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Fixed-frequency superconducting quantum processors are one of the most mature quantum computing ar-
chitectures with high-coherence qubits and simple controls. However, high-fidelity multiqubit gates pose tight
requirements on individual qubit frequencies in these processors, and these constraints are difficult to satisfy
when constructing larger processors due to the large dispersion in the fabrication of Josephson junctions. In this
paper, we propose a mixed-integer-programming-based optimization approach that determines qubit frequencies
to maximize the fabrication yield of quantum processors. We study traditional qubit and qutrit (three-level)
architectures with cross-resonance interaction processors. We compare these architectures to a differential
ac-Stark shift based on entanglement gates and show that our approach greatly improves the fabrication yield
and also increases the scalability of these devices. Our approach is general and can be adapted to problems where
one must avoid specific frequency collisions.
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Superconducting circuits are one of the leading platforms
for quantum information processing [1,2], and many of the
efforts on this platform are currently directed toward scaling
up to a sufficient number of qubits that will demonstrate
a clear advantage over classical computation. In the near
term, the so-called noisy intermediate-scale quantum devices
and algorithms [3] represent the exciting prospect of gain-
ing this advantage with a moderate number of qubits before
fault-tolerant [4] devices can be realized. One of the primary
challenges that must be addressed when scaling up such de-
vices is how to keep both coherence and high-fidelity control
over larger numbers of qubits without significantly increasing
the complexity of these devices.

Among the different competing architectures with su-
perconducting circuits, fixed-frequency lattices with all-
microwave control for both single- and multiqubit operations
[5–11] offer promising advantages: the absence of flux tuning
significantly reduces the amount of control wiring required
and allows the high coherence properties of fixed-frequency
transmons to be preserved. Recent progress on such platforms
has also shown multiqubit entanglement to realize a Toffoli-
like gate [12] and uses of higher energy levels [13,14]. Despite
these advantages, however, fixed-frequency architectures are
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often limited to slower entangling gates and tighter frequency
constraints on the device for maintaining high-fidelity control.

The cross-resonance (CR) gate—currently the most popu-
lar all-microwave entangling gate—requires that the involved
transmon qubits are not detuned by more than their anhar-
monicity to generate fast entangling gates [15]. On the other
hand, the addressability of individual transmons requires suf-
ficiently large detunings between neighboring qubits to avoid
the detrimental effects of crosstalk. These constraints, com-
bined with the relatively large fabrication-limited frequency
dispersion of the transmon, make it extremely difficult to
determine reasonable frequencies for more than a handful of
qubits.

The frequency of a transmon qubit is determined by the
critical current of the Josephson junction (JJ) and the total ca-
pacitance of the junction. In the transmon regime (EJ � EC),
this is typically dominated by an external shunting capaci-
tance that can generally be realized with higher precision than
the critical current of the JJ. The complexity of JJ fabrication
leads to a large relative dispersion of the critical current that
carries over to the frequency of the corresponding transmon.
The best demonstrated dispersion is σ f / f = 1% [16] without
postprocessing. Recently, a postprocessing annealing step was
demonstrated that allowed for a further reduction in this dis-
persion to σ f / f = 0.25% [17]. Even with this improvement,
however, scaling to devices with more than a few hundred
qubits will prove difficult because of the low fabrication yield
of frequency-optimal devices and will require compromises
with the standard square-lattice structure proposed for the
surface code [18].

In this paper, we provide an optimization approach for
maximizing the yield of usable quantum processors for fixed-
frequency architectures. We then analyze the yield for small
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systems (an eight-qubit ring) and larger lattices. We also ex-
tend our analysis to qutrit systems [13,14] as well as qubit
systems using an off-resonantly driven control-Z (CZ) gate
[19] in place of the typical CR gate for entanglement. With
the extra degree of freedom given by the drive frequency
of the CZ gate, we show that one can increase the yield of
these devices and scale them up to more than 1000 transmons
without sacrificing fabrication yield.

I. FREQUENCY COLLISIONS

Frequency collisions occur when an unwanted degeneracy
leads to a degradation of control fidelity for one of the native
gates in a given architecture. A simple example is when two
adjacent qubits have the same |0〉 �→ |1〉 transition frequency:
Any unwanted couplings and/or crosstalk within the device
will lead to unwanted driving of a neighboring qubit when
one is driven, leading to a reduction in the fidelity of these
operations on the quantum processor. The presence of fre-
quency collisions leads to a lower fabrication yield of usable
devices, which we define as the probability of fabricating a
zero-collision device given a normal distribution of frequen-
cies around a target frequency. To avoid such a situation, we
can require that the relevant frequencies of neighboring trans-
mons be separated by a minimum detuning δ. This margin
δ can be estimated a priori by simulating the gate dynamics
and defining a tolerance for a target gate fidelity requirement
[17,20]. Most of the time, these frequency requirements can
be described as a linear constraint with an absolute value of
the form

| fd − ft | � δ, (1)

where fd is the frequency of the drive applied and ft is the
frequency to avoid with a margin of δ. Table I lists these
constraints divided into three categories.

A. Addressability

The first type of constraint involves the driving of a single
qubit. To ensure that applying a pulse at the |0〉 �→ |1〉 fre-
quency of a transmon i does not affect its neighbor j through
unwanted crosstalk or a CR interaction, we require that the
transition frequency is different from the transition frequen-
cies of its nearest neighbors. These constraints are referred to
as type A in Table I. For a qubit architecture, only the states |0〉
and |1〉 are populated, so we only need to avoid the frequency
of the transitions that involve these states.

B. Entanglement constraints for CR

To drive a CR entangling gate, a microwave pulse is ap-
plied to the control transmon i at the frequency of the target
transition, fd = f j . High-fidelity gates based on this effect
require that the two transmons be in the so-called straddling
regime, which restricts the maximum distance between the
frequencies of adjacent transmons to be less than their an-
harmonicity [20,21] (see constraint C1 in Table I). While
applying this microwave drive to the control transmon, we
require that transitions of the control transmon be avoided
(see constraints E1 and E2). Since the CR pulse is usually

TABLE I. Constraints imposed by the architecture on the fre-
quency allocation on the graph. We group these constraints into
three categories (described in the main text). The index refers to the
participants and is defined by the graph underlying the processors. �E
represents the oriented graph edges and E represents the unoriented
edges, meaning that each edge is taken into account twice in each
direction. The spectator constraints have different participants for
the CR and CZ cases. In the CR case, the pulse is applied only
to the control qubit, whereas in the CZ case the pulse is applied
to both entangled qubits. The variable fd represents the frequency
of the applied drive microwave. For the qutrit case, we need to be
able to drive both the |0〉 → |1〉 and the |1〉 → |2〉 transitions. For
CZ, the frequency of the drive can vary. For some architectures,
some constraints are redundant; however, they are necessary for
other architectures or qutrit drives. The bounds values are taken from
Ref. [17].

Definition Participants Bounds

Addressability A1 | fi − f j | � δA1 (i, j) ∈ E 17 MHz
A2 | fi − f j − α j | � δA2 (i, j) ∈ E 30 MHz

Entanglement C1 fi + αi � fd � fi (i, j) ∈ �E —
E1 | fd − fi| � δE1 (i, j) ∈ �E 17 MHz
E2 | fd − fi − αi| � δE2 (i, j) ∈ �E 30 MHz
D1 | fd − fi − αi/2| � δD1 (i, j) ∈ �E 2 MHz

Spectators S1 | fd − fk | � δS1 (i, j, k) ∈ N 17 MHz
S2 | fd − fk − αk | � δS2 (i, j, k) ∈ N 25 MHz
T1 | fd + fk − 2 fi − αi| � δT 1 (i, j, k) ∈ N 17 MHz

stronger than the single-qubit pulses, we must also avoid the
two-photon transition (see constraint D1).

C. Spectators of entanglement

While driving an entangling gate between two transmons,
the pulse applied to one transmon can also drive the transitions
of its other neighbors j. These transmons are often referred to
as spectators of the entangling gate(see constraint S1 and S2
for the one-photon spectator collision and T1 for a two-photon
transition collision), and these classes of errors have recently
been studied in more depth [22].

These constraints were first defined for fixed-frequency
qubit architectures that use the CR gate for entanglement.
In the following paragraphs, we extend these constraints to
address the additional constraints needed for qutrit systems
with the CR gate and for qubit systems with a differential
ac-Stark shift entangling gate.

D. Qutrit

To extend these constraints to qutrit architectures, we need
to consider the addition of two drives: one for the single-qutrit
gate with a drive frequency fd at the |1〉 �→ |2〉 transition
and one for an entanglement drive frequency at the |1〉 �→ |2〉
frequency of the target transmon. In addition, we need to add
constraints on the drive frequencies such that the |2〉 �→ |3〉
transition frequency for each transmon is avoided to prevent
leakage. See the Supplemental Material [23] for an exhaustive
list of constraints.
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E. Differential ac-Stark shift or SiZZle

A CZ gate with simultaneous ac-Stark shift entangling
gate has recently been proposed and demonstrated for both
fluxonium [24] and transmon architectures [19,25] as an al-
ternative to the CR gate. The constraints for this gate are
similar to those for the CR case with the modification that the
drive frequency can now vary between the frequency of the
control and the target transmon. As we will show, this adds
an extra degree of freedom that increases the yield of usable
chips. In addition, since there is a drive on both transmons
participating in the entangling gate, the spectator constraints
must take into account the neighbors of both transmons and
not just the control transmon. See the Supplemental Material
for the list of additional constraints. Note that this architecture
has been less studied both numerically and experimentally,
so we have chosen in this paper pessimistic bounds that are
consistent with Ref. [19]. We expect that these bounds will
likely loosen as this gate is studied more. In the rest of this
paper, we will abbreviate this architecture as CZ architecture.

II. OPTIMIZATION STRATEGY

When constructing a quantum processor, we first need to
specify the connectivity of the device. To do so, we define
a directed graph where each node is a transmon and each
edge corresponds to a possible entangling operation. The ori-
entation of the edge is important for the CR gate because
this specifies the directionality of the gate. Then we need to
find a set of frequencies on these nodes that must satisfy the
constraints given in Table I. Determining whether this type
of system is feasible can be done with modern optimization
tools. Since the set of parameters giving a feasible solution is
disjoint, mixed-integer programming is needed in this case.
We use the Gurobi solver [26] with the Python package
PYOMO [27].

Initially, we found that a naive objective function yielded
solutions that are on the edges of the collision-free regions,
meaning that small perturbations in frequencies often resulted
in considerable collisions. Ultimately, such a naive optimiza-
tion yields a design that is not robust against the dispersion
of frequency due to inexactness in the the fabrication. To
circumvent this, we have developed a three-step approach
that attempts to be a proxy for the yield: the yield should be
proportional to the distance between the target frequency and
the collision regions. Thus, we seek to maximize the distance
between the target frequencies to these avoided regions.

To move the solution away from the border of the collision
region, we introduce a new variable per set of constraints
that corresponds to the distance of the left-hand side of the
constraint definition to the threshold δ of the constraints in
Table I. We then add a constraint that forces all of these
distances to be equal for each constraint type and each edge.
This finds the largest hypersphere of radius R that can fit
inside the zero-collision region. In a second step, we relax
the requirement that all the thresholds of each type (or rows
in Table I) be equal, but we still require that they be equal for
each edge. We also add a constraint specifying that all of these
distances are larger than the radius R calculated in the previous
step. This amounts to allowing for a hyperellipse with radius

Ri � R per constraint type. In the last step, we allow each edge
to differ. See the Supplemental Material for a more in-depth
description of the objective functions.

With a differential ac-Stark shift architecture, we must also
optimize the entanglement drive frequency since this is now a
continuous variable. To do so, we add an additional variable
on each edge corresponding to the drive frequencies for the
corresponding pair of transmons.

III. SMALL-SCALE SYSTEMS

To build intuition about the result of the frequency opti-
mization, we discuss in this section the optimization of an
eight-transmon ring. Such a linear topology is the minimum
connectivity possible for a quantum processor and sets an
upper limit on the fabrication yield one can expect. In Fig. 1,
we present the frequency pattern obtained with the opti-
mization described in the preceding section, along with the
allowed regions for the frequencies of each transmon. We also
present the yield as a function of frequency dispersion, with
the state-of-the-art fabrication dispersions with and without
postprocessing denoted to give a sense of achievable yields
[16,17].

With a qubit CR-based architecture, even a linear topology
with state-of-the-art dispersion of 50 MHz leads to a low yield
of 10%. This yield can be increased with a postprocessing
fabrication dispersion of 14 MHz, which highlights the need
for techniques such as laser-annealing for further reducing the
frequency dispersion. In Fig. 1(c), we can see the distribution
of errors among the different types of collisions. The majority
of the collisions come from the entanglement constraints;
these significantly reduce the overall yield.

In Fig. 1, we also present the yield for a qutrit CR-based
architecture, which has a lower yield than the corresponding
qubit architecture due to the increased number of con-
straints. Here we optimize the frequency layout for the qubit
constraints and simply calculate the yield on the qutrit archi-
tecture with the additional constraints added. Note that the
frequency of single-transmon collisions remains the same for
both the qubit and qutrit architectures because the optimiza-
tion fixes the same anharmonicity α for every transmon and
the energy spectrum of the transmon. This suggests that while
fabricating collision-free devices using qutrit entanglement
is difficult, single-qutrit gates can be implemented with few
frequency collisions on a qubit-optimized device.

Finally, we also present the yield for a qubit architecture
based on the differential ac-Stark shift gate. Because of the
extra degree of freedom offered by the frequency of the en-
tangling drive, the yield is much higher and we see a larger
plateau region where the yield is approximately perfect. To
calculate the yield of this specific architecture, we sampled
random frequencies around the target layout frequency, and
for each random sample, we used the optimizer to find a set
of optimal driving frequencies for the entangling gate. For
this architecture, state-of-the-art fabrication without postpro-
cessing is already capable of reaching a high yield of 90%
and almost perfect yield can be attained with additional post-
processing. Compared with the CR-based architecture, the
collision rates decrease for both single- and two-qubit gates
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FIG. 1. (a) Collision regions of an eight-qubit ring. The solid black line indicates the |0〉 → |1〉, the dashed black line the |1〉 → |2〉
transition, and the dotted line the two-photon transitions |0〉 → |2〉. The red regions indicate regions considered as collisions for the device.
We have plotted the normal distribution of frequency for the state-of-the-art dispersion from Refs. [16] (solid) and [17] (dashed). (b) The yield
of zero-collision devices for different architectures as a function of average frequency dispersion. (c) Frequency of each category of collision
for the different architectures on the eight-qubit ring. See main text for a discussion.

because of the relaxation of the drive frequency constraints
for entangling operations.

IV. SCALING TO LATTICES

As the number of transmons on a processor increases, so
does the number of collisions. For large systems, individually
optimizing all the frequencies on a chip becomes intractable
simply because of the number of variables and constraints.
Instead, a smaller unit cell of frequencies must be optimized
and then tiled to generate a larger lattice. To construct such
a solution, we start by defining the unit cell to be tiled. To
ensure that the tiling is possible, we optimize the frequency
layout with periodic boundary conditions, ensuring that the
solution is also valid for the larger lattice. Since calculating
the yield is quick for the CR case, we can directly calcu-
late the zero-collision yield for these large lattices. Figure 2
shows the yield for different lattices with different connectiv-
ities: a square lattice for the surface code, a heavy hexagonal

lattice used by IBM [28], and a hexagonal lattice for compar-
ison with its heavy counterpart.

When scaling to larger lattices from a given unit cell, the
yield of the system can be estimated up to boundary effects
with a simple scaling law,

y = yN/nm
m = yN

0 , (2)

where y is the yield of the larger system, ym is the yield of
the unit cell with periodic boundary conditions, N is the total
number of transmons in the system, and nm is the number
of transmons in the unit cell. Since the boundary effects will
only reduce the number of potential collisions, this provides
a lower bound on the yield, even for smaller system sizes.
This method provides a way for comparing the scalability of
different types of lattices.

In Fig. 2, we show the frequency dispersion required to
achieve a yield of 10% for a 1000-qubit lattice of each type.
Unsurprisingly, the more densely connected lattice has a lower
yield. We note that, given the thresholds listed in Table I for

FIG. 2. (a)–(d) Common lattice layouts. The link represents the connectivity or the possibility of realizing entanglement between its two
qubits. In practice, we simulate the behavior of a unit cell with periodic boundary conditions to extract the yield. (a) A linear chain with a unit
cell of eight sites. (b) A square lattice with a unit cell of 16 sites. (c) A hexagonal lattice of 20 sites. (d) A heavy hexagon lattice with a unit
cell of 15 sites. (e) Tolerance on the dispersion of the frequency to achieve a 10% yield on different lattice topologies. For the qutrit case on the
hexagon and square lattices, our qubit solution was not compatible with qutrit constraints. The dashed line indicates the dispersion obtained
by Ref. [17] with laser annealing.
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a CR-based qubit architecture, none of these lattices can be
fabricated with such a yield given even the best-demonstrated
frequency dispersion with postprocessing. This shows that
a collision-free 1000-qubit device is likely unachievable for
the CR-based architecture without a significant improvement
in fabrication precision or a relaxation of the constraints. In
contrast, the ac-Stark shift-based qubit architecture can scale
to 1000 qubits for two of the four lattices with a frequency
dispersion already attainable with postprocessing.

V. CONCLUSION

In this paper, we have discussed the optimization of
the frequency layout of fixed-frequency superconducting
quantum processors. We have discussed the yield of the cross-
resonance architecture for qubits and qutrits. We have also
shown that using the differential ac-Stark shift to realize a
CZ entanglement gate gives an extra degree of freedom on
the entanglement drive frequency and improves the yield of
this architecture, thus improving the scaling possibility of
this architecture. A fixed-frequency quantum processor with

transmons is currently one of the most developed architec-
tures for multiqubit systems, however, other qubit designs like
fluxonium [24] can also realize quantum processors and will
have different frequency constraints that can potentially give
an advantage over transmons in terms of yield.
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