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ABSTRACT

A method is described to improve the performance of sensor fusion algorithms. Data sets available for training fusion
algorithms are often smaller than desired, since the sensor suite used for data acquisition is always limited by the
slowest, least reliable sensor. In addition, the fusion process expands the dimension of the data, which increases the
requirement for training data. By using structural risk minimization, a technique of statistical learning theory, a
classiÞer of optimal complexity can be obtained, leading to improved performance. A technique for jointly optimizing
the local decision thresholds is also described for hard-decision fusion. The procedure is demonstrated for EMI, GPR
and MWIR data acquired at the US Army mine lanes at Fort A.P. Hill, VA, Site 71A. It is shown that fusion of
features, soft decisions, and hard decisions each yield improved performance with respect to the individual sensors.
Fusion decreases the overall error rate (false alarms and missed detections) from roughly 20% for the best single
sensor to roughly 10% for the best fused result.
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1. INTRODUCTION

Sensor fusion has been proposed as a means of meeting stressing requirements in detection of land mines. Fusion
offers the potential for increased probability of detection, decreased false alarm rates, and operation in a broader
range of environments. A very large number of sensor technologies have been proposed for mine detection,1 and
that number continues to grow.

Mine detection, whether done with a single sensor of a fused suite, can be viewed as a classiÞcation problem
in which sensor data must be classiÞed as representing mines or clutter. Suppose that we are given sensor data x
with which to determine the truth of hypotheses Hk that describe the presence of absence of a mine. We do so
by choosing Hk to maximize the Bayes� risk or, when only the probability of error is important, by choosing the
hypothesis that maximizes the a posteriori probability Pr(Hk|x). A fundamental tenet of sensor fusion (or of any
classiÞcation process) is that more information cannot degrade performance. It is easy to prove that additional
independent sensor data y that is positively correlated with Hk (i.e., for which Pr(y|Hk) ≥ Pr(y)) will produce
Pr(Hk|x,y) ≥ Pr(Hk|x).
The probabilities appearing in the above expressions are unknown and must be estimated from data. All classi-

Þcation problems require training data from which the desired classiÞcation process is learned.∗ The quantity and
quality of these training data have a strong inßuence on the performance of the classiÞer. Although many classiÞers
are known to produce optimal performance asymptotically (i.e., when the amount of training data is inÞnite), per-
formance based on a Þnite training set may fail to meet expectations. The problem of limited training data is acute
for mine detection in general, and for sensor fusion in particular. When multi-sensor data collections are performed,
the data set useful for fusion is limited by the performance of the slowest or least reliable sensor.

The usefulness of a sensor-fused system (or any classiÞer) depends on its ability to generalize, i.e., to detect
mines in data not seen previously. It is well known that problems with limited training data manifest themselves
during generalization.2 ClassiÞers that perform well on their training data but generalize poorly typically employ an
architecture or an approximation to a decision surface that is too complex for the training data. Problems of this
type arise in many classiÞers, including k-nearest neighbor and neural networks.
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∗A sufficiently accurate physical model can supply the equivalent of training data, but for many mine detecting sensors the random

environment has a strong inßuence on the sensor data, leading to an impractical number of model variables.



In this work we describe methods of optimizing the design of a classiÞer for a given training data set. For feature-
level fusion we employ recent developments in statistical learning theory (SLT),3 which permits us to bound the
performance of classiÞers designed with limited training data. Some essential aspects of SLT as it relates to mine
detection are described in Section 2. The architecture of the fusion algorithm (classiÞer) determines its complexity,
which can be bounded by SLT. The Vapnik-Chervonenkis (VC) dimension of the classiÞer provides a means of
assessing the classiÞer complexity. For any classiÞcation problem, there is an optimum complexity. Unfortunately,
it is largely impossible to estimate the VC dimension of most classiÞers. One can implement SLT using a new form
of classiÞer known as the support vector machine (SVM), for which the complexity is readily controlled. It has
been observed that SVMs exhibit performance that meets or exceeds that of other classiÞers. SVMs are described in
Section 3. We describe in Section 4 a method of jointly optimizing the individual decision thresholds for decision-level
fusion of hard decisions. In Section 5 we apply these methods to multi-sensor demining data collected at The US
Army mine lanes at Fort A.P. Hill, VA (Site 71A). The data comprise samples of surrogates and buried mines with
known positions. The sensor suite used included an EMI sensor, a GPR, and an MWIR camera. Concluding remarks
appear in Section 6.

2. STATISTICAL LEARNING THEORY

Statistical learning theory, also referred to as Vapnik-Chervonenkis (VC) theory, has been under development since
the 1970s. In this section we summarize the relevant parts of that theory. Descriptions of SLT have been given by
Vapnik at an overview level3 and at a deeper level.4 Review works by Schölkopf et al.5 and by Burges6 may also be
consulted for details not presented here.

Consider the following problem: Given N i.i.d. samples of training (sensor) data xi with true classiÞcation yi
(e.g., yi = 1 if sample xi corrresponds to a mine and yi = 0 otherwise), we wish to discover the classiÞer (function)
y = F (x) that will return the true identity y when presented with an input sample x. We approximate this function
by using training data to estimate parameters α for a family of functions F (x;α). The risk or expected loss for the
classiÞer is given by

R(α) =
Z
dx

Z
dyL(y, F (x;α))Pr(x, y) (1)

where L is a loss function. The function L(y, y0) provides a measure of the �distance� between the true output y
and the estimate y0 = F (x,α). For mine detection we are primarily interested in a loss function of the form

L(y, F (x,α) =

 C01 y = 0, F (x,α) = 1 (false alarm)
C10 y = 1, F (x,α) = 0 (missed detection)
0 y = F (x,α), (correct decision)

(2)

where C01 and C10 are the costs of a false alarm and missed detection respectively. Clearly C01 ¿ C10, but it is
not obvious how these costs should be assigned. In this work, we assume C01 = C10 = 1, in which case R is the
probability of error. The extension to other cases is straightforward.

Since Pr(x, y) in Eq. (1) is unknown, we are forced to estimate the true risk R from the available training data.
We deÞne the empirical risk

Remp(α) = 1

N

NX
n=1

L(yi, F (x;α)) (3)

Note that Remp does not involve the probability density Pr(x, y). Taking C01 = C10 = 1 makes Remp an estimate
of the classiÞer error rate.

Statistical learning theory addresses the relation between the true risk R and the empirical risk Remp. For a
Þxed classiÞer (Þxed α) the empirical risk will always be less than the true risk, since one can develop a classiÞer
that Þts a Þnite set of training data arbitrarily well. The following bound can be derived

R(α) ≤ Remp(α) +Φ(h/N) (4)

where Φ is a conÞdence interval and h is the so-called �VC dimension.� The conÞdence interval has the remarkable
property that it is independent of the unknown probability distribution Pr(x, y). The precise deÞnition of h is
somewhat technical, but it can be regarded as the number of training samples that can be correctly classiÞed by



F (x,α), i.e., the learning capacity of the classiÞer. A plot of these quantities appears in Figure 1. As the complexity
of the classiÞer increases, the empirical risk (as measured by classiÞer performance on the training data) decreases.
Simultaneously, there is less conÞdence (and a greater error rate) for more complex classiÞers. In practice, we can
use the resubstitution performance of the classiÞer to estimate Remp and a validation set to estimate R. In general,
there exists an optimal value of h/N . ClassiÞers that have too little capacity are unable to learn the training data.
ClassiÞers that are too complex will learn the training data well, but will have poor generalization capability. The
objective of this work is to determine the level of classiÞer complexity that will minimize the true risk.

Figure 1. Components of classiÞer error.

The conÞdence interval Φ(h/N) is determined from the convergence rate of Remp → R as N → ∞. Previous
work has produced a variety of expressions for this bound. For a loss function L bounded above by unity, Vapnik4

has shown that with conÞdence η the value of Φ is given by
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For small empirical risk Remp we have Φ ≈ ²2 while for large empirical risk we have Φ ∼ ²/2. This last approximation
is often cited in the literature, because of its simple form. It predicts that the conÞdence interval Φ decreases with
increasing training data N and with decreasing classiÞer capacity h. Note also that Φ is an upper (worst case) bound.
It may well be possible to design a classiÞer whose performance beats this bound.

Finding the optimum classiÞer consists in balancing the empirical risk (which decreases with increasing classiÞer
capacity) and the conÞdence interval (which increases with increasing classiÞer capacity). There exist a variety of
methods for designing classiÞers, but in general optimizing classiÞer performance is a trial and error process. Although
one is guaranteed that an optimum classiÞer exists (since the risk is bounded below), there is little guidance on how
it can be constructed.

The concept illustrated in Figure 1 suggests a principled method for designing a classiÞer with optimal performance
on a given training data set. If one can develop a family of classiÞers F1, F2, . . . with increasing VC dimension
h1 < h2 < . . ., then by testing these classiÞers we can determine the value of h that minimizes the true risk, i.e., we
can identify the minimum in the true risk curve of Figure 1. This procedure is known as structural risk minimization
(SRM),7 and it is used most effectively in concert with support vector machines, described below.



3. SUPPORT VECTOR MACHINES

The existence of an optimal value of VC dimension h is of considerable theoretical interest, but it is of limited
practical value since h is essentially impossible to estimate for any but the simplest classiÞers. One classiÞer for
which h can be determined is a linear hyperplane classiÞer

F (x,w, b) = sgn (x ·w+ b) (7)

where w is a vector that deÞnes the normal to the hyperplane and b is a bias term.

Support vector machines (SVMs) are based on the concept of the optimal separating hyperplane, in which the
value of w is selected to maximize class separation (also known as �margin�). This is achieved by minimizing ||w||
while simultaneously requiring that correct decisions are produced for the training data. We require

minimize ||w||2 subject to yi(xi ·w+ b) ≥ 1, i = 1, 2, . . . , N (8)

A Lagrangian formulation for the problem leads to

L(w, b) =
1

2
||w||2 −

NX
i=1

αi[yi(xi ·w+ b)− 1] (9)

where the αi are Lagrange multipliers. This quantity must be minimized with respect to w and b, and maximized
with respect to the αi. The minimization requirements impose linear constraints as follows:

∂

∂b
L = 0 ⇒

NX
i=1

αiyi = 0 (10)

∂

∂wj
L = 0 ⇒

NX
i=1

αiyixi = w (11)

It can be shown that for a linearly separable problem, all but a few of the αi will be identically zero. The training
data xi corresponding to these nonzero weights are known as the support vectors. They deÞne the hyperplane, and
the remaining training data are superßuous to the classiÞer. Substituting equations (10) and (11) into the Lagrangian
allows us to eliminate w in favor of the αi, leading to the dual form of Eq. (8). Using a vector notation for the αi
we obtain the following quadratic programming problem:

maximize W(α) = eTα− 1
2
αTQα subject to yT ·α = 0; αi ≥ 0 (12)

where e = [1 1 · · · 1]T and
[Q]ij = yiyjxi · xj (13)

Numerical optimzation is used to determine α, and the decision function is

F (x;α, b) = sgn

Ã
NX
i=1

[yiαix · xi + b]
!

(14)

When the classes overlap and the data are not separable by a hyperplane, one can show that the appropriate
formulation is identical to that presented above if we introduce �slack� variables ζi ≥ 0 such that the problem
becomes

minimize ||w||2 +C
NX
i=1

ζi subject to yi(xi ·w+ b) ≥ 1− ζi, i = 1, 2, . . . ,N (15)

where C > 0 is a user-deÞned constant. Taking C → ∞ produces the separable case, while C → 0 reduces the
penalty for class overlap. The minimization proceeds as described above for the separable case, except that the αi
are now constrained as

0 ≤ αi < C (16)



It is instructive to compare SVMs with Fisher�s linear discriminant,8 another common hyperplane classiÞer. The
normal to the Fisher hyperplane wf for a two-class problem having means (m0,m1) and covariance matrices (C0,C1)
satisÞes the generalized eigenvector problem9

[CB − λ(C1 +C1)]wf = 0 (17)

where CB is the between-class scatter matrix

CB =
N0N1
N

[m0 −m1][m0 −m1]
T (18)

Since CB has rank one, this equation has one non-zero eigenvector, and we Þnd

wf = (C1 +C1)
−1[m0 −m1] (19)

which is parallel to the path between the mean vectors. Although the Fisher discriminant is known to be optimal
for Gaussian distributions with equal covariances, it does not necessarily produce an optimal separation for a Þnite
data set. In general, the SVM hyperplane is not parallel to the Fisher hyperplane.

Linear classiÞers are seldom optimal in practice, and higher-order approximations to the decision surface are
commonly employed. The hyperplanes used in SVMs can also be extended to non-planar surfaces. To do so, the
input data xi are projected into higher dimensions by using a nonlinear tranformationΨ(x). In these high dimensional
spaces, the data are more likely to be separable by hyperplanes. The problem formulation parallels that given above
with the substitution x→ Ψ(x).

A classical problem with higher-order classiÞers is dimensionality. Consider a simple polynomial transformation
of the form Ψ(x) = {1, x1, x2, ...xm, x21, x1x2, x1x3, ...}. The product terms are each inputs to the classiÞer. It is
evident that the resulting input set has high dimensions, for which the memory, computation, and training data
requirements are large. An ingenious method is used to avoid this for SVMs. Note that the SVM requires only
inner products of the projected data of the form Ψ(x) · Ψ(y). Mercer�s theorem10 implies that (with certain mild
restrictions) such inner products can be written in terms of a symmetric kernel function k(x,y). Hence, given a
transformation Ψ, we can replace the inner product Ψ(xi) · Ψ(xj) → k(xi,xj). Since appropriate transformations
Ψ are seldom evident, it is attractive to use Mercer�s theorem in �reverse�, i.e., to assume a convenient form for
k(xi,xj) without regard for the implied function Ψ. Thus, the above-described formulation still applies if the matrix
Q becomes

[Q]ij = yiyjk(xi,xj) (20)

Functions used for k(·, ·) include polynomials, radial basis functions, splines, and others.

4. OPTIMIZING FUSION OF HARD DECISIONS

In general, optimal fusion of hard decisions is challenging. Each sensor produces a binary decision ui on the basis of a
sensor-speciÞc threshold ti of a test statistic (e.g., the log-likelihood ratio). For an optimal fusion strategy one must
simultaneously deÞne a relation among the decision thresholds (t1, t2, t3) (i.e., the local decision strategies) and a
fusion rule Pr(Hk|u1, u2, u3) (the global decision strategy). In general, numerical optimization is required,11 although
some simple expressions are available if one assumes that the sensors are independent. In a previous fusion study,
we found the performance of the latter approach to be poor,12 and in this work we explored alternative methods.

A straightforward (but not necessarily optimal) local decision strategy is to remap all of the individual sensor
test statistics to a common range and then use a common threshod t ≡ t1 ≡ t2 ≡ t3. Although this technique can
work well in some situations, it is adversely affected by outliers in the data or drastically different performance from
sensor to sensor.

A somewhat better approach is to deÞne a monotonic function G(t;βm) with parameters βm to remap the test
statistics for each sensor m. A common threshold τ is used for the remapped thresholds G(t;βm) for all sensors.
Since (by assumption) the data sets are small, numerical optimization of the βm is practical. In addition, since
the number of sensors involved is also small, one can simultaneously conduct an exhaustive search over all possible
fusion rules Pr(Hk|u1, u2, u3). The SRM technique is not used explicitly in this design of the hard decision fusion
algorithm, but the classiÞers for the individual sensors may be optimized using SRM.



5. RESULTS

We used structural risk minimization to optimize the performance of mine detectors based on both single sensors
and a fused sensor suite. The threshold-remapping methods were also used to optimize hard decision fusion. In this
section we describe the data set, review some sensor-speciÞc processing, and present the results.

During July 1999 we acquired multisensor data at Fort A.P. Hill, VA. Data were collected at the calibration lanes
of Site 71A, which comprises a 25 m by 5 m area with mines or clutter objects buried at the center of grid cells
having dimensions 1 m by 1 m. Some important features of this test site are (1) extraneous metal has been largely
removed from the area, which reduces EMI clutter; (2) the location of the mine (or clutter) item can be accurately
located, which obviates problems with sensor positioning; and (3) although real mines have been emplaced, in most
cases the explosive was removed from the mines, which affects its thermal signature.

We acquired data over a portion of the site that comprised 27 deactivated mines and 32 clutter objects. The
sensors used included a Schiebel AN 19/2, an OSU-developed ground penetrating radar,13 a MWIR sensor, and a
LWIR sensor. In the results that follow, we have replaced the Schiebel data with data from the GEM-3 sensor,14

collected by Duke University.15 During most of our data collection, conditions were not conducive to IR data
collection. The weather was overcast and rain fell occasionally. Nonetheless, we did manage to acquire some useful
MWIR data during one night-time collection. In the discussion that follows, we do not consider the LWIR data.

5.1. Supporting Processing

The data collected by each sensor have a different format and require different processing to suppress clutter and to
extract features. In this section we brießy describe that processing.

5.1.1. GEM-3 Sensor

The GEM-3 data comprise samples taken at ten points spaced 2 inches apart in a �+� pattern over each putative
target, with 5 samples taken in a left-right path and 5 samples taken in a fore-aft path. At each point, in-phase and
quadrature magnetic Þeld measurements were acquired at 20 frequencies logarithmically spaced from 270 Hz to 23.79
kHz. For the 7/7/98 data set used here, data were acquired at 44 locations in the Site 71A calibration area, where
the identify of the targets are known. Background data, required to correct for sensor baseline drift, were acquired
between measurements. An extensive discussion of the GEM-3 data has been presented by Gao et al.,16 which can
be consulted for details not discussed here.

Processing of the GEM-3 data included correcting for the sensor background and converting the sensor output to
a quantity proportional to the complex Þeld amplitude. The resulting data set (200 complex values at each target)
was reduced by computing the energy at each spatial position, leading to ten values for each target. An example
EMI data vector is shown in Figure 2. For perfectly centered, symmetric targets these signatures should display
symmetry about samples 3 and 8 (i.e., about the center of the left-right and fore-aft scans) and samples 1-5 (the
left-right scan) and 6-10 (the fore-aft scan) should be identical.

5.1.2. GPR Sensor

The OSU GPR is a down-looking sensor using a novel dielectric rod antenna.13 The antenna was mounted to a
linear positioner, which was scanned over the target location. Data were acquired at 1-2 cm sample intervals over
each target cell. Linear scans were acquired over 59 mines and clutter sites. The system uses a wide bandwidth (1-6
GHz), and after pulse compression data similar to Figure 3(a) are observed. The strong near-horizontal band in this
image is the ground reßection. Using a recently developed technique,17 that reßection can be signiÞcantly reduced,
leading to the data shown in Figure 3(b). In the latter result, the characteristic hyperbolic arcs generated by the
target are evident. The data used in processing comprised a subsampled version of the time-domain output acquired
directly through the center of each signature.

5.1.3. MWIR Sensor

The MWIR sensor used in this collection was a COTS camera (Cincinnatti Electronics, IRRIS 160ST) operating in
the spectral band 2.2-4.6 µm. The instrument�s focal plane comprises 160×120 pixels, with an NE∆T of 0.025K. To
avoid clutter produced by reßected sunlight, the sensor was operated at night. During data acquisitioin the sensor was
positioned at a Þxed height and distance from each putative target site. The camera was aimed at a ground location
a known distance from the camera�s ground-projected center. Using the (known) Þeld of view, one can determine
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Figure 2. Example GEM-3 data.

(a) Raw GPR image (b) Clutter-reduced image

Figure 3. Comparison of raw and clutter-reduced data generated from measurements over a three-inch deep VS-50
mine.
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Figure 4. Example MWIR data. A M14 mine ßush buried is shown.

the position of each pixel on the ground. After remapping the image to eliminate the effects of perspective, data
similar to Figure 4 are obtained. Features were extracted from these data using a model-based technique described
previously.18 IR clutter is normally distributed, and a maximum likelihood (nonlinear least squares) technique was
used to estimate model parameters used as features.

5.2. Individual Sensor Performance

A review of the data acquired by the GEM-3, GPR, and MWIR camera revealed that data from all three sensors
were available at 42 grid cells, which comprised equal number of target and clutter samples. Features were extracted
from the data acquired by each sensors as described above.

The SRM method was used to identify an optimum classiÞer complexity for each sensor. For this small data set
we used the �leave-one-out� method (a form of cross-validation, or resampling) to estimate the true risk for a range of
classiÞer complexity. The resubsitution method was used to determine the classiÞer empirical risk. Both polynomial
classiÞers and radial basis function classiÞers� were examined, and the design producing the best performance was
used. In general, the radial basis function classiÞers had a small advantage, but the performance of other types of
nonlinearities produced comparable results. This Þnding is similar to that reported in the literature for other SVM
applications. In our tests we found that the slack variable weight C had a minimal effect on classiÞer performance.
We used C = 10 for all tests. The risk calculation for each sensor is shown in Figure 5. In each case the empirical
risk decreases with increasing complexity, and a minimum occurs in the estimated true risk (cf. Figure 1). The
minimum risk (equal to the error rate) for the best sensor (MWIR) is slightly larger than 20%.

Using the classiÞer design that produced the minimum true risk, we computed the ROC curves as shown in
Figure 6. We observe that no sensor has an overwhelming advantage in detection.

5.3. Fusion Performance

We explored fusion of sensor features, soft decisions (classiÞer outputs produced for individual sensors), and hard
decisions (the result of thresholding individual sensor classiÞer outputs). Feature-level fusion is a straightforward
process. We concatenated the feature vectors for all sensors and trained a SVM classiÞer. Fusion of soft decisions
can be performed using a number of techniques.12 We opted to form a hierarchical classiÞer in which the outputs of
the single sensor classiÞers are supplied to another SVM.

�Although the VC dimension of a radial basis function classiÞer is inÞnite, the width of the basis functions provides a degree of control
over its complexity.6
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Figure 5. Risk calculations for the individual sensors.
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(a) Feature-level fusion risk
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Figure 7. Risk calculations for the fused sensor suite.
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Figure 8. Test statistics (a) before and (b) after the optimization process.

The SRM approach was used to optimize both the feature-level and soft decision-level fusion classiÞers. The
resulting risk data are shown in Figure 7. Again, we note the presence of minima, which denote the optimum
classiÞer complexity for this data set. The minimum risk is approximately 15% for these classiÞers.

The SVM-optimized results shown in Figure 6 were the basis for optimizing hard decision fusion. After sorting
the classiÞer outputs into ascending order, the test statistics for these sensors trace out the curves given in Figure 8.
That Þgure also includes the remapped test statistics after the optimization process described in Section 4. The
remapping functions G were the product of a logistic function (followed by scaling to a common range) and Chebyshev
polynomials with numerically optimized weights βm. The optimization process tends to increase the slope of these
curves near the decision boundary (the zero crossing), which tends to increase the decision margin. Because the
performance of these sensors are comparable, a majority voting technique was used for Pr(Hk|u1, u2, u3). That rule
is near optimal for more than two sensors of comparable performance. The true risk estimated for this classiÞer is
9.5%. It is interesting to note that for this data set, a simple linear remapping of the raw test statistics does nearly
as well (12% error).

ROC curves are shown in Figure 9 for feature-level, soft-decision level, and hard-decision level fusion. We observe
that feature-level and soft decision fusion produce comparable performance. In contrast to the Þndings of our previous



work,12 hard-decision fusion performs better than either feature-level fusion or hard-decision fusion. We attribute
this improvement to (1) our decision to reject the independent sensor hypothesis and (2) the fact that no one sensor
has an overwhelming performance advantage (which tends to reduce the beneÞt of fusion under the independent
sensor hypothesis).11 These Þndings bear further investigation. The beneÞt of fusion can be quantiÞed by comparing
the risk for the best fused suite (hard decision fusion at roughly 10%) and the best individual sensor (MWIR at
roughly 20%).
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Figure 9. ROC curves for three forms of fusion.

6. CONCLUDING REMARKS

Data sets available for the design of sensor-fused mine detection algorithms are typically small, which has an adverse
effect on fusion algorithm design and detection performance. We have described an approach based on structural
risk minimization that permits us to extract the best possible fusion performance from these small data sets.

Tests of the algorithm described here for 42 samples of EMI, GPR and MWIR data suggest that fusion produces a
measureable beneÞt in performance. We found that the net error rate (missed detections and false alarms) decreased
by roughly a factor of two when the best individual sensor is compared to the best fused result.
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