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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased,
high-throughput quantification of gene expression specific to cell types and states.
With the cost of scRNA-seq decreasing and techniques for sample multiplexing
improving, population-scale scRNA-seq, and thus single-cell expression quantitative
trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides
additional resolution to study the regulatory role of common genetic variants on
gene expression across a plethora of cell types and states and promises to improve
our understanding of genetic regulation across tissues in both health and disease.

Results: While previously established methods for bulk eQTL mapping can, in
principle, be applied to sc-eQTL mapping, there are a number of open questions
about how best to process scRNA-seq data and adapt bulk methods to optimize sc-
eQTL mapping. Here, we evaluate the role of different normalization and
aggregation strategies, covariate adjustment techniques, and multiple testing
correction methods to establish best practice guidelines. We use both real and
simulated datasets across single-cell technologies to systematically assess the impact
of these different statistical approaches.

Conclusion: We provide recommendations for future single-cell eQTL studies that
can yield up to twice as many eQTL discoveries as default approaches ported from
bulk studies.

Introduction

Expression quantitative trait locus (eQTL, see Table 1) mapping is an established tool

for identifying genetic variants that play a regulatory role in gene expression. The ap-

proach has been widely applied to bulk RNA sequencing profiles from primary human

tissues [2] and cell lines [3, 4], as well as sorted cell populations, e.g., blood cell types

[5]. Statistical methods for (bulk) eQTL mapping have been extensively tested over the

years, with key findings including the need to control for population structure and co-

variates [6] and to account for multiple testing to control the false discovery rate [7].
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Linear mixed models (LMMs) in particular have become a popular framework for gen-

etic analyses of molecular traits, due to their flexibility and ability to robustly control

for confounding factors.

Recent technological advances have allowed molecular phenotypes, including gene

expression, to be assayed at the level of single cells. In particular, single-cell RNA se-

quencing (scRNA-seq) is now an established technique and can be deployed at popula-

tion scale, across many individuals, by exploiting multiplexed experimental designs and

using appropriate demultiplexing tools [8–10]. The ability to identify cell types and cell

states in an unbiased manner from scRNA-seq data from a single experiment can be

used to define homogeneous cell populations, quantify expression levels within them,

and then map eQTL in each of them separately. Consequently, studies where single-

cell expression profiles (rather than bulk) are used to perform eQTL mapping have

emerged recently [10–16]. In addition to deciphering the cellular context in which gen-

etic variants influence gene expression, this single-cell level approach gives us the op-

portunity to study gene regulation in rare cell types and cell types relevant to a disease

or process of interest. Taken together, these advantages of scRNA-seq for eQTL map-

ping promise to greatly improve our understanding of the genetic architecture of gene

regulation across tissues, in both human disease and development [17].

As scRNA-seq in large sample sizes becomes feasible, it is important to establish

“best practices” and benchmark approaches for the design and analysis of genetic stud-

ies using single-cell data. Current efforts in this space have primarily focused on the ex-

perimental design of single-cell eQTL (sc-eQTL, Table 1) studies, assessing trade-offs

between sequencing depth, the number of donors, and the cell count per donor [18,

19]. Such studies conclude that statistical power can be improved on a fixed budget by

performing lower-depth sequencing on more cells per sample or on more total

samples.

However, the statistical methods needed to adapt bulk methods to map single-cell

eQTL have not yet been systematically benchmarked. Notably, several important pro-

cessing steps need to be performed on single-cell expression profiles before we can

Table 1 Abbreviations used in the manuscript

Definition

eQTL Expression quantitative trait locus/loci

sc-eQTL Single-cell eQTL

eGene Gene with at least one eQTL (at a given FDR threshold)

LMM Linear mixed model

Matched datasets (Bulk and single-cell) expression data from the same set of individuals with
closely matched expression quantification.

a-bulk All bulk; eQTL results obtained using bulk RNA-seq data from all donors (n = 526)

m-bulk Matched bulk; eQTL results using bulk RNA-seq from matched donors (n = 87)

SV (Single-cell) sampling variation

FDR False discovery rate

cFDR Conditional FDR

FWER Family-wise error rate

HVGs Highly variable genes

TMM Trimmed mean of M-values; normalization method proposed in [1]
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map the effects of genetic variants on them (Fig. 1a). First, cell-level gene expression

counts can be obtained using a variety of different methods that are summarized and

reviewed elsewhere [22–24]. Second, quality control (QC) steps should be performed at

the level of single cells to filter out low-quality cells (see for example [25] for an over-

view of best practices). Additionally, individual sequencing runs and batches should be

examined to determine their overall quality, and poor quality batches should be dis-

carded altogether. Lastly, traditional genetic analysis of gene expression is well-defined

within homogeneous cell populations. Thus, cell type assignment needs to be per-

formed prior to genetic mapping. Clustering and cell type assignment algorithms and

approaches have been widely described and remain a focus of benchmarking efforts

[25, 26]. These processing steps are critical for successful downstream analyses like sc-

eQTL mapping. However, because these processing steps are largely dataset- and/or

technology-dependent and have been previously reviewed and benchmarked, here we

focus on the steps after processing that are specific to eQTL mapping.

Specifically, we set out to optimize statistical analysis workflows that were originally

developed for bulk RNA-seq studies in the sc-eQTL mapping setting. We take advantage

of our unique, population-scale, dataset of matched (i.e., from the same individuals)

single-cell and bulk expression data from a homogenous cell population (induced pluripo-

tent cells; iPSCs [3, 27]) to evaluate the effect of different statistical choices. Because we

have matched samples, we are able to measure performance both in terms of sc-eQTL

yield (i.e., the number of significant sc-eQTL) and in terms of concordance with bulk

eQTL, which can be considered as the current gold standard for eQTL mapping. We also

validate these findings on simulated population-scale scRNA-seq datasets, where the

eQTL effects are known, and performance can be measured in terms of power and false

discovery rates. Using both empirical and simulated datasets, we identify best practices in

terms of aggregation and normalization, the type and number of expression covariates to

include as fixed effects, methods to account for single-cell sampling variation in the

model, and methods to guide multiple testing correction using information from bulk

RNA sequencing data. Finally, we demonstrate how applying these best practices increases

power to detect sc-eQTL and reduce the number of false discoveries.

Results

Aggregation and normalization strategies

Traditional bulk eQTL are germline genetic variants that are associated with differences

in gene expression between donors, where the gene expression values represent the

summary of a gene’s expression across all cells in the tissue sample. In order to use

traditional bulk eQTL mapping methods for single-cell eQTL mapping, we first need to

aggregate the multiple measurements (i.e., cells in cluster X or cells of cell-type X) from

each donor to obtain bulk-like measurements. Here, we explore different aggregation

methods (Fig. 1b). In particular, we consider the mean, the median, and the sum as ag-

gregation strategies. Initially, we performed aggregation at the donor (“d”) level, i.e.,

taking all cells for a donor, to maximize the numbers of cells per donor. We call the

resulting methods “d-mean,” “d-median,” and “d-sum” (Table 2). To assess the impact

of the method used to map eQTL, we compare four standard approaches, using

correlation-based approaches (Pearson or Spearman), a linear model (LM) or a linear
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Fig. 1 Overview of normalization, aggregation and the single-cell eQTL mapping considered. a RNA pre-
processing steps to obtain count matrices to perform eQTL mapping, including gene expression quantification,
cell and gene-level quality control (QC), and cell type annotation. These steps are not optimized/tested in this
work (shown in gray). b Different approaches tested to perform eQTL mapping using scRNA-seq profiles. Starting
from one gene x cell count matrix obtained as in a, counts were aggregated per sample (i.e., donor, or donor-run
combination), either by summing the data first at the sample level and then normalizing using methods designed
for bulk RNA-seq (i.e., TMM [1]) as implemented in edgeR or by first normalizing the single-cell counts (using
scran/scater [20, 21]) and then calculating the mean or the median at the sample level. c eQTL mapping (cis). We
map eQTL independently for each gene-SNP pair considered by fitting a linear mixed model. In particular, we
model gene expression as the outcome variable (y), the SNP effect as well as additional covariates as fixed effects,
and include one (or more) random effect (RE) term to account for population structure and sample variation. We
considered various methods to compute covariates and tested different numbers of covariates as well. d Multiple
testing correction is performed in two steps. First, gene-level p values are adjusted using a permutation scheme
(“Methods”) to control the FWER across SNPs. Second, the top SNP per gene is selected (minimum adjusted p
value; “Methods”) and various methods are used to control the FDR and obtain globally corrected p values. Steps
that we optimize here are highlighted in blue in panels b, c, and d
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mixed model (LMM). We find that there is high concordance between eQTL identified

using these methods and find that the correlation-based approaches have slightly lower

replication rates as compared to the LM or LMM (Additional file 1: Table S1,

Additional file 1: Fig. S1).

Given that single-cell RNA sequencing allows for pooling of multiple donors into sin-

gle sequencing runs (i.e., batches), and for post hoc grouping of cells (for instance into

cell types), we considered a second set of aggregation approaches, namely aggregating

not only at the donor level but also for each individual sequencing run (i.e., all cells

from a given donor in a single sequencing run within a single-cell type; designated “dr”,

Table 2). We call the corresponding methods “dr-mean,” “dr-median,” and “dr-sum”.

We chose to explore the dr aggregation level because in the datasets we considered

some donors are present in multiple runs [13, 14]. In all cases (i.e., using any of the ag-

gregation methods), aggregated expression values were only calculated for samples (i.e.,

donors or donor-run combinations) with at least 5 cells. This threshold was selected to

be loose enough to minimize donor loss, while still eliminating donors with poor

expression support. While the donor-run approach better accounts for variation across

technical batches, it also introduces multiple measurements from the same donor. The

LMM allows us to directly account for these repeated measurements, by including rep-

licate and population structure information as random effect terms (“Methods”) and

has higher replication rates than the simple regression and correlation-based methods,

so we selected the LMM for our benchmark.

Importantly, normalization of the scRNA-seq data was performed in different ways

depending on the aggregation method used. For the mean and median aggregation

(both at the donor and the donor-run level), we performed single-cell-level

normalization using scran [21] implemented in scater [20], which is one of the standard

methods used for single-cell normalization. The mean and the median were then

calculated on the resulting normalized (logged) counts (Fig. 1b, Tables 1 and 2). We

also tested two other single-cell normalization approaches, bayNorm [28] and sctrans-

form [29] (10X only), which produced correlated, but not identical, expression levels

(Additional file 1: Table S2, “Methods”). For sum aggregation, summed count values

(both dr-sum and d-sum) were obtained directly from the raw count data (i.e., non-

normalized). Normalization was then applied on the resulting pseudo-bulk counts,

using methods typically used for bulk RNA-seq data. In particular, we perform TMM

normalization on the aggregated counts, as implemented in edgeR [30], one of the

Table 2 Summary of the six key aggregation-normalization strategies used in this study. In
particular, for each approach, we specify the aggregation method used, the type of normalization
adopted, and the level of aggregation selected

Definition

Aggregation method Normalization Aggregation level

dr-mean Mean Single-cell level (scran) Donor and run

dr-median Median Single-cell level (scran) Donor and run

dr-sum Sum Pseudo-bulk level (TMM) Donor and run

d-mean Mean Single-cell level (scran) Donor

d-median Median Single-cell level (scran) Donor

d-sum Sum Pseudo-bulk level (TMM) Donor
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best-established methods for bulk RNA-seq normalization (Fig. 1b, Tables 1 and 2),

followed by log transformation.

We tested these approaches on two empirical datasets and two simulated datasets.

The main analyses were performed on expression data gathered from iPSCs, for which

we have bulk RNA sequencing [27] and Smart-Seq2 single-cell RNA sequencing [13]

data. This unique data allowed us to compare approaches to discovery of eQTL in

single-cell expression data, using bulk eQTL results from the same samples as the gold

standard for evaluating approaches for single-cell data. Specifically, we assessed the

numbers of eGenes discovered in single-cell data and the extent of replication of bulk

eQTL effects in single-cell analyses. Additionally, we considered one cell type (midbrain

floor plate progenitor; FPP) from a large 10X single-cell RNA sequencing differenti-

ation study, differentiating iPSCs towards dopaminergic neurons [14]. Lastly, to further

corroborate and understand our findings, we tested our chosen approaches on simu-

lated single-cell eQTL datasets generated using splatPop (“Methods”), based on either

the Smart-Seq2 iPSC expression dataset or the 10X differentiating neuron dataset. In

the simulations, we could assess eQTL discovery power and the fraction of false posi-

tives at a given FDR cutoff using the simulated eQTL effects.

Mapping eQTL using aggregated Smart-Seq2 expression profiles

We first focused on the single-cell data from Cuomo et al. [13], from which we selected

the iPSC data (day 0) to compare to bulk data from the HipSci consortium [3, 27]. We

selected the iPSC data because the homogeneous expression profiles of these cells make

it an ideal cell type for performing this kind of study, emulating the generic task of

eQTL mapping for a single cell-type population from an scRNA-seq dataset. From the

HipSci resource, we selected 87 healthy donors of European descent for which we had

quality controlled: (1) genotype data, (2) Smart-Seq2 scRNA-seq, and (3) bulk RNA-seq

(i.e., matched bulk, from here on “m-bulk”). Additionally, we used a superset of 526

samples (including the previous 87) for which we had quality controlled: (1) genotype

data and (2) bulk RNA-seq data, for reference (i.e., all bulk, “a-bulk”). We (re)processed

the raw RNA-seq data from the single-cell study to match the bulk processing as much

as possible (“Methods”).

We aggregated the single-cell information as described above (Fig. 1b) and we tested

for cis- expression quantitative trait loci (eQTL) using an LMM as implemented in

LIMIX [31], considering SNPs within 100 kb around the gene body and with minor al-

lele frequency (MAF) > 10% and Hardy-Weinberg equilibrium P < 0.001. We included

in the model the first 20 expression principal components (PCs; based on the relevant

aggregation method) and used an identical-by-descent kinship matrix to reflect popula-

tion structure and replicated donors. Each gene’s expression was quantile-normalized

prior to being included in the model as phenotype to better suit the assumptions

underlying the LMM. We considered the set of 20,545 highly variable genes (HVGs)

based on the single-cell measurements (“Methods”). In some instances, to facilitate

comparison between the different aggregation/normalization strategies, we selected the

set of common HVGs that were tested in every cis-eQTL map (n = 12,720 genes).

We identified between 776 and 1835 genes with at least one eQTL (from hereon:

“eGenes,” FDR < 5%; “Methods”) using the different aggregation methods (out of 12,
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720 genes tested). To put these numbers in context, the equivalent eQTL map using

matched samples with bulk RNA-seq identified 2590 eGenes (Table 3). The large differ-

ence in eGene discovery power between the bulk and single-cell methods is at least in

part explained by the large difference in the total number of reads per donor and its

variability across donors (Additional file 1: Fig. S2).

Overall, we observe two main trends. First, aggregation at the donor-run level

outperforms aggregation at the donor level only (dr-mean (1835) vs d-mean (1305);

dr-median (1337) vs d-mean (776); dr-sum (1463) vs d-sum (1174)). Next, our re-

sults indicate that mean aggregation (after single-cell-specific normalization; 1835

eGenes) outperforms sum aggregation (followed by bulk-like normalization; 1463

eGenes), and median aggregation performs worst in all cases (1337 eGenes). As

well as finding the lowest number of eGenes, the median methods are also respon-

sible for the low intersection of HVGs from 20,545 to 12,720, due to cells with

low read counts. When dropping median from the comparison the increase from

d-mean to dr-mean is even higher (40% increase in eGenes considering all shared

genes vs 46% increase in eGenes considering all tested genes, Additional file 1:

Table S3). For consistency, we assessed sc-eQTL mapping on the bayNorm [28]

dr-mean normalized data and found that the results were very similar compared to

the other dr-mean results (1835 vs 1702 eGenes, and Pearson’s correlation between

p values R = 0.95 and effect sizes R = 0.99, p value < 2.2 × 10−16 in both cases,

Additional file 1: Table S4).

Next, we used two selected sets of bulk iPSC RNA-seq data as described above, i.e.,

m-bulk (n = 87) and a-bulk (n = 526), to assess the replication of the iPSC sc-eQTL

mapping results in bulk data (assumed to be the gold standard, Table 3, Fig. 2). We

assessed replication of the top eQTL effects in a single-cell method in bulk (i.e., direct

eQTL replication) and defined replication as FDR < 10% (in the replication set) and a

consistent effect direction. Replication rates from the two sets of samples show a very

similar picture: on average, we find slightly lower replication rates for the single-cell

normalization methods, but a substantially higher total number of replicated discover-

ies at the eQTL level. In particular, the highest number of replicated eQTL is found for

dr-mean (1450 considering a-bulk) and highest fraction of replication is found for d-

sum (82%, a-bulk). Replication fractions remain consistent when considering all HVGs

Table 3 Number of eGenes and replication of eQTL for the different aggregation and
normalization strategies in Smart-Seq2 iPSC cells. The same set of 12,720 genes were considered in
all of the strategies. Discovery FDR was controlled at 5% for the discovery; replication was defined
as FDR < 10% and consistent direction of effect in the two bulk studies, i.e., matched bulk (N = 87,
m-bulk) and all bulk set (N = 526, a-bulk)

Discovery (FDR 5%) m-bulk (FDR 10%) a-bulk (FDR 10%)

eGenes % tested # replicated % replicated # replicated % replicated

dr-mean 1835 14.43% 889 48.45% 1367 74.50%

dr-median 1337 10.51% 650 48.62% 952 71.20%

dr-sum 1463 11.50% 819 55.98% 1153 78.81%

d-mean 1305 10.26% 768 58.85% 1046 80.15%

d-median 776 6.10% 470 60.57% 625 80.54%

d-sum 1174 9.23% 709 60.39% 951 81.01%

m-bulk 2590 20.36% – – 2448 94.52%
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for eQTL (Additional file 1: Table S3). Moreover, we see higher replication rates con-

sidering a-bulk as compared to m-bulk, indicating that some of the effects found in the

single-cell data can only be picked up from bulk datasets with more samples. When

specifically looking at the effects that get replicated, we observe that they are highly

overlapping (86%) across aggregation strategies. This result indicates that the same ef-

fects that get replicated in d-sum are also replicated in dr-mean, but since there are

more effects found in dr-mean, the fraction is lower. In addition to assessing bulk repli-

cation, we used allele-specific expression (ASE) to directly validate eQTL effects by

assessing allelic expression in the single-cell data. Replication rates of eQTL in ASE are

lower 30–45%) but show the same trends in terms of replication of eQTL effects as the

bulk eQTL replication (Additional file 1: Table S3).

Next, we set out to investigate which bulk eQTL could be identified using single-cell

data to better understand what is driving eQTL identifiability in single-cell expression

(Additional file 1: Fig. S3). We considered expression levels, expression variation, eQTL

effect size (in the results using bulk expression), and genomic distance between eGene

and eSNP. Unsurprisingly, we find that strong eQTL effects can be picked up using all

methods, and eGenes with high expression and low variance are also easier for all

methods to identify. Using the dr-median eQTL mapping approach, we fail to identify

eQTL on lowly expressed genes, whereas dr-mean finds most eQTL effects. When in-

vestigating which single-cell eQTL could be replicated in the bulk results, we noted

that this was mostly linked to the eQTL effect size, both in the single-cell and bulk

eQTL results (Additional file 1: Fig. S4).

While the percentage of bulk eQTL replicated by sc-eQTL mapping in a matched

dataset is a powerful performance metric, a limitation of empirical benchmarks like this

is that the ground truth is not known. To validate our results on a dataset with com-

pletely known true eQTL effects, we simulated single-cell expression profiles for genes

on chromosome 2 for a population with known eQTL effects applied to 35% of genes

Fig. 2 Replication of bulk eQTL in single cells. Replication rates of bulk eQTL in sc-eQTL as ranked by eGene
significance (p value) in bulk. Shown are the replication rates of a-bulk eQTL for the six different
aggregation/normalization approaches (mean, median, sum in blue, red, yellow respectively; dr aggregation
level and d aggregation level in solid and dashed lines respectively)
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(total expressed genes on chr2: n = 1255, eQTL Genes = 439). To ensure the simula-

tions reflected real data, expression statistics from the iPSC Smart-Seq2 dataset were

used to estimate key parameters used in the simulations (Additional file 1: Fig. S5; see

“Methods” for details). We then performed aggregation, normalization, and eQTL

mapping as described for the empirical study on 10 replicate simulated datasets and

quantified performance in terms of power (i.e., fraction of true eQTL detected), empir-

ical FDR (i.e., fraction of false eQTL detected at an FDR < 5%), and effect size correl-

ation (see “Methods” for details). Mean aggregation resulted in greater power of

detection than median (paired t-test; p.adj = 1.9 × 10−9) and sum (p.adj = 7.3 × 10-11)

aggregation, regardless of aggregation level (repeat measures two-way ANOVA; F(2,18)

= 0.022, p = 0.97; Fig. 3a, results Additional file 2: Table S5; detailed statistical analysis

Additional file 1: Table S6). The aggregation level had a significant effect on the empir-

ical FDR (F(1,9) = 15.05, p = 0.004)), with donor-run-level aggregation resulting in

fewer false positive eQTL (paired t-test: p = 0.036) (Fig. 3b). Finally, we assessed per-

formance in terms of the correlation between the simulated ground truth eQTL effect

sizes and the estimated effect sizes (Fig. 3c). Here the interaction between aggregation

method and level was also not significant (F(2,18) = 0.154, p = 0.85), but both were sig-

nificant on their own, with donor-run performing better than donor-level aggregation

(paired t-test: p = 6.43 × 10−4) and mean performing better than median (p.adj = 0.041)

and sum (p.adj = 7.5 × 10−5). These results corroborate findings from the empirical

data analysis showing that mean aggregation after single-cell level normalization per-

forms better than sum aggregation followed by bulk-normalization methods. Further,

by comparing the mathematical properties of the eQTL correctly detected by each ag-

gregation method, we can tell that median aggregation tended to miss eQTL for genes

with high variance and low mean expression, while sum aggregation tended to miss

eQTL with small effect sizes (Additional file 1: Fig. S6).

A remaining question was if the aggregation level and method would impact eQTL

detection power the same way for different sized mapping populations and with differ-

ences in the number of cells per donor. We used the simulation framework to simulate

and map eQTL for populations ranging from 50 to 600 donors and for populations

Fig. 3 Summary of eQTL mapping performance on simulated Smart-Seq2 iPSC datasets. a Power to detect
simulated eQTL (# true positives / # simulated eQTL). b Empirical FDR (false discovery rate at FDR < 5%,
dashed line). c Pearson’s correlation between the ground truth and estimated effect sizes for genes
simulated as eGenes. Colors and line types are as in Fig. 2. Box plots summarize the distribution, while the
points show performance for each replicate (n = 10)

Cuomo et al. Genome Biology          (2021) 22:188 Page 9 of 30



with the average number of cells per donor ranging from 50 to 1000. From this ana-

lysis, we found that as the number of donors increased the differences in performance

between the mean and sum aggregation decreased (Additional file 1: Fig. S7a).

However, mean aggregation continues to improve as the number of cells per donor

increases, while sum aggregation plateaus (Additional file 1: Fig. S7b). Further, while

median aggregation improves with the number of cells per donor, it does not outper-

form mean.

Mapping eQTL using aggregated 10X expression profiles

To check the generality of the results obtained from Smart-Seq2 data, we proceeded to

assess the same aggregation/normalization strategies on data generated with the 10X

Chromium technology [32]. Recent large-scale single-cell studies have predominantly

used 10X because of the lower cost and higher cell throughput of the droplet-based

scRNA-seq technology, as compared to plate-based technologies such as Smart-Seq2

[33]. Though cell throughput is higher, most often the number of reads quantified is

lower for 10X studies, and reads are from the 3′ or 5′ end of transcripts (or both), but

not from full-length transcripts as in Smart-Seq2. We used data from a recent differen-

tiation study of iPSCs towards dopaminergic neurons [14]. This dataset was more com-

plex than the iPSC Smart-Seq2 dataset described above, as it contained cells from

multiple cell types. To map cell-type-specific sc-eQTL, we selected only cells annotated

as midbrain floor plate progenitor (FPP) cells (n-donors = 174, “Methods”). Because we

did not have matching bulk RNA-seq data, we used eQTL results on brain tissues from

the GTEx consortium as a proxy (“Methods”) to assess replication. Additionally, we

quantified ASE on the single-cell expression data directly.

In general, we observed very similar effects as found in the Smart-Seq2 dataset

(Table 4). When comparing across the normalization methods (scran, baynorm, and

sctransform), we observe high concordance in eQTL discovery (1496 vs 1152 vs 1444

eGenes respectively, and Pearson’s correlation between p values and effect sizes R >

0.92, p value < 2.2 × 10−16 in all cases, Additional file 1: Table S2, Additional file 1:

Table S3). When comparing the aggregation methods, again the donor-run methods

(dr-mean, dr-sum and dr-median) outperformed donor methods (d-mean, d-sum and

d-median), and as for Smart-Seq2, we observe that the single-cell normalization

method with mean aggregation outperformed the sum-based aggregation followed by

bulk-like normalization, supporting the previous observation (both from the simulated

Table 4 Number of eGenes for the different aggregation and normalization strategies in 10X
midbrain floor plate progenitor cells. In total, 3504 genes were considered in all of the strategies,
and gene-level FDR was controlled at 5%

eGenes % genes tested

dr-mean 1496 42.69%

dr-median 918 26.20%

dr-sum 1041 29.71%

d-mean 1252 35.73%

d-median 575 16.41%

d-sum 703 20.06%
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and the empirical Smart-Seq2 iPSC data) that single-cell-specific normalization and

treating different runs as separate entities is beneficial. Moreover, for 10X data, single-

cell normalization with median aggregation performed especially poorly, likely due to

the greater sparsity in 10X data compared to Smart-Seq2 data. Again, we observe that

when considering all HVGs we see a larger increase of eGene discoveries from d-mean

to dr-mean (19% increase compared to the initial 16%; Additional file 1: Table S7). We

assessed replication of the FPP eQTL using bulk eQTL summary statistics from the

GTEx mature brain tissues. Importantly, FPP cells are not mature brain cells, so these

comparisons are useful but not perfect. We find again that the replication fraction of

the donor results is higher as compared to donor-run eQTL, but the total number of

replicated effects is higher for the donor-run-based methods (Additional file 1: Table

S7). This picture is also reflected in the ASE replication, though the replication of

eQTL in ASE is especially low for the 10X dataset (Additional file 1: Table S7).

To get a better idea on the power and replication of 10X sc-eQTL, we again

validated these results using simulated data based on expression statistics from the

neuron differentiation 10X dataset to estimate key parameters used in the simula-

tions (see “Methods” for details). The simulations confirmed that median aggrega-

tion performs very poorly on 10X data (Additional file 1: Fig. S10). However, there

was no significant difference between mean and sum aggregation or between donor

and donor-run aggregation on power or empirical FDR (see results Additional file 2:

Table S5, see detailed statistical analysis Additional file 1: Table S8). These

patterns were generally consistent as the number of donors (Additional file 1: Fig.

S11a) and the average number of cell-per-donor changed, with a notable exception

that sum slightly outperformed mean aggregation with large numbers of cells per

donor (Additional file 1: Fig. S11b).

Mapping eQTL using individual cell expression profiles

As an alternative to the aggregation-based approaches, we also considered treating

individual cells as distinct observations and mapping eQTL directly on single cells

(after scran normalization, with no aggregation). An LMM is often used for “repeated

measures” analyses—where multiple measurements are made from the same subject—

in preference to classical approaches such as repeated measures ANOVA [34]. Thus,

we tested an LMM for direct single-cell eQTL mapping by including a random effect

term to account for the expected correlation between cells from the same donor as well

as genetic relatedness between donors (“Methods”). We tested this approach on the

subset of HVGs on chromosome 2 and considered two distinct approaches: first, we

considered all available cells (ranging from 5 to 379 cells per individuals, n = 7552 cells,

2766 genes tested); second, we subsampled to a fixed number of cells (5 cells for each

individual, n = 445, 2718 genes tested) per individual. In both cases, we observed a high

number of eGenes (1668 for the first approach, corresponding to ~ 60% genes tested

and 840 using the second approach, i.e., 31% of the genes tested). However, the replica-

tion rates were very low, ranging from 10 to 15% when considering the two approaches

and the two sets of bulk results (“Methods”), suggesting inflation and a high rate of

false positives, confirmed by poor correlation of effect sizes between these results and

those obtained using bulk RNA-seq (Additional file 1: Fig. S8).
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To further confirm this result, we tested direct single-cell eQTL mapping on one of

the simulated datasets. Compared to dr-mean aggregation, using all available cells or

10 cells per donor reduced eQTL detection power by 56% and 67% and increased the

empirical FDR from 0.07 to 0.68 and 0.36, respectively (Additional file 1: Fig. S9a), with

little change in the correlation between estimated and simulated effect sizes for signifi-

cant eQTL (Additional file 1: Fig. S9b). Direct single-cell eQTL mapping also substan-

tially increased the computational burden, especially when including all available cells

(Additional file 1: Fig. S9a). Finally, we tested SCeQTL [35], a bespoke single-cell eQTL

mapping model that uses a zero-inflated negative binomial regression. While the con-

siderable computational time required for SCeQTL precluded us from applying it to all

available cells, on 10 cells per donor SCeQTL had 64% less power than dr-mean and an

empirical FDR of 0.93, worse than the comparable LMM. Similar to the aggregation

approaches, the single-cell mapping approaches are best able to capture true eQTL

associations with large effect sizes and where the eGene has low variance, high expres-

sion, and fewer zeros (Additional file 1: Fig. S9c). Given single-cell LMMs and SCeQTL

models do not perform better on a different type of eQTL, their overall higher false

positive rate, and their increased computational burden, we focus on the aggregation-

based approaches for the remainder of this paper.

Correcting for global expression covariates

Another important step when mapping eQTL is the correction for batch effects and

other known and hidden sources of unwanted variation in expression data [2, 36, 37],

hereafter collectively referred to as covariates. In the previous analyses, we used the first

20 PCs as covariates, which is common practice in eQTL studies [36, 37]. Here, we

tested the impact of alternative approaches and different numbers of factors to include

as fixed effect covariates in the LMMs used for sc-eQTL mapping. We compared mul-

tiple different methods to capture global expression covariates: probabilistic estimation

of expression residuals (PEER [38]), principal component analysis (PCA), linearly

decoded variational autoencoder (LDVAE or linear scVI [39]), and multi-omic factor

analysis (MOFA [40]), for which we considered two different flavors: with and without

sparsity constraints; “Methods”). For each approach, we tested the effect of including

5–25 factors as covariates in the LMM, in steps of five. We again considered the iPSC

data as a homogeneous cell type for which we have both bulk RNA-seq and single-cell

RNA-seq on the same samples available. For these tests, we focus on the dr-mean ag-

gregation method, as it performed best in both the simulations and empirical tests.

As previously described, we observed a big increase in the number of eGenes discovered

when considering covariates as compared to not considering covariates: the minimum in-

crease is 75% (Fig. 4) [38]. However, when comparing the method-specific optimal number

of covariates (e.g., 15 for PCA, 25 for PEER, Fig. 4, “Methods”), we observe that both PCA

and PEER perform markedly better than the other methods (Additional file 1: Table S9,

Fig. 4a). Both the sparse and non-sparse modes of MOFA perform worse and LDVAE, the

only method included that works directly on the single-cell data produces the smallest in-

crease in eGene discovery. Furthermore, the replication rates of the effects in a-bulk, fixed

at 20 PCs as previously used, are similar between the different methods (Fig. 4b). Our

results also show that more computationally expensive methods such as LDVAE, PEER, or
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MOFA do not perform measurably better than the historical default in bulk eQTL studies

of correcting for unwanted variation using principal components.

Accounting for single-cell sampling variation

After optimizing the aggregation-normalization method and the covariate correction,

we moved on to test the effect of accounting for “sampling variation” (SV) in single-cell

expression quantifications by including a (second) random effect in our linear mixed

model that captures sampling effects (similar to the approach used in [14]; “Methods”).

We hypothesized that the total number of reads used to quantify expression per sample

and the number of QC-passing cells per sample could contribute to single-cell SV, so

we tested the inclusion of random effects defined by these features in the LMM. First,

we focused on the d-mean results and replaced the random effect accounting for kin-

ship (baseline) with random effects accounting for either 1/#reads or 1/#cells. Second,

we considered dr-mean, which had higher power in eQTL mapping, and tested the use

of a joint random effect accounting for both kinship and SV, again either 1/#reads or

1/#cells (in this case, we cannot remove the kinship effect term, which reflects the rep-

licated structure of samples across batches, see “Methods” for details).

Fig. 4 Comparison between covariate adjustment approaches. a Number of eGenes obtained when using
different approaches to account for covariates, as a function of the number of factors used as covariates
(out of 20,545 genes tested). b Number of replicated discoveries using a-bulk (all samples, n = 526).
Replication defined as FDR < 10% and consistent direction of effect. The optimal number of covariates for
each method is highlighted with an open circle
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For d-mean, we observe that replacing the kinship-based random effect with the

random effects reflecting SV increases cis-eQTL mapping power by > 9% (Table 5).

Additionally, replication rates are similar across all tests, indicating that the additional

effects are as likely to be true effects as the initially discovered eQTL. When consider-

ing the dr-mean results, we observe an even stronger increase in eGene discovery

power (> 21%) when accounting for SV alongside the replicate structure. Again, we ob-

serve that the replication rates are comparable to the baseline results (kinship/replicate

structure only). For both the d-mean and dr-mean results the 1/#cells random effect

seems to work better than 1/#reads.

Next, we assessed the impact of the inclusion of the SV measure on eQTL mapping

in the 10X dataset. Given the lower read-depths per cell in 10X versus Smart-Seq2, we

expected a stronger effect in this setting. However, for the d-mean results, we observe a

slightly smaller (~ 4%) increase in eGene discovery than was observed in the iPSC

Smart-Seq2 results (Additional file 1: Table S10). For the dr-mean based methods,

where we include both kinship and SV, we observe again a stronger increase in eGene

discovery of around 20%. Like for Smart-Seq2, the SV effect based on 1/#cells allows

for the identification of more eGenes than the 1/#reads-based random effect.

To get further insight into the effects of the (additional) random effect accounting for

sampling variation on the power to detect sc-eQTL, we added the SV term when map-

ping eQTL on the simulated scRNA-seq data. For both Smart-Seq2 and 10X simula-

tions, adding either 1/#cells or 1/#reads as an additional random effect resulted in an

increase in the number of true eQTL detected (Additional file 1: Table S11). However,

it also tended to increase the number of false discoveries. We would expect the effect

of sampling variation to be the largest when there are large disparities between the

number of cells or number of reads between observations, and thus including sampling

variation in the model to be most useful in these cases. This conclusion is supported by

our finding that the addition of the SV random effect resulted in the largest gain and

lowest loss in the case of donor-level aggregation on the 10X data.

Guided multiple testing increases discovery power

Given that the discovery power of eQTL is heavily dependent on the number of donors

for which genetic and expression data is available, and large bulk eQTL studies are

Table 5 Inclusion of random effect to increase discovery power of sc-eQTL mapping in Smart-
Seq2 iPSC scRNA-seq data. Shown are the number of eGenes that are discovered at an FDR of 5%
and the replication in all bulk (a-bulk) defined as FDR < 10% and same sign. Tested are the
expressed genes on chromosome 2 matched between the two considered aggregations (d-mean
and dr-mean, n genes = 20,334)

Random effect matrix Discovery a-bulk replication

kinship 1/#cells 1/#reads eGenes % tested # replicated % replicated

d-mean ✓ – – 1415 6.96% 1086 76.75%

d-mean – ✓ – 1652 8.12% 1251 75.73%

d-mean – – ✓ 1645 8.09% 1233 74.95%

dr-mean ✓ – – 2073 10.19% 1466 70.72%

dr-mean ✓ ✓ – 2750 13.52% 1832 66.62%

dr-mean ✓ – ✓ 2458 12.09% 1676 68.19%
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available, we set out to leverage bulk data to increase discovery power when mapping

sc-cis-eQTL. To this end, we selected a recently proposed multiple testing correction

method that conditions the false discovery rate (i.e., conditional FDR, or cFDR) on an

external set of test statistics [41, 42] and tested the impact of its application to sc-

eQTL mapping (Fig. 5a).

To assess the impact of using cFDR, we used the dr-mean iPSC results and the eQTL

statistics of the m-bulk samples to condition our FDR estimates on and used a-bulk

samples to test the replication rates (Fig. 5b, Additional file 1: Table S12). The cFDR

eQTL results are compared against three “standard” multiple testing correction

methods in eQTL mapping (Bonferroni [43], Benjamin-Hochberg [44], and Storey Q

[45]—the latter being the standard method for our analyses [27, 46–48]). We observed

a 40% increase in eGene discovery by applying cFDR as compared to Storey Q, the

second-best performing method in terms of eGenes. When assessing the replication

rates in a-bulk of the eQTL effects deemed significant by the different multiple testing

procedures, we observe very similar replication rates for the methods seeking to control

the false discovery rate. The Bonferroni method seeks to control the (much stricter)

family-wise error rate, and as such has a higher replication rate but at the cost of

making many fewer discoveries. Importantly, all eQTL identified by Storey Q are

also significant in cFDR. In this specific case, we could apply cFDR when only

changing the expression data but keeping other settings matched, i.e., same donors

and therefore the same genotypes. Because it is rare to have matched bulk and

scRNA-seq data for the same individuals, this is not a realistic setting for most

applications of cFDR for sc-eQTL mapping.

Fig. 5 Conditional FDR increases eGene discovery in iPSC Smart-Seq2 data while replication fraction stays
consistent. a Graphical summary of cFDR method. b The eGene discovery power using different FDR
methods at an FDR of 5% for the respective method (p < 0.05 Bonferroni). Blue bars indicate eGenes that
were replicated in all bulk (a-bulk) defined as FDR < 10% and the same direction of effect. Yellow bars
indicate eGenes that were not replicated in bulk (number of total genes tested = 20,334). c The eGene
discovery power using different external test statistics for cFDR. Tests were performed only on the subset of
genes present in all four external datasets (GTEx metasoft RE2, FE, RE, and closest tissue) (13,653 genes
tested). * denotes multiple testing correction methods that control the (much stricter) family-wise error rate
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To generalize this approach, we applied cFDR using other reference eQTL statistics

to guide our sc-eQTL mapping analysis. Specifically, we selected two external reference

sets from GTEx: (1) the lymphocyte eQTL summary statistics from GTEx (v7) and (2)

the meta-tissue eQTL results by GTEx (v7). For the meta-tissue results, we assessed all

different meta-analysis p values (i.e., the fixed effect, random effect, and random effect

2 as calculated using metasoft [48]). Lastly, we used a cell-type agnostic eQTL mapping

on the two other differentiation time points presented in the Cuomo et al. study (i.e.,

mesendoderm and definitive endoderm). This final setting should be useful in most

common sc-eQTL mapping settings where either a cell-type-specific or cell-type agnos-

tic analysis can be performed within the same study. Similar to the results from the

matched-sample cFDR, we observe that all of the cFDR methods (whichever test statis-

tics are used for conditioning) outperform the Storey Q-based multiple testing correc-

tion in terms of number of eGenes discovered (Fig. 5c, Additional file 1: Table S13).

Moreover, replication fractions are highly similar between the different FDR approaches

(Storey Q and BH vs cFDR). The use of the p values from the same study provided the

largest increase in the number of eGenes, but the use of the metasoft p values from the

GTEx tissues is a close second (1898 vs 1859 eGenes). Of importance here is that for

Additional file 1: Table S13 we subsetted down to only consider genes tested in all

datasets, to be able to compare between cFDR conditionings. When assessing the im-

pact per reference p value set, we see that leveraging the joint cell types from the

Cuomo et al. study yields a comparable number of discoveries as using the m-bulk data

(2821 vs 2887 eGenes, with comparable replication fractions), and observe that the

GTEx summary statistics do considerably worse as the number of overlapping

expressed genes is much lower (Additional file 1: Table S14).

Optimized sc-eQTL mapping

The previous sections describe how to optimize individual steps during a sc-eQTL

mapping workflow, including steps specific to single-cell aggregation and

normalization, statistical modeling, and multiple testing correction. Here we describe

our combined optimized sc-eQTL mapping workflow and showcase the total increase

in power possible when combining the individual findings. We directly compared the

eGene discovery results from a default workflow using d-mean aggregation (baseline)

to dr-mean with an additional random effect to capture sampling variation and an

improved multiple testing strategy applied. Again, we focused here on the iPSC data to

be able to assess replication in bulk.

Overall, we observe a 142.7% increase in eGenes detected when comparing the d-mean

aggregation with Storey Q-based multiple testing correction (1402 eGenes) versus the op-

timized eQTL mapping approach, specifically dr-mean with additional random effect and

cFDR multiple testing (3402 eGenes, Fig. 6, Additional file 1: Table S15). This drastic in-

crease is explained by the smaller individual optimizations discussed above. The switch to

dr-mean instead of d-mean increases mapping power by 46.6%, the use of the additional

random effect reflecting SV (1/#cells) increases power by an additional 31.9%, and lastly

the guided multiple testing correction using p values from the matched bulk analysis in-

creases power by 25.5%. In terms of how well these sc-eGenes replicated the bulk-eGenes

(using FDR < 10% and same effect direction as replication criteria), we observe decreases
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in the fraction of sc-eGenes that replicated bulk-eGenes at each of the optimization steps:

~ 7% replication decrease for d-mean to dr-mean and an additional ~ 4% replication de-

crease for the additional random effect on sample variation. However, the total number of

replicated bulk eQTL effects increased at every step, with 1146 (+ 107.4%) additional

eQTL replicated with the optimized mapping compared to baseline. When using a more

stringent multiple testing cutoff for eQTL discovery (FDR < 1%) in the optimal mapping

procedure we observed a replication rate of 75.5%, which is similar to the replication rate

for d-mean eQTL effects with Storey Q multiple testing (i.e., baseline), while still identify-

ing 548 (51%) additional eGenes (Additional file 1: Table S16).

Discussion

Since being highlighted as “Method of the Year” in 2013 [49], sequencing of the genetic

material of single cells has become common practice to investigate cell-to-cell hetero-

geneity in biological systems [50]. Now an established method, scRNA-seq is being ap-

plied on larger and larger scales, for example to chart all the cell types in the human

body (Human Cell Atlas (HCA, [51])) and to study the differences between individuals

from population-scale cohorts. This latter development has enabled us to study the ef-

fects of genetic variation on gene expression, at single-cell resolution. Recent studies

Fig. 6 Optimizing the eQTL mapping workflow increases eGene discovery. The eGene discovery power after
optimizing for aggregation level, including random effect reflecting sampling variation (SV, 1/#cells), and
applying cFDR methods (conditioning on matched bulk p values) at an FDR of 5% for the respective method
(p < 0.05 Bonferroni). Blue bars indicate eGenes that were replicated in all bulk (a-bulk) defined as FDR < 10%
and the same sign. Yellow bars indicate eGenes that were not replicated in bulk (genes tested = 20,334). *
denotes multiple testing correction methods that control the (much stricter) family-wise error rate
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have explored the optimization of eQTL discovery power as a function of budgetary

constraints; however, limited attention has been paid so far to optimizing statistical

workflows for eQTL mapping to improve power for the mapping of eQTL with the

selected design.

Here, we set out to assess the effects of different eQTL mapping workflows for

single-cell studies. We used bulk and single-cell expression profiles derived from the

same iPSC lines to assess both power and replication of genetic effects on gene expres-

sion variation. We also tested both Smart-Seq2 and 10X data to determine how our

recommendations would hold across technologies. To support our empirical data, we

used splatPop to simulate data with known eQTL effects.

We find that optimizing the aggregation and normalization approaches can increase

eQTL mapping power substantially: in the Smart-Seq2 study, we identify close to two

times more eGenes for the best performing method vs a non-optimized baseline

method. In the 10X study, we find that the dr-mean approach also gives most power to

identify eGenes, but we could not assess the replication in bulk. However, the 10X simula-

tions show that dr-level aggregation results in fewer false discoveries and that both mean

and sum aggregation perform well. We speculate that while the sum would perhaps be

the most obvious approach to reproduce bulk-like measurements, the mean might per-

form better because of the cell-level normalization used. Indeed, the normalization at the

cell level may better balance the differences in read counts across cells prior to the aggre-

gation at the individual level. Additionally, it is of note that methods in which we treat

replicates as separate samples (i.e., donor run) work best even though only 20 (23%) of the

Smart-Seq2 study samples and 25 (14%) for the 10X study samples were assayed in more

than one run. We expect that these improvements are also down to improved

normalization as well as improved covariate correction. Finally, we tested median aggrega-

tion, but given the sparsity of the single-cell data this method drastically decreases the

number of genes that can be assessed for eQTL mapping. Therefore, the use of median

aggregation is not a sensible method in most single-cell applications.

Next, we assessed the effects of both covariate and sampling variation correction ap-

proaches. First, the effect of the different methods to identify covariates, i.e., data driven

factors that capture unwanted variation in eQTL mapping, is ambiguous. Adding covar-

iate factors of any method increases eGene discovery power substantially, but the re-

sults for the different tools when using the optimal number of factors for that tool are

broadly comparable both in terms of discovery and number of replicated effects. Cor-

recting for 15 PCs yielded the most eGenes at a high replication rate. Importantly, the

bulk eQTL results we use to assess replication were mapped after correcting the bulk

RNA-seq data using 20 PCs, which might bias the replication for the sc-eQTL mapping

to be more similar to the bulk PCA-based results. However, regardless of the replica-

tion rate in bulk, PCA correction yielded the highest number of eGenes and so remains

a sensible “default” choice for defining covariates capturing unwanted variation. Second,

including sampling variation as a random effect in the models results in an increase in

eGene discovery power on both Smart-Seq2 and 10X datasets, especially when using

the 1/#cell-based random effect.

Finally, we explored the use of bulk eQTL mapping statistics to guide our multiple

testing correction using the conditional false discovery rate (cFDR) in the implementation

by Liley et al. We observe that the cFDR method gives a marked increase in the identified
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eGenes (between 21% and 40% increase), both when matched bulk data is available and

when meta-tissue eQTL summary statistics are used. However, using the larger iPSC data-

set, we found cFDR had limited impact in terms of replication rates of the eQTL. While

cFDR allows us to guide the multiple testing, potential cell type-specific effects that are

borderline significant might not be “boosted” in power by cFDR if those cell types are not

present or lowly represented in the bulk references. We did, however, observe that all the

effects found using standard FDR methods (Storey Q, Benjamini-Hochberg) were also

deemed significant using cFDR, so no potential effects were lost by using the guided FDR

approach. We explored the use of cFDR for other single-cell studies, but more tests are

needed for mixed cell types to find the optimal way to use cFDR in sc-eQTL studies.

This study demonstrates that optimizing the sc-eQTL mapping workflow can increase

eGene discovery power substantially. However, our conclusions come with some caveats;

(1) simply discovering more eGenes does not necessarily mean that an approach is better,

as false positives could arise due to data processing decisions; (2) bulk eQTL are a power-

ful, but not perfect, gold standard for assessing truth, as biases in bulk eQTL mapping

may be replicated in sc-eQTL mapping analyses; (3) while our simulation framework uses

parameters estimated from empirical data to resemble real population-scale scRNA-seq

data, all simulation frameworks have limitations; (4) single-cell processing steps such as

expression quantification, cell-level QC, and cell-type annotation could affect eQTL map-

ping performance, but best practices for these steps are likely to be dataset and technology

specific rather than specific for sc-eQTL mapping, and were thus not assessed here. Also,

the methods we explored here are based on current standards for bulk eQTL mapping.

Though we find that directly using single-cell expression information does not yield

trustworthy sc-eQTL, there is room for methodological improvements to better use the

replicated structure of single-cell expression data and low counts in each cell.

In this paper, we discussed the impact of various normalization, aggregation, and covari-

ate correction procedures as well as multiple testing correction in the context of single-cell

eQTL mapping power. We conclude that following methodological choices are currently

optimal: scran normalization; mean aggregation of expression across cells from one donor

(and sequencing run/batch if relevant); including principal components as covariates in the

LMM; including a random effect capturing sampling variation in the LMM; and accounting

for multiple testing by using the conditional false discovery rate. Together our optimized sc-

eQTL mapping workflow increases eGene discovery by more than a factor two in our em-

pirical data. These findings should guide the community as more population-scale scRNA

sequencing data becomes available and as groups like the single-cell eQTLGen consortium

are establishing sc-QTL studies on a massive scale.

Methods

iPSC RNA-seq data

To optimize processing and workflows for eQTL mapping in single cells we focus

on iPSC cells, as iPSCs have a homogeneous and stable expression profile [27] and

because of the availability of both single-cell [13] and bulk expression [3, 27] data

for iPSCs for the same donors through the HipSci consortium. Genotyping of the

iPSC lines is described in the original study [3]. Expression quantification per

technology is described below.
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Single-cell RNA-seq data processing

The Cuomo et al. [13] study describes in detail the differentiation of iPSCs towards de-

finitive endoderm using a 3-day differentiation protocol. Briefly, the iPSC lines were

multiplexed into 24 experimental pools (4–6 lines in each pool) and single cells were

sequenced using the Smart-Seq2 protocol [33]). Cells were assigned to their donor of

origin using Cardelino [8]. Here, we focus on the day 0 cells (i.e., iPSC stage) that were

successfully assigned to a donor and passed donor- and cell-level QC described below.

First, we quantified gene expression levels in line with the bulk study. We mapped

RNA-seq reads to the genome (hg19) using STAR [52] (version: 020201) mapping and

used ENSEMBL v75 for annotation. Expression levels for each gene were counted using

featureCount (subread v1.6.0 [53]). To remove outlier runs (i.e., pools), we (1) calcu-

lated the median correlation of each cell with all other cells (across all runs), then (2)

for each run calculated the median of the resulting median cell-cell correlations, and fi-

nally (3) discarded cells with a median cell-cell correlation < 0.7, leaving 30 runs (out of

35, Additional file 1: Fig. S12a). Then, we recalculated the cell-cell correlations between

cells from the remaining runs and discarded cells with a median cell-cell correlation <

0.5, leaving 7611 cells (corresponding to 155 donor-run combinations; Additional file 1:

Fig. S12b). The cell QC applied here removed a sub-population of lower quality cells

that would have been picked up by more traditional QC metrics, such as the total num-

ber of genes detected per cell (Additional file 1: Fig. S13).

Additionally, to remove further possible confounding effects, a small group of donors

with monogenic diabetes (n = 10) and four donors that were outliers in the genotype

space (based on projection with the 1000G project data) were excluded.

After QC and selection, the number of cells per donor varied from 5 to 383 iPSCs

per donor (mean = 84.8) and the number of reads per donor varied from 1 to 104

million (mean = 42 million). For reference, the average number of reads per donor in

our bulk data is 44 million, but the range is much smaller (24–98 million reads per per-

son, Additional file 1: Fig. S2).

The two other developmental stages from Cuomo et al., i.e., mesendoderm and

definitive endoderm, are used as a reference set for the cFDR analysis. Cell QC and cell

assignment to these two developmental stages are described in the original publication

[48]. However, gene expression quantification was performed in line with the single-

cell iPSC data described above.

Bulk RNA-seq data processing

The HipSci project generated both chip-genotype and deep bulk RNA-sequencing pro-

files for 810 iPSC lines corresponding to 527 unique donors. Details on expression

quantification and QC of these data can be found in Bonder et al [27]. Of the 111 pre-

QC donors for which we had single-cell RNA-seq data, matching bulk iPSC data was

available for 108 (97%). After QC and selection on both the bulk data and the single-

cell expression data, we were left with data from 87 donors.

10X data from floor plate progenitor cells

Recent large-scale single-cell expression studies have mostly been conducted using the

10X Chromium platform [32], given its larger throughput in terms of number of cells
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and lower costs per cell. The quantification of expression from 10X is different from

Smart-Seq2, because 10X sequencing (1) only aims to capture sequence from the 3′,

5′, or both 3′ and 5′ ends of transcripts and (2) uses unique molecular identifiers to

identify and remove effects of PCR duplication, and (3) results in fewer reads per cell

compared to Smart-Seq2.

Given these differences and the recent shift towards 10X data, we wanted to assess

the impact of eQTL workflows on 10X data specifically. We selected one cell-type

(midbrain floor plate progenitors; FPP) and time-point (day 11 of iPSC differentiation

towards dopaminergic neurons) from Jerber et al [14], using expression quantification

from the original paper and the two-step cell QC as described above (as in Additional

file 1: Fig. S12). Briefly, sequencing data generated from Chromium 10X Genomics li-

braries were processed using the CellRanger software (version 2.1.0) and aligned to the

GRCh37/hg19 reference genome. Counts were quantified using the CellRanger “count”

command, with the Ensembl 84 reference transcriptome (32,738 genes) with default

QC parameters. For each of 13 pooled experiments, donors (i.e., cell lines) were demul-

tiplexed using demuxlet [10], using genotypes of common (MAF > 1%) exonic variants

available from the HipSci bank and a doublet prior of 0.05.

Sufficient single-cell data (≥ 5 cells) were available for 174 individual cell lines from

174 donors. The number of cells per donor ranged from 7 to 7782 (mean = 831.4). The

total number of reads per donor ranged from 0.02 to 114 million reads (mean = 9.7).

GTEx brain eQTL summary statistics

To assess the replication of 10X FFP eQTLs, we leveraged the brain summary statistics

available from the GTEx study (v7) [2]. Given that there was no perfect bulk reference

for the FPP cells and power is limited in the GTEx brain tissues, we first did a weighted

average over the effect sizes in the different brain tissues. After deriving the effect sizes,

we looked up the most significant SNP-level corrected p value [46] from the individual

tissue associations to reflect this averaged effect size in the brain. When doing the

lookup for the FPP cells, we additionally corrected these p values for the number of

genes that are assessed in the relevant test.

Allele-specific expression quantification and testing

In addition to bulk eQTLs results, we assessed allele-specific expression (ASE) levels as

a second method of replication. We leveraged the WASP (version: 0.3.4) pipeline to

quantify ASE on both the single-cell datasets (i.e., Smart-Seq2 and 10X) [54]. First, we

merged the alignments at a donor level; second, we processed the imputed genotype

data and the merged BAMs as outlined in the WASP instructions (https://github.com/

bmvdgeijn/WASP/tree/master/CHT). To replicate the eQTL results, we used the

WASP ASE counter to count genic reads overlapping phased variants linked to the

eQTL SNP. For the gene counting, we use a processed gene annotation file that con-

tains merged overlapping exons from the same gene and removed regions that are

present in multiple genes as recommended by WASP. After counting, we used the bias

corrections implemented in WASP to correct the read counts and used WASP to quan-

tify ASE. Importantly, WASP was used as provided, meaning that no specific optimiza-

tions for single-cell ASE counting were used. Given the lower read counts in single-cell
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data, we could not replicate many eQTL results; however, the allelic expression ratios

overlap the eQTL signs to a large extent. To correct for multiple testing in the ASE

analysis, we used the Storey Q method over the relevant top eQTL per gene.

Simulation methods

Two types of population-scale scRNA-seq datasets (iPSC Smart-Seq2 and FPP 10X)

were simulated using splatPop [55] from splatter v1.17.1 [56]. splatPop uses the

gamma-Poisson hierarchical modeling approach from splatter to simulate scRNA-seq

data, with eQTL effects incorporated into the baseline gene means for each eGene (y)

for each individual (i) as: yi = yi + (yi × Gi × w), where Gi is the minor allele dosage of

the eSNP and w is the eQTL effect size. To ensure realistic simulations, parameters

were estimated from real data. Single-cell parameters defining the distribution of library

sizes (gamma), common BCV (inverse chi-squared), and dropout rates (logistic) were

estimated from the empirical single-cell count data from the donor with the most cells

(iPSC Smart-Seq2 donor ID = joxm; FPP 10X donor ID = mita_1). Population parame-

ters defining the distributions of gene mean expression (gamma) and variance in

expression (gamma binned by mean expression) were estimated from the mean aggre-

gated expression levels for all genes from either iPSC Smart-Seq2 or FPP 10X. Finally,

eQTL parameters defining the distribution of the eQTL effect sizes (gamma) were esti-

mated from the most significant eQTL hit for each gene from bulk iPSC data for eSNPs

with MAF > 0.1. The eQTL effects were assigned randomly to 35% (n = 439) of the

genes being simulated with eSNPs having a MAF > 0.1 and being within 100 kb of their

eGenes. The number of cells to simulate per donor was sampled from a gamma distri-

bution estimated from the number of cells per donor from the empirical data. Data was

simulated for genes from chromosome 2 (n = 1255) for 87 individuals in the British co-

hort for the Smart-Seq2 simulations and for 173 individuals from the European cohorts

from 1000Genomes [57]. For the sample size analysis, n individuals were randomly se-

lected from the European cohorts for each simulation (n = 50, 87, 120, 173, 300, 600).

For the cells per donor analysis, the rate parameter of the gamma distribution was

changed to achieve a range of average number of cells per donor (Smart-Seq2 n = 50,

85, 120, 200, 300, 1000; 10x n = 200, 300, 400, 525, 650, 1000).

To mimic the experimental design of the empirical datasets, cells were simulated in

batches with 5 (iPSC Smart-Seq2) or 24 (FPP 10X) individuals per batch, where 28%

(iPSC Smart-Seq2) or 14% (FPP 10X) of individuals were replicated in two batches,

reflecting the pooling sizes and replication rates in the empirical data. Batch effect sizes

were sampled from log-Normal distributions with location = 0.001 and scale = 0.12

(iPSC and FPP) and with the splatPop parameter similarity.scale = 5 (iPSC Smart-Seq2)

or similarity.scale = 22 (FPP 10X) set to reflect the batch effects and relationship be-

tween samples observed in the real data (Additional file 1: Fig. S5).

The different eQTL mapping methods tested on simulated data were replicated 10

times, with each replicate being an independent splatPop simulation. Due to genetic

linkage, the top eSNP mapped for each eGene was not expected to be the simulated

eSNP. To account for this, all eQTL hits with an empirical p value below the empirical

p value corresponding to the multiple testing threshold determined using Storey Q on

the top hits for each gene were considered significant. Each simulated eGene was
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considered a true positive (TP) if the simulated eSNP was among the significant eSNPs

or it was considered a false negative (FN). Note that the FN includes eGenes with no

significant eSNPs (type 1) and eGenes with significant eSNPs, but for which the correct

eSNP was not significant (type 2). Each simulated gene not assigned an eQTL effect

was considered a true negative (TN) if it had no significant eSNPs and a false positive

(FP) if it had a significant hit. Performance metrics include power (TP / (TP + FN)),

empirical FDR (FP / (FP + TP)), and the Pearson’s correlation between simulated eQTL

effect sizes and estimated effect sizes (beta.cor; including only genes simulated as

eGenes). Statistical tests were performed in Rv4.0.3 and results are described in detail

in Additional file 1: Table S6, Additional file 1: Table S8).

Aggregation and normalization methods

Single-cell normalization and log2 transformation of normalized counts-per-million were

performed on raw single-cell counts using scran (version: 1.14.1) [20] with size factors cal-

culated using the pooled approach described in [21] and a pseudocount of one applied to

the log2 transformation to avoid attempting to take the log of zero (i.e., log2(cpm + 1)). The

normalized counts were then aggregated using either the mean or the median (Fig. 1). We

also considered alternative single-cell normalization techniques, for both Smart-Seq2 and

10X we also used bayNorm (version: 1.8.0) [28] and for 10X we also considered sctransform

(version: 0.3.2) [29], but observed minimal differences in normalized expression values (as

assessed by Pearson’s correlation at the gene-level over the donor-run combinations,

Additional file 1: Table S4) and in eQTL results after dr-mean aggregation (as assessed by

overlapping eQTL effect size and p values). Sum aggregation was performed directly on the

raw counts (Fig. 1) and followed by pseudo-bulk-like TMM normalization [1] and log2

transformation, as implemented in edgeR (version: 3.28.1) [30].

In all cases, aggregation was performed at two levels of batch (Tables 1 and 2). First, we

aggregated all cells from each donor (i.e., d-mean, d-median, d-sum). In this setting, one

sample corresponds to one donor (n = 87 in the iPSC Smart-Seq2 dataset, n = 174 in the

FPP 10X data; samples with > 5 cells only). Note that all donors from the iPSC Smart-Seq2

dataset had > 5 cells per donor, so this threshold only applied when aggregating over donor

run. In the 10X data, only five donors were filtered out by this filter (Additional file 1: Fig.

S2c,d). In cases with low sequencing coverage or when poor sequencing quality is a concern,

a higher minimum cell threshold may be needed, with the trade-off being fewer donors and

thus less power for eQTL discovery [19]. Next, we aggregated separately across donors and

sequencing runs (dr-mean, dr-median, dr-sum). In this second setting, one sample is a

unique donor-sequencing run combination (when considering samples with > 5 cells, n =

155 in the iPSC Smart-Seq2 data, n = 702 in the FPP 10X data). Visually, the various aggre-

gation methods show a similar picture across donors/samples and genes, with the median

aggregations being most affected by the 0-inflated expression (as shown on the iPSC Smart-

Seq2 data in Additional file 1: Fig. S14, Additional file 1: Fig. S15).

Highly variable genes

Highly variable genes (HVGs) were defined as the genes in the top two quartiles based

on their squared coefficient of variation (CV^2 = variance / mean^2) calculated across
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all cells of each different cell-type. In this manner, we identified 21,592 HVGs for the

iPSC Smart-Seq2 dataset, and 16,369 for the FPP 10X dataset.

eQTL mapping strategy

For cis-eQTL mapping, we followed Cuomo et al. [13] and adopted a strategy similar to

approaches commonly applied in conventional bulk eQTL analyses. We considered

common variants (MAF > 10% and Hardy-Weinberg equilibrium P < 0.001) within 100

kb up- and downstream of the gene body. Association tests were performed using lin-

ear mixed models (LMMs), fit using LIMIX (version: 2.0.3) [31]. The expression profile

of each gene was quantile-normalized to a standard normal distribution and the signifi-

cance was tested using a likelihood ratio test (LRT).

Covariates for sc-eQTL mapping

To adjust for experimental batch effects across samples, we included covariates as fixed

effects in our LMM models to correct for both known and hidden sources of unwanted

variation. These covariates (e.g., batch effects) usually affect the expression of many

genes and therefore are detectable in the principal components of expression. Further-

more, global batch effects are orthogonal to the effects of a single cis regulatory variant

on the expression of one gene, thus accounting for global batch effects in our LMMs

will not remove the signal for eQTL. Unless specified otherwise, in our sc-eQTL map-

ping, we included the first 20 principal components calculated on the relevant expres-

sion value aggregation/normalization in the model as fixed effect covariates. However,

in order to assess the impact of variations in the types and numbers of covariates

included, we also considered alternative methods; first, we considered Probabilistic Esti-

mation of Expression Residuals (PEER (version: 1.3) [38], a method designed specifically

to account for global expression confounders in the context of (bulk) eQTL mapping;

next, we considered Multi-Omics Factor Analysis (MOFA, which we used in two fla-

vors: with and without sparsity; (version 1.2.0) [38, 40]). While originally designed for

multi-omic data, MOFA can be applied when considering a single omic layer (gene ex-

pression in this case) to probabilistically identify common sources of variation across

all genes and has been applied to a variety of bulk and single-cell datasets. Finally, we

tested for this purpose, a method called Linearly Decoded Variational AutoEncoder

(LDVAE [39, 40]). This model also aims at finding factors that co-vary across all fea-

tures (i.e., genes) considered and is especially designed for single-cell data.

All covariates (except LDVAE, see below) were calculated using the relevant aggre-

gated expression values at the level of donor or donor-sequencing run, for all genes

tested (63,678 genes). PCA was computed using the R function prcomp. PEER (https://

github.com/PMBio/peer/) was run using the R implementation with the number of fac-

tors set to 30 and default parameters. MOFA v2 (https://biofam.github.io/MOFA2/)

was run using the R implementation, for n = 25 factors. Both default parameters (i.e.,

MOFA; spikeslab_factors = F, spikeslab_weights = T, ard_factors = F, ard_weights = T)

and parameters with the sparsity constraints removed (i.e., MOFA non-sparse; spike-

slab_weights = F, ard_weights = F) were used.

Finally, we included a recent approach using variational autoencoders: linearly

decoded variational autoencoder (LDVAE; (version scvi-tools: 0.8) [39]). In contrast to
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the other methods, LDVAE works directly on the single-cell count data. We ran

LDVAE following the tutorial (https://www.scvi-tools.org/en/stable/user_guide/

notebooks/linear_decoder.html) but changed it to estimate 25 factors over 1000 epochs

with 400 warmup epochs. After training, we extracted the LDVAE factors and aggre-

gated the factors over the cells by taking the mean per donor or donor run.

Mixed effect models

In order to account for possible population substructure in the sample considered as

well as, importantly, for repeated observations for the same donor (i.e., across runs, in

the “dr” aggregation methods), we include in the linear mixed model a random effect

modeling such structure (using a kinship matrix, K):

Y ¼ covs þ SNPþ uK þ ε;

where Y is the expression of the gene considered (aggregated, normalized, and trans-

formed as described above), covs are the expression covariates (described above); SNP

is the vector of allele values for the variant being tested; uK is a random variable such

that uK ~ N(0, K), where K is a kinship matrix, specifically a SNP-based identity by des-

cent (IBD) matrix estimated using PLINK (version 1.9) [58], and ε is the error term.

Importantly, when considering “dr” aggregation methods (as well as the direct single

cell eQTL mapping), this kinship matrix K is expanded to reflect the repeated samples

(such that repeated measurements appear as “blocks” along the diagonal).

Additionally, we tested the effect of the inclusion of a noise term in the LMM that ac-

counts for the variable number of cells used to calculate aggregate expression measures,

which has been shown to improve eQTL discovery power [14]. Here we also considered add-

ing a term to account for each donor’s sequencing depth (i.e., number of reads per donor,

Table 5; Additional file 1: Table S10, Additional file 1: Table S11). Using the LMM frame-

work from LIMIX, we test three models for d-mean to account for different confounders:

Y ¼ covs þ SNPþ uK þ ε baseline; as aboveð Þ

Y ¼ covs þ SNPþ uncells þ ε

Y ¼ covs þ SNPþ unreads þ ε

where Y, covs, SNP, uK and ε are defined as above; uncells is a random variable

such that uncells ~ N(0, diag(1/ncells)), where diag(1/ncells) is a diagonal matrix

with the inverse of the number of cells per donor as the diagonal terms and,

analogously, unreads ~ N(0, diag(1/nreads)).

For dr-mean, since we have replicate measurements for each donor (across sequen-

cing runs), we always need to account for population structure (and replicated struc-

ture), by including the (expanded) kinship matrix as a random effect. As such, we test

the following models:

Y ¼ covs þ SNPþ uK þ ε baseline; as aboveð Þ

Y ¼ covs þ SNPþ uKþncells þ ε

Y ¼ covs þ SNPþ uKþnreads þ ε

Since the LIMIX framework can only account for one random effect, in the latter two

models, we introduced a weighting factor (w, between 0 and 1) to incorporate the
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relative weight of the two random effect term matrices, e.g., w × 1/ncells + (1 − w) × K.

We optimized w using a grid search per gene (Brent method, [59]), where w starts at

0.5 and is varied up or down in steps of 0.1 if the model fit increases with a higher or

lower w.

Multiple testing correction

Multiple testing correction for the eQTL results was performed in two steps, as is com-

mon practice in eQTL studies [46, 47]. First, to adjust for multiple testing at the gene

level (i.e., across SNPs), we used an approximate permutation scheme, analogous to the

approach proposed in [46], where, for each gene, we generate 1000 permutations of the

genotypes (100 permutations for simulated experiments) while keeping covariates, ran-

dom effect terms, and expression values fixed. We then adjusted for gene-wise multiple

testing using this empirical null distribution. Second, to control for multiple testing

across genes, we applied the Storey Q value procedure based on the most significant

eQTL per gene, unless otherwise specified. Genes with significant eQTL were reported

at an FDR < 5%. This second step is performed after gene selection (i.e., after consider-

ing the relevant gene selection in the comparison setting). We deem significant all asso-

ciations that reach the gene-level corrected p value (step 1) corresponding to the

selected gene-level FDR (step 2), i.e., we call as significant all associations to a gene that

are below the identified association p value (not just the top associated SNP per gene).

We also tested alternatives to the Storey Q value for the second step. In particular, we

test (1) the Bonferroni approach (p value< 0.05), which controls the much stricter

family-wise error rate (FWER), (2) Benjamini-Hochberg (BH), another commonly used

FDR approach; and (3) a recent implementation [41, 42] of the conditional FDR

(cFDR), which leverages external data to guide the gene-level multiple testing correc-

tion. For the cFDR procedure, we tested using raw association p values from (1) the

bulk iPSC associations, (2) GTEx v7 association p values from the EBV transformed

lymphocytes, (3) GTEx v7 association p values from tissue meta-analyses results [60],

and (4) association p values from a joint eQTL mapping on the mesendoderm and

endoderm data from the Cuomo et al. study [13]. Given that the external datasets have

imperfect overlap in terms of both SNPs and genes, we limit our focus to overlapping

genes and variants for each respective test, unless otherwise specified.

Conditional FDR is a method to condition or transform the p value from one hypoth-

esis test using an external set of test statistics. For a series of hypothesis tests (i = {1, ..,

n}), P = {Pi} and Q = {Qi} are two sets of random variables, representing the observed p

values from the internal (i.e., sc-eQTL; pi) and external (e.g., bulk eQTL; qi) hypothesis

tests, respectively. Traditionally the cFDR is approximated with the empirical joint cu-

mulative distribution function (see Fig. 5a) and is then used to draw a contour through

the two-dimensional space of all p value pairs (p, q) = {(p1, q1), ...(pn, qn)} that defines

the region where H0 will be rejected. However, this approach does not explicitly control

FDR. Here we apply an adjusted estimator of cFDR proposed and described in detail by

Liley and Wallace [42], which was shown to improve power and control the type1 error

rate. Briefly, for each p value pair (pi, qi), the adjusted estimator adds randomly chosen

points (pi’, qi’) to the original p value pair space (p, q). Then the “transformed” p value

is calculated as the probability that the randomly chosen points had a more extreme
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cFDR than the point of interest (pi, qi). Ultimately, with this approach, we are able to

define a better (i.e., a higher TP:FP) H0 rejection region than what would be defined by

strict thresholds for P and Q, and thus better integrate the external information into

the statistical test.

Replication of bulk eQTL results

Performance of sc-eQTL mapping was measured using two metrics: number of signifi-

cant sc-eQTL (FDR < 5% unless stated otherwise, described above) and replication with

bulk eQTL. A sc-eQTL (i.e., eSNP-eGene pair with FDR < 5% in a single-cell study)

was considered to replicate a-bulk eQTL if it passed two criteria: (1) the gene-SNP pair

was significant in the bulk test at FDR < 10% and (2) the direction of the effect was

consistent between the sc-eQTL and the bulk eQTL.

Note that a small percentage (~ 1%) of non-replicated sc-eQTL in bulk were due to

the gene and/or the SNP of interest not being assessed in the bulk eQTL results.
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