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Optimizing FIR Approximation for
Discrete-Time IIR Filters

Yutaka Yamamoto, Fellow, IEEE, Brian D. O. Anderson, Fellow, IEEE, Masaaki Nagahara, and Yoko Koyanagi

Abstract—Finite-impulse response (FIR) filters are often pre-
ferred to infinite-impulse response (IIR) filters because of their
various advantages in respect of stability, phase characteristic, im-
plementation, etc. This letter proposes a new method to approxi-
mate an IIR filter by an FIR filter, which directly yields an optimal
approximation with respect to the error norm. We show that
this design problem can be reduced to a linear matrix inequality.
We will also make a comparison via a numerical example with an
existing method, known as the Nehari shuffle.

Index Terms—Finite-impulse response (FIR) filter approxima-
tion, optimization, linear matrix inequality.

I. INTRODUCTION

F
INITE-IMPULSE response (FIR) filters are often preferred

to infinite-impulse response (IIR) filters, which have in-

finitely many nonzero Markov parameters, for the following

reasons [7].

• FIR filters are intrinsically stable; the stability issue is a

nonissue.

• They can easily realize various features that are not pos-

sible or are difficult to achieve with IIR filters, e.g., linear

phase property.

• They can be free from certain problems in implementa-

tion, e.g., limit cycles, attributed to quantization and the

existence of a feedback loop in IIR filters.

On the other hand, a design process may have to start with an

IIR filter for a variety of reasons. For example, we have a large

number of continuous-time filters available, and a digital filter

may be obtained by discretizing one of them. It is then desired

that such an IIR filter be approximated by an FIR filter. The

following problem is thus very natural and of importance.

Problem 1: Given an IIR filter and a positive integer

, find an optimal FIR approximant that has order

and approximates with respect to a certain performance

measure.

There is a very elegant method called the Nehari shuffle, pro-

posed by Kootsookos et al. [3], [4]. An advantage is that this

procedure gives rise to certain a priori and a posteriori error

bounds. On the other hand, it does not necessarily give an op-

timal approximation with respect to the norm, although it
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Fig. 1. Error system T .

is effectively guaranteed to outperform impulse response trun-

cation as an approximation method.

We here propose a method that directly deals with (sub)op-

timal approximants with respect to the error norm. The fol-

lowing are shown.

• The design problem is reducible to a linear matrix in-

equality (LMI) [1].

• The obtained filter can be made close to being optimal by

an iterative procedure.

A comparison with the Nehari shuffle is made for the Chebyshev

filter of order eight, which has been studied in detail in [4].

II. FIR APPROXIMATION PROBLEM

Consider the block diagram (Fig. 1). is a given (rational

and stable) IIR filter; is a proper and rational weighting

function; and is an FIR filter of a prespecified order .

Denote by the transfer function from the external signal

to the error in Fig. 1. determines a weighting in the

frequency domain, and the objective here is to find that

makes the error norm less than a prespecified bound ,

i.e.,

By successively choosing smaller, one can approach the op-

timal filter.

Introduce state–space realizations

and put
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Fig. 2. Inverse of weighting functionW .

where denotes the vector of Markov

parameters of the filter to be designed. The matrices

and are defined as follows:

...
. . .

. . .
...

...
. . .

. . .
...

. . .

...

and they contain just zeros and ones.

A realization of is given as follows:

The important point is that the design parameter appears only

in the and matrices linearly, and the underlying structure

is of the so-called one-block -optmization type. Hence, the

overall transfer operator is linear in , and the design problem

of choosing to minimize the norm can be expected to

become a linear matrix inequality (LMI). In fact, the bounded

real lemma [1] readily yields the following.

Theorem 1: if and only if there exists

such that

(1)

Proof: By the bounded real lemma [1], is

equivalent to the condition that there exists a matrix such

that

(2)

where

Then, the inequality is converted to (2) by using the Schur

complement [1].

Theorem 1 gives an LMI characterization for the existence of

an FIR filter such that is less than . Whether

(1) is satisfied can easily be checked by standard MATLAB

(particularly, LMI toolbox) routines [2] as follows. Let be the

vector consisting of all variables in , and in (1). The ma-

trix in (1) is linear with respect to these variables and, hence,

can be rewritten in the form where is

a symmetric constant matrix, and is the th entry of . The

matrix is easily obtained with the MATLAB function

. Let be a vector such that ; this can be

obtained by the function . Whether satisfies (1) can be

checked easily by function . Minimizing subject

to by using function (which also checks fea-

sibility, so is not needed), we can approach the optimal

filter coefficients .

III. NUMERICAL EXAMPLE

A. Comparison of Design via LMI and the Nehari Shuffle

Take the following Chebyshev filter of order eight:
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Fig. 3. Gain responses of FIR approximants K .

Fig. 4. Gain responses of error system K �K .

as a target filter to be approximated. This has been studied ex-

tensively by Kootsookos and Bitmead [4] for the Nehari shuffle,

and is suitable for comparison with the present method. For sim-

plicity, we confine ourselves to approximations by FIR filters

with 32 tap coefficients (of order 31).

The design depends crucially on the choice of the weight

. A natural choice [5] would be to take to be equal

to (or some variant of it having the same gain on the

unit circle, since is not minimum phase). This is a relative

error approximation, where (approximately) decibel and phase

errors are weighted uniformly with frequency. Since the error

criterion in Fig. 1 is taken with respect to the norm, it ap-

proximates equal amplitude at all frequencies, and this will have

the effect of attenuating the stopband error with the weight of

(which is very large), while maintaining a reasonable

passband characteristic. Unfortunately, however, due to the very

small gain of in the stopband, this will make the solu-

tion of the approximation problem (Fig. 1) numerically difficult.

Neither the Nehari shuffle nor the LMI method gave a satisfac-

tory result in this case. Hence, one should sacrifice the stopband

attenuation to obtain a reasonable . There is also a tradeoff,
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empirically observed, between the stopband attenuation and the

passband ripples.

Kootsookos and Bitmead [4], thus, employed the weight as

depicted in Fig. 2.

To be precise, the frequency response shown here is the in-

verse of the para-Hermitian conjugate of the weight function.

The reason for taking the para-Hermitian conjugate is that the

Nehari shuffle makes use of causal approximation of an anti-

causal transfer function, so that we must reciprocate the poles

and zeros. Then, by taking the inverse, the weight attenuates the

stopband by the inverse of its gain and approximately shapes the

passband as it is in the passband. On the other hand, for the FIR

approximation as in Fig. 1, we simply take the inverse of this

weight, since we do not need to make the weight antistable.

The gain responses of obtained FIR filters based on the Nehari

shuffle and Theorem 1 are given in Fig. 3. We see that the gain of

the approximant shows smaller passband ripples and better

stopband attenuation than those by the Nehari shuffle.

Fig. 4 shows the error magnitude response. The FIR filter de-

signed by the LMI method has the advantage of 5–7-dB smaller

error over the one obtained by the Nehari shuffle.

IV. CONCLUSION

We have given an LMI solution to the optimal approx-

imation of IIR filters via FIR filters. A comparison with the

Nehari shuffle is made with a numerical example, and it is ob-

served that the LMI solution generally performs better. For an

application to the sampled-data setting, see also [6].
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