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Abstract— Extract-Transform-Load (ETL) processes play an
important role in data warehousing. Typically, design work on
ETL has focused on performance as the sole metric to make sure
that the ETL process finishes within an allocated time window.
However, other quality metrics are also important and need to
be considered during ETL design. In this paper, we address ETL
design for performance plus fault-tolerance and freshness. There
are many reasons why an ETL process can fail and a good
design needs to guarantee that it can be recovered within the
ETL time window. How to make ETL robust to failures is not
trivial. There are different strategies that can be used and they
each have different costs and benefits. In addition, other metrics
can affect the choice of a strategy; e.g., higher freshness reduces
the time window for recovery. The design space is too large
for informal, ad-hoc approaches. In this paper, we describe our
QoX optimizer that considers multiple design strategies and finds
an ETL design that satisfies multiple objectives. In particular,
we define the optimizer search space, cost functions, and search
algorithms. Also, we illustrate its use through several experiments
and we show that it produces designs that are very near optimal.

I. INTRODUCTION

In current practice, the primary objective for an ETL project

is correct functionality and adequate performance, i.e., the

functional mappings from operational data sources to data

warehouse must be correct and the ETL process must complete

within a certain time window. Although, performance is indeed

important, in reality ETL designers have to deal with a host of

other quality objectives besides performance such as reliability,

recoverability, maintainability, freshness, scalability, availabil-

ity, flexibility, robustness, affordability, and auditability [1]. In

previous work, we described how different quality objectives

may influence the final ETL design [2]. In this paper, we use

that approach to address a specific problem that is common in

ETL engagements: how to design ETL flows for performance

but also with objectives for fault-tolerance and freshness.

Our goal is to make ETL flows fault-tolerant yet still

satisfy a freshness requirement to finish within a specified time

window. One approach is simply to repeat a flow in the event

of a failure. But, this may not be feasible if the dataset is large

or the time window is short. So, a typical way to make ETL

flows robust to failures is by adding recovery points (RP). A

recovery point is a checkpoint of the ETL state at a fixed point

in the flow (see Figure 1). This might be done, for example,

by copying the data flow to disk. If a failure occurs, control

goes back to this recovery point, the state is recovered, and

the ETL flow resumes normally from that point. This is faster

than restarting the entire flow since the ETL flow prior to the

recovery point is not repeated. However, the cost for adding

a recovery point involves the additional i/o overhead of the

copy operation.

Clearly, it is not practical to place recovery points after every

operation in a flow (as shown in Figure 1). So, the design

question is where to place recovery points in a flow. Today,

this issue is addressed informally based on the experience of

the designer, e.g., a designer might place recovery points after

every long-running operator. However, with complex flows and

competing objectives there are too many choices. Hence, the

resulting design is likely not optimal. If a secondary design

objective was for high freshness, then recovery points may not

even be feasible because they add latency such that the ETL

would not complete within the time window.

A more systematic approach is to formulate the placement

of recovery points as an optimization problem where the goal

is to obtain the best performance when there is no failure and

the fastest average recovery time in the event of a failure.

Given an ETL flow with n operators, there are n− 1 possible

recovery points. Any subset of these is a candidate solution.

Therefore, the search space is given by the total number of

combinations of these n − 1 recovery points:

totalRP = 2n−1 − 1

The cost of searching this space is exponential in the number

of nodes O(2n). In fact, the search space is even larger because

there are other strategies for fault-tolerance, e.g., repeating the

flow as mentioned above or using redundant flows. Therefore,

it is necessary to find heuristics to prune the space. In addition,

the ETL design may have additional objectives and constraints

that must be considered such as freshness, cost, storage space,

and so on. Also, there are additional strategies to consider

for improving performance such as parallelism. This expands

the search space even more and requires additional heuristics

appropriate for each objective and strategy.

In this paper, we address the problem of generating an

optimal ETL design for performance plus fault-tolerance and

freshness. Our approach is similar in spirit to the work of [3]

and [4] in that we use heuristics to search the space of all

possible ETL designs. However, past work only considered

the performance objective. In our work, we incorporate the

additional objectives of fault-tolerance and freshness. We

describe different strategies for achieving these objectives, a

cost model, and heuristics for searching the design space. We

illustrate the value of our approach with several experiments,

which demonstrate that our approach can produce near optimal
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Fig. 1. Naive placement of recovery points after every operator

ETL designs even for complex scenarios.

Outline. The rest of the paper is structured as follows.

In Section II, we formulate the problem as an optimization

problem and describe the search space, the objective function,

and the design alternatives. Section III describes the transitions

within the search space. Section IV presents the exhaustive and

heuristic optimization algorithms that search the space. Section

V reports on our experimental findings for optimizing ETL

flows for multiple objectives. Finally, Section VI discusses

related efforts and Section VII concludes this paper.

II. PROBLEM FORMULATION

Our approach to finding an optimal ETL design is to use

heuristic search over the space of all possible ETL designs

that meet the business objectives. In this section, we provide

a formal statement of the problem. First, we state how to

model an ETL flow as a graph. Then, we describe the quality

objectives of interest, i.e., performance, fault-tolerance, and

freshness and, for each objective, strategies for achieving them.

Next, we present the cost model used to prune the search space

by computing a cost function over each ETL design. Finally,

the objective function is described. This is the function that

the optimization algorithm seeks to minimize.

A. Preliminaries

1) Schema: Let SE = {a1, a2, . . . , am} be the schema of

an entity E containing a set of attributes ai and A is the set of

all possible attributes. An attribute ai belonging to the schema

of an entity E is denoted as aE
i . In the ETL context, E is either

an ETL transformation or a recordset residing on disk (i.e., a

relation or a file). In the rest we will use SE or schema(E)
interchangeably for representing the schema of an entity E.

2) Recordset: Let R be a recordset following a schema

SR = {aR
1 , . . . , aR

n }, which can be seen either as an input or

output schema depending on the placement of the recordset

in the workflow1. Recordsets represent data stores of any

structure, like relational tables, flat files, xml files, and so on.

Also, they represent any data store type that can be involved in

an ETL process, like operational (source), warehouse (target),

intermediate, landing, and staging data stores.

3) ETL Transformation: Let T be a transformation (also

known as operator or operation) having a set of schemata

schemas(T ). The schemas(T ) consists of the following

schemata [4]:

1One could imagine two alike schemas implemented as two separate
threads: a reader and a writer, that can be placed between the recordset and the
workflow. In the rest, for presentation simplicity, we consider that recordsets
have a single schema and we use the terms recordset schema and recordset
interchangeably.

• a set of input schemata sT
i : each input schema is fed

from an output schema of another transformation or the

schema of a recordset.

• a set of output schemata sT
o : each output schema is popu-

lated by the input schemata (or a subset of them) through

a function characterizing the operational semantics of T .

An output schema is to fed a recordset or an input schema

of another transformation.

• a projected-out schema sT
π = sT

i - sT
o : it contains the

attributes that are projected out from the transformation

(e.g., a simple function that concatenates first name
and last name into name, it projects out the former two

attributes).

• a generated schema sT
g = sT

o - sT
i : it contains the attributes

that are generated from the transformation (e.g., in the

above example, the name is a generated attribute).

• a parameter schema sT
p = params(T ): it contains at-

tributes belonging to the input schemata and a finite set

of values. Essentially, these are the parameters that drive

the transformation (e.g., the parameter schema of a filter

NN(a) that checks for null values on the attribute a is

sNN
p = {a}).

Also, an ETL transformation, depending on its operational

semantics (or in other words, on how it treats the data), may

belong to one of the following groups:

• pipeline operators, T p: these are transformations that

process each tuple separately, e.g., a filter transformation

checking for null values or a function converting amounts

in euros to amounts in dollars,

• blocking operators, T b: these are transformations that

require knowledge of the whole dataset, e.g., a grouping

operator.

4) ETL Workflow: An ETL workflow comprises a set of

ETL transformations, T , and recordsets, R, interconnected

with each other forming a DAG. Let G = (V,E) be a DAG

representing an ETL workflow consisting of a set of vertices

including the involved transformations, recordsets, along with

the attributes, A, contained in their schemata. Hence, V =
R∪T∪A. The edges E of the graph include provider edges Pr
indicating the data flow and membership edges Po connecting

the attributes with the respective schemata of T or R. Hence,

E = Pr ∪ Po. In the rest, we avoid overloading the notation

of sets as e.g., T ; we write T , and whether this denotes a set

or one of its elements is understood by the context.

An example ETL workflow is depicted in Figure 2. The

output schema of transformation T populates the input schema

of T ′ through a set of provider edges connecting the attributes

of the former to the respective ones of the latter. The input and

output schemas (i.e., the contained attributes) are connected

with the transformations through membership edges. (The

attributes are not shown here for clarity of presentation.)

B. Design Objectives

In previous work, we described a large set of quality metrics,

termed QoX, that could be used to guide optimization of
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Fig. 2. Abstract part of an ETL workflow

ETL flows [1], [2]. In this section, we focus on the subset of

those metrics that are needed for this paper. In particular, we

describe four quality objectives, namely functional correctness,

performance, reliability, and freshness, along with strategies

for achieving them.

1) Functional Correctness Objective: Functional correct-

ness is a requirement for a flow. In some sense, it is not

a quality objective per se, but rather the starting point for

optimization. A flow is functionally correct if it correctly

implements the semantics of the schema mappings. Currently,

there is no strategy or formal mechanism to generate a

functionally correct flow from a specification. In the scope of

this paper, we assume that the ETL flow provided is correct.

We then aim at optimizing it according to the desired QoX

metrics. The optimization process must preserve the functional

correctness of the flow, i.e., the semantics of the optimized

graph must match the semantics of the original, functionally

correct sequential flow.

There are many possible designs for the initial, functionally

correct flow. Note that an added advantage of ETL optimiza-

tion is that it enables the initial design to be developed and

expressed using techniques convenient to the designers. For

example, if the designers feel that certain types of flows are

easier to read and maintain (e.g., multiple short ETL flows

rather than one long complicated ETL flow), they are free to

do so without a performance penalty. Then, the optimizer will

transform that initial design to meet the objectives.

Although the correctness of the initial flow is asserted and

cannot be verified, it is possible to measure partial correctness

because a designer may use test suites to validate certain

aspects of a flow, e.g., consistency checks between sources and

targets. For our purposes, we ignore these validation checks

and treat them as part of the flow itself, i.e., a transformation

that outputs success or failure. We need only to make sure

that our optimization of the initial flow does not affect the

semantics or correctness of these correctness measures.

2) Performance Objective: Performance is a metric of ETL

process completion expressed in terms of time and resources

used. In today’s typical ETL engagements performance is the

sole objective. Generally, there are two performance param-

eters, the frequency of performing the ETL process and the

time window allowed for completing the ETL process. For

example, ETL might be required to run on the first Saturday

of each month and complete within eight hours. Or, ETL might

be run daily from midnight for one hour.

The frequency of performing ETL is driven by the freshness

requirement (see below). If the business only requires monthly

reports, then running the ETL process once per month will

suffice. The time window is driven by the availability of the

various computing resources, specifically the source, target

systems and the system used for the ETL process itself. It

is also affected by the freshness requirement. Lower freshness

means longer intervals between ETL processes which means

larger input sizes and thus, longer time windows for the ETL

process. We assume that the frequency and time window for

the ETL process are part of the business requirements.

If the performance objective cannot be achieved by the

initial, functionally correct ETL, there are several strate-

gies for improving performance. These include alternative

operator implementations, operator structural transformation,

and parallelization. Just as a database management system

may consider alternative implementations of join operators,

an ETL optimizer may investigate different implementations

of ETL operators to improve performance. In this paper,

we are focused on optimizing the overall ETL flow so we

ignore alternative operator implementations. We assume that

the best implementation of an operator is provided or can be

determined.

The placement of ETL operators may be transformed in

several ways (see Section III and [3]). We may swap the

order of two adjacent unary operators in an ETL flow. For

example, given an ETL flow where a filter operator follows a

sort operator, placing the filter first may reduce the amount of

data to be sorted and so improve performance. Additionally,

we may interchange the placement of a binary operator with

two or more unary operators over parallel flows that converge

to that binary operator. For example, a join of two data streams

that is followed by a filter could be replaced by two separate

filters over the two streams prior to the join.

An ETL design might consider two types of parallelism.

Pipeline parallelism assigns two adjacent operators in an ETL

flow to separate physical processors so they can be processed

concurrently with a data stream from the producer operator to

the consumer. Partition parallelism creates multiple, indepen-

dent instances of an ETL flow on separate processors where

each instance processes a different subset of the input. This

requires a splitter operator to partition the input into multiple

streams and a merger operator to combine the multiple result

streams back into a single stream.

3) Reliability Objective: The reliability objective defines

the ability of the ETL process to complete successfully despite

failures. Any reason for not completing the process is consid-

ered a failure. Typical failures we face in the context of ETL

are: network, power, human, resource or other miscellaneous

failures. (In the following analysis we do not consider errors

due to problematic data, which require different care.)

The reliability objective specifies the number of failures

that the process can tolerate and still complete within its

performance time window. We consider three strategies for

achieving reliability: repetition, use of recovery points, and

redundancy. The repetition strategy simply means repeating a

flow in the event of a failure. This simple strategy may suffice

when the ETL time window is long or for very simple flows.



A recovery point records the state of the ETL process at a

specified point in the flow. In the event of a failure, the state

is recovered and the ETL process continues from that point.

Recovery points add latency to the flow both during normal

processing (for staging data to it) and recovery (for reading

data from it). In some cases, having recovery points is not

feasible, e.g., due to large data volumes or a short processing

time window.

Recovery points may be synchronous or asynchronous.

These correspond roughly to consistent or fuzzy checkpoints,

respectively, in a database management system. A synchronous

recovery point is a blocking operation that makes a complete,

consistent snapshot of the ETL process state at a given point

in the flow. An asynchronous recovery point logs the state of

data objects at a given point in the flow but does not block

the flow. It has less latency but recovery is somewhat more

complicated than for a synchronous recovery point. To sim-

plify the presentation, we consider only synchronous recovery

points. Asynchronous recovery points are optimized in the

same manner by using a different cost function. However, this

does not affect the algorithmic operation of our optimizer since

it only gets the cost function as a parameter.

Redundancy refers to running multiple instances of a flow.

It may be achieved using several techniques. Replication uses

multiple, identical parallel instances of a flow and uses a

voting technique to determine the correct result. Fail-over uses

multiple, parallel instances of a flow, using one flow as primary

and switching to a back-up flow in the event of a failure. A

diversity strategy may be applied to either technique. Diversity

uses alternative implementations for each flow. Note that these

implementations could be generated by the ETL optimizer

itself. In the rest, we consider only replication for redundancy.

4) Freshness Objective: Freshness concerns the latency

between the occurrence of a business event at a source system

–e.g., receipt of a purchase order– and the reflection of

that event in the target system –e.g., the data warehouse.

The freshness objective determines the frequency of the ETL

process, i.e., the ETL process should be executed as frequently

or more frequently than the business specification determines.

For example, a freshness requirement that data must be loaded

within two hours could be achieved by running the ETL

process hourly or at least once every two hours. Strategies

for higher freshness include increasing the frequency of the

ETL process and decreasing the execution time of the ETL

process. Generally, the execution time window for ETL is

primarily determined by resource availability (e.g., run during

off-peak hours). But, as the freshness requirement approaches

real-time, the execution time window may also be affected by

the freshness requirement.

Alternatively, freshness can be seen as the data volume

processed per ETL execution. When high freshness is required

smaller batches are processed, whereas when off-line ETL

execution is preferred, then data are being processed in larger

batches. However, in the latter case, conceptually there is one

single batch, since all source data are available at the same

time.

C. Cost Model

Assuming that transformation T gets n incoming tuples,

it outputs n′ = g(n) tuples. T has a processing cost cT , a

recovery cost cR, and a probability of failure pf .

1) Processing cost: The processing cost cT is estimated as

a function over the incoming data volume; thus, by a generic

formula cT = f(n). The f function depends on two aspects:

• the operational semantics of T as a function of the input

size and captured as hp(n); e.g., for a transformation

having a sorting algorithm as its core functionality, the

hp(n) function is of the form n × log(n), and

• the fixed, auxiliary cost for the transformation captured

as ha(n).

The operational semantics models the per-tuple processing

cost for a transformation. The auxiliary cost models the per-

instance overhead for an instance of a transformation. This

includes time to initiate and terminate the operation (process

and pipeline creation), time to acquire resources (memory

allocation, file creation), and so on.

Therefore, the processing cost of T is a composite function

cT = f(n) = f(hp(n), ha(n)). For a large input size, the

processing cost is likely dominated by the per-tuple cost,

hp(n). However, as the input size shrinks, the auxiliary cost,

ha(n) may come to dominate. Other QoX can affect cT

through ha(n). For example, a requirement for high freshness

will, in general, result in smaller input sizes. However, at

some point, freshness cannot be increased because the reduced

processing time for smaller input sizes is outweighed by the

auxiliary costs for the transformation. As another example, low

data availability increases the processing cost, in the sense that

the need and criticality for timely processing the involved data

increases as well.

In general, the processing cost of an ETL workflow F
involving l transformations would be:

cT (F ) =
l∑

i=1

cTi
(1)

2) Partitioning cost: The processing cost of an ETL flow

is given by the equation (1). In general, the parallelization of

flow execution, where permissable, reduces that cost. However,

parallelizing an ETL flow is not a panacea for improving

ETL performance [2]. For achieving parallelization, first we

need to partition the data. Depending on the partitioning

technique additional cost should be considered. Conceptually,

two additional transformations are needed: first, a splitter for

partitioning the flow and then, a merger for combining the

parallel branches. Figure 3 shows generic examples of splitter

TS and merger TM transformations.

Assuming a degree of parallelism dN then the cost cP for

partitioning the flow into dN parallel branches is:

cP (F ) = max
j

(
∑l

i=1 cTi

dNj

) + cTS
+ cTM

(2)
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Fig. 3. (a) Splitter and (b) Merger transformations

Although the number of tuples processed does not change

(otherwise, the ETL semantics are not maintained), the exe-

cution time is divided by the degree of parallelism dN and

the amount
∑

cT /dNj
is the cost of each branch j. As

the execution time of each branch may vary due to several

reasons (e.g., different loads), the slowest branch determines

the execution time of the partitioned part of the flow.
3) Recovery cost: The recovery cost cR(F ) represents the

cost of a flow F for maintaining recovery points (or save-

points). Assuming a recovery point vT that stores the output

of T is a relation or file stored on the disk, then the i/o

cost for communicating with the disk is usually significantly

greater than cT when T is executed in memory. Figure 4

depicts an example ETL flow containing a recovery point at

an intermediate stage.

Assume a flow F containing l transformations T1, . . . , Tl.

Let vx be a recovery point attached to the transformation

Tx. The recovery cost of the flow F without considering the

recovery point would be equal to its processing cost:

cR(F ) = cT (F ) =
x∑

i=1

cTi
+

l∑

i=x+1

cTi
= cT (F ′) +

l∑

i=x+1

cTi

(3)

Should we consider the cost of maintaining a recovery point

vx at Tx then the cost of the flow becomes:

cR(F ) = cT (F ′) +
cvx

2
+

l∑

i=x+1

cTi (4)

So, the additional cost we need to pay is
cvx

2 (this is the

i/o cost only for writing to the disk) for each recovery point

we add to the flow. Essentially, for a data volume of n tuples

this cost can be estimated as cvx
= ci/o

zp
×n, where ci/o is the

cost of writing and reading2 one page of size zp tuples to the

disk.

Assume that a failure occurs at the transformation Ty , which

is placed after Tx in the flow. The recovery cost of the ETL

process differs depending on the configuration used: with (w/)

or without (w/o) recovery points. When no recovery points are

present, the ETL process should start from scratch for a cost:

cR(F )w/o
= 2 × {cT (F ′) +

y∑

i=x+1

cTi
} +

l∑

i=y+1

cTi
(5)

For the scenario with the recovery point the process resumes

from the previous recovery point, i.e., vx, and thus, the cost

becomes:

2For HDDs, we can assume equal i/o costs for writes and reads; for today’s
SSDs, random writes are about 10x slower than random reads [5].

T1 Tx

... ...

Ty

vx

...

Tl

Fig. 4. Example ETL flow with a recovery point

cR(F )w/
= cT (F ′) + cvx + 2 × {

y∑

i=x+1

cTi} +
l∑

i=y+1

cTi (6)

From the equations (5) and (6) it turns out that when a single

failure occurs we may limit the recovery cost if the following

condition holds:

cvx < cT (F ′) ⇔ cvx <

x∑

i=1

cTi (7)

This observation generates optimization opportunities in the

ETL design and more concretely, an interesting challenge is to

identify in which places of the flow the addition of recovery

points will reduce the recovery cost.

4) Replication Cost: The replication cost cL(F ) represents

the cost for replicating a flow F into m replicas. The cost of

creating the replicas is the cost of a replicator operator TR that

sends a copy of the same data to its output threads. After the

replication, the cost of merging the flow is determined by the

cost of a voter operator. We assume a voter that decides based

on majority and there are two solutions. The fast voter TVF

decides based on a simple count(∗) of the tuples coming from

each replica; thus, it gets the semantics of a scan operator.

The accurate voter TVA
decides based on a check of each

individual tuple; hence, it gets the semantics of a join operator.

We assume the accurate voter here.

Note that under replication, each transformation is doing m
times as much work but using the same number of resources

as in the unreplicated flow. Consequently, the cost of each

transformation is weighted to account for the resource sharing

and additional work. Formally, the replication cost cL of a flow

F containing l transformations T1, . . . , Tl, is the following:

cL(F ) = cTR
+

l∑

i=1

(wi × cTi) + cTV
(8)

5) Freshness cost: Freshness is generally improved by

increasing the frequency of extract operations and thus, de-

creasing the number of tuples processed through a flow.

Formally, let f denote the freshness requirement in time units

(e.g., seconds). Let c denote the cycle time (or frequency)

of data extraction from the source, i.e., perform an extract

every c time units. Let b(c) denote the number of data items

extracted from the source during the cycle time c. Let x(n)
denote the ETL execution time for n data items. Then, the

freshness requirement is related to ETL cost as:

c + x(b(c)) < f (9)



In other words, the cycle time plus the time to perform the

ETL for the extracted data must be less than the freshness

requirement. To minimize interference with the data source,

we need to choose the maximum cycle time, c, that satisfies

the inequality 9.

D. Objective Function

Our problem scenario involves three objectives: perfor-

mance, fault-tolerance, and freshness. The basic performance

requirement is the time window for running the ETL process.

We assume the time window is given as part of the technical

specifications for the ETL design. However, as mentioned

earlier, high freshness (e.g., near real-time) may affect the time

window. The fault-tolerance objective specifies the number of

failures that the ETL process must tolerate and still complete

within the time window. The technical specifications also

include expectations about the size of the input recordset; e.g.,

an arrival rate. Obviously, this is also affected by the freshness

requirement, i.e., the input recordset size decreases when the

ETL frequency increases.

Let n be the input recordset size, w be the execution time

window for the ETL process represented as a flow F , and k
be the number of faults that must be tolerated. Then the ETL

flow has the constraint that:

time(F (n, k)) < w (10)

In other words, the time to process n tuples with up to k
failures during the process must be less than the time window

w. Consequently, the objective function for optimization is to

find the ETL flow F with the minimal cost and that satisfies

the above constraint.

OF(F, n, k, w) : minimize cT (F ),

where time(F (n, k)) < w
(11)

III. STATES AND TRANSITIONS

In this section, we model the problem of ETL optimization

for fault-tolerance as a state space search problem. We define

the states and transitions between states, which define the state

space searched by the optimizer.

A. States

A state S is an ETL workflow graph, i.e., a directed acyclic

graph G = (V,E). As discussed in Section II, each node in

V is either a recordset, an ETL transformation or an attribute

participating in a recordset or ETL transformation schema.

Each edge in E is either a provider or a membership edge.

However, the attributes are not taken into account by the

transitions that produce new states (see below). Attributes are

used only to ensure the correctness of the state production;

thus, the formulae representing the sT
π , sT

g , and sT
p schemata

of Section II-A should hold. For example, we cannot swap

two subsequent transformations when the intersection of their

parameter schemata is not the empty set [4].

B. State Transitions

Each transition transforms an ETL flow graph G into

an equivalent ETL flow graph G′. In other words, when a

transition f is applied onto a state S it produces a new state

S′, and we write S′ = f(S). Two ETL flow graphs –i.e.,

states– are equivalent if they produce the same output, given

the same input.

In general, there are a large number of possible transitions.

Earlier work on ETL optimization considered performance

alone, and introduced three types of transitions [4], which we

also use in this paper.

• swap(v1, v2): this transition applies to a pair of unary

operations, v1 and v2, which occur in adjacent position

in an ETL flow graph G, and produces a new ETL flow

graph G′ in which the positions of v1 and v2 have been

interchanged;

• factorize(vb, v1, v2, v) and distribute(vb, v1, v2, v): this

pair of transitions interchange the positions of a binary

node vb and a pair of unary nodes that are functionally

equivalent; factorize replaces two unary nodes v1 and v2

with a single node v that performs the same function,

and places v immediately after vb in the flow; distribute
is the “inverse” of factorize, and replaces v with two

functionally equivalent nodes v1 and v2, and moves them

immediately before vb in the flow;

• compose(v12, v1, v2) and decompose(v12, v1, v2)3: this

pair of transitions are used to combine and split the

operations of two nodes; compose takes adjacent unary

nodes v1 and v2, and replaces them with a single unary

node v12 that performs the composition of the functions

of v1 and v2; decompose has the inverse effect of taking a

unary node v12 and replacing it with two adjacent unary

nodes v1 and v2 whose composition produces the same

output as v12.

To optimize for additional objectives, we extend the set

of transitions with three new types of transitions, which we

describe below.

1) partition(v1,v2,n,P): This transition is used to inject par-

titioned parallelism into the flow graph (see Figure 5-bottom).

It splits the section of the flow graph between transformations

v1 and v2 into n streams based on partitioning policy P by

inserting a splitter node TS after v1 and a merger node TM

before v2. Note that we are agnostic as to what partitioning

policy P is used (range, hash, round-robin, or some other)

as long as it guarantees that the union of the set of tuples

directed to the n streams is equal to the output of v1. For this

transition to be applicable to an ETL flow graph, the resulting

flow graph must be equivalent to the original. This requires

that the operations occurring in the flow between v1 and

v2 be distributive over union. Filter, join, and surrogate-key

transformations and some aggregation operations (sum, count,

max, min) have this property. Other operations (grouping,

3In [4], these transitions were called merge and split. We change their names
to avoid confusion with the merger and splitter operations that we describe
for the partition transition below.
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sorting, non-distributive aggregates, user-defined functions in

general) may require modification of the operations in the

flow followed by post-processing in the merger operation. This

is a well-studied problem and we will not elaborate further.

The benefit of partitioned parallelism, of course, is that it can

potentially improve the freshness of the data by reducing the

execution time of the ETL flow.

2) add recovery point(v,RP): This transition creates a new

recordset node RP , and a new edge from node v to node

RP (see Figure 6). The semantics are that RP is a recovery

point, i.e., a point in the data flow where the state of the data

flow is made durable, so that it can be used to recover from

failures. Note that adding a recovery point does not change the

semantics of the ETL flow, and hence the new flow produced

by this transition is equivalent to the original flow.

3) replicate(v1,v2,n): This transition is used to make the

flow more resilient to failure. It introduces a replicator node

TR after v1 and a voter node TV before v2 which produces n
copies of the flow between v1 and v2 (see Figure 5-top). The

voter node compares the outputs of the copies and produces

an output equal to that produced by the majority of the copies.

Clearly, replication does not change the semantics of the

operations, and hence the new flow produced by this transition

is equivalent to the original flow (under the assumption that at

least one copy completes). Note that this transition may also

contain a voter policy V in its definition. We have already

discussed example voting policies in II-C.4 like the fast and

accurate voters. For clarity of presentation, we do not show V
when we refer to the replicator transition.

Algorithm EXHAUSTIVE SEARCH
Input: An initial state SG representing an ETL graph

G = (V, E)
Output: A state SMIN having the minimum cost
begin1
SMIN = SG;2
open ← SG;3
close = �;4
while open <> � do5
S ← open;6
for all S′ = f(S) do7

if S′ /∈open and S′ /∈close then8
if C(S′) < C(SMIN ) then SMIN = S′;9
open ← S′;10

close ← S;11

return SMIN12
end13

IV. SEARCH SPACE QOX OPTIMIZATION

In this section, we present two algorithms for searching

the state space with the goal of finding the state having the

minimum cost as defined in Section II-C.

A. Exhaustive Search

First, working as in [4], we explore the state space ex-

haustively using the EXHAUSTIVE SEARCH algorithm (ES).

ES generates all possible states by applying all the applicable

transitions to every state.

ES uses two lists open and close for keeping track of

unvisited and visited states, respectively. It also uses a state

variable SMIN for storing through its iterations, the state

having the minimum cost. The algorithm starts from the initial

ETL graph, i.e., state SG, which is given as an input parameter.

At the beginning open contains SG and close is empty. For

every state S in open, we apply any permissable transition f
to it. For every newly generated –but not already visited– state

S′, if its cost is less that the minimum cost discovered so far,

then S′ becomes the new SMIN . In any case, S′ is marked as

visited and we proceed until there is no other state to create.

Then, ES returns the optimal state SMIN .

Clearly, the state space is finite and the algorithm terminates

after having generated all possible states. Also, it is obvious

that the returned state is the optimal one. However, the state

space is exponentially large and in realistic environments, it

is practically infeasible to explore it in all its extent. In an

experimental environment, though, it can be extremely useful,

since it provides the optimal solution, and any other proposed

method can compare its effectiveness against it.

B. Pruning the Search Space

The vastness of the state space requires more efficient

exploration methods than the EXHAUSTIVE SEARCH. For

improving the search performance, an obvious solution is to

prune the state space. In the following, we propose techniques

for achieving that.



1) Heuristics: First, we present heuristics that can drive us

close to the optimal solution quickly.

Heuristics for Performance.

• (H1): operator push-down. Move more restrictive opera-

tors to the start of the flow to reduce the data volume; e.g.,

rather than extract → surrogate key gen → filter do

extract → filter → surrogate key gen.

• (H2): operator grouping. Place pipelining operators be-

longing to T p together and separately from blocking

operators belonging to T b; e.g., rather than filter →
sort → function → group do filter → function →
sort → group (if such swaps are allowed; see [4]).

• (H3): pipeline parallelism. Place adjacent operators on

separate physical processors and execute them in par-

allel with tuple flow from the producer operator to the

consumer; e.g., in the flow filter1 → filter2 assign

the filter1 and filter2 operators to run on separate

processors so they execute concurrently. The subflows

to execute in parallel should be chosen such that their

latency is approximately equal, i.e., if there are n proces-

sors, break the flow into n subflows x1, . . . , xn of equal

(or near-equal) execution time, such that max(time(xi))
is minimized.

• (H4): partition parallelism. Split the data stream into

two or more sub-streams and process the streams on

separate physical processors concurrently. For example,

given a flow lookup → filter → sort, produce a new

flow splitter → lookup → filter → sort → merge
where splitter splits the data into n streams, merge
combines the streams, and the sub-streams are processed

on separate processors in parallel. Partition parallelism

is effective when the overhead of split and merge is

low (see equation 2). However, note that partitioning in

general is useful when the incoming volumes are large

enough so that processing them all at once it might get too

expensive. One interesting case is when the tuple order is

not important; then, merging back the data can be done

in less expensive manner. However, when the order does

matter, the partition schema should be spart = āpart,

where āpart ∈ sT
P : cT ≥ cT ′ , T ′ ∈ {T1, . . . , Tl} \ {T}

(sT
P is the parameter schema of T ); i.e., āpart is based

on the most expensive T of the partitioned flow.

• (H5): split-point placement. Given a flow to be parti-

tioned, a candidate split point is before a blocking oper-

ator. The intuition is that the blocking operator will have

less data to process when run in parallel and so it will

be faster. (A requirement is that there is a parallelizable

implementation of the blocking operator.)

• (H6): merge-point placement. Given a flow to be parti-

tioned, a candidate merge point is after a large data re-

duction operator (e.g., highly selective filter or aggregate),

since merging is faster when there is less data to merge.

Heuristics for Recoverability.

• (H7): blocking recovery point. Add recovery points after

blocking or, in general, time-consuming operators.

• (H8): phase recovery point. Add recovery points at the

end of an ETL phase, e.g., after extraction or transforma-

tion phases.

• (H9): recovery feasibility. Adding a recovery point at

some position should take under consideration the in-

equality 7.

Heuristic for Reliability.

• (H10): reliable freshness. If a flow requires very fresh

data (i.e., the execution time window w is small), and

also high reliability (i.e., the number k of failures to be

tolerated is high), recovery points may not be usable due

to their additional latency. In this situation, we should

consider using redundant flows.

2) QOX HEURISTIC SEARCH (QHS): Based on the

abovementioned heuristics, we present algorithm QHS that

prunes the state space extensively in order to improve the

objective function OF (equation 11).
QHS is a heuristic algorithm having as inputs an initial

state (i.e., the initial ETL workflow) and a list of requirements.

More specifically, the desired time window w in which that

ETL process should terminate and the maximum number of

failures k, which must be tolerated; i.e., the number of failures

that the ETL should sustain and despite them will terminate

correctly in w time units. Our algorithm is general in that it

gets as input a generic objective function OF; in other words, it

can get any other OF and not necessarily only the one provided

by the equation 11. At the end, QHS returns the state that had

the minimum cost among all others it has visited.
The first action that QHS takes is to optimize the workflow

for performance (ln:3 – i.e., line 3 in QHS). For that, we

use the algebraic optimization techniques described in [4] for

getting the best we can according to the heuristic (H1). In a

nutshell, these include the creation of large chains of unary

operators before or after binary ones. [4] guarantees that the

most selective operators have been pushed at the front of the

design; at least, whenever that is possible. We have modified

appropriately the algebraic optimization method of [4] and

we bias the creation of chains containing pipeline operators,

in order to exploit the heuristic (H2). Thus, if in a chain

(or a local group to use the terminology of [4]) there exist

both pipeline and blocking operators, then we group them

separately.
In doing so, we identify all possible local groups lp of

pipeline operators and we place them in a list Qlp. Actually,

since the algorithms proposed in [4] already provide us with

chains of unary operators, we just work with these chains,

without having to check again for them in the graph. Then,

based on the formulae presented in Section II-C, we estimate

the cost cT (lpi) of each lpi and we keep Qlp sorted in

increasing order of that estimated cost (ln:4-6).
In all cases, whenever we have a chain of pipeline operators,

we exploit the heuristic (H3) and assign their execution in

different processors using a simple round robin scheduling

policy (not shown in the formal description of QHS).
Then (ln:7-9), we identify all candidate positions for placing

a recovery point using the heuristics (H7-H8) and by taking



Algorithm QOX HEURISTIC SEARCH
Input: An initial state SG representing an ETL graph G = (V, E), an objective function OF, and requirements for execution time

window w and the maximum number of failures to tolerate k
Output: A state SMIN having the minimum cost
begin1
SMIN = SCURRENT = SG;2
optimize for performance based on [4];3
create local groups lpi of pipeline operators;4
estimate cost cT (lpi) for all lpi;5
Qlp ← lpi, ∀lpi ∈ SG ordered by increasing order of cT (lpi);6
find candidate positions pos for recovery points RP based on the inequality (7);7
estimate cost cPi for adding RPi at posi; //essentially for connecting RPi with node vi at position posi8
QRP ←< RPi, posi >, ordered by increasing order of cPi ;9
candidates ← Scurrent ;10
while candidates <> � do11

release = true ;12
while QRP <> � do13
< rp, p >← QRP ;14
S′ = add RP(p,rp,SCURRENT ) ;15
release = false;16
while release = false do17

if OF(S′,n,k,w) holds then18
if C(SMIN ) > C(S′) then SMIN = S′ ;19
release = true;20
candidates ← S′ ;21

else22
pick a lp from Qlp, s.t. lp is the highest ranked in Qlp in terms of expected gain and is placed before p ;23
open ← Scurrent ;24
S′

MIN = Scurrent;25
while open <> � do26
S ← open ;27
for all {dN ,P} do28
S′ = partition(lp.first,lp.last,dN ,P ,S) if C(S′

MIN ) > C(S′) then S′
MIN = S′ ;29

open ← S′ ;30

if OF(S′
MIN ,n,k,w) holds then31

if C(SMIN ) > C(S′
MIN ) then SMIN = S′

MIN ;32
release = true; candidates ← S′

MIN ;33

open ← Scurrent ;34
S′

MIN = Scurrent;35
while open <> � do36
S ← open ;37
for all {rN} do38
S′ = replicate(lp.first,lp.last,rN ,S) if C(S′

MIN ) > C(S′) then S′
MIN = S′ ;39

open ← S′ ;40

if OF(S′
MIN ,n,k,w) holds then41

if C(SMIN ) > C(S′
MIN ) then SMIN = S′

MIN ;42
release = true; candidates ← S′

MIN ;43

return SMIN44
end45

under consideration the recovery feasibility (H9) at each

place using the inequality (7). In each case, we estimate the

expected cost cPi
for adding the recovery point RPi at the

position posi (i.e., to connect it with the node that is placed

in posi). We store the recovery points found satisfying the

abovementioned heuristics in list QRP , which we maintain

ordered by increasing order of the expected cost cPi .

Every state visited by QHS is stored in list candidates,

where first we put the initial state. Then, we start exploring

the state space, by visiting only states that we know based on

heuristics (H1-H10) that are good candidates for giving us a

better cost. We start with examining the possibility of adding

in our workflow the recovery points stored in QRP . For each,

we examine if we can afford it, and if the answer is positive

then we add it to the graph (ln: 18-21). Note that since QRP

is sorted in increasing order of the expected cost (or equally,

in decreasing order of the potential gain), we pick first in a

greedy fashion the most promising recovery points.



However, if we cannot afford a specific recovery point, we

examine the possibility to make some room in our budget

by boosting the performance using parallelization and in

particular, partitioning (ln:23-30) (pipelining is already used

wherever possible). Thus, we consider all local groups lpi

stored in Qlp that are placed before the position of interest

for the considered recovery point. For each lpi, we examine

possible partitioning schemes using a partitioning policy P
and a degree of parallelism dN .

Regarding the partitioning policy P , the algorithm is agnos-

tic to it. In our implementation though, we use round robin

as the default partitioning policy, when the sort order does

not matter, and sort-based or range partitioning, when the sort

order matters, in order to reduce the cost of merging (i.e.,

merge-sort in this case) at the end of lpi.

An appropriate dN should be chosen based on the inequality

7, so that the partitioning will make room in terms of cost from

the addition of the recovery point vp at position p. Thus, dN

should be at least: dN =
∑ lp.last

lpi=lp.first cT(lpi)

cvp−cTS
−cTM

. An upper bound

for dN is determined by the cost of merging at the end of

lpi (if dN is too large, then paying the cost of merging is not

worth it). Hence, we examine integer values of dN (if any) in

the above range. If we cannot find a satisfactory dN (ln:31-

33), then we continue with another lpi. If no lpi can allow the

addition of vp, then either we try a different vp at a different

position p or we use replication.

For replication, we check different options of creating the

rN replicas for the chain lpi (ln:36-40). The rN values tested

belong to a range similar to the one described before for dN

and are estimated using equation 8. The only difference is that

here we are interested in odd integer values of dN since the

voter chooses based on the majority of votes. Depending on

how accurate results we want (this is an external requirement

not shown in the formal description of the algorithm) we

choose either the fast or the accurate voter (see Section II-

C for their operation).

If replication fails (ln:41-43) then we cannot satisfy the

recovery point under consideration, and we proceed with the

next available one from QRP . Each time a valid solution is

found, we put it in the list of candidates, in order to check

later on if we can enrich it with additional recovery points that

would fit in the given requirements.

V. EXPERIMENTAL EVALUATION

A. System Architecture

The QoX optimizer presented in this paper is agnostic to the

specific ETL engine. The optimizer gets as an input a graph

representing an ETL workflow and produces another graph

with same semantics. Modern ETL tools, both commercial,

like Informatica’s PowerCenter4 and open-source, like Pen-

taho’s Kettle5, support import and export of ETL designs in

XML files. An example ETL workflow in Kettle’s XML format

is depicted in Figure 7. Thus, an appropriate parser transforms

4http://www.informatica.com/products services/powercenter/
5http://kettle.pentaho.org/

Fig. 7. Example ETL workflow

the XML file into our supported graph format, and vice versa,

it transforms an ETL workflow from our supported graph

format to an XML file. Therefore, the optimization techniques

described here can be used on top of any ETL engine that

supports this functionality.

B. Experimental Setup

For the experimental assessment of our methods, we used

a set of 30 ETL workflows of varying size and structure. Ac-

cording to their sizes, the workflows used can be categorized

as follows: (a) small flows, containing from 20 to 30 operators,

(b) medium flows, containing from 31 to 54 operators, and (c)

large flows, containing from 55 to 80 operators.

Example operators considered in our evaluation are fil-

ters, functions (type conversions, string manipulation, etc.),

schema changing transformations (like pivot etc.), surrogate

key assignment, lookup operations, diff operation, union, join,

aggregating operations, and so on. For each transformation, we

used a cost function determined by its core operations (e.g., an

operator having sort as its core function has a cost similar to

n × log(n)). For more complex operators (e.g., user-defined

functions), we used the open source ETL tool called Kettle



and went through the implementation code of the operations

in order to get an estimate of their complexity and cost.

All experiments have been conducted in a Dual Core 2 PC

at 2.13 GHz with 1 GB main memory and a SATA disk of

230 GB. The optimizer is implemented in C++ and makes use

of the Boost library for graphs6.

C. Evaluation

A significant aspect is to understand the size of the op-

timization problem and to validate that our solution works.

Exhaustive search ES produces the optimal solution, but

realistic ETL flows can be too large for exhaustive search.

However, our findings show that heuristic search QHS is

feasible in space (Figure 8) and time (Figure 9) and provides

solution of quality close to the optimal (Figure 10).

In Figure 8, the number of graph states (possible ETL flows)

evaluated by the optimizer is plotted against the size of the

original, unoptimized flow. As expected, as the size of the

flow increases, the number of states grows. The sharp knee for

exhaustive search at 40 nodes is because, beyond 40 nodes,

exhaustive search was intentionally terminated at 35 hours of

search time and the best solution as of that time was returned.

The reason the number of states visited declines beyond 40

nodes is because the processing time to generate new search

states increases with the size of the flow. Thus, for a fixed

amount of search time, exhaustive search will consider fewer

states for a large flow than for a small flow.

Heuristic search behaves well even for large flows. As the

flow size increases, the number of states visited for heuristic

search increases at a much lower rate than for ES.
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Fig. 8. Number of states visited versus worklow size

In Figure 9, the optimizer execution time is plotted against

the size of the original, unoptimized flow. Note the time is

log-scale. The heuristic algorithm finishes orders of magnitude

faster than exhaustive search. Recall that exhaustive search

was terminated at 35 hours beyond 40 nodes which is why

that exhaustive line is nearly flat. We see that even for the

largest flows, heuristic search completes within a reasonable

amount of time (a couple of hours). Flow optimization will

be a relatively infrequent event so spending a few hours to

optimize flows is acceptable.

Figure 10 compares the quality (in terms of cost) of so-

lutions found by heuristic search against the solution found

6http://www.boost.org/doc/libs/1 39 0/libs/graph/doc/index.html
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by exhaustive search. Up to 40 nodes, the exhaustive solution

is optimal and we see that the heuristic solution is within

a few percent of optimal. Beyond 40 nodes, the quality of

the heuristic solution declines but it is compared against a

presumably sub-optimal solution returned by exhaustive search

that was terminated early. Consequently, the results in this

range are harder to interpret. However, the overall trend line

is nearly linear across the entire range so we can speculate that

the sub-optimal solution returned by exhaustive search was not

too far off.
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The optimizer selects different fault-tolerance strategies

depending on the QoX objectives. To illustrate this, Figure 11

compares the number of recovery points (RP) and the number

of replicas (RPL) used in solutions for various workflow sizes

and various input sizes. The workflow sizes ranged from 20

to 80 nodes. Three input sizes were considered: 1000 tuples,

100,000 tuples and 1 million tuples.

For the smallest flow of 20 nodes, we see only a single strat-

egy is used. The larger input sizes used only recovery points.

However, the smaller input size used replication, presumably

because the additional latency due to recovery points would

not allow the workflow to complete within its time window.

As the flow size increases up to 80 nodes, solutions tend to

use a mixture of strategies with recovery points interspersed

with flows that are replicated. However, in general, we see

that the smaller input sizes favor a replication strategy over a

recovery point strategy.

Essentially, Figure 11 shows the trade-off between fresh-

ness (which affects input size) and fault-tolerance, while the

workflow size is examined as a third dimension. For achieving



higher freshness, a typical strategy is to process smaller

batches of data and this should be done fast. Hence, for smaller

input sizes (red bar) replication is favored, whereas for larger

batches the optimizer tends to use more recovery points. Such

tradeoffs are captured in the theoretical analysis presented in

Section II-C and II-D and constitute the key contribution of our

paper. Note that equation 11 gives the optimization objective,

combining the freshness and fault-tolerance requirements into

a constraint on the optimal solution. Figure 11 shows why the

optimization problem is non-trivial: the optimal solution must

include the “best” mix of recovery points, replicas, and so on.
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VI. RELATED WORK

Commercial ETL tools (e.g., [6], [7], [8], [9]) provide

little support for automatic optimization. They only provide

hooks for the ETL designer to specify for example which

flows may run in parallel or where to partition flows for

pipeline parallelism. Some ETL engines such as PowerCenter

[7] support PushDown optimization, which pushes operators

that can be expressed in SQL from the ETL flow down to

the source or target database engine. The remaining trans-

formations are executed in the data integration server. The

challenge of optimizing the entire flow remains. To the best

of our knowledge, today’s ETL tools do not support automatic

optimization for the qualities considered in this paper.

Despite the significance of optimization, so far the problem

has not been extensively considered in the research literature

on ETL. The existing studies mainly focus on a black-box

optimization approach at the logical level, and concern the

order with which the activities are placed in the flow [3], [4].

More general rewriting that takes into account the semantics

of the flow operations has not yet been addressed. A major

inhibitor to progress here is the lack of a formal language at

the logical level (analogous to the relational algebra).

Other research efforts have dealt with optimizing specific

parts of ETL (esp. in real-time ETL), such as the loading

phase (e.g., [10]), individual operators (e.g., [11]), scheduling

policies (e.g., [12]), and so on. However, none of these efforts

has dealt with the problem of optimizing the entire ETL

workflow.

Furthermore, following the tradition of query optimization,

the prior work on ETL optimization considered performance

as the only objective. This paper is the first effort to consider

other QoX objectives as well. In our earlier papers, we

introduced the QoX framework [1] and showed examples of

tradeoffs that lead to different ETL designs in order to meet

different QoX objectives [2]. Here, we study the problem of

optimizing for performance under freshness and fault-tolerance

constraints.
Object-relational optimization has also provided results for

queries with methods. For example, earlier work has dealt with

left-deep or bushy relational query plans [13]. However, ETL

workflows have more complex structure and functionality, and

thus, do not necessarily meet the assumptions made in [13].

VII. CONCLUSIONS

ETL projects today are designed for correct functionality

and adequate performance, i.e., to complete within a time

window. However, the task of optimizing ETL designs is left to

the experience and intuition of the ETL designers. In addition,

ETL designs face additional objectives beyond performance.
In this paper, we have presented an approach to developing

ETL designs that satisfy multiple objectives beyond perfor-

mance. We illustrated this approach for designs that support

fault-tolerance and freshness. Our approach considers multiple

strategies for these objectives and uses heuristics to search

a large design space of possible solutions. Our experiments

demonstrate the feasibility of our technique by comparing

the heuristic solutions to those found by exhaustive search.

The heuristic algorithm is orders of magnitude faster than the

exhaustive search and yet finds solutions that are within a few

percent of the optimal solution.
As future work, we intend to consider optimizing ETL flows

for additional QoX objectives.
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