
This paper is included in the Proceedings of the

14th USENIX Conference on

File and Storage Technologies (FAST ’16).

February 22–25, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-28-7

Open access to the Proceedings of the

14th USENIX Conference on

File and Storage Technologies

is sponsored by USENIX

Optimizing Every Operation
in a Write-optimized File System

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,

Kanchan Chandnani, and Pooja Deo, Stony Brook University; Zardosht Kasheff, Facebook;

Leif Walsh, Two Sigma; Michael A. Bender, Stony Brook University; Martin Farach-

Colton, Rutgers University; Rob Johnson, Stony Brook University; Bradley C. Kuszmaul,

Massachusetts Institute of Technology; Donald E. Porter, Stony Brook University

https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 1

Optimizing Every Operation in a Write-Optimized File System

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,

Kanchan Chandnani, Pooja Deo, Zardosht Kasheff∗, Leif Walsh∗∗, Michael A. Bender,

Martin Farach-Colton†, Rob Johnson, Bradley C. Kuszmaul‡, and Donald E. Porter

Stony Brook University, ∗Facebook, ∗∗Two Sigma, †Rutgers University,

and ‡Massachusetts Institute of Technology

Abstract

File systems that employ write-optimized dictionaries

(WODs) can perform random-writes, metadata updates,

and recursive directory traversals orders of magnitude

faster than conventional file systems. However, previ-

ous WOD-based file systems have not obtained all of

these performance gains without sacrificing performance

on other operations, such as file deletion, file or directory

renaming, or sequential writes.

Using three techniques, late-binding journaling, zon-

ing, and range deletion, we show that there is no funda-

mental trade-off in write-optimization. These dramatic

improvements can be retained while matching conven-

tional file systems on all other operations.

BetrFS 0.2 delivers order-of-magnitude better perfor-

mance than conventional file systems on directory scans

and small random writes and matches the performance

of conventional file systems on rename, delete, and se-

quential I/O. For example, BetrFS 0.2 performs directory

scans 2.2× faster, and small random writes over two or-

ders of magnitude faster, than the fastest conventional file

system. But unlike BetrFS 0.1, it renames and deletes

files commensurate with conventional file systems and

performs large sequential I/O at nearly disk bandwidth.

The performance benefits of these techniques extend to

applications as well. BetrFS 0.2 continues to outperform

conventional file systems on many applications, such as

as rsync, git-diff, and tar, but improves git-clone

performance by 35% over BetrFS 0.1, yielding perfor-

mance comparable to other file systems.

1 Introduction

Write-Optimized Dictionaries (WODs)1, such as Log-

Structured Merge Trees (LSM-trees) [24] and Bε -

trees [6], are promising building blocks for managing

on-disk data in a file system. Compared to conventional

1The terms Write-Optimized Index (WOI), Write-Optimized Dic-

tionary (WOD), and Write-Optimized Data Structure (WODS) can be

used interchangeably.

file systems, previous WOD-based file systems have im-

proved the performance of random writes [7, 12, 30],

metadata updates [7, 12, 25, 30], and recursive directory

traversals [7, 12] by orders of magnitude.

However, previous WOD-based file systems have not

obtained all three of these performance gains without

sacrificing performance on some other operations. For

example, TokuFS [7] and BetrFS [12] have slow file

deletions, renames, and sequential file writes. Directory

traversals in KVFS [30] and TableFS [25] are essentially

no faster than conventional file systems. TableFS stores

large files in the underlying ext4 file system, and hence

offers no performance gain for random file writes.

This paper shows that a WOD-based file system can

retain performance improvements to metadata updates,

small random writes, and recursive directory traversals—

sometimes by orders of magnitude—while matching

conventional file systems on other operations.

We identify three techniques to address fundamental

performance issues for WOD-based file systems and im-

plement them in BetrFS [11, 12]. We call the resulting

system BetrFS 0.2 and the baseline BetrFS 0.1. Although

we implement these ideas in BetrFS, we expect they will

improve any WOD-based file system and possibly have

more general application.

First, we use a late-binding journal to perform large

sequential writes at disk bandwidth while maintaining

the strong recovery semantics of full-data journaling.

BetrFS 0.1 provides full-data journaling, but halves sys-

tem throughput for large writes because all data is writ-

ten at least twice. Our late-binding journal adapts an ap-

proach used by no-overwrite file systems, such as zfs [4]

and btrfs [26], which writes data into free space only

once. A particular challenge in adapting this technique to

a Bε -tree is balancing crash consistency of data against

sufficient I/O scheduling flexibility to avoid reintroduc-

ing large, duplicate writes in Bε -tree message flushing.

Second, BetrFS 0.2 introduces a tunable directory tree

partitioning technique, called zoning, that balances the

tension between fast recursive directory traversals and

fast file and directory renames. Fast traversals require

2 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

co-locating related items on disk, but to maintain this lo-

cality, renames must physically move data. Fast renames

can be implemented by updating a few metadata pointers,

but this can scatter a directory’s contents across the disk.

Zoning yields most of the benefits of both designs. Be-

trFS 0.2 traverses directories at near disk bandwidth and

renames at speeds comparable to inode-based systems.

Finally, BetrFS 0.2 contributes a new range delete

WOD operation that accelerates unlinks, sequential

writes, renames, and zoning. BetrFS 0.2 uses range

deletes to tell the WOD when large swaths of data are no

longer needed. Range deletes enable further optimiza-

tions, such as avoiding the read-and-merge of stale data,

that would otherwise be difficult or impossible.

With these enhancements, BetrFS 0.2 can roughly

match other local file systems on Linux. In some cases, it

is much faster than other file systems or provides stronger

guarantees at a comparable cost. In a few cases, it is

slower, but within a reasonable margin.

The contributions of this paper are:

• A late-binding journal for large writes to a message-

oriented WOD. BetrFS 0.2 writes large files at

96MB/s, compared to 28MB/s in BetrFS 0.1.

• A zone-tree schema and analytical framework for rea-

soning about trade-offs between locality in directory

traversals and indirection for fast file and directory re-

names. We identify a point that preserves most of the

scan performance of the original BetrFS and supports

renames competitive with conventional file systems

for most file and directory sizes. The highest rename

overhead is bound at 3.8× slower than the ext4.

• A range delete primitive, which enables WOD-

internal optimizations for file deletion, and also avoids

costly reads and merges of dead tree nodes. With

range delete, BetrFS 0.2 can unlink a 1 GB file in

11ms, compared to over a minute on BetrFS 0.1 and

110ms on ext4.

• A thorough evaluation of these optimizations and their

impact on real-world applications.

Thus, BetrFS 0.2 demonstrates that a WOD can improve

file-system performance on random writes, metadata up-

dates, and directory traversals by orders of magnitude

without sacrificing performance on other file-system op-

erations.

2 Background

This section gives the background necessary to under-

stand and analyze the performance of WOD-based file

systems, with a focus on Bε -trees and BetrFS. See Ben-

der et al. [3] for a more comprehensive tutorial.

2.1 Write-Optimized Dictionaries

WODs include Log-Structured Merge Trees (LSM-

trees) [24] and their variants [29, 30, 37], Bε -trees [6],

xDicts [5], and cache-oblivious lookahead arrays (CO-

LAs) [2, 28]. WODs provide a key-value interface sup-

porting insert, query, delete, and range-query operations.

The WOD interface is similar to that of a B-tree, but

the performance profile is different:

• WODs can perform inserts of random keys orders of

magnitude faster than B-trees. On a rotating disk, a B-

tree can perform only a couple of hundred inserts per

second in the worst case, whereas a WOD can perform

many tens of thousands.

• In WODs, a delete is implemented by inserting a

tombstone message, which is extremely fast.

• Some WODs, such as Bε -trees, can perform point

queries as fast as a B-tree. Bε -trees (but not LSM-

trees) offer a provably optimal combination of query

and insert performance.

• WODs perform range queries at nearly disk band-

width. Because a WOD can use nodes over a

megabyte in size, a scan requires less than one disk

seek per MB of data and hence is bandwidth bound.

The key idea behind write optimization is deferring

and batching small, random writes. A Bε -tree logs in-

sertions or deletions as messages at the root of the tree,

and only flushes messages down a level in the tree when

enough messages have accrued to offset the cost of ac-

cessing the child. As a result, a single message may be

written to disk multiple times. Since each message is al-

ways written as part of a larger batch, the amortized cost

for each insert is typically much less than one I/O. In

comparison, writing a random element to a large B-tree

requires a minimum of one I/O.

Most production-quality WODs are engineered for use

in databases, not in file systems, and are therefore de-

signed with different performance requirements. For ex-

ample, the open-source WOD implementation underly-

ing BetrFS is a port of TokuDB2 into the Linux ker-

nel [32]. TokuDB logs all inserted keys and values to

support transactions, limiting the write bandwidth to at

most half of disk bandwidth. As a result, BetrFS 0.1 pro-

vides full-data journaling, albeit at a cost to large sequen-

tial writes.

Caching and recovery. We now summarize relevant

logging and cache-management features of TokuDB.

TokuDB updates Bε -tree nodes using redirect on

write [8]. In other words, each time a dirty node is writ-

ten to disk, the node is placed at a new location. Recov-

ery is based on periodic, stable checkpoints of the tree.

Between checkpoints, a write-ahead, logical log tracks

2TokuDB implements Fractal Tree indexes [2], a Bε -tree variant.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 3

all tree updates and can be replayed against the last stable

checkpoint for recovery. This log is buffered in memory,

and is made durable at least once every second.

This scheme of checkpoint and write-ahead log allows

the Bε -tree to cache dirty nodes in memory and write

them back in any order, as long as a consistent version

of the tree is written to disk at checkpoint time. After

each checkpoint, old checkpoints, logs, and unreachable

nodes are garbage collected.

Caching dirty nodes improves insertion performance

because TokuDB can often avoid writing internal tree

nodes to disk. When a new message is inserted into the

tree, it can immediately be moved down the tree as far

as possible without dirtying any new nodes. If the mes-

sage is part of a long stream of sequential inserts, then

the entire root-to-leaf path is likely to be dirty, and the

message can go straight to its leaf. This caching, com-

bined with write-ahead logging, explains why large se-

quential writes in BetrFS 0.1 realize at most half3 of the

disk’s bandwidth: most messages are written once to the

log and only once to a leaf. Section 3 describes a late-

binding journal, which lets BetrFS 0.2 write large data

values only once, without sacrificing the crash consis-

tency of data.

Message propagation. As the buffer in an internal Bε -

tree node fills up, the Bε -tree estimates which child or

children would receive enough messages to amortize the

cost of flushing these messages down one level. Mes-

sages are kept logically consistent within a node buffer,

stored in commit order. Even if messages are physically

applied to leaves at different times, any read applies all

matching buffered messages between the root and leaf in

commit order. Section 5 introduces a “rangecast” mes-

sage type, which can propagate to multiple children.

2.2 BetrFS

BetrFS stores all file system data—both metadata and file

contents—in Bε -trees [12]. BetrFS uses two Bε -trees: a

metadata index and a data index. The metadata index

maps full paths to the corresponding struct stat in-

formation. The data index maps (path, block-number)

pairs to the contents of the specified file block.

Indirection. A traditional file system uses indirection,

e.g., inode numbers, to implement renames efficiently

with a single pointer swap. This indirection can hurt di-

rectory traversals because, in the degenerate case, there

could be one seek per file.

The BetrFS 0.1 full-path-based schema instead opti-

mizes directory traversals at the expense of renaming

3TokuDB had a performance bug that further reduced BetrFS 0.1’s

sequential write performance to at most 1/3rd of disk bandwidth. See

Section 6 for details.

large files and directories. A recursive directory traversal

maps directly to a range query in the underlying Bε -tree,

which can run at nearly disk bandwidth. On the other

hand, renames in BetrFS 0.1 must move all data from

the old keys to new keys, which can become expensive

for large files and directories. Section 4 presents schema

changes that enable BetrFS 0.2 to perform recursive di-

rectory traversals at nearly disk bandwidth and renames

at speeds comparable to inode-based file systems.

Indexing data and metadata by full path also harms

deletion performance, as each block of a large file

must be individually removed. The sheer volume of

these delete messages in BetrFS 0.1 leads to orders-of-

magnitude worse unlink times for large files. Section 5

describes our new “rangecast delete” primitive for imple-

menting efficient file deletion in BetrFS 0.2.

Consistency. In BetrFS, file writes and metadata

changes are first recorded in the kernel’s generic VFS

data structures. The VFS may cache dirty data and meta-

data for up to 5 seconds before writing it back to the un-

derlying file system, which BetrFS converts to Bε -tree

operations. Thus BetrFS can lose at most 6 seconds of

data during a crash—5 seconds from the VFS layer and

1 second from the Bε -tree log buffer. fsync in BetrFS

first writes all dirty data and metadata associated with the

inode, then writes the entire log buffer to disk.

3 Avoiding Duplicate Writes

This section discusses late-binding journaling, a tech-

nique for delivering the sequential-write performance of

metadata-only journaling while guaranteeing full-data-

journaling semantics.

BetrFS 0.1 is unable to match the sequential-write per-

formance of conventional file systems because it writes

all data at least twice: once to a write-ahead log and at

least once to the Bε -tree. As our experiments in Section 7

show, BetrFS 0.1 on a commodity disk performs large se-

quential writes at 28MB/s, whereas other local file sys-

tems perform large sequential writes at 78–106MB/s—

utilizing nearly all of the hard drive’s 125 MB/s of band-

width. The extra write for logging does not significantly

affect the performance of small random writes, since they

are likely to be written to disk several times as they move

down the Bε -tree in batches. However, large sequential

writes are likely to go directly to tree leaves, as explained

in Section 2.1. Since they would otherwise be written

only once in the Bε -tree, logging halves BetrFS 0.1 se-

quential write bandwidth. Similar overheads are well-

known for update-in-place file systems, such as ext4,

which defaults to metadata-only journaling as a result.

Popular no-overwrite file systems address journal

write amplification with indirection. For small values,

4 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 1: Late-binding journaling in a Bε -tree.

zfs embeds data directly in a log entry. For large val-

ues, it writes data to disk redirect-on-write, and stores a

pointer in the log [21]. This gives zfs fast durability for

small writes by flushing the log, avoids the overhead of

writing large values twice, and retains the recovery se-

mantics of data journaling. On the other hand, btrfs [26]

uses indirection for all writes, regardless of size. It writes

data to newly-allocated blocks, and records those writes

with pointers in its journal.

In the rest of this section, we explain how we inte-

grate indirection for large writes into the BetrFS recov-

ery mechanism, and we discuss the challenges posed by

the message-oriented design of the Bε -tree.

BetrFS on-disk structures. The BetrFS Bε -tree imple-

mentation writes Bε -tree nodes to disk using redirect-on-

write and maintains a logical write-ahead redo log. Each

insert or delete message is first recorded in the log and

then inserted into the tree’s in-memory nodes. Each en-

try in the log specifies the operation (insert or delete) and

the relevant keys and values.

Crash consistency is implemented by periodically

checkpointing the Bε -tree and by logging operations be-

tween checkpoints. An operation is durable once its log

entry is on disk. At each checkpoint, all dirty nodes are

written to ensure that a complete and consistent Bε -tree

snapshot is on disk, and the log is discarded. For in-

stance, after checkpoint i completes, there is a single Bε -

tree, Ti, and an empty log. Any blocks that are not reach-

able in Ti can be garbage collected and reallocated.

Between checkpoints i and i + 1, all operations are

logged in Logi+1. If the system crashes at any time

between the completion of checkpoint i and checkpoint

i+1, it will resume from tree Ti and replay Logi+1.

Late-binding journal. BetrFS 0.2 handles large mes-

sages, or large runs of consecutive messages, as follows

and illustrated in Figure 1:

• A special unbound log entry is appended to the in-

memory log buffer 1 . An unbound log entry spec-

ifies an operation and a key, but not a value. These

messages record the insert’s logical order.

• A special unbound message is inserted into the Bε -tree

2 . An unbound message contains the key, value, and

log entry ID of its corresponding unbound log entry.

Unbound messages move down the tree like any other

message.

• To make the log durable, all nodes containing unbound

messages are first written to disk. As part of writing

the node to disk, each unbound message is converted

to a normal insert message (non-leaf node) or a normal

key-value pair (leaf node). After an unbound message

in a node is written to disk, a binding log entry is ap-

pended to the in-memory log buffer 3 . Each bind-

ing log entry contains the log entry ID from the un-

bound message and the physical disk address of the

node. Once all inserts in the in-memory log buffer are

bound, the in-memory log buffer is written to disk.

• Node write-backs are handled similarly: when a node

containing an unbound message is written to disk as

part of a cache eviction, checkpoint, or for any other

reason, binding entries are appended to the in-memory

log buffer for all the unbound messages in the node,

and the messages in the node are marked as bound.

The system can make logged operations durable at any

time by writing out all the tree nodes that contain un-

bound messages and then flushing the log to disk. It is an

invariant that all unbound inserts in the on-disk log will

have matching binding log entries. Thus, recovery can

always proceed to the end of the log.

The on-disk format does not change for an unbound

insert: unbound messages exist only in memory.

The late-binding journal accelerates large messages.

A negligible amount of data is written to the log, but a

tree node is forced to be written to disk. If the amount of

data to be written to a given tree node is equivalent to the

size of the node, this reduces the bandwidth cost by half.

In the case where one or more inserts only account for

a small fraction of the node, logging the values is prefer-

able to unbound inserts. The issue is that an unbound

insert can prematurely force the node to disk (at a log

flush, rather than the next checkpoint), losing opportuni-

ties to batch more small modifications. Writing a node

that is mostly unchanged wastes bandwidth. Thus, Be-

trFS 0.2 uses unbound inserts only when writing at least

1MB of consecutive pages to disk.

Crash Recovery. Late-binding requires two passes over

the log during recovery: one to identify nodes containing

unbound inserts, and a second to replay the log.

The core issue is that each checkpoint only records the

on-disk nodes in use for that checkpoint. In BetrFS 0.2,

nodes referenced by a binding log entry are not marked

as allocated in the checkpoint’s allocation table. Thus,

the first pass is needed to update the allocation table to in-

clude all nodes referenced by binding log messages. The

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 5

second pass replays the logical entries in the log. After

the next checkpoint, the log is discarded, and the refer-

ence counts on all nodes referenced by the log are decre-

mented. Any nodes whose reference count hits zero (i.e.

because they are no longer referenced by other nodes in

the tree) are garbage collected at that time.

Implementation. BetrFS 0.2 guarantees consistent re-

covery up until the last log flush or checkpoint. By de-

fault, a log flush is triggered on a sync operation, every

second, or when the 32 MB log buffer fills up. Flush-

ing a log buffer with unbound log entries also requires

searching the in-memory tree nodes for nodes contain-

ing unbound messages, in order to first write these nodes

to disk. Thus, BetrFS 0.2 also reserves enough space at

the end of the log buffer for the binding log messages.

In practice, the log-flushing interval is long enough that

most unbound inserts are written to disk before the log

flush, minimizing the delay for a log write.

Additional optimizations. Section 5 explains some op-

timizations where logically obviated operations can be

discarded as part of flushing messages down one level of

the tree. One example is when a key is inserted and then

deleted; if the insert and delete are in the same message

buffer, the insert can be dropped, rather than flushed to

the next level. In the case of unbound inserts, we allow

a delete to remove an unbound insert before the value

is written to disk under the following conditions: (1) all

transactions involving the unbound key-value pair have

committed, (2) the delete transaction has committed, and

(3) the log has not yet been flushed. If these conditions

are met, the file system can be consistently recovered

without this unbound value. In this situation, BetrFS 0.2

binds obviated inserts to a special NULL node, and drops

the insert message from the Bε -tree.

4 Balancing Search and Rename

In this section, we argue that there is a design trade-off

between the performance of renames and recursive di-

rectory scans. We present an algorithmic framework for

picking a point along this trade-off curve.

Conventional file systems support fast renames at the

expense of slow recursive directory traversals. Each file

and directory is assigned its own inode, and names in

a directory are commonly mapped to inodes with point-

ers. Renaming a file or directory can be very efficient,

requiring only creation and deletion of a pointer to an in-

ode, and a constant number of I/Os. However, searching

files or subdirectories within a directory requires travers-

ing all these pointers. When the inodes under a directory

are not stored together on disk, for instance because of

renames, then each pointer traversal can require a disk

seek, severely limiting the speed of the traversal.

BetrFS 0.1 and TokuFS are at the other extreme. They

index every directory, file, and file block by its full path

in the file system. The sort order on paths guarantees that

all the entries beneath a directory are stored contiguously

in logical order within nodes of the Bε -tree, enabling fast

scans over entire subtrees of the directory hierarchy. Re-

naming a file or directory, however, requires physically

moving every file, directory, and block to a new location.

This trade-off is common in file system design. In-

termediate points between these extremes are possible,

such as embedding inodes in directories but not moving

data blocks of renamed files. Fast directory traversals re-

quire on-disk locality, whereas renames must issue only

a small number of I/Os to be fast.

BetrFS 0.2’s schema makes this trade-off parameteri-

zable and tunable by partitioning the directory hierarchy

into connected regions, which we call zones. Figure 2a

shows how files and directories within subtrees are col-

lected into zones in BetrFS 0.2. Each zone has a unique

zone-ID, which is analogous to an inode number in a tra-

ditional file system. Each zone contains either a single

file or has a single root directory, which we call the root

of the zone. Files and directories are identified by their

zone-ID and their relative path within the zone.

Directories and files within a zone are stored together,

enabling fast scans within that zone. Crossing a zone

boundary potentially requires a seek to a different part of

the tree. Renaming a file under a zone root moves the

data, whereas renaming a large file or directory (a zone

root) requires only changing a pointer.

Zoning supports a spectrum of trade-off points be-

tween the two extremes described above. When zones

are restricted to size 1, the BetrFS 0.2 schema is equiv-

alent to an inode-based schema. If we set the zone size

bound to infinity (∞), then BetrFS 0.2’s schema is equiv-

alent to BetrFS 0.1’s schema. At an intermediate set-

ting, BetrFS 0.2 can balance the performance of direc-

tory scans and renames.

The default zone size in BetrFS 0.2 is 512 KiB. In-

tuitively, moving a very small file is sufficiently inex-

pensive that indirection would save little, especially in

a WOD. On the other extreme, once a file system is

reading several MB between each seek, the dominant

cost is transfer time, not seeking. Thus, one would ex-

pect the best zone size to be between tens of KB and a

few MB. We also note that this trade-off is somewhat

implementation-dependent: the more efficiently a file

system can move a set of keys and values, the larger a

zone can be without harming rename performance. Sec-

tion 7 empirically evaluates these trade-offs.

As an effect of zoning, BetrFS 0.2 supports hard links

by placing a file with more than 1 link into its own zone.

Metadata and data indexes. The BetrFS 0.2 meta-

6 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

0

ab
c.c

do
cs

1

2

Zone 0

Zone 2Zone 1

b.texa.
te

x

lo
cal

v
ied

b
in

src

(a) An example zone tree in BetrFS 0.2.

Metadata Index

(0,”/”) → stat info for “/”

(0,”/docs”) → zone 1

(0,”/local”) → stat info for “/local”

(0,”/src”) → stat info for “/src”

(0,”/local/bin”) → stat info for “/local/bin”

(0,”/local/bin/ed”) → stat info for “/local/bin/ed”

(0,”/local/bin/vi”) → stat info for “/local/bin/vi”

(0,”/src/abc.c”) → zone 2

(1,”/”) → stat info for “/docs”

(1,”/a.tex”) → stat info for “/docs/a.tex”

(1,”/b.tex”) → stat info for “/docs/b.tex”

(2,”/”) → stat info for “/src/abc.c”

Data Index

(0,“/local/bin/ed”, i) → block i of “/local/bin/ed”

(0,“/local/bin/vi”, i) → block i of “/local/bin/vi”

(1,“/a.tex”, i) → block i of “/docs/a.tex”

(1,“/b.tex”, i) → block i of “/docs/b.tex”

(2,“/”, i) → block i of “/src/abc.c”

(b) Example metadata and data indices in BetrFS 0.2.

Figure 2: Pictorial and schema illustrations of zone trees in BetrFS 0.2.

data index maps (zone-ID, relative-path) keys to meta-

data about a file or directory, as shown in Figure 2b. For

a file or directory in the same zone, the metadata includes

the typical contents of a stat structure, such as owner,

modification time, and permissions. For instance, in zone

0, path “/local” maps onto the stat info for this directory.

If this key (i.e., relative path within the zone) maps onto

a different zone, then the metadata index maps onto the

ID of that zone. For instance, in zone 0, path “/docs”

maps onto zone-ID 1, which is the root of that zone.

The data index maps (zone-ID, relative-path, block-

number) to the content of the specified file block.

Path sorting order. BetrFS 0.2 sorts keys by zone-ID

first, and then by their relative path. Since all the items

in a zone will be stored consecutively in this sort order,

recursive directory scans can visit all the entries within a

zone efficiently. Within a zone, entries are sorted by path

in a “depth-first-with-children” order, as illustrated in

Figure 2b. This sort order ensures that all the entries be-

neath a directory are stored logically contiguously in the

underlying key-value store, followed by recursive list-

ings of the subdirectories of that directory. Thus an ap-

plication that performs readdir on a directory and then

recursively scans its sub-directories in the order returned

by readdir will effectively perform range queries on

that zone and each of the zones beneath it.

Rename. Renaming a file or directory that is the root of

its zone requires simply inserting a reference to its zone

at its new location and deleting the old reference. So,

for example, renaming “/src/abc.c” to “/docs/def.c” in

Figure 2 requires deleting key (0, “/src/abc.c”) from the

metadata index and inserting the mapping (1, “/def.c”)

→ Zone 2.

Renaming a file or directory that is not the root of its

zone requires copying the contents of that file or direc-

tory to its new location. So, for example, renaming “/lo-

cal/bin” to “/docs/tools” requires (1) deleting all the keys

of the form (0, “/local/bin/p”) in the metadata index, (2)

reinserting them as keys of the form (1, “/tools/p”), (3)

deleting all keys of the form (0, “/local/bin/p”, i) from the

data index, and (4) reinserting them as keys of the form

(1, “/tools/p”, i). Note that renaming a directory never

requires recursively moving into a child zone. Thus, by

bounding the size of the directory subtree within a sin-

gle zone, we also bound the amount of work required to

perform a rename.

Splitting and merging. To maintain a consistent rename

and scan performance trade-off throughout system life-

time, zones must be split and merged so that the follow-

ing two invariants are upheld:

ZoneMin: Each zone has size at least C0.

ZoneMax: Each directory that is not the root of its

zone has size at most C1.

The ZoneMin invariant ensures that recursive directory

traversals will be able to scan through at least C0 consec-

utive bytes in the key-value store before initiating a scan

of another zone, which may require a disk seek. The

ZoneMax invariant ensures that no directory rename will

require moving more than C1 bytes.

The BetrFS 0.2 design upholds these invariants as

follows. Each inode maintains two counters to record

the number of data and metadata entries in its subtree.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 7

Whenever a data or metadata entry is added or removed,

BetrFS 0.2 recursively updates counters from the corre-

sponding file or directory up to its zone root. If either of a

file or directory’s counters exceed C1, BetrFS 0.2 creates

a new zone for the entries in that file or directory. When

a zone size falls below C0, that zone is merged with its

parent. BetrFS 0.2 avoids cascading splits and merges

by merging a zone with its parent only when doing so

would not cause the parent to split. To avoid unneces-

sary merges during a large directory deletion, BetrFS 0.2

defers merging until writing back dirty inodes.

We can tune the trade-off between rename and di-

rectory traversal performance by adjusting C0 and C1.

Larger C0 will improve recursive directory traversals.

However, increasing C0 beyond the block size of the

underlying data structure will have diminishing returns,

since the system will have to seek from block to block

during the scan of a single zone. Smaller C1 will im-

prove rename performance. All objects larger than C1

can be renamed in a constant number of I/Os, and the

worst-case rename requires only C1 bytes be moved. In

the current implementation, C0 =C1 = 512 KiB.

The zone schema enables BetrFS 0.2 to support a spec-

trum of trade-offs between rename performance and di-

rectory traversal performance. We explore these trade-

offs empirically in Section 7.

5 Efficient Range Deletion

This section explains how BetrFS 0.2 obtains nearly-flat

deletion times by introducing a new rangecast message

type to the Bε -tree, and implementing several Bε -tree-

internal optimizations using this new message type.

BetrFS 0.1 file and directory deletion performance is

linear in the amount of data being deleted. Although this

is true to some extent in any file system, as the freed disk

space will be linear in the file size, the slope for BetrFS

0.1 is alarming. For instance, unlinking a 4GB file takes

5 minutes on BetrFS 0.1!

Two underlying issues are the sheer volume of delete

messages that must be inserted into the Bε -tree and

missed optimizations in the Bε -tree implementation. Be-

cause the Bε -tree implementation does not bake in any

semantics about the schema, the Bε -tree cannot infer that

two keys are adjacent in the keyspace. Without hints

from the file system, a Bε -tree cannot optimize for the

common case of deleting large, contiguous key ranges.

5.1 Rangecast Messages

In order to support deletion of a key range in a sin-

gle message, we added a rangecast message type to

the Bε -tree implementation. In the baseline Bε -tree im-

plementation, updates of various forms (e.g., insert and

delete) are encoded as messages addressed to a single

key, which, as explained in §2, are flushed down the path

from root-to-leaf. A rangecast message can be addressed

to a contiguous range of keys, specified by the beginning

and ending keys, inclusive. These beginning and ending

keys need not exist, and the range can be sparse; the mes-

sage will be applied to any keys in the range that do exist.

We have currently added rangecast delete messages, but

we can envision range insert and upsert [12] being useful.

Rangecast message propagation. When single-key

messages are propagated from a parent to a child, they

are simply inserted into the child’s buffer space in logi-

cal order (or in key order when applied to a leaf). Range-

cast message propagation is similar to regular message

propagation, with two differences.

First, rangecast messages may be applied to multi-

ple children at different times. When a rangecast mes-

sage is flushed to a child, the propagation function must

check whether the range spans multiple children. If so,

the rangecast message is transparently split and copied

for each child, with appropriate subsets of the original

range. If a rangecast message covers multiple children

of a node, the rangecast message can be split and ap-

plied to each child at different points in time—most com-

monly, deferring until there are enough messages for that

child to amortize the flushing cost. As messages propa-

gate down the tree, they are stored and applied to leaves

in the same commit order. Thus, any updates to a key

or reinsertions of a deleted key maintain a global serial

order, even if a rangecast spans multiple nodes.

Second, when a rangecast delete is flushed to a leaf, it

may remove multiple key/value pairs, or even an entire

leaf. Because unlink uses rangecast delete, all of the

data blocks for a file are freed atomically with respect to

a crash.

Query. A Bε -tree query must apply all pending modifi-

cations in node buffers to the relevant key(s). Applying

these modifications is efficient because all relevant mes-

sages will be in a node’s buffer on the root-to-leaf search

path. Rangecast messages maintain this invariant.

Each Bε -tree node maintains a FIFO queue of pend-

ing messages, and, for single-key messages, a balanced

binary tree sorted by the messages’ keys. For range-

cast messages, our current prototype checks a simple

list of rangecast messages and interleaves the messages

with single-key messages based on commit order. This

search costs linear in the number of rangecast messages.

A faster implementation would store the rangecast mes-

sages in each node using an interval tree, enabling it to

find all the rangecast messages relevant to a query in

O(k+ logn) time, where n is number of rangecast mes-

sages in the node and k is the number of those messages

relevant to the current query.

8 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Rangecast unlink and truncate. In the BetrFS 0.2

schema, 4KB data blocks are keyed by a concatenated

tuple of zone ID, relative path, and block number. Un-

linking a file involves one delete message to remove the

file from the metadata index and, in the same Bε -tree-

level transaction, a rangecast delete to remove all of the

blocks. Deleting all data blocks in a file is simply en-

coded by using the same prefix, but from blocks 0 to

infinity. Truncating a file works the same way, but can

start with a block number other than zero, and does not

remove the metadata key.

5.2 Bε -Tree-Internal Optimizations

The ability to group a large range of deletion messages

not only reduces the number of total delete messages re-

quired to remove a file, but it also creates new opportu-

nities for Bε -tree-internal optimizations.

Leaf Pruning. When a Bε -tree flushes data from one

level to the next, it must first read the child, merge the in-

coming data, and rewrite the child. In the case of a large,

sequential write, a large range of obviated data may be

read from disk, only to be overwritten. In the case of Be-

trFS 0.1, unnecessary reads make overwriting a 10 GB

file 30–63 MB/s slower than the first write of the file.

The leaf pruning optimization identifies when an en-

tire leaf is obviated by a range delete, and elides reading

the leaf from disk. When a large range of consecutive

keys and values are inserted, such as overwriting a large

file region, BetrFS 0.2 includes a range delete for the key

range in the same transaction. This range delete message

is necessary, as the Bε -tree cannot infer that the range of

the inserted keys are contiguous; the range delete com-

municates information about the keyspace. On flush-

ing messages to a child, the Bε -tree can detect when a

range delete encompasses the child’s keyspace. BetrFS

0.2 uses transactions inside the Bε -tree implementation

to ensure that the removal and overwrite are atomic: at

no point can a crash lose both the old and new contents

of the modified blocks. Stale leaf nodes are reclaimed as

part of normal Bε -tree garbage collection.

Thus, this leaf pruning optimization avoids expensive

reads when a large file is being overwritten. This opti-

mization is both essential to sequential I/O performance

and possible only with rangecast delete.

Pac-Man. A rangecast delete can also obviate a signifi-

cant number of buffered messages. For instance, if a user

creates a large file and immediately deletes the file, the

Bε -tree may include many obviated insert messages that

are no longer profitable to propagate to the leaves.

BetrFS 0.2 adds an optimization to message flushing,

where a rangecast delete message can devour obviated

messages ahead of it in the commit sequence. We call

this optimization “Pac-Man”, in homage to the arcade

game character known for devouring ghosts. This op-

timization further reduces background work in the tree,

eliminating “dead” messages before they reach a leaf.

6 Optimized Stacking

BetrFS has a stacked file system design [12]; Bε -tree

nodes and the journal are stored as files on an ext4 file

system. BetrFS 0.2 corrects two points where BetrFS 0.1

was using the underlying ext4 file system suboptimally.

First, in order to ensure that nodes are physically

placed together, TokuDB writes zeros into the node files

to force space allocation in larger extents. For sequen-

tial writes to a new FS, BetrFS 0.1 zeros these nodes and

then immediately overwrites the nodes with file contents,

wasting up to a third of the disk’s bandwidth. We re-

placed this with the newer fallocate API, which can

physically allocate space but logically zero the contents.

Second, the I/O to flush the BetrFS journal file was

being amplified by the ext4 journal. Each BetrFS log

flush appended to a file on ext4, which required updat-

ing the file size and allocation. BetrFS 0.2 reduces this

overhead by pre-allocating space for the journal file and

using fdatasync.

7 Evaluation

Our evaluation targets the following questions:

• How does one choose the zone size?

• Does BetrFS 0.2 perform comparably to other file sys-

tems on the worst cases for BetrFS 0.1?

• Does BetrFS 0.2 perform comparably to BetrFS 0.1 on

the best cases for BetrFS 0.1?

• How do BetrFS 0.2 optimizations impact application

performance? Is this performance comparable to other

file systems, and as good or better than BetrFS 0.1?

• What are the costs of background work in BetrFS 0.2?

All experimental results were collected on a Dell Opti-

plex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4

GB RAM, and a 500 GB, 7200 RPM ATA disk, with

a 4096-byte block size. Each file system’s block size

is 4096 bytes. The system ran Ubuntu 13.10, 64-bit,

with Linux kernel version 3.11.10. Each experiment is

compared with several file systems, including BetrFS

0.1 [12], btrfs [26], ext4 [20], XFS [31], and zfs [4].

We use the versions of XFS, btrfs, ext4 that are part

of the 3.11.10 kernel, and zfs 0.6.3, downloaded from

www.zfsonlinux.org. The disk was divided into 2 par-

titions roughly 240 GB each; one for the root FS and the

other for experiments. We use default recommended file

system settings unless otherwise noted. Lazy inode table

and journal initialization were turned off on ext4. Each

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 9

40

80

120

160

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB

File Size (KiB) − log scale

T
im

e
 (

m
s
)

BetrFS_0.2 (0)

BetrFS_0.2 (∞)

Single File Rename (warm cache)

(a) BetrFS 0.2 file renames with zone size ∞ (all data must

be moved) and zone size 0 (inode-style indirection).

5

6

7

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB
8M

iB

Zone Size (KiB) − log scale

T
im

e
 (

s
)

Recursive Directory Scan (grep −r)

(b) Recursive scans of the Linux 3.11.10 source for

“cpu to be64” with different BetrFS 0.2 zone sizes.

Figure 3: The impact of zone size on rename and scan

performance. Lower is better.

20

40

60

4K
iB

8K
iB

16
KiB

32
KiB

64
KiB

12
8K

iB

25
6K

iB

51
2K

iB
1M

iB
2M

iB
4M

iB

File Size (KiB) − log scale

T
im

e
 (

m
s
)

BetrFS_0.2

btrfs

ext4

xfs

zfs

Single File Rename (warm cache)

Figure 4: Time to rename single files. Lower is better.

experiment was run a minimum of 4 times. Error bars

and ± ranges denote 95% confidence intervals. Unless

noted, all benchmarks are cold-cache tests.

7.1 Choosing a Zone Size

This subsection quantifies the impact of zone size on re-

name and scan performance.

A good zone size limits the worst-case costs of

rename but maintains data locality for fast directory

scans. Figure 3a shows the average cost to rename a file

and fsync the parent directory, over 100 iterations, plot-

ted as a function of size. We show BetrFS 0.2 with an

infinite zone size (no zones are created—rename moves

all file contents) and 0 (every file is in its own zone—

rename is a pointer swap). Once a file is in its own zone,

the performance is comparable to most other file sys-

0

30

60

90

write read
Operation

M
iB

/s

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

Sequential I/O

Figure 5: Large file I/O performance. We sequentially

read and write a 10GiB file. Higher is better.

tems (16ms on BetrFS 0.2 compared to 17ms on ext4).

This is balanced against Figure 3b, which shows grep

performance versus zone size. As predicted in Sec-

tion 4 directory-traversal performance improves as the

zone size increases.

We select a default zone size of 512 KiB, which en-

forces a reasonable bound on worst case rename (com-

pared to an unbounded BetrFS 0.1 worst case), and keeps

search performance within 25% of the asymptote. Fig-

ure 4 compares BetrFS 0.2 rename time to other file sys-

tems. Specifically, worst-case rename performance at

this zone size is 66ms, 3.7× slower than the median file

system’s rename cost of 18ms. However, renames of files

512 KiB or larger are comparable to other file systems,

and search performance is 2.2× the best baseline file sys-

tem and 8× the median. We use this zone size for the rest

of the evaluation.

7.2 Improving the Worst Cases

This subsection measures BetrFS 0.1’s three worst cases,

and shows that, for typical workloads, BetrFS 0.2 is ei-

ther faster or within roughly 10% of other file systems.

Sequential Writes. Figure 5 shows the throughput to se-

quentially read and write a 10GiB file (more than twice

the size of the machine’s RAM). The optimizations de-

scribed in §3 improve the sequential write throughput

of BetrFS 0.2 to 96MiB/s, up from 28MiB/s in BetrFS

0.1. Except for zfs, the other file systems realize roughly

10% higher throughput. We also note that these file sys-

tems offer different crash consistency properties: ext4

and XFS only guarantee metadata recovery, whereas zfs,

btrfs, and BetrFS guarantee data recovery.

The sequential read throughput of BetrFS 0.2 is im-

proved over BetrFS 0.1 by roughly 12MiB/s, which is

attributable to streamlining the code. This places BetrFS

0.2 within striking distance of other file systems.

Rename. Table 1 shows the execution time of sev-

eral common directory operations on the Linux 3.11.10

10 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

File System find grep mv rm -rf

BetrFS 0.1 0.36 ± 0.0 3.95 ± 0.2 21.17 ± 0.7 46.14 ± 0.8

BetrFS 0.2 0.35 ± 0.0 5.78 ± 0.1 0.13 ± 0.0 2.37 ± 0.2

btrfs 4.84 ± 0.7 12.77 ± 2.0 0.15 ± 0.0 9.63 ± 1.4

ext4 3.51 ± 0.3 49.61 ± 1.8 0.18 ± 0.1 4.17 ± 1.3

xfs 9.01 ± 1.9 61.09 ± 4.7 0.08 ± 0.0 8.16 ± 3.1

zfs 13.71 ± 0.6 43.26 ± 1.1 0.14 ± 0.0 13.23 ± 0.7

Table 1: Time in seconds to complete directory operations on the

Linux 3.11.10 source: find of the file “wait.c”, grep of the string

“cpu to be64”, mv of the directory root, and rm -rf. Lower is better.

File System Time (s)

BetrFS 0.1 0.48 ± 0.1

BetrFS 0.2 0.32 ± 0.0

btrfs 104.18 ± 0.3

ext4 111.20 ± 0.4

xfs 111.03 ± 0.4

zfs 131.86 ± 12.6

Table 2: Time to perform

10,000 4-byte overwrites on a

10 GiB file. Lower is better.

0

100

200

300

25
6M

iB

51
2M

iB
1G

iB
2G

iB
4G

iB

File Size

T
im

e
 (

s
)

BetrFS_0.1

BetrFS_0.2

Unlink Latency vs. File Size

Figure 6: Unlink latency by file size. Lower is better.

0.0

0.1

0.2

0.3

0.4

25
6M

iB

51
2M

iB
1G

iB
2G

iB
4G

iB

File Size

T
im

e
 (

s
) BetrFS_0.2

btrfs

ext4

xfs

zfs

Unlink Latency vs. File Size

Figure 7: Unlink latency by file size. Lower is better.

source tree. The rename test renames the entire source

tree. BetrFS 0.1 directory rename is two orders of mag-

nitude slower than any other file system, whereas BetrFS

0.2 is faster than every other file system except XFS. By

partitioning the directory hierarchy into zones, BetrFS

0.2 ensures that the cost of a rename is comparable to

other file systems.

Unlink. Table 1 also includes the time to recursively

delete the Linux source tree. Again, whereas BetrFS 0.1

is an order of magnitude slower than any other file sys-

tem, BetrFS 0.2 is faster. We attribute this improvement

to BetrFS 0.2’s fast directory traversals and to the effec-

tiveness of range deletion.

We also measured the latency of unlinking files of in-

creasing size. Due to scale, we contrast BetrFS 0.1 with

BetrFS 0.2 in Figure 6, and we compare BetrFS 0.2 with

other file systems in Figure 7. In BetrFS 0.1, the cost

to delete a file scales linearly with the file size. Fig-

ure 7 shows that BetrFS 0.2 delete latency is not sen-

●
●

●

●
●

●
●

●
●

●

●

●

100

1000

10000

100000

0 1M 2M 3M
Files Created

F
ile

s
/s

e
c
o
n
d

● BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

Small File Creation

Figure 8: Sustained file creation for 3 million 200-byte

files, using 4 threads. Higher is better, y-axis is log scale.

sitive to file size. Measurements show that zfs perfor-

mance is considerably slower and noisier; we suspect

that this variance is attributable to unlink incurring amor-

tized housekeeping work.

7.3 Maintaining the Best Cases

This subsection evaluates the best cases for a write-

optimized file system, including small random writes,

file creation, and searches. We confirm that our optimiza-

tions have not eroded the benefits of write-optimization.

In most cases, there is no loss.

Small, random writes. Table 2 shows the execution

time of a microbenchmark that issues 10,000 4-byte

overwrites at random offsets within a 10GiB file, fol-

lowed by an fsync. BetrFS 0.2 not only retains a two

orders-of-magnitude improvement over the other file sys-

tems, but improves the latency over BetrFS 0.1 by 34%.

Small file creation. To evaluate file creation, we used the

TokuBench benchmark [7] to create three million 200-

byte files in a balanced directory tree with a fanout of

128. We used 4 threads, one per core of the machine.

Figure 8 graphs files created per second as a function

of the number of files created. In other words, the point

at 1 million on the x-axis is the cumulative throughput at

the time the millionth file is created. zfs exhausts system

memory after creating around a half million files.

The line for BetrFS 0.2 is mostly higher than the line

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 11

0

10

20

30

40

−−in−place rename

M
B

 /
 s

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

rsync

(a) rsync of Linux 3.11.10 source. The data source and

destination are within the same partition and file system.

Throughput in MB/s, higher is better.

0

250

500

750

1000

T
im

e
 (

s
)

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

IMAP

(b) IMAP benchmark using Dovecot 2.2.13, 50% message

reads, 50% marking and moving messages among inboxes.

Execution time in seconds, lower is better.

0

5

10

15

20

25

clone diff

T
im

e
 (

s
)

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

Git Operations

(c) Git operations. The BetrFS source repository was

git-cloned locally, and a git-diff was taken between

two milestone commits. Lower is better.

0

20

40

60

80

tar untar
T

im
e
 (

s
)

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

Unix (Un)Tar

(d) Unix tar operations. The Linux version 3.11.10 source

code was both tared and un-tared. Time is in seconds.

Lower is better.

Figure 9: Application benchmarks

for BetrFS 0.1, and both sustain throughputs at least

3×, but often an order of magnitude, higher than any

other file system (note the y-axis is log scale). Due to

TokuBench’s balanced directory hierarchy and write pat-

terns, BetrFS 0.2 performs 16,384 zone splits in quick

succession at around 2 million files. This leads to a sud-

den drop in performance and immediate recovery.

Searches. Table 1 shows the time to search for files

named “wait.c” (find) and to search the file contents

for the string “cpu to be64” (grep). These operations

are comparable on both write-optimized file systems, al-

though BetrFS 0.2 grep slows by 46%, which is at-

tributable to the trade-offs to add zoning.

7.4 Application Performance

This subsection evaluates the impact of the BetrFS 0.2

optimizations on the performance of several applications,

shown in Figure 9. Figure 9a shows the throughput of an

rsync, with and without the --in-place flag. In both

cases, BetrFS 0.2 improves the throughput over BetrFS

0.1 and maintains a significant improvement over other

file systems. Faster sequential I/O and, in the second

case, faster rename, contribute to these gains.

In the case of git-clone, sequential write improve-

ments make BetrFS 0.2 performance comparable to other

0

30

60

90

Sequentially
Written

Randomly
Overwritten

M
iB

/s

BetrFS_0.1

BetrFS_0.2

btrfs

ext4

xfs

zfs

Sequential Read after
Sequential and Random Writes

Figure 10: Sequential read throughput after sequentially

writing a 10GiB file (left) and after partially overwriting

10,000 random blocks in the file (right). Higher is better.

file systems, unlike BetrFS 0.1. Similarly, BetrFS

0.2 marginally improves the performance of git-diff,

making it clearly faster than the other FSes.

Both BetrFS 0.2 and zfs outperform other file sys-

tems on the Dovecot IMAP workload, although zfs is the

fastest. This workload is characterized by frequent small

writes and fsyncs, and both file systems persist small

updates quickly by flushing their logs.

On BetrFS 0.2, tar is 1% slower than BetrFS 0.1 due

to the extra work of splitting zones.

12 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

7.5 Background costs

This subsection evaluates the overheads of deferred work

attributable to batching in a WOD. To measure the cost

of deferred writes, we compare the time to read a sequen-

tially written 10GiB file to the time to read that same file

after partially overwriting 10,000 random blocks. Both

reads are cold cache, and shown in Figure 10.

This experiment demonstrates that BetrFS 0.2’s ef-

fective read throughput is nearly identical (87MiB/s vs.

85MiB/s), regardless of how the file was written.

8 Related Work

Zoning. Dynamic subtree partitioning [35] is a tech-

nique designed for large-scale distributed systems, like

Ceph [36], to reduce metadata contention and balance

load. These systems distribute (1) the number of meta-

data objects and (2) the frequency of metadata accesses,

across nodes. Zones instead partition objects according

to their aggregate size to bound rename costs.

Spyglass [15] introduces a partitioning technique for

multi-dimensional metadata indices based on KD-trees.

Partitioning techniques have also been used to determine

which data goes on slower versus faster media [23], to ef-

ficiently maintain inverted document indices [14], or to

plug in different storage data structures to optimize for

read- or write-intensive workloads [19]. Chunkfs [10]

partitions the ext2 file system to improve recovery time.

A number of systems also divide disk bandwidth and

cache space for performance isolation [33, 34]; speak-

ing generally, these systems are primarily concerned

with fairness across users or clients, rather than bound-

ing worst-case execution time. These techniques strike

domain-specific trade-offs different from zoning’s bal-

ance of directory searches and renames.

IceFS [18] uses cubes, a similar concept to zones,

to isolate faults, remove physical dependencies in data

structures and transactional mechanisms, and allow for

finer granularity recovery and journal configuration.

Cubes are explicitly defined by users to consist of an en-

tire directory subtree, and can grow arbitrarily large as

users add more data. In contrast, zones are completely

transparent to users, and dynamically split and merged.

Late-binding log entries. KVFS [30] avoids the jour-

naling overhead of writing most data twice by creating

a new VT-tree snapshot for each transaction. When a

transaction commits, all in-memory data from the trans-

action’s snapshot VT-tree is committed to disk, and that

transaction’s VT-tree is added above dependent VT-trees.

Data is not written twice in this scenario, but the VT-tree

may grow arbitrarily tall, making search performance

difficult to reason about.

Log-structured file systems [1, 13, 16, 27] avoid the

problem of duplicate writes by only writing into a log.

This improves write throughput in the best cases, but

does not enforce an optimal lower bound on query time.

Physical logging [9] stores before- and after-images of

individual database pages, which may be expensive for

large updates or small updates to large objects. Logical

logging [17] may reduce log sizes when operations have

succinct representations, but not for large data inserts.

The zfs intent log combines copy-on-write updates

and indirection to avoid log write amplification for large

records [21]. We adapt this technique to implement late-

binding journaling of large messages (or large groups of

related small messages) in BetrFS 0.2.

Previous systems have implemented variations of soft

updates [22], where data is written first, followed by

metadata, from leaf-to-root. This approach orders writes

so that on-disk structures are always a consistent check-

point. Although soft updates may be possible in a Bε -

tree, this would be challenging. Like soft updates, the

late-binding journal avoids the problem of doubling large

writes, but, unlike soft updates, is largely encapsulated

in the block allocator. Late-binding imposes few addi-

tional requirements on the Bε -tree itself and does not de-

lay writes of any tree node to enforce ordering. Thus, a

late-binding journal is particularly suitable for a WOD.

9 Conclusion

This paper shows that write-optimized dictionaries can

be practical not just to accelerate special cases, but as a

building block for general-purpose file systems. BetrFS

0.2 improves the performance of certain operations by

orders of magnitude and offer performance comparable

to commodity file systems on all others. These improve-

ments are the product of fundamental advances in the de-

sign of write-optimized dictionaries. We believe some of

these techniques may be applicable to broader classes of

file systems, which we leave for future work.

The source code for BetrFS 0.2 is available under

GPLv2 at github.com/oscarlab/betrfs.

Acknowledgments

We thank the anonymous reviewers and our shepherd

Eddie Kohler for their insightful comments on earlier

drafts of the work. Nafees Abdul, Amit Khandelwal,

Nafisa Mandliwala, and Allison Ng contributed to the

BetrFS 0.2 prototype. This research was supported

in part by NSF grants CNS-1409238, CNS-1408782,

CNS-1408695, CNS-1405641, CNS-1149229, CNS-

1161541, CNS-1228839, IIS-1247750, CCF-1314547,

CNS-1526707 and VMware.

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 13

References

[1] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY,

M., PHANISHAYEE, A., TAN, L., AND

VASUDEVAN, V. FAWN: A fast array of wimpy

nodes. In Proceedings of the ACM SIGOPS

Symposium on Operating Systems Principles

(SOSP) (2009), pp. 1–14.

[2] BENDER, M. A., FARACH-COLTON, M.,

FINEMAN, J. T., FOGEL, Y. R., KUSZMAUL,

B. C., AND NELSON, J. Cache-oblivious

streaming B-trees. In Proceedings of the ACM

symposium on Parallelism in algorithms and

architectures (SPAA) (2007), pp. 81–92.

[3] BENDER, M. A., FARACH-COLTON, M.,

JANNEN, W., JOHNSON, R., KUSZMAUL, B. C.,

PORTER, D. E., YUAN, J., AND ZHAN, Y. An

introduction to Be-trees and write-optimization.

:login; Magazine 40, 5 (Oct 2015), 22–28.

[4] BONWICK, J., AND MOORE, B. ZFS: The Last

Word in File Systems. http://opensolaris.

org/os/community/zfs/docs/zfslast.pdf.

[5] BRODAL, G. S., DEMAINE, E. D., FINEMAN,

J. T., IACONO, J., LANGERMAN, S., AND

MUNRO, J. I. Cache-oblivious dynamic

dictionaries with update/query tradeoffs. In

ACM-SIAM Symposium on Discrete Algorithms

(SODA) (2010), pp. 1448–1456.

[6] BRODAL, G. S., AND FAGERBERG, R. Lower

bounds for external memory dictionaries. In

ACM-SIAM Symposium on Discrete Algorithms

(SODA) (2003), pp. 546–554.

[7] ESMET, J., BENDER, M. A., FARACH-COLTON,

M., AND KUSZMAUL, B. C. The TokuFS

streaming file system. In Proceedings of the

USENIX Conference on Hot Topics in Storage and

File Systems (HotStorage) (2012).

[8] GARIMELLA, N. Understanding and exploiting

snapshot technology for data protection.

http://www.ibm.com/developerworks/

tivoli/library/t-snaptsm1/, Apr. 2006.

[9] GRAY, J., AND REUTER, A. Transaction

Processing: Concepts and Techniques, 1st ed.

Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1992.

[10] HENSON, V., VAN DE VEN, A., GUD, A., AND

BROWN, Z. Chunkfs: Using divide-and-conquer

to improve file system reliability and repair. In
Proceedings of the USENIX Conference on Hot

Topics in System Dependability (HotDep) (2006).

[11] JANNEN, W., YUAN, J., ZHAN, Y.,

AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,

A., PANDEY, P., REDDY, P., WALSH, L.,

BENDER, M., FARACH-COLTON, M., JOHNSON,

R., KUSZMAUL, B. C., AND PORTER, D. E.

BetrFS: A right-optimized write-optimized file

system. In Proceedings of the USENIX Conference

on File and Storage Technologies (FAST) (2015),

pp. 301–315.

[12] JANNEN, W., YUAN, J., ZHAN, Y.,

AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,

A., PANDEY, P., REDDY, P., WALSH, L.,

BENDER, M., FARACH-COLTON, M., JOHNSON,

R., KUSZMAUL, B. C., AND PORTER, D. E.

BetrFS: Write-optimization in a kernel file system.

ACM Transactions on Storage (TOS) 11, 4 (Oct.

2015), 18:1–18:29.

[13] LEE, C., SIM, D., HWANG, J., AND CHO, S.

F2FS: A new file system for flash storage. In

Proceedings of the USENIX Conference on File

and Storage Technologies (FAST) (2015),

pp. 273–286.

[14] LESTER, N., MOFFAT, A., AND ZOBEL, J. Fast

on-line index construction by geometric

partitioning. In Proceedings of the ACM

International Conference on Information and

Knowledge Management (CIKM) (2005),

pp. 776–783.

[15] LEUNG, A. W., SHAO, M., BISSON, T.,

PASUPATHY, S., AND MILLER, E. L. Spyglass:

Fast, scalable metadata search for large-scale

storage systems. In Proceedings of the USENIX

Conference on File and Storage Technologies

(FAST) (2009), pp. 153–166.

[16] LIM, H., FAN, B., ANDERSEN, D. G., AND

KAMINSKY, M. SILT: A memory-efficient,

high-performance key-value store. In Proceedings

of the ACM SIGOPS Symposium on Operating

Systems Principles (SOSP) (2011), pp. 1–13.

[17] LOMET, D., AND TUTTLE, M. Logical logging to

extend recovery to new domains. In Proceedings

of the ACM SIGMOD International Conference on

Management of Data (SIGMOD) (1999),

pp. 73–84.

14 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[18] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,

ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Physical

disentanglement in a container-based file system.

In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation

(OSDI) (2014), pp. 81–96.

[19] MAMMARELLA, M., HOVSEPIAN, S., AND

KOHLER, E. Modular data storage with Anvil. In

Proceedings of the ACM SIGOPS Symposium on

Operating Systems Principles (SOSP) (2009),

pp. 147–160.

[20] MATHUR, A., CAO, M., BHATTACHARYA, S.,

DILGER, A., TOMAS, A., AND VIVIER, L. The

new ext4 filesystem: Current status and future

plans. In Linux Symposium (2007).

[21] MCKUSICK, M., NEVILLE-NEIL, G., AND

WATSON, R. The Design and Implementation of

the FreeBSD Operating System. Addison Wesley,

2014.

[22] MCKUSICK, M. K., AND GANGER, G. R. Soft

updates: A technique for eliminating most

synchronous writes in the fast filesystem. In

Proceedings of the USENIX Annual Technical

Conference (1999), pp. 1–17.

[23] MITRA, S., WINSLETT, M., AND HSU, W. W.

Query-based partitioning of documents and

indexes for information lifecycle management. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD)

(2008), pp. 623–636.

[24] O’NEIL, P., CHENG, E., GAWLIC, D., AND

O’NEIL, E. The log-structured merge-tree

(LSM-tree). Acta Informatica 33, 4 (1996),

351–385.

[25] REN, K., AND GIBSON, G. A. TABLEFS:

Enhancing metadata efficiency in the local file

system. In Proceedings of the USENIX Annual

Technical Conference (2013), pp. 145–156.

[26] RODEH, O., BACIK, J., AND MASON, C.

BTRFS: The Linux B-tree filesystem. ACM

Transactions on Storage (TOS) 9, 3 (Aug. 2013),

9:1–9:32.

[27] ROSENBLUM, M., AND OUSTERHOUT, J. K. The

design and implementation of a log-structured file

system. ACM Transactions on Computer Systems

(TOCS) 10, 1 (Feb. 1992), 26–52.

[28] SANTRY, D., AND VORUGANTI, K. Violet: A

storage stack for IOPS/capacity bifurcated storage

environments. In Proceedings of the USENIX

Annual Technical Conference (2014), pp. 13–24.

[29] SEARS, R., AND RAMAKRISHNAN, R. bLSM: a

general purpose log structured merge tree. In

Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD)

(2012), pp. 217–228.

[30] SHETTY, P., SPILLANE, R. P., MALPANI, R.,

ANDREWS, B., SEYSTER, J., AND ZADOK, E.

Building workload-independent storage with

VT-trees. In Proceedings of the USENIX

Conference on File and Storage Technologies

(FAST) (2013), pp. 17–30.

[31] SWEENEY, A., DOUCETTE, D., HU, W.,

ANDERSON, C., NISHIMOTO, M., AND PECK,

G. Scalability in the XFS file system. In

Proceedings of the USENIX Annual Technical

Conference (1996), pp. 1–14.

[32] TOKUTEK, INC. TokuDB: MySQL Performance,

MariaDB Performance. http://www.tokutek.

com/products/tokudb-for-mysql/, 2013.

[33] VERGHESE, B., GUPTA, A., AND ROSENBLUM,

M. Performance isolation: Sharing and isolation

in shared-memory multiprocessors. In

Proceedings of the ACM International Conference

on Architectural Support for Programming

Languages and Operating Systems (ASPLOS)

(1998), pp. 181–192.

[34] WACHS, M., ABD-EL-MALEK, M., THERESKA,

E., AND GANGER, G. R. Argon: Performance

insulation for shared storage servers. In

Proceedings of the USENIX Conference on File

and Storage Technologies (FAST) (2007), pp. 5–5.

[35] WEIL, S., POLLACK, K., BRANDT, S. A., AND

MILLER, E. L. Dynamic metadata management

for petabyte-scale file systems. In Proceedings of

the ACM/IEEE Conference on Supercomputing

(SC) (Nov. 2004).

[36] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,

LONG, D. D. E., AND MALTZAHN, C. Ceph: A

scalable, high-performance distributed file system.

In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation

(OSDI) (2006), pp. 307–320.

[37] WU, X., XU, Y., SHAO, Z., AND JIANG, S.

LSM-trie: An LSM-tree-based ultra-large

key-value store for small data items. In

Proceedings of the USENIX Annual Technical

Conference (2015), pp. 71–82.

