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ABSTRACT In 2018, an attack named fast-near-collision attack (FNCA) was proposed, which is an

improved version of near-collision attack (NCA) on Grain-v1, one of the three hardware-oriented finalists of

the eSTREAM project. FNCA is designed as a key recovery attack and takes a divide-and-conquer strategy

that needs amerging phase.We propose an improved FNCAwhere themerging phase is optimized by a linear

programming based strategy. It decreases the candidates of the internal state vectors (ISVs) in each step of

merging and has a reduction in the overall time complexity. Since the merging phase is vital for a divide-

and-conquer strategy, where the most of bits of the full internal state are recovered, other analyses on Grain

family with FNCA can get optimized by our method in varying degrees. This paper offers an experiment

on a reduced Grain and a theoretical analysis on Grain-v1 to confirm the results. In the case of the reduced

Grain of an 80-bit internal state, the time complexity is 237.1096, which has a 27.8% reduction. For Grain-v1,

its theoretical time complexity is around 273.4, which is reduced by 79.4% compared with the original one.

INDEX TERMS Cryptanalysis, grain, near collision, stream ciphers, time-memory-data tradeoff attacks.

I. INTRODUCTION

The Grain-v1 stream cipher is proposed by Hell et al. [9].

It is selected as a finalist in the eSTREAM project after with-

standing the cryptanalysis [2]. Grain is designed to satisfy the

needs of constrained hardware environments, like the imple-

mentation of an RFID tag, where the amount of memory and

power is limited. Consisting of two combined shift registers,

which are simple but ingenious, one with linear feedback and

the other with non-linear feedback, Grain-v1 generates secure

keystream at a rapid speed.

A. RELATED WORKS

Based on the birthday paradox, [1] proposes that the design

of stream cipher requires the internal state size to be twice

as large as the key size. As a general rule, many time-

memory-data attacks [3], [4], [8] take this theory into account.

This idea prevents many stream ciphers, e.g., Grain family

from a traditional collision attack. However, the proposal

of NCA [17] makes the Grain-like stream cipher exposed

in unsafe. Aiming at the drawbacks of pre-computation
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complexity and success ratio in NCA, an improved version

of NCA named FNCA [16] is raised, which realizes a great

fall of time complexity in pre-computation phase, along with

an overall lower time complexity and a higher success ratio.

The main difference lies in FNCA and NCA is whether to

recover the full internal state in one time. NCA returns full

internal states after once implementation. However, FNCA

recovers a set of internal state vectors (ISVs) that is composed

of several bits of a full internal state and then merges the ISVs

into full internal states. The bits of ISVs are chosen by the

corresponding tap positions of the output function. Thus a

well-designed output function can withstand a pure FNCA.

Only a part of the full internal state can be recovered by an

output function based collision attack, which is researched

in [4]. To recover the rest of the internal state bits, other

techniques like algebraic attack, correlation attack should be

implemented. [16] finds that Grain-v1 cannot be attacked

successfully by a pure FNCA, only LFSR state bits and a few

state bits of NFSR can be recovered.

In FNCA, the merging phase recovers a skeleton of the

full internal state, remaining nearly half of the full internal

state bits to be recovered. In order to recover the rest bits,

extra cryptanalysis will be performed on each candidate of the
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TABLE 1. Comparison with the previous attack.

full internal state. Therefore the number of candidates of the

internal states after merging dominates the time complexity

of the attack. At the same time, the time complexity of the

FNCA [16] on Grain-v1 will be higher when it comes to soft-

ware implementation where fast correlation attack [12] will

have a better performance than FNCA under the background

of Grain-v1, in some situation.

B. CONTRIBUTIONS

This paper proposes an optimized FNCA by using linear

programming to adjust the merging strategy. We track the

candidates’ increased times and the probability of the right

candidate in each step, to get the final number of the can-

didates of the full-size ISV. Then we analyze the candi-

dates increased times in each case of overlapping bits of the

two keystream segments and construct a linear programming

model for the whole merging phase. In this paper, we give

a strategy to reduce the invalid candidates for the internal

state further. Thus the final candidates (the candidates of the

full internal state) decrease around 27.8% compared with the

original attack on a reduced Grain of 80-bit internal state.

In the case of Grain-v1, there is a theoretical optimization

where the final candidates get a reduction of 79.4%.

As a method focusing on the merging, linear programming

does not affect the data and pre-computation complexity. It is

found that the memory usage of candidates of the ISVs in

some merging step is unaffordable on a single PC when the

attack is implemented on Grain-v1 or higher versions [16].

The solution is having the memory of the generated candi-

dates freed after the next batch of the candidates is created

in each merging step. Therefore the reduction effect of the

number of final candidates is dispersed into each step of

merging, the memory complexity between the original FNCA

and our method is close.

This paper is organized as follows. The description of

Grain-v1 and reduced Grain are introduced in Section II.

In Section III, some preliminaries are presented, which

includes the concept of the time-memory tradeoff in NCA.

Section IV provides a description of the procedure of FNCA

in [16] and illustrates our improved strategy of merging ISVs.

The experiment results and the specific merging procedure

FIGURE 1. Structure of Grain-v1.

is given in Section V. In Section VI, we make a theoretical

analysis of the optimization effect of our method onGrain-v1.

At last, Section VII concludes this paper.

II. GRAIN-V1 AND REDUCED GRAIN

Grain-like stream ciphers are made of two connected shift

registers and an output function. One is a non-linear feedback

shift register (NFSR) which uses a non-linear polynomial

function as its update function. Another one using a linear

polynomial function as its update function is called linear

feedback shift register (LFSR). To describe the internal states

of the shift registers, we denote NFSR and LFSR inter-

nal states as (ni, ni+1, . . . , ni+s−1) and (li, li+1, . . . , li+s−1)

respectively. s represents the size of a shift register, e.g.,

s = 40 in Grain-v1, s = 80 in Grain-v1 and s = 128 in

Grain-128. It is noticed that ni (or li) is the most significant

bit of the hexadecimal string stored in the NFSR (or LFSR).

In the case of Grain-v1 [9], the update function of LFSR is

defined as

li+s = li+62 + li+51 + li+38 + li+23 + li+13 + li.

The update function of NFSR is defined as

ni+s = li + ni+62 + ni+60 + ni+52 + ni+45 + ni+37

+ ni+33 + ni+28 + ni+21 + ni+14 + ni+9 + ni

+ ni+63ni+60 + ni+37ni+33 + n15ni+9

+ ni+60ni+52ni+45 + ni+33ni+28ni+21

+ ni+63ni+45ni+28ni+9 + ni+60ni+52ni+37ni+33

+ ni+60ni+52ni+37ni+33 + ni+63ni+60ni+21ni+15

+ ni+63ni+60ni+52ni+45ni+37

+ ni+33ni+28ni+21ni+15ni+9

+ ni+52ni+45ni+37ni+33ni+28ni+21.

As a bit-oriented stream cipher, Grain denotes its

keystream according to the order of clock t: (z0, z1, . . . , zt ),

where z0 means the first keystream bit generated after initial-

ization. The output function contains a filter function h(x) and

a polynomial for masking. The filter function is defined as

h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2

+ x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.
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The variables x0, x1, x2, x3, x4 represent the tap posi-

tions, and the internal state bits that show on these posi-

tions are called tap bits. These variables are defined

as li+3, li+25, li+46, li+64, ni+63 respectively in the case of

Grain-v1. FNCA is an attack based on the output function,

which means the attack should be adjusted according to the

specific output function and a well-designed combination of

tap positions can effectively prevent it from a pure FNCA. It is

found that Grain-v1 can withstand a pure FNCA [16], where

around half of NFSR state bits remain unknown unless further

efforts are made by other techniques, e.g., algebraic attack,

Walsh distinguisher.

Since the outputs of filter function balanced [9], the cor-

relation of the output of filter function to sums of inputs

can be reduced, which prevents some attacks e.g., correlation

attack, distinguish attack. The masking bits are defined as
∑

k∈A ni+k , where A = {1, 2, 4, 10, 31, 43, 56}. Hence the

complete output function is

zi =
∑

k∈A
ni+k + h(li+3, li+25, li+46, li+64, ni+63).

In this paper, we mainly talk about the improvement of

pure FNCA, which is supposed to be implemented in every

FNCA on Grain-like ciphers. For the above purpose, we take

a reduced Grain whose bit length of the full internal state is

80 as the target in our method. The reduced Grain can be

recovered totally by guessing two internal state bits after a

pure FNCA, according to Theorem IV-B.

In the case of the reduced Grain, the update function of

LFSR is defined as

li+s = li+33 + li+18 + li+9 + li.

The update function of NFSR is defined as

ni+s = li + ni+33 + ni+29 + ni+23 + ni+17

+ ni+11 + ni+9 + ni+33ni+29 + ni+23ni+17

+ ni+33ni+9 + ni+33ni+29ni+23

+ ni+29ni+23ni+17 + ni+33ni+29ni+23ni+17

+ ni+29ni+23ni+17ni+11ni+9.

The output function is defined as

zi =
∑

k∈A
ni+k + h(li+1, li+21, ni+22),

whereA = {1, 7, 15} and the filter function h(·) is defined as
h(x) = x1 + x0x2 + x1x2 + x0x1x2.

III. PRELIMINARIES

This section consists of three parts, which give a general

background of the attack. A list of notations is presented in

the first part. The second part introduces the birthday paradox

and time-memory-data tradeoff. The last part explains the

near-collision theory and its combination with time/memory

tradeoff cryptanalysis.

A. NOTATIONS

• n: the bit length of the internal state.

• F: binary field.

• F
n
2: n-bit internal state over F2.

• 1x: the internal state difference (ISD).

• 1z: the keystream segment difference (KSD).

• wH (·): the Hamming weight of input (a binary string),

whose output equals to the amount of ‘‘1’’s in the input.

• d : the Hamming weight of internal state difference

(ISD).

• A,B: two sets of elements drawn uniformly and inde-

pendently at random from F
n
2.

• a, b: two random elements taken form A,B respectively,

where a ∈ A, b ∈ B.

• | · |: the cardinality of a set.

B. BIRTHDAY PARADOX AND TIME-MEMORY-DATA

TRADEOFF

Birthday paradox gives a conclusion of finding a collision for

a hash function. In [10], an equation of collision ratio (p),

space of key (N ) and the size of pre-computed table (s) is

presented:

p = 1 − e−s
2/(2N ). (1)

It is found that when p is fixed at 0.5, the value of s is close

to
√
N . This is why the size of a key needs to be doubled up to

an internal state before keystream bits generation. Similarly,

the birthday paradox can be considered in a set theory way.

Given two sets A, B, a collision occurs when a pair (a, b)

satisfies a = b.

A set theory version of birthday problem is introduced

in [13], where illustrates that birthday problem finds a solu-

tion (a, b) exists with reasonable probability once |A| · |B| >

2n holds, and if the list sizes are favorably chosen, the com-

plexity of the optimal algorithm is 2(2n/2).

Before a collision attack starts, it needs to have a mapping

table (pre-computed table), which includes randomly gener-

ated keys (ki) and their hash values (vi). Let A stores vi and

B stores the target hash value (v∗). As the preimages of vi are

already known, once there occurs that vi = v∗, the key for v∗

will turn out to be ki. In the above case, there is |B| = 1 holds

for each hash value is independent. Nevertheless, when it

comes to stream ciphers, the internal state is always correlated

to the last clock’s internal state. Reference [3] proposes to

collect the real-time data ofD bits produced by the generator,

then all the later keystream can figure out as long as there is a

collision between A and the D bits keystream for the attacker

can run the generator forwards any steps he wants. Thus it can

be more possible to crack a stream cipher by providing more

keystream bits. In other words, there are more alternative

targets for the same pre-computed table. According to the

inequality |A| · |B| > 2n, by adding the elements in B,

the cardinality of A can be decreased to reduce the space that

the pre-computed table occupies.

Time-memory-data tradeoff attack is a kind of cryptanaly-

sis recovering the internal state (or keys) by making tradeoff
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among the overhead of time (T ), memory (M ) and real-time

data (D). The simplest stream cipher based time-memory

tradeoff attack is BG attack, which is raised by Babbage [1]

and Golic [7] independently.BG attack gives a time/memory

tradeoff curve T · M = N for any 1 ≤ T ≤ D, where

T = D, N denotes the space of internal state (or keys),

and the overhead of pre-computation equals to M . When

T = M holds, the tradeoff curve will be transformed into

T = M = N 1/2, which supports the birthday paradox theory.

C. TIME-MEMORY-DATA TRADEOFF IN NEAR COLLISION

When (a, b) satisfies a = b, a ‘‘complete collision’’ happens.

We call it a ‘‘near collision’’ when a+b 6= 0. Let1x = a+b

denotes ISD between a and b, it can be found that the degree

of near collision of 1x equals to the hamming weight of 1x,

which means d = wH (1x).

Definition 1 [17]: For any a and b, if wH (a+b) ≤ d holds,

A will have d-near-collision with B.

For example, binary string 1011 has 1-near-collision with

0011, 1111, 1001, 1010, and 1011. According to the previous

example, it can be found that, given any internal state x,

we can generate all possible internal states that are d-near-

collision with x, by adjusting the ISD and XORing ISD to x.

All x’s variants will be figured out if we enumerate all ISDs

satisfying wH (1x) ≤ d .

According to Definition III-C, it takes (d + 1) stages to

enumerate all elements in D. In brief, in stage i, we flip i bits

of a binary string whose bit length is n and value equals to 0,

hence there exists
(

i
n

)

ways to flip. After adding up all ways of

flipping from stage 0 to stage d we can compute the number

of the ISDs will be used in a d-near-collision. Given a fixed d ,

let set D includes all possible 1x that satisfies d ≥ wH (1x),

then |D| = ∑d
i=0

(

i
n

)

.

Therefore D can be denoted as {1x ′
0, 1x

′
1, . . . ,1x

′
|D|−1}.

For each internal state stored in the pre-computed table, it has

|D| different states that get near collisions with it. In this way,
we can infer |D| times internal states, which means the pre-

computed table covers more internal states without increasing

its physical memory.

Theorem 1 [16]: Let D be a set that contains the chosen

d-near-collision ISDs of A. Then there will be a pair (a, b)

that satisfies d-near-collision if near-collision inequality

|A| · |B| ≥ c · 2n
|D| (2)

holds. Note that c is a constant to raise the possibility of the

existence of the pair (a, b).

Both NCA [17] and FNCA [16] substitute near collision

to complete collision, but the collision objects of these two

attacks are different. NCA in [17] recovers a full internal state

by once collision, while the original FNCA in [16] recovers

a part of a full internal state per collision. It takes a few times

of collisions before a full internal state is recovered by fast

near collision. In the next section, we analyze the original

FNCA based on reduced Grain, and then the cut-in point of

an improved attack method is put forth.

IV. OPTIMIZED FNCA ON REDUCED GRAIN

FNCA contains two phases, an offline phase and an online

phase. The offline phase describes the pre-computation algo-

rithm and gives the pre-computed table. The online phase

introduces internal state bits on tap positions, or tap bits in

brief, recovery algorithm, and the strategy of merging the

tap bits, where the linear programming optimization will be

covered.

A. OFFLINE PHASE: PRE-COMPUTATION

Pre-computation aims to find the link between ISD and

keystream segment difference (KSD). As we know the out-

put function of the reduced grain is zi = ∑

k∈A ni+k +
h(li+1, li+21, ni+22), where A = {1, 7, 15}. Let mi =
∑

k∈A ni+k , and l denotes the bit length of keystream seg-

ment. If the bit-length of a keystream segment is 2, we have

a keystream segment vector Ezi =
(

zi
zi+1

)

= (zi, zi+1)
T ,

where zi = mi + h(li+1, li+21, ni+22) and zi+1 = mi+1 +
h(li+2, li+22, ni+23). Referring to the concept of BSW sam-

pling [3], the keystream bit zi is directly related to the

internal state bits (li+1, li+21, ni+22), showing in the output

function as taps. The masking bits bit mi can be solved

after recovering the tap bits, then by solving the equations

of mi = ni+1 + ni+7 + ni+15, where 0 ≤ i < L and L

denotes the bit length of real-time keystream, most internal

state bits involved in the masking bits can be solved. We set

Exi = (li+1, li+2, li+21, li+22, ni+22, ni+23)
T as an initial ISV

to represent a vector composed of tap bits, except the bits

involved in the masking bits. By this mean, each keystream

bit is bound to 4 variables, and for each keystream segment

vector there is

Ezi = (mi,mi+1)
T + h(Exi). (3)

In NCA, each keystream bit is bound to 80 variables, which

results in more overheads. The general idea of FNCA is

generating a set of random tap internal states vectors, then

for Ex ′
i , we adjust a few bits of it, by XORing it to 1x, to hit

a Ez′i near the target Ezi. Let Ez′i = Ezi + 1z, then the correlation

between ISD and KSD is established:






(mi,mi+1)
T =Ezi + h(Exi)

Ex ′
i =Exi + 1x

Ez′i=Ezi + 1z

⇒1z=h(Exi) + h(Exi + 1x) (4)

Pre-computation discusses the correlation between ISD

and KSD, by enumerating every element in F
6
2, for each

2-bit-length keystream segment. This process is presented in

Algorithm 1, which is modified from [16]. From [16] and

TABLE 6, it is discovered that the ISDs in the table T [Ezi, 1zj]
are not distributed uniformly. Hence it needed to figure out

the probability of a specific ISD shows up in each T [Ezi, 1zj].
Table P[Ezi, 1zj, 1xk ] expresses the occurring rate of each

ISD existing in each T [Ezi, 1zj], and also the mathematical

expectation of the amount of ISDs, after eliminating the

duplicate ISDs in each T [Ezi, 1zj], can be figured out. Let

u = Ezi, v = 1zj,w = 1xk , then Tuv and Puvw denotes

T [Ezi, 1zj] and P[Ezi, 1zj, 1xk ].
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Algorithm 1 Pre-Computation

1: Initialize the pre-computed table T [Ezi, 1zj]
2: for Ex = 0 to |F6

2| − 1 do

3: for each 1x s.t. wH (1x) ≤ d do

4: determine whether Ezi, 1zj, Ex, 1x satisfy Eq.(4)

5: if yes then

6: store the 1x in Tuv
7: end if

8: end for

9: end for

10: Initialize ISD ratio table Puvw
11: for each 1x in Tuv do

12: Puvw = Puvw + 1

13: end for

14: drop the 1x if Puvw = 0

15: for each 1x in Puvw do

16: Puvw = Puvw/|F6
2|

17: end for

18: set Puvw as the occurring rate of 1x

After pre-computation, it is the online phase where the

FNCA is mounted on a determined real-time keystream. The

real-time keystream is divided into segments (Ezi) and the

corresponding internal states (Exi) will be recovered on the

basis of table T [Ezi, 1zj] and P[Ezi, 1zj, 1xk ].
Depending on the results of the table Puvw, the average

probability for a specific Tuv that satisfies Eq.(4) can be

computed, where [16] names it as diversified probability.

Let |Tuv| denotes the number of ISDs in Tuv, the diversified

probability of this table Tuv is defined as Pdivs =
∑

1x∈T Puvw
|Tuv| ,

where1x traverses the whole table T . Diversified probability

measures the reducing effect of a table T , where a smaller

Pdivs means a smaller |Tuv|.

B. ONLINE PHASE: TAP BITS RECOVERY

As it is known that only six internal state bits can be recovered

from a single keystream segment, we need to figure out how

many keystream segments it takes to recover a full internal

state. Both [16] and [4] give a solution to estimate the min-

imum required keystream bits to make a time-memory-data

attack on a Grain-like cipher.

After constructing a table of keystream bits from clock 0 to

clock 19, it can be found that almost every bit of a full internal

state is covered in the table. According to TABLE 2, nearly

the whole LFSR state bits are covered, except l0. However,

it can be derived fromLFSR’s update function that l40 = l33+
l18+ l9+ l0. At the same time, around half of NFSR state bits

n22 ∼ n41 are covered, and the rest of NFSR state bits obey

the equations
{

mi = ni+1 + ni+7 + ni+15

zi + h(li+1, li+22, ni+23) = mi
, 0 ≤ i ≤ 19 (5)

By Eq.(5), the rest NFSR state bits are expressed by tap

bits, which is helpful when we deduce the unknown bits from

the known ones.

TABLE 2. The tap bits restricted by the keystream bits.

Algorithm 2 The Construction of Candidate Exi Set for Ezi
1: Initialize e = 0 and fetch all 1x stored in Tuv
2: while e ≤ c · 2n/|D| do
3: load Ex ′

i with a random value, after that it generates

(mi,mi+1)
T = Ezi + 1z+ h(Ex ′

i )

4: for each 1x in Tuv do

5: compute Exi = Ex ′
i + 1x

6: if Ezi = (mi,mi+1)
T + h(Exi) then

7: put Exi into the candidate set S(zi.zi+1)

8: end if

9: end for

10: e = e+ 1

11: end while

Theorem 2: In the FNCA on a reduced Grain, after the

60 tap bits restricted by 20 consecutive keystream bits are

recovered, all bits of a full internal state can be computed by

implementing the update functions of LFSR and NFSR and

guessing two internal state bits.

Proof: In this case, LFSR state bits l1 ∼ l40 and NFSR

state bits n22 ∼ n41 are the tap bits. After these 60 internal

state bits are recovered, another 15 NFSR state bits can be

solved in the order of n16 ∼ n20, n10 ∼ n14, n4 ∼ n6, n8, n2
according to the equations in 2. With the update function of

LFSR, we can compute l0 = l40 + l33 + l18 + l9. Similarly,

the value of n0 can be computed from the update function of

NFSR.

So far, all LFSR state bits have been recovered while there

still remain 7 state bits of NFSR to be solved. They are

n1, n3, n7, n9, n15, n17, n21. However, if the concrete values

of n3 and n9 are known, n15, n21, n7, n1, n17 will be solved

successively. There exist 22 combinations of (n3, n9), which

requires that all 22 different versions of the 8 NFSR state bits

should be checked. �

Then Algorithm 2 [16] is implemented to recover the tap

bits. We collect a 20-bit-keystream (z0, z1, . . . , z19) and con-

vert it into 19 keystream segment vectors Ezi = (zi, zi+1)
T , 0 ≤

i ≤ 18. For each Ezi, a set of candidates Exi will be generated,
denoting the set as S(zi,zi+1

). After all S(zi,zi+1) are generated,

by putting them together a new set of probable full internal

states will be sorted out, which may exist the 80-bit-internal-

state that generates the 20-bit-keystream. In brief, we denote

the set of candidates for sub-state as candidate set.
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A difference between the near-collision inequality of NCA

and the one of FNCA is that the former uses |Tuv| instead of

|D|. Based on the next section, V. EXPERIMENT, it is found

that Ezi does not decide the number of kinds of 1x stored in

|Tuv| while 1z does. Therefore it is more efficient to generate

S(zi,zi+1) by choosing a reasonable 1z than by analyzing all

situations by traversing its values. Meanwhile, the cardinality

of S(zi,zi+1) effects the final candidate internal states after the

merging phase, which is also constrained by choice of 1z.

The mathematical expectation of the number of ISDs in

Tuv can be computed through diversified probability of the

table Tuv, which equals to |Tuv| · Pdivs. However, the cardi-

nality of S(zi,zi+1) cannot be reckoned as e · |Tuv| · Pdivs. It is
barely possible to generate i different Ex ′

i during the invoking

of Algorithm 2. Then the mathematical expectation of the

cardinality of S(zi,zi+1) can be computed.

Theorem 3 [16]: Let a = c · 2n/|D| · |Tuv| · Pdivs, which
denotes the number of the random Ex ′

i generated in Algo-

rithm 2, and b = |F6
2|, which denotes the number of all values

that can be hit. Then the mathematical expectation of the

cardinality ξ of S(zi,zi+1) after one invoking of Algorithm 2 is

E[ξ ] =
a

∑

r=1

(

b
r

)

· r ! ·
{

a
r

}

ba
· r . (6)

where
{

a
r

}

is the Stirling number of the second kind,
(

b
r

)

is the

binomial coefficient, noting that
(

b
r

)

= 0 if b < r ,and r ! is
the factorial.

However, in the practical situation, Ex ′
i cannot be truly gen-

erated at random, which is known as pseudo-random. For a

chosen random number generator, it should be experimented

to figure out the actual number of the Ex ′
i after eliminating

the duplicate ones. According to Eq.(1) we can compute the

probability p′ that a right candidate exists in S(zi,zi+1).

C. ONLINE PHASE: MERGING STRATEGY

So far, we have generated 19 sets. They are S(z0,z1),

S(z1,z2), . . . , S(z18,z19) in which contain the candidate Ex for

Ez0, Ez1, . . . ,Ez18 respectively, and for each S(zi,zi+1) the math-

ematical expectation of its cardinality is E[ξ ]. The merging

of Ex restricted by Ez0 ∼ Ez18 tries to find the Ex which share the

same clock when the target keystream was being generated.

For example, (l2, l22, n23) is the overlapping part of Ex0 and

Ex1, it connects (l1, l21, n22) to (l3, l23, n33). Merging Ex0 and

Ex1 into (l1, l21, n22, l2, l22, n23, l3, l23, n24), the number of its

candidates that generate (z0, z1, z2) can be computed.

Theorem 4 [16]: Let SExi denotes the candidate set of Exi,
then when merging the candidate set SExi and SExi+1

to cover a

union state Exi ∪ Exi+1, the expected number of the candidates

for the union state Exi ∪ Exi+1 is

E[SExi∪Exi+1
] = |SExi | · |SExi+1

|
|SExi ∩ SExi+1

| . (7)

where SExi∪Exi+1
denotes the candidate set for the union state

Exi ∪ Exi+1.

Therefore the mathematical expectation of S(zi,zi+1,zi+2) =
ξ2

23
. Then we need to add constraints to make sure the clock

of Ex0 is the same as the clock of Ex1. It is obvious that

the tap bits of the candidates in S(z0,z1) or S(z1,z2) share the

same clock, while the ones of S(z0,z2) are not certain. Let

Ex0,1 = (l1, l21, n22, l3, l23, n24) which restricted by (z0, z2).

Like the generation of S(zi,zi+1), we can get a S(z0,z2) in

which includes the candidates of Ex0,1 for (z0, z2). By the

state union Ex0 ∪ Ex1 ∪ Ex0,1, denoting it as Ex01 in brief, and

computing E[S(z0,z1,z2)] = ξ3

29
, a set of union candidates of

(l1, l21, n22, l2, l22, n23, l3, l23, n24) that share one clock over

(z0, z1, z2) andmathematical expectation of its cardinality can

be got respectively.

After we get S(z0,z1,z2), there are two methods to

generate S(z0,z1,z2,z3). Method 1: merging S(z0,z1,z2) and

S(z2,z3), or method 2: merging S(z0,z1,z2) and S(z1,z2,z3). The

difference between method 1 and method 2 is the number of

overlapping bits of the two keystream segments. In method

1, we merge S(z0,z1,z2) and S(z1,z2,z3) together, after that we

merge it with S(z0,z3) to get a candidate set S(z0,z1,z2,z3) where

the tap bits share the same time clock. It can be computed

that E[S(z0,z1,z2,z3)] = ξ6

218
, while in the method 2 it is

E[S(z0,z1,z2,z3)] = ξ7

230
. Because 0 < ξ < 64, method 2 has

a better reducing effect than method 1 on the union candidate

set after merging. Then we get S(z0,z1,z2,z3) whose expected

cardinality is E[S(z0,z1,z2,z3)] = ξ7

230
. Now the bit length of

the keystream segment is 4 and there is one more merging

method, because for a 4-bit keystream segment there are at

most 3 bits to overlap (overlapping 4 bits cannot help this

keystream segment grow into a 5-bit keystream segment).

Therefore, the cases of the expected cardinality of the merged

segment can be E[S(z0,z1,z2,z3,z4)] = ξ9

239
,

ξ11

251
,

ξ15

275
respec-

tively. Obviously when the number of overlapping bits is 3,

the cardinality of the merged segment reaches a minimum

value, compared with another 2 methods. It concludes that

by increasing the overlapping bits of two candidate sets,

a smaller union candidate set can be generated. However,

it is undesirable to increasing the overlapping bits without

halting, in which case the cardinality of the final candidate

set E[Sfnl ] = E[S(z0,z1,...,z19)] = ξα

2β (α, β ∈ Z+) can

smaller than 1. The next steps are similar to the process of the

generation of S(z0,z1,z2) or S(z0,z1,z2,z3). The overall procedure

of merging can be summarized as FIGURE 2.

Notice that when a merging method of q overlapping bits

is going to be implemented, the bit length of the keystream

segment to be merged should bigger than q. Before we start

our linear programming with 5 merging methods, we first

grow the candidate set form S(z0,z1) into S(z0,z1,...,z5), which

takes 4 steps. As it is found that larger overlapping bits of two

candidate sets leads to a smaller union candidate set, when we

grow the S(z0,z1) into a candidate set S(z0,z1,z2,z4,z5), the way to

minimize the candidates before the linear programming is to

make the number of overlapping bits in each step is exactly

1 bit smaller than the bit length of the keystream segment.
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FIGURE 2. The overall procedure of merging process.

TABLE 3. Data increased times with the numbers of overlapping bits for
the reduced Grain.

In step 1, we generate S(z0,z1), S(z1,z2) and S(z0,z2), after that,

wemerge them into S(z0,z1,z2). In step 2, since all S(zi,zi+1) (0 ≤
i ≤ 18) are generated after implementingAlgorithm 2, we use

the same way in step 1 to generate S(z1,z2,z3). Then we merge

it with S(z0,z1,z2) and S(z0,z2), finally we get S(z0,z1,z2,z3). Simi-

larly, in step 3, S(z0,z1,z2,z3), S(z1,z2,z3,z4) and S(z0,z4) are merged

into S(z0,z1,z2,z3,z4). In step 4, S(z0,z1,z2,z3,z4), S(z1,z2,z3,z4,z5) and

S(z0,z5) are merged into S(z0,z1,z2,z3,z4,z5).

Since from S(z0,z1) it takes 18 steps to get S(z0,z1,...,z18,z19),

the first 4 steps can be reckoned as an initialization for the

linear programming. In the following 14 steps, we discuss the

choices of themergingmethods. By adjusting the overlapping

bits of two candidate sets, the increased times of the cardinal-

ities of union candidate sets can be computed. In TABLE 3,

we list 5 different constraints. Each constraint calculates the

increased times of a candidate set after it takes a merging

process. It is found that when the constraint of 6 or more

overlapping bits is taken into the merging, the reduction

effects of final candidates is not better than the case of the

previous five constraints. After Theorem IV-C is introduced,

we will explain why five merging constraints are enough in

the case of the reduced Grain.

Here the merging constraints are similar to the ones in [16].

However, we apply an optimized strategy of the choices of

these methods, which turns out a better result. We exploit the

results in TABLE 3 to convert the merging phase into a linear

programming problem. Here a more explicit merging strategy

is illustrated.

Theorem 5: Let non-negative variable wq denote the num-

ber of times of the qth constraint used in the whole merging

phase, the number of the final candidates after merging can

be expressed as

f (w1,w2,w3,w4,w5)=
(
ξ
p
)2w1+4w2+8w3+16w4+32w5+31

29w1+21w2+45w3+93w4+189w5+168 , (8)

which is the function to be minimized. The problem con-

straints are set as















1 ≤ q ≤ 5

wq ≥ 1
∑

wq = 14

E[Sfnl ] > 1,

(9)

where E[Sfnl ] denotes the expected number of the final can-

didates for (z0, z1, z2, . . . , z18, z19).

Proof: From TABLE 3 we have 5 ways to generate

S(zi,zi+1,zi+2) from S(zi,zi+1). Therefore j satisfies 1 ≤ j ≤ 5.

wj ≥ 1 makes sure that each constraint should be imple-

mented at least once. The total step if merging is fixed,

then after 18 steps we can get the final candidate set of

(z0, z1, z2, . . . , z18, z19). To implement the 5 merging con-

straints, it is needed to make S(z0,z1) grow up to S(z0,z1,...,z5),

which takes 4 steps. After that, the expected cardinality is
ξ31

2168
. In the following 14 steps, each of them requires com-

parisons that implementing which merging constraint can

minimize the E[Sfnl ] with the requirement that E[Sfnl ] ≥ 1,

and
∑

wj = 14 guarantees the 14 steps are covered in the

linear programming. Depending on the above analysis, we set
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the problem constraints as














1 ≤ q ≤ 5

wq ≥ 1
∑

wq = 14

E[Sfnl ] > 1,

and the expected cardinality of the final candidate set

E[Sfnl ] = ξ2w1+4w2+8w3+16w4+32w5+31

29w1+21w2+45w3+93w4+189w5+168

can be computed.

Then the problem is converted into a scheduling problem,

which can be thought as using linear programming to find a

(w1,w2,w3,w4,w5) which makes E[Sfnl ] reach its minimum

with a probability P = p2w1+4w2+8w3+16w4+32w5+31. In order

to recover the tap bits steadily, we will repeat the above

online phase P−1 times, therefore the objective function to

be minimized is

f (w1,w2,w3,w4,w5) =
(
ξ
p
)2w1+4w2+8w3+16w4+32w5+31

29w1+21w2+45w3+93w4+189w5+168
,

�

When the number of overlapping bits is 6, the data

increased times is
ξ64

2381
. We convert Theorem IV-C into a six

overlapping bits version, whichmeans before linear program-

ming, we first grow the candidate set into S(z0,z1,...,z6).

f (w1,w2,w3,w4,w5,w6)

=
(
ξ
p
)2w1+4w2+8w3+16w4+32w5+64w6+63

29w1+21w2+45w3+93w4+189w5+381w6+357
,

which subjects to














1 ≤ q ≤ 6

wq ≥ 1
∑

wq = 13

E[Sfnl ] > 1,

We figure out that when (w1,w2,w3,w4,w5,w6) =
(4, 3, 3, 1, 1, 1) the final time complexity is 237.1096, which

is the same with the result of the 5 overlapping bits version

237.1096, and this phenomenon also occurs when the number

of overlapping bits larger than 6 in the case of the reduced

Grain. Since using the constraints of small overlapping bits

can be more flexible in linear programming, we only consider

5 merging constraints in this case.

At the end of the merging phase, we collect Sfnl and

each candidate of it includes most bits of the full internal

state. Then we implement Theorem IV-B to restore the rest

bits in the case of the reduced Grain. For Grain-v1, extra

techniques in [16] is required. After all bits of final candidates

are figured out, by checking whether they can generate the

target keystream segment one by one, the target internal state

can be determined. In the next section, we will solve the

linear programming problem and give the merging process

in TABLE 6, where the choice of the number of overlapping

bits in each step is discussed.

TABLE 4. The cardinality of Tuv .

TABLE 5. Probability distribution of ISDs in Tuv .

V. EXPERIMENT

Based on the previous sections and the following results of

the pre-computation, we can solve the values of the basic

parameters in the linear programming problem of Eq.(8) and

Eq.(9). After that, the concrete strategy of merging is deter-

mined, and we can mount our improved attack. This section

is divided into three parts. In the first part, the construction of

the pre-computed table generation will be shown. The second

part recovers the tap bits. The third part gives the process

of merging, which contains the number of the candidates

and the probability of existing the right one by each step.

We randomly generated the internal states of NFSR and LFSR

as 0x6279665762 and 0xe2b9fc0729, and the first 20-bit

keystream is (z0, z1, . . . , z19) = 1001 1011 1000 0000 1100.

A. PRE-COMPUTATION

Algorithm 1 describes the whole process of the pre-

computation, from which we started our experiment.

TABLE 6 and TABLE 4 depict the cardinality of Tuv and the

ISD probability distribution respectively.

It has been found that the value of Ezi does not affect the
cardinality or the ISD probability distribution of a specific

Tuv. From TABLE 4, the diversified probability of the Tuv can

be computed.

Pdivs=















0.4125, if 1z = 0x0

0.3833, if 1z = 0x1

0.3833, if 1z = 0x2

0.2500, if 1z = 0x3.

If 1z = 0x3, its diversified probability turns out to be

the smallest one. When it comes to the construction of the

candidate set for Ezi, we only consider the situation that 1z =
0x3. Hence the time complexity of the pre-computation is
26·22·2+24·22·2

�
= 3520

210.4
≈ 22.6051.

B. TAP BITS RECOVERY

Through Algorithm 2, let c = 8, then a candidate set for each

Ezi can be generated. After that, we got E[ξ ] = 53 by Eq.(6)

and computed the probability p′ ≈ 0.9195 that it contains

a right candidate by Eq.(1). At the same time, we followed

the algorithm in [16] to distill the candidates to get a smaller
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TABLE 6. The process of merging for the reduced Grain.

candidate set by which we had p = 1−[1−(p′)β ]γ ≈ 0.8960,

where β = 10, γ = 4.

C. MERGING STRATEGY

First, just as the discussion in Section IV-C, we grew the can-

didate set into S(z0,z1,...,z6), after that, we started the linear pro-

gramming. We used LINGO to solve the linear programming

problem of Eq.(8) and Eq.(9). When (w1,w2,w3,w4,w5) =
(2, 4, 3, 1, 4), we got the minimum value of Eq.(8), which

is 235.1096. Note that after a merging phase, the number of

final candidates is 20.4145. Thus we needed to repeat the

merging process about 234.6960 times to have the internal state

restored at a high probability. According to Theorem IV-B,

by guessing two more bits, the full internal state can be

recovered. Therefore the time complexity of the online attack

is 237.1096, comparing to the one in [16], which is 237.58, our

method has an improvement by 27.8%.

TABLE 5 shows the cardinality of the candidate set for

the union state after each merging step and the probability

for it to have the right candidate. The maximum memory

cost among the 18 steps is step 3, where it takes a memory

usage of 2 · ξ15

275
· 61 ≈ 2 · 210.9188 · 25.9307 ≈ 217.8495

bits. Also, the memory usage of the pre-computed table is

22l · V (n, d) · (⌈log2n⌉ · d + 14) ≈ 212.7814 bits, where

l denotes the bit length of a keystream segment and the

constant 14 denotes the memory to store the occurring rate

of 1x. Therefore the overall memory complexity satisfies

217.8495 + 212.7814 = 217.8919 < 218.

VI. THE THEORETICAL ANALYSIS OF IMPROVED

FNCA ON GRAIN-V1

The FNCA experiment of Grain-v1 can hardly be carried

on a single PC, whereas [16] gives a credible proof of the

feasibility of implementing FNCA on Grain-v1. Here we

analyze the improvement effect onGrain-v1with ourmethod,

and it turns out to be a reduction of 79.4%. In the case of the

reduced Grain, we only discuss the number of overlapping

TABLE 7. Data increased times with the numbers of overlapping bits for
Grain-v1.

bits which is not more than 5. For a better improvement

effect when it comes to a larger scale cipher, we take the

situation where the number of overlapping bits is six into

consideration.

We first grow the candidate set form S(z0,z1) into

S(z0,z1,...,z6), which takes 5 steps. In the following 13 steps,

we use linear programming to choose merging constraints.

Similar to TABLE 3, we compute the data increased times

of different numbers of overlapping bits for Grain-v1. The

results are presented in TABLE 7. Let the non-negative vector

(w1,w2,w3,w4,w5,w6) denotes the number of times of the

6 merging constraints to be implemented respectively. After

that, we get the linear function to be minimized is

f (w1,w2,w3,w4,w5,w6)

=
(
ξ
p
)2w1+4w2+8w3+16w4+32w5+64w6+63

215w1+35w2+75w3+155w4+315w5+635w6+595
,

which subjects to














1 ≤ q ≤ 6

wq ≥ 1
∑

wq = 13

E[Sfnl ] > 1.

From [16], it is known that the (ξ, p) of the original FNCA

on Grain-v1 is (848, 0.896456). Building on the previous

conclusion, the (w1,w2,w3,w4,w5,w6) that minimizes the

linear function is (2, 2, 2, 1, 4, 2). Similar to the process of

themerging for the reducedGrain, the expected number of the

final candidates can be computed as 258.4785. In Appendix we

give a Grain-v1 version of the tap bits restricted by the
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TABLE 8. The constraint of overlapping bits taken in each step of the
merging phase for the optimized FNCA on Grain-v1.

TABLE 9. Comparisons of the cardinality of the final candidate set
between original FNCA and optimized FNCA.

keystream bits. It is found that both l64 and l65 appear 2 times.

Besides, from the update function of LFSR we get l83 =
l65+l54+l41+l26+l16+l3, whichmeans there is a third linear

consistency check on the candidates. Therefore the number of

candidates to be checked is 258.4785 · 2−3 = 255.4785.

In the case of the original FNCA, the number of final

candidates is 260.7595. After the issue of the reused LFSR bits

and a third linear consistency check is discussed, the number

of the rest candidates to be checked is 260.7595·2−3 = 257.7595.

Comparing to the original FNCA, our method has a reduc-

tion of 79.42%. To recover the full state, each one of these

257.7595 candidates should be checked with extra techniques.

According to [16], it can be found that the time complexity of

implementing extra techniques is so large that it almost equals

the time complexity of the overall attack procedure. Thus,

the time complexity of the improved FNCA has a reduction

of around 79.4% compared with the original one.

At step 4, |Sunion| reaches its maximum value, which is
ξ31

2280
= 84831

2280
≈ 221.5655. Thus the memory complexity is 2 ·

ξ31

2280
·42+22l ·V (n, d)·(⌈log2n⌉·d+14) ≈ 227.9579+215.9189 ≈

227.9582 < 228, which is close to the memory complexity of

the original FNCA.

VII. CONCLUSION

This paper proposes an improved FNCA, which optimizes

the merging strategy and the final candidates. We run exper-

iments on a reduced Grain whose internal state is 80 bits and

make theoretical analysis on Grain-v1. The final online attack

time complexity has a 27.8% reduction for the reduced Grain

and a theoretical reduction of 79.4% for Grain-v1, compared

with the original attack. As an optimization for the merging

phase, our method can be implemented on the FNCA based

cryptanalysis of someGrain-like stream ciphers. Recent years

improved FCA like [15] and [14] promote the researches

of Grain-like small state stream ciphers e.g., Plantlet [11],

Fruit [6] and [5], while there are few papers for FNCA.

Implementing FNCA onGrain-like small state stream ciphers

can be a promising work in the future.

APPENDIX

TAP BITS OF GRAIN-V1

The tap bits restricted by the keystream bits, in the case of

Grain-v1, are given in the below equations:

z0 = m0 + h(l3, l25, l46, l64, n63)

z1 = m1 + h(l4, l26, l47, l65, n64)

z2 = m2 + h(l5, l27, l48, l66, n65)

z3 = m3 + h(l6, l28, l49, l67, n66)

z4 = m4 + h(l7, l29, l50, l68, n67)

z5 = m5 + h(l8, l30, l51, l69, n68)

z6 = m6 + h(l9, l31, l52, l70, n69)

z7 = m7 + h(l10, l32, l53, l71, n70)

z8 = m8 + h(l11, l33, l54, l72, n71)

z9 = m9 + h(l12, l34, l55, l73, n72)

z10 = m13 + h(l35, l56, l74, l65, n73)

z11 = m14 + h(l36, l57, l75, l67, n74)

z12 = m15 + h(l37, l58, l76, l69, n75)

z13 = m16 + h(l38, l59, l77, l71, n76)

z14 = m17 + h(l39, l60, l78, l73, n77)

z15 = m18 + h(l40, l61, l79, l75, n78)

z16 = m19 + h(l41, l62, l80, l77, n79)

z17 = m20 + h(l42, l63, l81, l79, n80)

z18 = m21 + h(l43, l64, l82, l81, n81)

z19 = m22 + h(l44, l65, l83, l83, n82).

Note that, the mi denotes the sum of linear masking bits

mi = ∑

k∈A ni+k , whereA = {1, 2, 4, 10, 31, 43, 56}. Being
different from the case of the reduced Grain, there leaves

about one-fourth of the internal state bits unsolved after these

tap bits get recovered.
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