

Optimizing ETL Processes in Data Warehouses

Alkis Simitsis
Nat. Tech. Univ. of Athens
asimi@dbnet.ece.ntua.gr

Panos Vassiliadis
University of Ioannina

pvassil@cs.uoi.gr

Timos Sellis
Nat. Tech. Univ. of Athens
timos@dbnet.ece.ntua.gr

Abstract

Extraction-Transformation-Loading (ETL) tools
are pieces of software responsible for the extraction of
data from several sources, their cleansing,
customization and insertion into a data warehouse.
Usually, these processes must be completed in a
certain time window; thus, it is necessary to optimize
their execution time. In this paper, we delve into the
logical optimization of ETL processes, modeling it as a
state-space search problem. We consider each ETL
workflow as a state and fabricate the state space
through a set of correct state transitions. Moreover, we
provide algorithms towards the minimization of the
execution cost of an ETL workflow.

1. Introduction

For quite a long time in the past, research has
treated data warehouses as collections of materialized
views. Although this abstraction is elegant and
possibly sufficient for the purpose of examining
alternative strategies for view maintenance, it is not
enough with respect to mechanisms that are employed
in real-world settings. Indeed, in real-world data
warehouse environments, instead of automated
mechanisms for the refreshment of materialized views,
the execution of operational processes is employed in
order to export data from operational data sources,
transform them into the format of the target tables and
finally, load them to the data warehouse. The category
of tools that are responsible for this task is generally
called Extraction-Transformation-Loading (ETL)
tools. The functionality of these tools can be coarsely
summarized in the following prominent tasks, which
include: (a) the identification of relevant information at
the source side; (b) the extraction of this information;
(c) the customization and integration of the information
coming from multiple sources into a common format;
(d) the cleaning of the resulting data set, on the basis of
database and business rules, and (e) the propagation of
the data to the data warehouse and/or data marts.

So far, research has only partially dealt with the
problem of designing and managing ETL workflows.

Typically, research approaches concern (a) the
optimization of stand-alone problems (e.g., the
problem of duplicate detection [16]) in an isolated
setting and (b) problems mostly related to web data
(e.g., [7]). Recently, research on data streams [1], [2]
has brought up the possibility of giving an alternative
look to the problem of ETL. Nevertheless, for the
moment research in data streaming has focused on
different topics, such as on-the-fly computation of
queries [1], [2]. To our knowledge, there is no
systematic treatment of the problem, as far as the
problem of the design of an optimal ETL workflow is
concerned.

On the other hand, leading commercial tools [9],
[10], [13], [14] allow the design of ETL workflows,
but do not use any optimization technique. The
designed workflows are propagated to the DBMS for
execution; thus, the DBMS undertakes the task of
optimization. Clearly, we can do better than this,
because, an ETL process cannot be considered as a
“big” query. Instead, it is more realistic to treat an ETL
process as a complex transaction. In addition, in an
ETL workflow, there are processes that run in separate
environments, usually not simultaneously and under
time constraints.

One could argue that we can possibly express all
ETL operations in terms of relational algebra and then
optimize the resulting expression as usual. In this paper
we demonstrate that the traditional logic-based
algebraic query optimization can be blocked, basically
due to the existence of data manipulation functions.
Consider the example of Fig. 1 that describes the
population of a table of a data warehouse DW from two
source databases S1 and S2. In particular, it involves
the propagation of data from the recordset
PARTS1(PKEY,SOURCE,DATE,COST) of source S1
that stores monthly information, as well as from the
recordset PARTS2(PKEY,SOURCE,DATE,DEPT,

COST) of source S2 that stores daily information. In
the DW, PARTS(PKEY,SOURCE,DATE,COST) stores
monthly information for the cost in Euros (COST) of
parts (PKEY) per source (SOURCE). We assume that
both the first supplier and the data warehouse are
European and the second is American; thus, the data

"This is the authors' version of the work. It is posted here by permission of IEEE for your
personal use. Not for redistribution. The definitive version was published in ICDE 2005"

coming from the second source need to be converted to
European values and formats.

Figure 1. A simple ETL workflow

In Fig. 1, activities are numbered with their

execution priority and tagged with the description of
their functionality. The flow for source S1 is: (3) a
check for Not Null values is performed on attribute
COST. The flow for source S2 is: (4) Dollar costs
($COST) are converted to Euros (€COST); (5) dates
(DATE) are converted from American to European
format; (6) an aggregation for monthly supplies is
performed and the unnecessary attribute DEPT (for
department) is discarded from the flow. The two flows
are then unified (7) and before being loaded to the
warehouse, a final check is performed on the €COST
attribute (8), ensuring that only values above a certain
threshold are propagated to the warehouse.

There are several interesting problems and
optimization opportunities in the example of Fig. 1:
- Traditional query optimization techniques should

be directly applicable. For example, it is desirable
to push selections all the way to the sources, in
order to avoid processing unnecessary rows.

- Is it possible to push the selection for values above
a certain threshold early enough in the workflow?
As far as the flow for source PARTS1 is concerned,
this is straightforward (exactly as in the relational
sense). On the other hand, as far as the second
flow is concerned, the selection should be
performed after the conversion of dollars to Euros.
In other words, the activity performing the
selection cannot be pushed before the activity
applying the conversion function.

- Is it possible to perform the aggregation, before
the transformation of American values to
Europeans? In principle, this should be allowed to
happen, since the dates are kept in the resulting
data and can be transformed later. In this case, the
aggregation operations can be pushed, before the
function (as opposed to the previous case).

- How can we deal with naming problems?
PARTS1.COST and PARTS2.COST are homonyms,
but they do not correspond to the same entity (the
first is in Euros and the second in Dollars).
Assuming that the transformation $2€ produces
the attribute €COST, how can we guarantee that
corresponds to the same real-world entity with
PARTS1.COST?

Figure 2. An equivalent ETL workflow

In Fig. 2, we can see how the workflow of Fig. 1
can be transformed in an equivalent workflow
performing the same task. The selection on Euros has
been propagated to both branches of the workflow so
that low values are pruned early. Still, we cannot push
the selection, neither before the transformation $2€,
nor before the aggregation. At the same time, there was
a swapping between the aggregation and the DATE
conversion function (A2E). In summary, the two main
problems that can be highlighted in this setting are (a)
to determine which operations over the workflow are
legal and (b) to determine the best workflow
configuration in terms of performance gains.

We take a novel approach to the problem by taking
into consideration the aforementioned peculiarities.
Moreover, we employ a workflow paradigm for the
modeling of ETL processes, i.e., we do not strictly
require that an activity outputs data to some persistent
data store, but rather, activities are allowed to output
data to one another. In such a context, I/O
minimization is not the primary problem. In this paper,
we focus on the optimization of the process in terms of
logical transformations of the workflow. To this end,
we devise a method based on the specifics of an ETL
workflow that can reduce its execution cost by
changing either the total number or the execution order
of the processes. Our contributions can be listed as
follows:
- We set up the theoretical framework for the

problem, by modeling the problem as a state space
search problem, with each state representing a
particular design of the workflow as a graph. The
nodes of the graph represent activities and data

stores and the edges capture the flow of data among
the nodes.

- Since the problem is modeled as a state space
search problem, we define transitions from one
state to another that extend the traditional query
optimization techniques. We prove the correctness
of the introduced transitions. We also provide
details on how states are generated and the
conditions under which transitions are allowed.

- Finally, we provide algorithms towards the
optimization of ETL processes. First, we use an
exhaustive algorithm to explore the search space in
its entirety and to find the optimal ETL workflow.
Then we introduce greedy and heuristic search
algorithms to reduce the search space that we
explore, and demonstrate the efficiency of the
approach through a set of experimental results.
The rest of this paper is organized as follows.

Section 2 presents a formal statement for our problem
as a state space search problem. In Section 3 we
discuss design issues and correctness of our setting. In
Section 4, we present algorithms for the optimization
the ETL processes, along with experimental results. In
Section 5 we present related work. Finally, in Section 6
we conclude with our results and discuss topics of
future research. A long version of the paper, with all
the proofs is found at [19].

2. Formal Statement of the problem

In this section, we show how the ETL optimization
problem can be modeled as a state space search
problem. First, we give a formal definition of the
constituents of an ETL workflow and we describe the
states. Then, we define a set of transitions that can be
applied to the states in order to produce the search
space. Finally, we formulate the problem of the
optimization of an ETL workflow.

2.1. Formal definition of an ETL workflow

An ETL workflow is modeled as a directed acyclic
graph. The nodes of the graph comprise activities and
recordsets. A recordset is any data store that can
provide a flat record schema (possibly through a
gateway/wrapper interface); in the rest of this paper,
we will mainly deal with the two most popular types of
recordsets, namely relational tables and record files.
The edges of the graph denote data provider (or
input/output) relationships: an edge going out of a
node n1 and into a node n2 denotes that n2 receives data
from n1 for further processing. In this setting, we will
refer to n1 as the data provider and n2 as the data

consumer. The graph uniformly models situations
where (a) both providers are activities (combined in a
pipelined fashion) or (b) activities interact with
recordsets, either as data providers or data consumers.

Each node is characterized by one or more
schemata, i.e., finite lists of attributes. Whenever a
schema is acting as a data provider for another schema,
we assume a one-to-many mapping between the
attributes of the two schemata (i.e., one provider
attribute can possibly populate more than one
consumers while a consumer attribute can only have
one provider). Recordsets have only one schema,
whereas activities have at least two (input and output).
Intuitively, an activity comprises a set of input
schemata, responsible for bringing the records to the
activity for processing and one or more output
schemata responsible for pushing the data to the next
data consumer (activity or recordset). An activity with
one input schema is called unary, and an activity with
two input schemata is called binary.

Formally, an activity is a quadruple A=(Id,I,O,S),
such that: (a) Id is a unique identifier for the activity;
(b) I is a finite set of one or more input schemata,
receiving data from the data providers of the activity;
(c) O is a finite set of one or more output schemata that
describe the placeholders for the rows that are
processed by the activity; and (d) S is one or more
expressions in relational algebra (extended with
functions) characterizing the semantics of the data flow
for each of the output schemata. This can be one
expression per output schema or a more complex
expression involving intermediate results too.

In our approach, we will model an ETL workflow
as a graph. Assume a finite list of activities A, a finite
set of recordsets RS, and a finite list of provider
relationships Pr.

Formally, an ETL Workflow is a directed acyclic
graph (DAG), G(V,E) such that V=A∪RS and E=Pr.

A subset of RS, denoted by RSS, contains the
sources of the graph (i.e., the source recordsets) and
another subset of RS, denoted by RST, contains the
sinks of the graph (representing the final target
recordsets of the warehouse). G(V,E) can be
topologically ordered, therefore a unique execution
priority can be assigned to each activity as its unique
identifier.

Finally, all activities of the workflow should have a
provider and a consumer (either another activity or a
recordset). Each input schema has exactly one provider
(many providers for the same consumer are captured
by UNION activities).

Figure 3. Abstract examples of transitions

2.2. The problem of ETL workflow optimization

We model the problem of ETL optimization as a
state space search problem.

States. Each state S is a graph as described in
Section 2.1, i.e. states are ETL workflows; therefore,
we will use the terms ‘state’ and ‘ETL workflow’
interchangeably.

Transitions. Transitions T are used to generate
new, equivalent states. In our context, equivalent states
are assumed to be states that based on the same input
produce the same output. Practically, this is achieved
in the following way:
(a) by transforming the execution sequence of the

activities of the state, i.e., by interchanging two
activities of the workflow in terms of their
execution sequence;

(b) by replacing common tasks in parallel flows with
an equivalent task over a flow to which these
parallel flows converge;

(c) by dividing tasks of a joint flow to clones applied
to parallel flows that converge towards the joint
flow.

Next, we introduce a set of logical transitions that
we can apply to a state. We use the notation S΄= T(S)
to denote the transition T from a state S to a state S’.
The introduced transitions include:
- Swap. This transition can be applied to a pair of

unary activities a1 and a2 and interchange their
sequence, i.e., we swap the position of the two
activities in the graph (see Fig. 3a). Swap concerns
only unary activities, e.g., selection, checking for
nulls, primary key violation, projection, function
application, etc. We denote this transition as
SWA(a1,a2).

- Factorize and Distribute. These operations involve
the interchange of a binary activity, e.g., union,
join, difference, etc., and at least two unary
activities that have the same functionality, but are

applied over different data flows that converge
towards the involved binary activity. This is
illustrated in Fig. 3b. In the upper part, the two
activities a1 and a2 have the same functionality, but
they are applied to different data flows that
converge towards the binary activity ab. The
Factorize transition replaces the two activities a1
and a2 with a new one, a, which is placed right
after ab. Factorize and Distribute are reciprocal
transitions. If we have two activities that perform
the same operation to different data flows, which
are eventually merged, we can apply Factorize in
order to perform the operation only to the merged
data flow. Similarly, if we have an activity that
operates over a single data flow, we can distribute it
to different data flows. One can notice that
Factorize and Distribute essentially model
swapping between unary and binary activities. We
denote Factorize and Distribute transitions as
FAC(ab,a1,a2) and DIS(ab,a) respectively.

- Merge and Split. We use these two transitions to
“package” and “unpackage” a pair of activities
without changing their semantics. Merge indicates
that some activities have to be grouped according to
the constraints of the ETL workflow; thus, for
example, a third activity may not be placed
between the two, or these two activities cannot be
commuted. Split indicates that a pair of grouped
activities can be ungrouped; e.g., when the
application of the transitions has finished, we can
ungroup any grouped activities. The benefit is that
the search space is proactively reduced without
sacrificing any of the design requirements. Merge
transition is denoted as MER(a1+2,a1,a2) and split
transition is denoted as SPL(a1+2,a1,a2).
The reasoning behind the introduction of the

transitions is quite straightforward.
- Merge and split are designated by the needs of

ETL design as already described.

(a) Swap (b) Factorize and Distribute (c) Merge and Split

- Swapping allows highly selective activities to be
pushed towards the beginning of the workflow, in
a meaning similar to the case of traditional query
optimization.

- Factorization allows the exploitation of the fact
that a certain operation is performed only once (in
the merged workflow) instead of twice (in the
converging workflows). For example, if an activity
can cache data (like in the case of surrogate key
assignment, where the lookup table can be
cached), such a transformation can be beneficial.
On the other hand, distributing an activity in two
parallel branches can be beneficial in the case
where the activity is highly selective and is pushed
towards the beginning of the workflow. Observe
Fig. 4. Consider a simple cost model that takes
into account only the number of processed rows in
each process. Also, consider an input of 8 rows in
each flow, and selectivities equal to 50% for
process σ and 100% for the rest processes. Given
nlog2n and n as the cost formulae for SK and σ
respectively (for simplicity, we ignore the cost of
U), the total costs for the three cases are:
c1=2nlog2n+n=56, c2=2(n+(n/2)log2(n/2))
=32, c3=2n+(n/2)log2(n/2)=24. Thus, DIS
(case 2) and FAC (case 3) can reduce the cost of a
state.

Figure 4. Factorization benefits

Due to lack of space we omit the details regarding
the formal definitions of the above transitions. The
interested reader is referred to the long version of the
paper [19].

So far, we have demonstrated how to model each
ETL workflow as a state and how to generate the state
space through a set of appropriate transformations
(transitions). Naturally, in order to choose the optimal
state, the problem requires a convenient discrimination
criterion.

Such a criterion is a cost model. Given an activity
a, let c(a) denote its cost (possibly depending not
only on the cost model, but also on its position in the
workflow graph). Then, the total cost of a state is
obtained by summarizing the costs of all its activities.
The total cost C(S) of a state S is given by the next
formula:

C(S) =
n

i 1=
Σ c(ai)

The problem of the optimization of an ETL
workflow involves the discovery of a state SMIN, such
that C(SMIN) is minimal.

In the literature [8], [11], [15] there exists a variety
of cost models for query optimization. Our approach is
general in that it is not in particular dependent on the
cost model chosen.

3. State generation, transition
applicability and corrrectness

In this section, we will deal with several non-trivial
issues in the context of our modeling for the
optimization of ETL processes as a state space search
problem. We consider equivalent states as workflows
that, based on the same input, produce the same output.
To deal with this condition, we will first discuss in
detail how states are generated and then we will deal
with the problem of transition applicability.

3.1. Naming principle

As we have already seen in the introduction, an
obvious problem for the optimization of ETL
workflows is that different attributes names do not
always correspond to different entities of the real world
and vice versa.

To handle this problem, we resort to a simple
naming principle: (a) all synonyms refer to the same
entity of the real world, and (b) all different attribute
names, at the same time, refer to different things in the
real world. Since it is possible that the employed
recordsets violate this principle, we map the original
attribute names of the involved recordsets to a set of
reference attribute names that do not suffer from this
problem. Formally, we introduce:
(a) a set of reference attribute names at the conceptual

level, i.e., a finite set of unique attribute names Ωn,
and a mapping of each attribute of the workflow to
this set of attribute names;

(b) a simple naming principle: all synonymous
attributes are semantically related to the same
attribute name in Ωn; no other mapping to the same
attribute is allowed.
In the example of Fig. 1, we can employ the same

reference attribute name for both American and
European dates, since we will treat them equivalently
as groupers. At the same time, COST attributes,
expressed in Dollars and in Euros should be mapped in
different reference attributes (due to the presence of the
selection predicate on Euros). In the sequel, we will

employ only reference attribute names in our
discussions.

3.2. Issues around activity schemata

In [18] we have presented a set of template
activities for the design of ETL workflows. Each
template in this library has predefined semantics and a
set of parameters that tune its functionality: for
example, when the designer of a workflow materializes
a Not Null template he/she must specify the attribute
over which the check is performed. In order to
construct a certain ETL workflow, the designer must
specify the input and output schemata of each activity
and the respective set of parameters. Although this is a
manual procedure, in the context of this paper, the
different states are automatically constructed;
therefore, the generation of the input and output
schemata of the different activities must be automated,
too. For lack of space, the automation of this procedure
is presented in the long version of the paper [19].

For the purpose of state transitions, (e.g., swapping
activities), apart from the input and output schemata,
each activity is characterized by the following
schemata:
1. Functionality (or necessary) schema. This schema

is a list of attributes, being a subset of (the union
of) the input schema(ta), denoting the attributes
which take part in the computation performed by
the activity. For example, an activity having as
input schema si=[A,B,C,D] and performing a Not
Null(B) operation, has a functionality schema sf
=[B].

2. Generated schema. This schema involves all the
output attributes being generated due to the
processing of the activities. For example, a
function-based activity $2€ converting an attribute
dollar_cost to Euros, i.e., euro_cost =
$2€(dollar_cost), has a generated schema sg=
[euro_cost]. Filters have an empty generated
schema.

3. Projected-out schema. A list of attributes,
belonging to the input schema(ta), not to be
propagated further from the activity. For example,
once a surrogate key transformation is applied, we
propagate data with their new, generated surrogate
key (belonging to the generated schema) and we
project out their original production key (belonging
to the projected-out schema).
These auxiliary schemata are provided at the

template level. In other words, the designer of the
template library can dictate in advance, (a) which are

the parameters for the activity (functionality schema)
and (b) which are the new or the non-necessary
attributes of the template. Then, these attributes are
properly instantiated at the construction of the ETL
workflow.

Local Groups. A local group is a subset of the
graph (state), the elements of which form a linear path
of unary activities. In the example of Fig. 1, the local
groups of the state are {3}, {4,5,6} and {8}.

Homologous Activities. Also, we introduce the
notion of homologous activities to capture the cases of
activities. Two activities are homologous if: (a) they
are found in converging local groups; (b) they have the
same semantics (as an algebraic expression); (c) they
have the same functionality, generated and projected-
out schemata.

3.3. Transition applicability

In this subsection, we define the rules which allow
or prohibit the application of a transformation to a
certain state.

Swap. One would normally anticipate that
swapping is already covered by traditional query
optimization techniques. Still, this is not true: on the
contrary, we have observed that the swapping of
activities deviates from the equivalent problem of
“pushing operators downwards”, as we normally do in
the execution plan of a relational query. The major
reason for this deviation is the presence of functions,
which potentially change the semantics of attributes.
Relational algebra does not provide any support for
functions; still, the “pushing” of activities should be
allowed in some cases, whereas, in some others, it
should be prevented.

Remember the two cases from the introductory
example of Fig. 1 and 2. It is not allowed to push
selection on Euros before their transformation and
aggregation. On the contrary, it should be permitted to
push the aggregation on DATE before a function
transforming the DATE from American to European
format.

Formally, we allow the swapping of two activities
a1 and a2 if the following conditions hold:
1. a1 and a2 are adjacent in the graph (without loss of

generality assume that a1 is a provider for a2)
2. both a1 and a2 have a single input and output

schemata and their output schema has exactly one
consumer

3. the functionality schema of a1 and a2 is a subset of
their input schema (both before and after the
swapping)

4. the input schemata of a1 and a2 are subsets of their
providers, again both before and after the swapping
Conditions (1) and (2) are simply measures to

eliminate the complexity of the search space and the
name generation. The other two conditions though,
cover two possible problems. The first problem is
covered by condition (3). Observe Fig. 5, where
activity $2€ transforms Dollars to Euros and has an
input attribute named dollar_cost, a functionality
schema that contains dollar_cost and an output
attribute named euro_cost. Activity σ(€), at the same
time, is specifically containing attribute euro_cost in its
functionality schema (e.g., it selects all costs above
100€). When a swapping has to be performed and
activity σ(€) is put in advance of activity $2€, the
swapping will be rejected.

The guard of condition (3) can be easily
compromised if the designer uses the same name for
the attributes of the functionality schemata of activities
$2€ and σ(€). For example, if instead of dollar_cost
and euro_cost, the designer used the name cost, then
condition (3) would not fire. To handle this problem,
we exploit the usage of the naming principle described
in subsection 3.1.

Figure 5. Necessity for swap-condition (3)

πout(2) A1

1 1 1 111
2 2 2 2

a1a2

Fig. 6. Necessity for swap-condition (4)

The second problem, confronted by condition (4) is
simpler. Assume that activity a2 is a πout (projected-

out) activity, rejecting an attribute at its output schema
(Fig. 6). Then, swapping will produce an error, since
after the swapping takes place, the rejected attribute in
the input schema of activity a1 (now a consumer of a2)
will not have a provider attribute in the output schema
of a1.

Factorize/Distribute. We factorize two
homologous activities a1 and a2, if we replace them by
a new activity a that does the same job to their
combined flow. Formally, the conditions governing
factorization are as follows:
1. a1 and a2 have the same operation in terms of

algebraic expression; the only thing that differs is
their input (and output) schemata

2. a1 and a2 have a common consumer, say ab, which
is a binary operation (e.g., union, difference, etc.)
Obviously, a1 and a2 are removed from the graph

and replaced by a new activity a, following ab. In other
words, each edge (x,a1) and (x,a2) becomes
(x,ab) for any node x, edges (a1,ab) and (a2,ab)
are removed, the nodes a1 and a2 are removed, a node
a is added, the edge (ab,a) is added and any edge
(ab,y) is replaced by (a,y) for any node y.

The distribution is governed by similar laws; an
activity a can be cloned in two paths if:
1. a binary activity ab is the provider of a and two

clones, activities a1 and a2 are generated for each
path leading to ab

2. a1 and a2 have the same operation in terms of
algebraic expression with a
Naturally, a is removed from the graph. The node

and edge manipulation are the inverse from the ones of
factorize.

Merge/Split. Merge does not impose any
significant problems: the output schema of the new
activity is the output of the second activity and the
input schema(ta) is the union of the input schemata of
the involved activities, minus the input schema of the
second activity linked to the output of the first activity.
Split requires that the originating activity is a merged
one, like, for example, a+b+c. In this case, the activity
is split in two activities as (i) a and (ii) b+c.

3.4. Correctness of the introduced transitions

In this section, we prove the correctness of the
transitions we introduce. In other words, we prove that
whenever we apply a transition to a certain state of the
problem, the derived state will produce exactly the
same data with the originating one, at the end of its
execution.

There are more than one ways to establish the
correctness of the introduced transitions. We have
decided to pursue a black-box approach and in our
setting, we annotate each activity with a predicate, set
to true whenever the activity successfully completes its
execution (i.e., it has processed all incoming data and
passed to the following activity or recordset).
Otherwise, the predicate is set to false. The predicate
consists of a predicate name and a set of variables. We
assume fixed semantics for each such predicate name.
In other words, given a predicate $2€(COST) we
implicitly know that the outgoing data fulfill a
constraint that the involved variable (attribute COST) is
transformed to Euros.

Once a workflow has executed correctly, all the
activities’ predicates are set to true. Within this
framework, it is easy to check whether two workflows
are equivalent: (a) they must produce data under the
same schema and (b) they must produce exactly the
same records (i.e., the same predicates are true) at the
end of their execution.

An obvious consideration involves the
interpretation of the predicate in terms of the semantics
it carries. Assume the function $2€ of Fig. 1 that is
characterized by the post-condition $2€(COST). One
would obviously wonder, why is it clear that we all
agree to interpret the semantics of $2€ as the
conversion of Dollars costs to Euros over the
parameter variable (here, COST)? To tackle this
problem, we build upon the work of [18], where
template definitions are introduced for all the common
categories of ETL transformations. In this case, every
template has a “signature” (i.e., a parameter schema)
and a set of well-defined semantics in LDL. For
example, $2€(#vrbl1) is the definition of the post-
condition for $2€ function at the template level. In Fig.
1 this is instantiated as $2€(COST), where COST
materializes the #vrbl1. The scheme is extensible
since, for any other, new activity, that the designer
wishes to introduce, explicit LDL semantics can be
also given. For our case, it is sufficient to employ the
signature of the activity in a black box approach, both
for template-based or individual activities.

A second consideration would involve the
commonly agreed upon semantics of variables. We
tackle this problem by introducing the common
scenario terminology Ωn, and the naming principle of
Section 3.1.

Next, we give the formal definitions of the activity
and workflow post-conditions.

Activity Predicate. Each activity or recordset is
characterized by a logical post-condition, which we
call activity predicate or activity post-condition, having
as variables: (a) the attributes of the functionality
schema in the case of activities or (b) the attributes of
the recordset schema, in the case of recordsets.

For each node n∈V of a workflow S = G(V,E)
there is a predicate p that acts as post-condition condn
for node n.

p ≡ condn(#vrbl1,…,#vrblk,#vrblk+1,…,#vrblN)

Since n∈V=A∪RS, we discern the following cases:
1. n is a unary activity: the attributes of the

functionality schema of the activity acting as the
variables of the predicate.
 {#vrbl1, …, #vrblN} = n.fun

2. n is a binary activity: the attributes of the
functionality schemata of both activities acting as
the variables of the predicate.
 {#vrbl1, …, #vrblk} = n.in1.fun
 {#vrblk+1, …, #vrblN} = n.in2.fun

3. n is a recordset: the attributes of the recordset
acting as the variables of the predicate.
Once all activities of a workflow are computed,

there is a set of post-conditions which are set to true.
Therefore, we can obtain an expression describing
what properties are held by the data processed by the
workflows, once the workflow is completed.

Workflow post-condition. Each workflow is also
characterized by a workflow post-condition, CondG,
which is a Boolean expression formulated as a
conjunction of the post-conditions of the workflow
activities, arranged in the order of their execution (as
provided by a topological sort). For example, in the
workflow of Fig. 1, the workflow post-condition CondG
is given by the following formula:
CondG = PARTS1(PKEY,SOURCE,DATE,COST) ∧
PARTS2(PKEY,SOURCE,DATE,DEPT,COST) ∧
NN(COST) ∧ $2€(COST) ∧ A2E(DATE) ∧
γSUM(PKEY,SOURCE,DATE,€COST) ∧ U() ∧
σ(€COST)∧DW(PKEY,SOURCE,DATE,€COST)

Now, we are ready to define when two workflows
(states) are equivalent. Intuitively, this happens when
(a) the schema of the data propagated to each target
recordset is identical and (b) the post-conditions of the
two workflows are equivalent.

Equivalent workflows. Two workflows (i.e.,
states) G1 and G2 are equivalent when:

a. the schema of the data propagated to each
target recordset is identical

b. CondG1 ≡ CondG2

Finally, we can express the following theorems
which guarantee that the state transitions that we have
defined are correct, in the sense that they produce
equivalent workflows (i.e., states). All proofs are found
in [19].

Theorem 1: Let a state S be a graph G=(V,E),
where all activities have exactly one output and one
consumer for each output schema. Let also a transition
T derive a new state S’, i.e., a new graph
G’=(V’,E’), affecting a set of activities GA⊂V∪V’.
Then, the schemata for the activities of V-GA are the
same with the respective schemata of V’-GA. 

Theorem 2. All transitions produce equivalent
workflows. 

Having presented the theoretical setup of the
problem of ETL optimization, we can now present the
search algorithms that we propose for this problem.

4. State space search based algorithms

In this section, we present three algorithms towards
the optimization of ETL processes: (a) an exhaustive
algorithm, (b) a heuristic algorithm that reduces the
search space and (c) a greedy version of the heuristic
algorithm. Finally, we present our experimental results.

4.1. Preliminaries

In order to speed up the execution of algorithms,
we need to be able to uniquely identify a state.

State Identification. During the application of the
transitions, we need to be able to discern states from
one another, so that we avoid to generate (and compute
the cost of) the same state more than once. In order to
automatically derive activity identifiers for the full
lifespan of the activities, we choose to assign each
activity with its priority, as it stems from the
topological ordering of the workflow graph, as given in
its initial form. By making use of these unique
identifiers, we create a string that characterizes each
state and we name it the signature of the state. For
example, the signature of the state depicted in Fig. 1 is
((1.3)//(2.4.5.6)).7.8.9.

Finally, note that the computation of the cost of
each state in all algorithms is realized in a semi-
incremental way. That is, the variation of the cost from
the state S to the state S’ can be determined by
computing only the cost of the path from the affected
activities towards the target in the new state and taking
the difference between this cost and the respective cost
in the previous state.

4.2. Exhaustive and heuristic algorithms

Exhaustive Search. In the exhaustive approach we
generate all the possible states that can be generated by
applying all the applicable transitions to every state. In
general, we formalize the state space as a graph, where
the nodes are states and the edges possible transitions
from one state to another.

The Exhaustive Search algorithm (ES) employs a
set of unvisited nodes, which remain to be explored
and a set of visited nodes that have already been
explored. While there are still nodes to be explored, the
algorithm picks an unvisited state and produces its
children to be checked in the sequel. The search space
is obviously finite and it is straightforward that the
algorithm generates all possible states and then
terminates. Afterwards, we search the visited states
and we choose the one with the minimal cost as the
solution of our problem. The formal definition of the
Exhaustive algorithm can be found in [19].

Heuristic Search. In order to avoid exploring the
full state space, we employ a set of heuristics, based on
simple observations, common logic and on the
definition of transitions.

Heuristic 1. The definition of FAC indicates that it
is not necessary to try factorizing all the activities of a
state. Instead, a new state should be generated from an
old one through a factorize transition (FAC) that
involves only homologous activities and the respective
binary one.

Heuristic 2. The definition of DIS indicates that a
new state should be generated from an old one through
a distribute transition (DIS) that involves only
activities that could be distributed and the respective
binary one. Such activities are those that could be
transferred in front of a binary activity.

Heuristic 3. According to the reasons of the
introduction of merge transition, it should be used
where it is applicable, before the application of any
other transition. This heuristic reduces the search
space.

Heuristic 4. Finally, we use a simple “divide and
conquer” technique to simplify the problem. A state is
divided in local groups, thus, each time optimization
techniques are applied in a part of, instead on the
whole, graph.

 The input of the algorithm Heuristic Search (HS)
(Fig. 7) is the initial workflow (state S0) and a list of
merge constraints that are used at the pre-processing
stage. Next, we present the various phases of this
algorithm.

Pre-processing (Ln: 4-8). First, all the activities
that the workflow constraints indicate, are merged.
Such constraints might be (a) the semantics of the
individual activities, e.g., before the application of a
surrogate key assignment, we must enrich the data with
information about the respective source, and (b) user-
defined constraints, which capture the fact that a user
may indicate that some activities should be merged in
order to reduce the search space. Also, HS finds all the
homologous (H) and distributable (D) activities of the
initial state and then, it divides the initial state S0 in
local groups (L) (having as borders the binary
activities, e.g., join, difference, intersection, etc. and/or
the recordsets of the state).

Phase I (Ln: 9-13). In this phase, HS proceeds with
all the possible swap transitions in each local group.
Every time that HS meets a state with better cost than
the minimum cost that already exists, it assigns it to
SMIN. Note, that all local groups are part of the same
state: S0; thus, the output of this phase is a state with a
global minimum cost (concerning only the swap
transitions).

Phase II (Ln: 14-20). This phase checks for
possible commutations between two adjacent local
groups. For each pair of homologous activities of S0, it
tests if both activities can be pushed to be adjacent to
their next binary operator (function ShiftFrw()).
Then, it applies factorization over the binary operator
and the pairs of that satisfy the aforementioned
condition. HS adds every new state to the visited list
and keeps record of a state with a new minimum cost.

Phase III (Ln: 21-28). HS searches every new state
of Phase II for activities that could be distributed with
binary operators (function ShiftBkw()). Obviously, it
is not eligible to distribute again the activities that we
factorize in Phase II; hence, HS uses the distributable
activities of the initial state (D). Again, HS adds every
new state to the visited list and keeps record of a
state with a new minimum cost.

Phase IV (Ln: 29-35). Intuitively, in the previous
two phases, HS produces every possible local group,
because in the lifetime of each local group there exist
its original activities minus any activities that might be
distributed to other local groups union any activities
that might be factorized from other groups. In the forth
phase, HS repeats Phase I in order to get all the
possible states that could be produced with the
application of the swap (SWA) transition in all the nodes
that a local group can have. Of course, if it is
necessary, HS updates SMIN. After the completion of the
above phases, HS applies split (SPL) transitions in

order to split all the activities that were merged during
the pre-processing stage. The constraints for the SPL
transition are reciprocal to the MER transition
constraints. Finally, HS returns the state with the
minimum cost.

Algorithm Heuristic Search (HS)
1. Input: An initial state S0, i.e., a graph G =(V,E)

and a list of merge constraints merg_cons
2. Output: A state SMIN having the minimal cost
3. Begin
4. apply all MER according to merg_cons;
5. unvisited=∅; visited=∅; SMIN=S0;
6. H  FindHomologousActivities(S0);
7. D  FindDistributableActivities(S0);
8. L  FindLocalGroups(S0);
9. for each gi in L {
10. for each pair (ai,aj) in gi {
11. SNEW  SWA(ai,aj);
12. if (c(SNEW)<c(SMIN)) SMIN = SNEW;
13. }}
14. visited  SMIN;
15. for each pair (ai,aj) in H {
16. if ((ShiftFrw(ai,ab)) and

(ShiftFrw(ai,ab))) {
17. SNEW  FAC(ab,ai,aj);
18. if (c(SNEW)<c(SMIN)) SMIN = SNEW;
19. visited  SNEW;
20. }}
21. unvisited = visited;
22. for each Si in unvisited {
23. for each au in D {
24. if (ShiftBkw(au,ab)) {
25. SNEW  DIS(ab,au);
26. if (c(SNEW)<c(SMIN)) SMIN = SNEW;
27. visited  SNEW;
28. }}}
29. for each Si in visited {
30. L  FindLocalGroups(Si);
31. for each gi in L {
32. for each pair (ai,aj) in gi {
33. SNEW  SWA(ai,aj);
34. if (c(SNEW)<c(SMIN)) SMIN = SNEW;
35. }}}
36. apply all SPLs according to spl_cons;
37. return SMIN;
38. End.

Fig. 7. Algorithm Heuristic Search (HS)

After each transition has taken place, the input and
output schemata of each activity are automatically re-
generated (see [19]). We assign a unique signature to
each state; thus, the two lists visited and
unvisited do not allow the existence of duplicate

states. Obviously, due to the finiteness of the state
space and the identification of states, the algorithm
terminates.

HS-Greedy. One could argue that Phase I seems to
overcharge HS, considering its repetition in Phase IV.
Experiments have shown that the existence of the first
phase leads to a much better solution without
consuming too many resources. Also, a slight change
in Phase I (and respectively in Phase IV) of HS
improves its performance. In particular, if, instead of
swapping all pairs of activities for each local group,
HS swaps only those that lead to a state with less cost
that the existing minimum, then HS becomes a greedy
algorithm: HS-Greedy.

Experimental results. In order to validate our
method, we implemented the proposed algorithms in
C++ and experimented on the variation of measures
like time, volume of visited states, and improvement of
the solution and the quality of the proposed workflow.
We have used a simple cost model taking into
consideration only the number of processed rows based
on simple formulae [15] and assigned selectivities for
the involved activities. As test cases, we have used 40
different ETL workflows categorized as small,
medium, and large, involving a range of 15 to 70
activities. All experiments were run on an AthlonXP
machine running at 1.4GHz with 768Mb RAM. As
expected, in all cases, the ES algorithm was slower
compared to the other two, and in most cases it could
not terminate due to the exponential size of the search
space. As a threshold, in most cases, we let ES run up
to 40 hours. Thus, we did not get the optimal solution
for all the test cases, and consequently, for medium and
large cases we compare (quality of solution) the best
solution of HS and HS-Greedy to the best solution that
ES has produced when it stopped (Table 1). Table 2
depicts the number of visited states for each algorithm,
the execution time of the algorithm and the percentage
of improvement for each algorithm compared with the
cost of the initial state.

We note that for small workflows, HS provides the
optimal solution according to ES. Also, although both
HS and HS-Greedy provide solutions of approximately
the same quality, HS-Greedy was faster at least 86%
(average value was 92%). For medium ETL
workflows, HS finds better solution than HS-Greedy
(in a range of 13-38%). On the other hand, HS-Greedy
is a lot faster than HS, while the solution that it
provides could be acceptable. In large test cases, HS
proves that it has an advantage because it returns
workflows with improved cost over 70% of the cost of

the initial state; while HS-Greedy returns “unstable”
results in a low average value of 47%.

Table 1. Quality of solution

workflow
category

ES
quality of

solution %
(avg)

HS
quality of

solution %
(avg)

HS-Greedy
quality of

solution %
(avg)

small 100 100 99

medium - 99* 86*

large - 98* 62*
* The values are compared to the best of ES when it
stopped.

The time needed for the execution of the
algorithms is satisfactory compared to the time we
will earn from the execution of the optimized
workflow, given that usual ETL workflows run into
a whole night time window. For example, the
average worst case of the execution of HS for large
scenarios is approximately 35 minutes, while the
gain from the execution of the proposed workflow
outreaches a percentage of 70%.

5. Related work

There exists a variety of ETL tools in the market;
we mention a recent review [6] and several commercial
tools [9], [10], [13], [14]. Although these tools offer
GUI’s to the developer, along with other facilities, the
designer is not supported in his task with any
optimization tools. Therefore, the design process deals
with this issue in an ad-hoc manner. Research efforts
also exist in the ETL area, including [4], [3], [5], [12].
Also, we mention three research prototypes: (a) AJAX
[7], (b) Potter’s Wheel [17], and ARKTOS II [18]. The
first two prototypes are based on algebras, which we
find mostly tailored for the case of homogenizing web
data; the latter concerns the modeling of ETL
processes in a customizable and extensible manner. To
our knowledge, no work in the area of ETL has dealt
with optimization issues so far.

 In a similar setting, research has provided results
for the problem of stream management [1], [2].
Techniques used in the area of stream management,
which construct and optimize plans on-the-fly, come
the closest that we know of to the optimization style
that we discuss in the context of ETL. Nevertheless,
stream management techniques are not directly
applicable to typical ETL problems (a) due to the fact
that real time replication is not always applicable to
legacy systems and (b) pure relational querying, as
studied in the field of stream management is not
sufficient for ETL purposes.

Table 2. Execution time, number of visited states and improvement wrt initial state

type of workflow ES HS HS-Greedy

category
volume of

activities (avg)

visited
states
(avg)

improve
ment %

(avg)

time
sec

(avg)

visited
states
(avg)

improve
ment %

(avg)

time
sec

(avg)

visited
states
(avg)

improve
ment %

(avg)

time
sec

(avg)
small 20 28410 78 67812 978 78 297 72 76 7
medium 40 45110* 52* 144000* 4929 74 703 538 62 87
large 70 34205* 45* 144000* 14100 71 2105 1214 47 584
* The algorithm did not terminate. The depicted values refer to the status of the ES when it stopped.

6. Conclusions and future work

In this paper, we have concentrated on the problem
of optimizing ETL workflows. We have set up the
theoretical framework for the problem, by modeling
the problem as a state space search problem, with each
state representing a particular design of the workflow
as a graph. Since the problem is modeled as a state
space search problem, we have defined transitions
from one state to another. We have also made a
thorough discussion on the issues of state generation,
correctness and transition applicability. Finally, we
have presented search algorithms. Experimental results
on these algorithms suggest that the benefits of our
method can be significant.

Several research issues are left open, such as the
physical optimization of ETL workflows, (i.e., taking
physical operators and access methods into
consideration) or the impact analysis of changes and
failures in the workflow environment that we describe.

Acknowledgment. This work is supported by the
Greek Ministry of Education and the European Union
through the EPEAEK and the Pythagoras Programs.

7. References

[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, et al.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120-139, 2003.

[2] S. Babu, J. Widom. Continuous Queries over Data
Streams. SIGMOD Record 30(3): 109-120.

[3] V. Borkar, K. Deshmuk, S. Sarawagi. Automatically
Extracting Structure from Free Text Addresses. Bulletin
of the Technical Committee on Data Eng., 23(4), 2000.

[4] J. Chen, S. Chen, E.A. Rundensteiner. A Transactional
Model for Data Warehouse Maintenance. ER’02,
LNCS 2503, pp. 247–262, 2002.

[5] Y. Cui, J. Widom. Lineage Tracing for General Data
Warehouse Transformations. The VLDB Journal, 12:41-
58, 2003.

[6] Gartner. ETL Magic Quadrant Update: Market Pressure
Increases. Available at:
www.gartner.com/reprints/informatica/112769.html

[7] H. Galhardas, D. Florescu, D. Shasha and E. Simon.
Ajax: An Extensible Data Cleaning Tool. SIGMOD’00,
pp.590, Texas, 2000.

[8] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2), 1993.

[9] IBM. IBM Data Warehouse Manager. Available at
www-3.ibm.com/software/data/db2/datawarehouse

[10] Informatica. PowerCenter. Available at:
www.informatica.com/products/data+integration/power-
center/default.htm

[11] M. Jarke, J. Koch. Query Optimization in Database
Systems. ACM Computing Surveys 16(2), 1984.

[12] W. Labio, J.L. Wiener, H. Garcia-Molina, V. Gorelik.
Efficient Resumption of Interrupted Warehouse Loads.
SIGMOD’00, pp. 46-57, Texas, USA, 2000.

[13] Microsoft. Data Transformation Services. Available at
www.microsoft.com

[14] Oracle Corp. Oracle9i™ Warehouse Builder User’s
Guide, Release 9.0.2. November 2001. Available at:
http://otn.oracle.com/products/warehouse/content.html

[15] M. Tamer Ozsu, P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1991.

[16] E. Rahm, H. Do. Data Cleaning: Problems and Current
Approaches. Bulletin of the Technical Committee on
Data Engineering, 23(4), 2000.

[17] V. Raman, J. Hellerstein. Potter's Wheel: An Interactive
Data Cleaning System. VLDB’01, pp. 381-390, Roma,
Italy, 2001.

[18] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis.
A Framework for the Design of ETL Scenarios.
CAiSE’03, Klagenfurt, Austria, 2003.

[19] A. Simitsis, P. Vassiliadis, T. Sellis. Optimizing ETL
Processes in Data Warehouse Environments (long
version). Available at http://www.dbnet.ece.ntua.gr/
~asimi/publications/SiVS04.pdf

