern the following cases: 
1. n is a unary activity: the attributes of the 

functionality schema of the activity acting as the 
variables of the predicate. 
 {#vrbl1, …, #vrblN} = n.fun 

2. n is a binary activity: the attributes of the 
functionality schemata of both activities acting as 
the variables of the predicate. 
 {#vrbl1, …, #vrblk} = n.in1.fun 
 {#vrblk+1, …, #vrblN} = n.in2.fun 

3. n is a recordset: the attributes of the recordset 
acting as the variables of the predicate. 
Once all activities of a workflow are computed, 

there is a set of post-conditions which are set to true. 
Therefore, we can obtain an expression describing 
what properties are held by the data processed by the 
workflows, once the workflow is completed. 

Workflow post-condition. Each workflow is also 
characterized by a workflow post-condition, CondG, 
which is a Boolean expression formulated as a 
conjunction of the post-conditions of the workflow 
activities, arranged in the order of their execution (as 
provided by a topological sort). For example, in the 
workflow of Fig. 1, the workflow post-condition CondG 
is given by the following formula: 
CondG = PARTS1(PKEY,SOURCE,DATE,COST) ∧ 
PARTS2(PKEY,SOURCE,DATE,DEPT,COST) ∧ 
NN(COST) ∧ $2€(COST) ∧ A2E(DATE) ∧ 
γSUM(PKEY,SOURCE,DATE,€COST) ∧ U() ∧ 
σ(€COST)∧DW(PKEY,SOURCE,DATE,€COST)  

Now, we are ready to define when two workflows 
(states) are equivalent. Intuitively, this happens when 
(a) the schema of the data propagated to each target 
recordset is identical and (b) the post-conditions of the 
two workflows are equivalent. 

Equivalent workflows. Two workflows (i.e., 
states) G1 and G2 are equivalent when: 

a. the schema of the data propagated to each 
target recordset is identical 

b. CondG1 ≡ CondG2 



 

Finally, we can express the following theorems 
which guarantee that the state transitions that we have 
defined are correct, in the sense that they produce 
equivalent workflows (i.e., states). All proofs are found 
in [19]. 

Theorem 1:  Let a state S be a graph G=(V,E), 
where all activities have exactly one output and one 
consumer for each output schema. Let also a transition 
T derive a new state S’, i.e., a new graph 
G’=(V’,E’), affecting a set of activities GA⊂V∪V’. 
Then, the schemata for the activities of V-GA are the 
same with the respective schemata of V’-GA.             

Theorem 2. All transitions produce equivalent 
workflows.                                                                    

Having presented the theoretical setup of the 
problem of ETL optimization, we can now present the 
search algorithms that we propose for this problem.  

4. State space search based algorithms 

In this section, we present three algorithms towards 
the optimization of ETL processes: (a) an exhaustive 
algorithm, (b) a heuristic algorithm that reduces the 
search space and (c) a greedy version of the heuristic 
algorithm. Finally, we present our experimental results. 

4.1. Preliminaries 

In order to speed up the execution of algorithms, 
we need to be able to uniquely identify a state. 

State Identification. During the application of the 
transitions, we need to be able to discern states from 
one another, so that we avoid to generate (and compute 
the cost of) the same state more than once. In order to 
automatically derive activity identifiers for the full 
lifespan of the activities, we choose to assign each 
activity with its priority, as it stems from the 
topological ordering of the workflow graph, as given in 
its initial form. By making use of these unique 
identifiers, we create a string that characterizes each 
state and we name it the signature of the state. For 
example, the signature of the state depicted in Fig. 1 is 
((1.3)//(2.4.5.6)).7.8.9. 

Finally, note that the computation of the cost of 
each state in all algorithms is realized in a semi-
incremental way. That is, the variation of the cost from 
the state S to the state S’ can be determined by 
computing only the cost of the path from the affected 
activities towards the target in the new state and taking 
the difference between this cost and the respective cost 
in the previous state. 

4.2. Exhaustive and heuristic algorithms 

Exhaustive Search. In the exhaustive approach we 
generate all the possible states that can be generated by 
applying all the applicable transitions to every state. In 
general, we formalize the state space as a graph, where 
the nodes are states and the edges possible transitions 
from one state to another. 

The Exhaustive Search algorithm (ES) employs a 
set of unvisited nodes, which remain to be explored 
and a set of visited nodes that have already been 
explored. While there are still nodes to be explored, the 
algorithm picks an unvisited state and produces its 
children to be checked in the sequel. The search space 
is obviously finite and it is straightforward that the 
algorithm generates all possible states and then 
terminates. Afterwards, we search the visited states 
and we choose the one with the minimal cost as the 
solution of our problem. The formal definition of the 
Exhaustive algorithm can be found in [19]. 

Heuristic Search. In order to avoid exploring the 
full state space, we employ a set of heuristics, based on 
simple observations, common logic and on the 
definition of transitions. 

Heuristic 1. The definition of FAC indicates that it 
is not necessary to try factorizing all the activities of a 
state. Instead, a new state should be generated from an 
old one through a factorize transition (FAC) that 
involves only homologous activities and the respective 
binary one.  

Heuristic 2. The definition of DIS indicates that a 
new state should be generated from an old one through 
a distribute transition (DIS) that involves only 
activities that could be distributed and the respective 
binary one. Such activities are those that could be 
transferred in front of a binary activity. 

Heuristic 3. According to the reasons of the 
introduction of merge transition, it should be used 
where it is applicable, before the application of any 
other transition. This heuristic reduces the search 
space. 

Heuristic 4. Finally, we use a simple “divide and 
conquer” technique to simplify the problem. A state is 
divided in local groups, thus, each time optimization 
techniques are applied in a part of, instead on the 
whole, graph. 

 The input of the algorithm Heuristic Search (HS) 
(Fig. 7) is the initial workflow (state S0) and a list of 
merge constraints that are used at the pre-processing 
stage. Next, we present the various phases of this 
algorithm. 



 

Pre-processing (Ln: 4-8). First, all the activities 
that the workflow constraints indicate, are merged. 
Such constraints might be (a) the semantics of the 
individual activities, e.g., before the application of a 
surrogate key assignment, we must enrich the data with 
information about the respective source, and (b) user-
defined constraints, which capture the fact that a user 
may indicate that some activities should be merged in 
order to reduce the search space. Also, HS finds all the 
homologous (H) and distributable (D) activities of the 
initial state and then, it divides the initial state S0 in 
local groups (L) (having as borders the binary 
activities, e.g., join, difference, intersection, etc. and/or 
the recordsets of the state). 

Phase I (Ln: 9-13). In this phase, HS proceeds with 
all the possible swap transitions in each local group.  
Every time that HS meets a state with better cost than 
the minimum cost that already exists, it assigns it to 
SMIN. Note, that all local groups are part of the same 
state: S0; thus, the output of this phase is a state with a 
global minimum cost (concerning only the swap 
transitions).  

Phase II (Ln: 14-20). This phase checks for 
possible commutations between two adjacent local 
groups. For each pair of homologous activities of S0, it 
tests if both activities can be pushed to be adjacent to 
their next binary operator (function ShiftFrw()). 
Then, it applies factorization over the binary operator 
and the pairs of that satisfy the aforementioned 
condition. HS adds every new state to the visited list 
and keeps record of a state with a new minimum cost. 

Phase III (Ln: 21-28). HS searches every new state 
of Phase II for activities that could be distributed with 
binary operators (function ShiftBkw()). Obviously, it 
is not eligible to distribute again the activities that we 
factorize in Phase II; hence, HS uses the distributable 
activities of the initial state (D). Again, HS adds every 
new state to the visited list and keeps record of a 
state with a new minimum cost. 

Phase IV (Ln: 29-35). Intuitively, in the previous 
two phases, HS produces every possible local group, 
because in the lifetime of each local group there exist 
its original activities minus any activities that might be 
distributed to other local groups union any activities 
that might be factorized from other groups. In the forth 
phase, HS repeats Phase I in order to get all the 
possible states that could be produced with the 
application of the swap (SWA) transition in all the nodes 
that a local group can have. Of course, if it is 
necessary, HS updates SMIN. After the completion of the 
above phases, HS applies split (SPL) transitions in 

order to split all the activities that were merged during 
the pre-processing stage. The constraints for the SPL 
transition are reciprocal to the MER transition 
constraints. Finally, HS returns the state with the 
minimum cost. 

 

Algorithm Heuristic Search (HS) 
1. Input: An initial state S0, i.e., a graph G =(V,E) 

and a list of merge constraints merg_cons 
2. Output: A state SMIN having the minimal cost 
3. Begin 
4.  apply all MER according to merg_cons; 
5.  unvisited=∅; visited=∅; SMIN=S0; 
6.  H  FindHomologousActivities(S0); 
7.  D  FindDistributableActivities(S0); 
8.  L  FindLocalGroups(S0); 
9.  for each gi in L { 
10.    for each pair (ai,aj) in gi { 
11.      SNEW  SWA(ai,aj); 
12.      if (c(SNEW)<c(SMIN)) SMIN = SNEW; 
13.  }} 
14.  visited  SMIN; 
15.  for each pair (ai,aj) in H { 
16.    if ( (ShiftFrw(ai,ab)) and 

(ShiftFrw(ai,ab)) ) { 
17.      SNEW  FAC(ab,ai,aj); 
18.      if (c(SNEW)<c(SMIN)) SMIN = SNEW; 
19.      visited  SNEW; 
20.  }} 
21.  unvisited = visited; 
22.  for each Si in unvisited { 
23.    for each au in D { 
24.      if (ShiftBkw(au,ab)) { 
25.        SNEW  DIS(ab,au); 
26.        if (c(SNEW)<c(SMIN)) SMIN = SNEW; 
27.        visited  SNEW; 
28.  }}} 
29.  for each Si in visited { 
30.    L  FindLocalGroups(Si); 
31.    for each gi in L { 
32.      for each pair (ai,aj) in gi { 
33.        SNEW  SWA(ai,aj); 
34.        if (c(SNEW)<c(SMIN)) SMIN = SNEW; 
35.  }}} 
36.  apply all SPLs according to spl_cons; 
37.  return SMIN; 
38. End. 

Fig. 7. Algorithm Heuristic Search (HS) 

After each transition has taken place, the input and 
output schemata of each activity are automatically re-
generated (see [19]). We assign a unique signature to 
each state; thus, the two lists visited and 
unvisited do not allow the existence of duplicate 



 

states. Obviously, due to the finiteness of the state 
space and the identification of states, the algorithm 
terminates. 

HS-Greedy. One could argue that Phase I seems to 
overcharge HS, considering its repetition in Phase IV. 
Experiments have shown that the existence of the first 
phase leads to a much better solution without 
consuming too many resources. Also, a slight change 
in Phase I (and respectively in Phase IV) of HS 
improves its performance. In particular, if, instead of 
swapping all pairs of activities for each local group, 
HS swaps only those that lead to a state with less cost 
that the existing minimum, then HS becomes a greedy 
algorithm: HS-Greedy.  

Experimental results. In order to validate our 
method, we implemented the proposed algorithms in 
C++ and experimented on the variation of measures 
like time, volume of visited states, and improvement of 
the solution and the quality of the proposed workflow. 
We have used a simple cost model taking into 
consideration only the number of processed rows based 
on simple formulae [15] and assigned selectivities for 
the involved activities. As test cases, we have used 40 
different ETL workflows categorized as small, 
medium, and large, involving a range of 15 to 70 
activities. All experiments were run on an AthlonXP 
machine running at 1.4GHz with 768Mb RAM. As 
expected, in all cases, the ES algorithm was slower 
compared to the other two, and in most cases it could 
not terminate due to the exponential size of the search 
space. As a threshold, in most cases, we let ES run up 
to 40 hours. Thus, we did not get the optimal solution 
for all the test cases, and consequently, for medium and 
large cases we compare (quality of solution) the best 
solution of HS and HS-Greedy to the best solution that 
ES has produced when it stopped (Table 1). Table 2 
depicts the number of visited states for each algorithm, 
the execution time of the algorithm and the percentage 
of improvement for each algorithm compared with the 
cost of the initial state. 

We note that for small workflows, HS provides the 
optimal solution according to ES. Also, although both 
HS and HS-Greedy provide solutions of approximately 
the same quality, HS-Greedy was faster at least 86% 
(average value was 92%). For medium ETL 
workflows, HS finds better solution than HS-Greedy 
(in a range of 13-38%). On the other hand, HS-Greedy 
is a lot faster than HS, while the solution that it 
provides could be acceptable. In large test cases, HS 
proves that it has an advantage because it returns 
workflows with improved cost over 70% of the cost of 

the initial state; while HS-Greedy returns “unstable” 
results in a low average value of 47%.  

Table 1. Quality of solution 

workflow
category 

ES 
quality of 

solution % 
(avg) 

HS 
quality of 

solution % 
(avg) 

HS-Greedy 
quality of 

solution % 
(avg) 

small 100 100 99 

medium - 99* 86* 

large - 98* 62* 
* The values are compared to the best of ES when it 
stopped. 

The time needed for the execution of the 
algorithms is satisfactory compared to the time we 
will earn from the execution of the optimized 
workflow, given that usual ETL workflows run into 
a whole night time window. For example, the 
average worst case of the execution of HS for large 
scenarios is approximately 35 minutes, while the 
gain from the execution of the proposed workflow 
outreaches a percentage of 70%.  

5. Related work 

There exists a variety of ETL tools in the market; 
we mention a recent review [6] and several commercial 
tools [9], [10], [13], [14]. Although these tools offer 
GUI’s to the developer, along with other facilities, the 
designer is not supported in his task with any 
optimization tools. Therefore, the design process deals 
with this issue in an ad-hoc manner. Research efforts 
also exist in the ETL area, including [4], [3], [5], [12]. 
Also, we mention three research prototypes: (a) AJAX 
[7], (b) Potter’s Wheel [17], and ARKTOS II [18]. The 
first two prototypes are based on algebras, which we 
find mostly tailored for the case of homogenizing web 
data; the latter concerns the modeling of ETL 
processes in a customizable and extensible manner. To 
our knowledge, no work in the area of ETL has dealt 
with optimization issues so far. 

  In a similar setting, research has provided results 
for the problem of stream management [1], [2]. 
Techniques used in the area of stream management, 
which construct and optimize plans on-the-fly, come 
the closest that we know of to the optimization style 
that we discuss in the context of ETL. Nevertheless, 
stream management techniques are not directly 
applicable to typical ETL problems (a) due to the fact 
that real time replication is not always applicable to 
legacy systems and (b) pure relational querying, as 
studied in the field of stream management is not 
sufficient for ETL purposes.  



 

Table 2. Execution time, number of visited states and improvement wrt initial state 

type of workflow ES HS HS-Greedy 

category 
volume of 

activities (avg) 

visited 
states 
(avg) 

improve
ment % 

(avg) 

time 
sec 

(avg) 

visited 
states 
(avg) 

improve
ment % 

(avg) 

time 
sec 

(avg) 

visited 
states 
(avg) 

improve
ment % 

(avg) 

time 
sec 

(avg) 
small 20 28410 78 67812 978 78 297 72 76 7 
medium 40 45110* 52* 144000* 4929 74 703 538 62 87 
large 70 34205* 45* 144000* 14100 71 2105 1214 47 584 
* The algorithm did not terminate. The depicted values refer to the status of the ES when it stopped. 

 

6. Conclusions and future work 

In this paper, we have concentrated on the problem 
of optimizing ETL workflows. We have set up the 
theoretical framework for the problem, by modeling 
the problem as a state space search problem, with each 
state representing a particular design of the workflow 
as a graph. Since the problem is modeled as a state 
space search problem, we have defined transitions 
from one state to another. We have also made a 
thorough discussion on the issues of state generation, 
correctness and transition applicability. Finally, we 
have presented search algorithms. Experimental results 
on these algorithms suggest that the benefits of our 
method can be significant.  

Several research issues are left open, such as the 
physical optimization of ETL workflows, (i.e., taking 
physical operators and access methods into 
consideration) or the impact analysis of changes and 
failures in the workflow environment that we describe.  
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