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Until the advent of modern neuroradiological imaging tech-
niques in 1989, a diagnosis of GH deficiency in adults carried
little significance other than as a marker of hypothalamo-
pituitary disease. The relatively recent recognition of a char-
acteristic clinical syndrome associated with failure of spon-
taneous GH secretion and the potential reversal of many of its
features with recombinant human GH has prompted a closer
examination of the physiological role of GH after linear
growth is complete. The safe clinical practice of GH replace-
ment demands a method of judging overall GH status, but
there is no biological marker in adults that is the equivalent
of linear growth in a child by which to judge the efficacy of GH
replacement. Assessment of optimal GH replacement is made
difficult by the apparent diverse actions of GH in health, con-
cern about the avoidance of iatrogenic acromegaly, and the
growing realization that an individual’s risk of developing
certain cancers may, at least in part, be influenced by cumu-
lative exposure to the chief mediator of GH action, IGF-I. As
in all areas of clinical practice, strategies and protocols vary
between centers, but most physicians experienced in the man-

agement of pituitary disease agree that GH is most appropri-
ately begun at low doses, building up slowly to the final main-
tenance dose. This, in turn, is best determined by a
combination of clinical response and measurement of serum
IGF-I, avoiding supraphysiological levels of this GH-depen-
dent peptide. Numerous studies have helped define the opti-
mum management of GH replacement during childhood. The
recent requirement to measure and monitor GH status in
adult life has called into question the appropriateness of sim-
plistic weight- and surface area-based dosing regimens for the
management of GH deficiency in childhood, with reliance on
linear growth as the sole marker of GH action. It is clear that
the monitoring of parameters other than linear growth to help
refine GH therapy should now be incorporated into childhood
GH treatment protocols. Further research will be required to
define the optimal management of the transition from pedi-
atric to adult GH replacement; this transition will only be
possible once the benefits of GH in mature adults are defined
and accepted by pediatric and adult endocrinologists alike.
(Endocrine Reviews 22: 425–450, 2001)
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I. Introduction

IT IS NOW more than a decade since the publication of the
earliest double-blind placebo-controlled studies of the

use of recombinant human GH (rhGH) in patients with
adult-onset (AO) GH deficiency (GHD) (1–5). In the inter-
vening years, increasing attention has been devoted to de-
vising treatment protocols that maximize the potential clin-
ical benefit of treatment with GH, while trying to minimize
the risks that may result from prolonged excessive GH ex-
posure. In the original trials of GH replacement therapy for

Abbreviations: AGHDA, adult GH deficiency assessment; ALS, acid-
labile subunit; AO, adult onset; BMD, bone mineral density; BSAP,
bone-specific isoenzyme of alkaline phosphatase; CO, childhood onset;
FM, fat mass; GC, glucocorticoid; GGSG, Genentech Growth Study
Group; GHBP, GH binding protein; GHD, GH deficiency; IGFBP, IGF
binding protein; KIGS, Kabi International Growth Study; LBM, lean
body mass; NCGS, National Co-operative Growth Study; NHP, Not-
tingham Health Profile; PGWB, Psychological General Well-Being
Schedule; QoL, quality of life; rhGH, recombinant human GH; SST,
somatostatin; TBK, total body potassium; TBW, total body water.
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adult hypopituitarism, GH dose was calculated on the basis
of weight and/or surface area (1–5). This was essentially
done as an extension of pediatric practice, as there was little
or no experience of GH therapy outside the pediatric setting
at that time. With time and shared clinical experience, it has
become apparent that such a dosing strategy was too sim-
plistic and that the dose of GH needs to be individually
tailored for each patient (6, 7). In retrospect, this was pre-
dictable, given that all other endocrine replacement therapy
needs to be carefully adjusted for each patient, reflecting the
wide variation in secretion and/or clearance rates, of glu-
cocorticoids, thyroid hormone, and gonadal steroids in
healthy subjects. Paradoxically, it is the increasing use of GH
for the treatment of AO hypopituitarism that has led to a
more thorough examination of the physiological role of GH
after the completion of linear growth. Inevitably, the recent
experience in adult clinical practice has prompted a critical
reevaluation of the strategies used for the management of
GHD in childhood. This article will review the current clin-
ical practice of GH therapy for the attainment of final height
in children. It will then discuss methods of GH dosing in
adults with specific reference to our current state of knowl-
edge about the normal physiology of GH secretion and action
after the completion of linear growth. The issues that sur-
round reassessment of GH status in GHD children once final
height has been achieved and the decision as to whether to
continue with GH therapy in this patient group will also be
reviewed. The article will conclude by examining, in the light
of recent clinical experience in GH dosing for adults, whether
the time has come for a closer examination of GH dosing
strategies used in pediatric clinical practice.

II. Physiology of GH Secretion and Action

In any discussion about optimizing GH dosing schedules,
it is important to remember that reproduction of normal
physiological patterns of GH secretion and action is limited
by available modes and routes of administration of exoge-
nous GH. Hence, as with other forms of endocrine replace-
ment therapy (such as glucocorticoid replacement for pa-
tients with primary or secondary adrenal failure), the aims
of the treating physician are limited to a maximization of
clinical benefit while minimizing the risks of excessive
exposure.

GH is released from anterior pituitary somatotrope cells in
a pulsatile fashion, with surges of GH release punctuating
long periods when GH levels in plasma are very low and
detectable only by sensitive chemiluminescence assays (8)
(Fig. 1B). GH release, in turn, is stimulated by GHRH and
inhibited by somatostatin (SST), both of which are produced
by the hypothalamus (for review see Ref. 9). A separate
receptor exists, the GH secretagogue receptor (10), the ligand
for which (Ghrelin) has recently been cloned (11). The details
of the neuroendocrine mechanisms by which these various
inputs interact to regulate GH release, and in particular the
precise role of Ghrelin, are not fully elucidated, but the sim-
plest model postulates that a simultaneous drop in SST tone,
together with bursts of GHRH secretion, is responsible for
the generation of a GH pulse (12).

GH is a 191-single polypeptide chain that exists in the
circulation partially bound to two separate GH binding pro-
teins (GHBPs), one of high (13) and one of lower affinity (14).
The higher affinity GHBP is the extracellular portion of the
GH receptor, two of which bind to different regions of the GH
molecule, with subsequent dimerization triggering GH-
mediated cellular activation (15). Although it is believed that
levels of GHBP in the circulation may be an indicator of the
number and/or activity of GH receptors, a major negative
determinant of GH-BP levels in health is abdominal obesity
(16). This has obvious implications for GH dose selection and
monitoring, because the bioactivity of the same dose of GH
given to two people of equivalent age, sex, and gonadal
status will depend, at least in part, on their respective degrees
of visceral obesity.

The GH secretory pattern, hepatic GH receptors, and cir-
culating GHBP levels are closely interrelated. In the rat, lin-
ear growth is most sensitive to pulsatile GH exposure and
peak amplitude, whereas GHBP and hepatic GH receptor
levels are regulated separately by the level of continuous GH
baseline exposure (17). As in rats, baseline GH levels are
higher in females than males (18–21), although the magni-
tude is less apparent. Short-term comparisons of continuous
vs. pulsatile GH treatment in man have so far revealed only
minor differences in metabolic parameters (22, 23), but
longer treatment in GH-deficient children shows induction
of GHBP after continuous, but not pulsatile, GH treatment
(24). It has been suggested that the GH pattern is important
for growth in man, since increasing the frequency of GH

FIG. 1. Plasma time-curve for GH 1.2
IU given by injection to an adult with
GHD (a) compared with the physiolog-
ical pattern of GH secretion in a healthy
middle-aged male (b). [Courtesy of Dr.
Y. Janssen, personal communication].
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therapy to daily injections improves its growth-promoting
effect (25–27), although in the short term once daily subcu-
taneous injections stimulated growth equally well as con-
tinuous subcutaneous infusion in GH-deficient children (24).

GH has some direct effects on peripheral tissues, most
notably epiphyseal chondrocytes (28), but the majority of its
actions are mediated through the peptide hormone insulin-
like growth factor-I (IGF-I), a member of the insulin-like gene
family. Almost all IGF-I in the circulation is bound to one of
several IGF binding proteins (IGFBPs), the most abundant of
which is IGFBP-3. Together with the acid-labile subunit
(ALS), IGF-I and IGFBP-3 (levels of which are all GH de-
pendent) form a ternary complex of 150 kDa. This prolongs
the half-life of circulating IGF-I and ensures that levels in a
given individual remain stable throughout the day. How-
ever, the simplistic use of serum IGF-I measurements as a
precise marker of overall GH status is flawed because of the
many variables that affect both hepatic and local tissue IGF-I
production in response to a given GH stimulus. Most strik-
ingly, GH-mediated IGF-I production varies with gender.
Analysis of 24-h GH profiles in normal weight, middle-aged,
healthy volunteers shows that to maintain an equivalent
serum IGF-I level, mean daily production is approximately
3 times greater in women than in men, due largely to an
amplitude-specific divergence in the pulsatile mode of GH
secretion (29). Most circulating IGF-I is derived from the
liver, but it is also generated in nonhepatic tissues where it
appears to function in an autocrine/paracrine fashion (30).
IGF-I generation in response to a given GH stimulus may be
modulated by local tissue-specific factors, of which gonadal
steroids are an important example. Testosterone adminis-
tration to normal men and those with hypogonadotropic
hypogonadism increases serum IGF-I levels, while oral es-
trogen therapy improves the signs and symptoms of acro-
megaly (31) and lowers serum IGF-I levels in normal post-
menopausal women (32). Furthermore, estrogens have
different effects on GH secretion and action depending on the
route of administration. Oral ethinyl estradiol attenuates
IGF-I production despite a 3-fold increase in mean 24-h GH,
whereas transdermal 17�-estradiol does not alter overall GH
secretion but causes a slight increase in circulating IGF-I (33,
34). Such changes are almost certainly physiologically im-
portant, on the basis of changes in markers of connective and
bone tissue activity that parallel the changes in serum IGF-I
levels (35).

As with other hormonal systems, GH, IGF-I, and the hy-
pothalamic peptides SST and GHRH form a complex feed-
back system at various levels. For example, exogenous GH
administration attenuates the size of subsequent GHRH-
mediated GH secretion, apparently independently of circu-
lating IGF-I levels (9, 36), and there is evidence that hypo-
thalamic GH receptor expression is suppressed by GH (37).
There are also data to suggest feedback regulation of GH
secretion by IGF-I (38).

A. Changes in GH and IGF-I levels with age

GH secretion continues throughout life (39, 40) and this,
together with the clinical features of adult GH deficiency and
the observed favorable effects of GH on hypopituitary pa-

tients, forms a persuasive argument that GH may have im-
portant physiological functions after the completion of linear
growth. Rates of GH secretion increase with the onset of
sexual maturation, reaching approximately 2–3 times their
prepubertal levels by mid-late puberty (39, 40). Thereafter,
GH secretion rates decline by approximately 14%, and the
half-life of GH shortens by 6% with each passing decade (39,
40). The reasons for this fall are not entirely clear, although
a reduction in responsiveness to injected GHRH and an in-
crease in SST have been documented in vivo in the rat (41, 42).
In humans, repetitive administration of GHRH to elderly
men partially reverses the age-related decline in responsive-
ness to this peptide (43), suggesting that failure of hypotha-
lamic GHRH release may, at least in part, underlie the age-
related fall in spontaneous GH secretion. Furthermore,
concurrent with the suggestion that SST is increased in older
individuals, coadministration of arginine enhances the GH-
releasing activity of a GH-releasing hexapeptide in healthy
elderly, but not young, subjects (44). These age-related
changes in GH secretion are largely paralleled by a decline
in serum IGF-I levels in both men and women (45). However,
the positive relationship between serum IGF-I and sponta-
neous 24-h GH secretion becomes less striking with age (46).
This may, in part, reflect increasing obesity with advancing
years. An inverse correlation has been demonstrated be-
tween adiposity and plasma IGF-I levels (47, 48), although
separation of this from the known effects of obesity on GH
secretion (40) is difficult.

III. Pharmacokinetics of Administered GH

rhGH is almost universally administered subcutaneously
(Fig. 1A). Most studies report the time to reach peak level
(Cmax) is around 4–6 h after an injection, with a length of
disappearance of 20–24 h (49, 50); these figures correlate well
with the kinetics of insulin absorption in patients with dia-
betes (51). Studies comparing the bioavailability of GH by
continuous infusion and bolus injection show significantly
lower GH levels with subcutaneous administration com-
pared with intravenous, suggesting a degree of local subcu-
taneous degradation (52, 53). The volume of injection may
also be important. Injection of 6 IU GH in three separate
volumes on separate occasions to normal individuals
showed that the use of a larger volume resulted in a higher
Cmax and a greater area under the curve, implying greater
overall bioavailability (54).

It is apparent, therefore, that the GH/IGF-I system, like
other endocrine systems, is a dynamic one, the activity of
which changes with age, sexual maturation, body composi-
tion, and other factors. Clearly, it is not possible to recreate
normal physiology with a single subcutaneous injection of
GH, so the goal of treatment of GHD is correction of the
associated clinical syndrome. In children, failure of linear
growth is an almost universal presenting feature, whereas in
adults the diagnosis of GHD almost invariably is made in
patients with a background of known hypothalamo-pituitary
disease.
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IV. Review of Pediatric Practice

GH deficiency during childhood is associated with severe
growth retardation resulting in marked impairment of adult
height. GH therapy for GH-deficient children was first used
in the 1950s with hormone extracted from the pituitary
glands of cadavers (55). Because of the limited supply, sub-
optimal doses of pituitary GH were administered initially in
a standard fixed dose, independent of size, two to three times
weekly, and the response to therapy was modest. Burns et al.
(56) reported on the final height of 55 GHD children treated
before 1981. GH was administered at a dose of either 10 IU
twice weekly or 5 IU three times a week, irrespective of
weight or surface area. Treatment was begun between the
ages of 9 and 14 yr in most of the children, and therefore a
total weekly dose of 15–20 IU represented a suboptimal GH
dose by modern standards. The smaller children, however,
would have initially received a fairly high dose relative to
their size. At completion of growth, average height was more
than 2 sd below the population mean, with stature in more
than half the children failing to exceed the third centile. The
response to therapy did not differ between those treated with
two or three injections per week, despite a significant dif-
ference in total dose received, suggesting that frequency of
injections is important. Other early final height studies also
reported a modest response to GH replacement, with adult
heights not always significantly greater than those observed
in untreated individuals (56–59). In 1985, the first reports
emerged of the link between pituitary-derived GH therapy
and Creutzfeldt-Jakob disease (60), and human GH was
promptly withdrawn. However, within a year GH produced
by recombinant DNA technology became available (61). In
addition to negating the risk of Creutzfeldt-Jakob disease,
synthetic GH also transformed the practice of GH replace-
ment by providing a potentially limitless supply of therapy.
This allowed the treatment of GHD children with higher,
more appropriate doses, and also enabled GH therapy to be
offered to a much wider range of patients. Subsequent stud-
ies have helped define which patients benefit from GH ther-
apy and the optimal dosing schedules.

A. Diagnosis of GHD and patient selection

In pediatric practice, the diagnosis of GH deficiency is
usually suspected on the grounds of auxological data, al-
though a minority of children are diagnosed because of
known pituitary disease or after radiotherapy involving the
hypothalamo-pituitary region. Selection of the patients most
likely to derive clinical benefit from GH therapy demands a
sensitive and specific test that distinguishes GH-deficient
from normal subjects. A number of approaches have been
used to confirm GHD in childhood, including GH stimula-
tion tests, 24-h GH profiles, urinary GH, and measurements
of IGFs and IGFBPs (62–64). There is no single test, however,
that can invariably distinguish normal children from GH-
deficient individuals, particularly those with less severe de-
grees of GHD.

Provocative tests remain the standard method of confirm-
ing a diagnosis of GHD in a child in whom the diagnosis
is suspected on the basis of auxological data, or a predis-

posing factor (64). A number of different agents have been
used including insulin, arginine, glucagon, propranolol,
clonidine, and l-dopa (63). Physiological stimuli, such as
sleep, fasting, and exercise, have also been employed. The
definition of what constitutes a normal rise in serum GH
concentration after either physiological or pharmacological
stimulation is largely arbitrary. In early reports, a stimulated
peak GH level of 5 ng/ml or more was considered to be
indicative of normal GH reserve. This definition has grad-
ually changed, influenced to some extent by the increased
availability of therapy after the advent of rhGH, such that a
level of between 7 and 10 ng/ml is now generally accepted
as the cutoff. IGF-I and IGFBP-3 levels have also been used
as a measure of GH status, and it has been suggested that the
use of a combination of tests improves diagnostic accuracy
(62). However, there remains no method of reliably separat-
ing all GH-deficient children from GH-replete subjects, and
this difficulty is reflected in the retest data, which suggest
that a substantial proportion of children treated for GHD
during childhood have entirely normal GH responses to
standard tests in adult life (65). In practice, the diagnosis of
GHD is based on careful clinical assessment, augmented by
a number of tests, which reflect GH status (63).

B. GH treatment: dose and schedule

There is good evidence that GH therapy should begin as
soon as possible to optimize long-term growth (66–68).
Prompt initiation of therapy is particularly important in
young children in whom fasting hypoglycemia may com-
plicate GHD (69). While there is broad agreement about the
optimal timing of the start of therapy, the selection of the
appropriate GH treatment dose is less clear.

There are several methods that may be employed for de-
fining the optimal replacement regimen in GH-deficient pa-
tients. Attempts can be made to mimic normal physiology by
administering GH at doses that approximate to normal pro-
duction rates, or by attempting to achieve serum levels of GH
or GH-dependent markers that are close to normal levels.
Alternatively, treatment may be selected on the basis of the
reversal of the biological endpoints of GHD, while minimiz-
ing any adverse effects of therapy. In pediatric practice, the
selection of optimal GH doses and treatment schedules has
rested almost entirely on the response to therapy in terms of
linear growth.

Some attempts have been made to define physiological
GH requirements by examining GH production in normal
subjects, or by measuring biochemical markers of GH status
in treated patients. Studies in healthy children have esti-
mated daily endogenous GH production to be approxi-
mately 20 �g/kg/d (equivalent to 0.14 mg/kg/week) (70,
71), rising to 35 �g/kg/d in late puberty (71), although con-
siderable interindividual variability exists (72–75). Extrapo-
lating this to replacement doses is hampered by the different
pharmacodynamics of exogenous GH administered subcu-
taneously, but it does provide an estimate of GH require-
ments. Few data exist regarding the measurement of GH
markers during replacement therapy in children. Hibi et al.
(76) measured plasma IGF-I, urinary IGF-I, and urinary GH
in a cohort of GH-deficient children and suggested that a GH
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dose of 0.16 mg/kg/wk was close to a physiological replace-
ment dose. A more recent study has documented serum
IGF-I and IGFBP-3 levels within the normal range in a group
of GHD children receiving a mean GH dose of 0.17 mg/kg/
wk. Furthermore, in a large multicenter randomized US trial
(n � 139), girls with Turner syndrome received either 0.27
mg/kg/wk or 0.36 mg/kg/wk of GH in combination with
either low-dose estrogen or oral placebo, and only 1.4% had
serum IGF-I levels greater than 2 sd above the mean for age
(77). In contrast, in a smaller study of 31 patients, Tillman et
al. (78) reported two of 20 GHD and three of seven children
with Turner syndrome showed supraphysiological IGF-I
levels during the first year of GH treatment. As the mea-
surement of IGF-I during childhood GH therapy becomes
commonplace, more information will become available re-
garding IGF-I levels achieved with different GH doses. It is
clearly important that normative data should be accumu-
lated across the childhood age range.

The vast majority of clinicians have used the growth re-
sponse to GH therapy to define the optimal replacement
dose. The endpoints used to define the benefits of different
doses have been both short-term growth and growth velocity
and, more importantly, final height. It was recognized before
the advent of rhGH that a dose-response relationship exists
between GH dose and growth rate (79, 80), and more recent
data have confirmed that GH dose influences the short-term
growth response to GH replacement (81, 82). In addition,
dose frequency has been shown to be an important factor in
determining the response to therapy. Changing from three
times a week to a daily subcutaneous injection results in an
increased growth rate for a given total GH dose (83, 84),
although no further growth advantage has been demon-
strated with more frequent injections (84–86). With the
greater availability of rhGH, higher GH doses have generally
been used, and this has resulted in more favorable final
height data. Despite reasonable improvements in height sd
scores (the number of sd scores by which an individual’s
height differs from the mean for his/her age and sex) during
treatment with pituitary-derived GH, average final height in
these children was only �2.3 sd scores (87). The vast majority
of patients treated with rhGH, however, achieve a final
height within the normal range, with an average final height
of �1.4 sd score (87). In the last 5 yr a number of groups have
published data from cohorts of children treated with rhGH
to final height (66, 68, 87–92). Height gain in these studies, as
assessed by the difference between final height and predicted
adult height or initial height sd score, ranged between 0.8 sd
and 2.4 sd, with average final height ranging between �2.1
sd and �0.7 sd. The criteria used to diagnose GHD and
therapeutic regimens employed varied between the studies
and probably account for much of the variation in the results.

These data confirm the benefits of treatment with a weekly
dose of at least 0.15 mg/kg but controversy remains con-
cerning the additional benefits of higher doses. Analysis of
final height data suggests that a dose between 0.17 and 0.3
mg/kg/wk is a reasonable replacement dose (70). The most
reliable data are taken from large multicenter studies such as
the Kabi International Growth Study (KIGS), the National
Co-operative Growth Study (NCGS), and the Genentech
Growth Study group (GGSG). Interpretation of data from

these large cohorts of patients is complicated by the fact that
they were collected over a number of years from many dif-
ferent centers, and there is therefore a degree of variability
in the treatment protocols employed. Thus, a proportion of
patients have received treatment that is now considered sub-
optimal, and the responses to therapy need to be assessed
with this in mind. In addition, some of the differences ob-
served in the response to therapy may be due to differences
in the study populations. Data from the GGSG (66) suggest
that treatment with 0.3 mg/kg/wk is associated with sig-
nificantly greater improvements in final height than those
observed in patients enrolled into KIGS, who received a
lower average dose of 0.16 mg/kg/wk (88). The GGSG co-
hort achieved a final height of �0.7 sd compared with �1.5
in the KIGS group. However, the midparental height of the
GGSG cohort was significantly greater than that in the KIGS
group, and, after correcting for this, there was no difference
in final height achieved (88). In addition, data from the NCGS
in a larger cohort of GH-deficient children treated with 0.3
mg/kg/wk demonstrated a more modest response (68) sim-
ilar to that seen in the KIGS patients (final height �1.4 sd).
However, analysis of a separate cohort of Swedish patients
within KIGS treated with an intermediate dose of 0.22 mg/
kg/wk demonstrated complete normalization of final height,
indicating that higher doses may result in a better response
to therapy (88). Furthermore, a recent report suggested a
significant short-term growth advantage from a GH dose of
0.35 mg/kg/wk over that observed with 0.17 mg/kg/wk
(93). A further increase in the dose to 0.7 mg/kg/wk con-
ferred no additional benefit, and this concurs with other
studies that have examined the use of higher GH doses (70,
94). In accordance with all these data, recent internationally
agreed guidelines for the treatment of GH deficiency in child-
hood suggest a dose of 0.17–0.35 mg/kg/wk (95).

Ultimately, the selection of the replacement dose is based
on interpretation of the available data, local availability of
GH, and also on financial grounds. Given the variability in
GH production in normal individuals, it is likely that GH
requirements will vary from patient to patient, and a more
individual approach may eventually be required. This would
necessitate an accurate method for assessing and monitoring
the appropriateness of a given GH dose in each patient.

C. Puberty

GH production in normal individuals rises during puberty
(71). In addition, a positive correlation has been found be-
tween total pubertal height gain and mean GH dose during
puberty (96). It has therefore been suggested that the dose of
GH replacement should be increased at the onset of puberty
to mimic normal physiology. Stanhope et al. (97), however,
demonstrated no increase in growth rate on increasing GH
dose from 15 IU/m2/wk to 30 IU/m2/wk during puberty in
a small cohort of GH-deficient children, compared with a
control group who continued on 15 IU/m2/wk. Indeed, their
data suggested that a high GH dose accelerated the progres-
sion through puberty and may therefore be detrimental to
final height outcome. It should be noted, however, that their
conclusions were based on the short-term growth response,
and these children were not followed to final height. More
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recently, Albertsson-Wikland et al. (98) demonstrated no in-
crease in total pubertal height gain in boys treated with 0.42
mg/kg/wk compared with boys treated with 0.21 mg/kg/
wk. In addition, MacGillivray et al. (70) compared data be-
tween several large studies of GH replacement employing
differing doses of GH. Pubertal height gain did not differ
significantly between the cohorts, suggesting no additional
benefit from a higher replacement dose during puberty (70).
Thus, while some centers still advocate an increase in GH
dose at puberty, many clinicians continue treatment at a
similar dose (calculated per kg or m2) throughout childhood.

The most likely explanation for the lack of a significant
growth advantage with an increased GH dose during pu-
berty is that this is associated with an advance in bone mat-
uration. This will lead to earlier fusion of the epiphyses and
therefore shorten pubertal growth, and it has thus been sug-
gested that pharmacological delay of pubertal development
may improve the overall growth response to GH replace-
ment. Delaying the progression through puberty by the ad-
ministration of GnRH analogs has been standard practice for
the treatment of precocious puberty for a number of years.
The main long-term goal of this therapy is to prevent re-
ductions in adult height, which will occur if puberty is al-
lowed to progress at an early age, because of the reduced
time available for linear growth. Improvements in final
height have been achieved with GnRH analog therapy in
precocious puberty (99–101), although some authors have
suggested that the addition of GH therapy may further im-
prove growth. A few studies have examined the effects of
combined treatment with GH and GnRH analogs in children
with precocious puberty and normal GH levels (102, 103). In
addition, there are a number of reports of combined treat-
ment in children with both GHD and early puberty (104, 105).
The use of combined therapy has also been investigated in
short normal children (103, 106–108). The results of these
studies have been variable, with many showing little im-
provement in growth velocity or final height. Nonetheless, it
has been postulated that GnRH analog therapy may augment
the growth response to GH therapy in GHD. A few studies
have suggested improvements in final height prognosis with
a combination of GH and GnRH therapy (109–112). Some of
these reports have been limited by the use of final height
predictions based on the short-term response to therapy. The
recent report from Mericq et al., however, followed 21 GH-
deficient subjects to near-final height defined as a bone age
of 14 yr in girls and 16 yr in boys (111). Patients were ran-
domly assigned to GH therapy plus LHRH analog of GH
alone. A significant gain in near-final height was demon-
strated for those receiving combination treatment compared
with those treated with GH alone (mean height sd score �1.3
vs. �2.7), with no alteration in body proportions. This was
achieved at the expense of significantly delaying puberty,
with the mean age at menarche in the girls treated with
LHRH being 18.2 yr compared with 15.9 yr in the GH-alone
group. Thus, while these data are promising in terms of
potential height gain, the psychosocial implications of pu-
bertal delay need to be balanced against the growth advan-
tage that is potentially conferred by the addition of GnRH
analogs to GH therapy. In addition, the number of patients
who have been followed to final height remains small, and

further data are required before the addition of GnRH analog
therapy can be routinely recommended for use in GH-
deficient children in the absence of coexisting precocious
puberty.

D. Side effects of GH therapy

There are a number of adverse effects that have been
attributed to GH replacement during childhood. The most
comprehensive data are available from large international
surveillance studies that have been specifically designed to
monitor safety of treatment. Idiopathic (benign) intracranial
hypertension was first reported in 1992 (113), and a number
of subsequent reports have confirmed the relationship with
GH therapy (114–118). Data from the NCGS and KIGS da-
tabases have revealed 35 cases of idiopathic intracranial hy-
pertension from a total of more than 40,000 patients receiving
more than 109,000 yr of GH therapy (114, 117). The condition
improves after withdrawal of therapy, and GH can often be
restarted without a recurrence of the problem.

The question of the impact of GH therapy on tumor
growth has often been raised, particularly with reference to
populations of children previously treated for childhood ma-
lignancies. Because interpretation of tumor recurrence data
is complicated by biases introduced by the selection of chil-
dren for GH therapy, careful matching of control populations
is necessary. The available data do not suggest any increase
in the risk of tumor recurrence in the children after GH
treatment; both single-center studies (119) and large-multi-
center surveillance studies (114, 120) have failed to show any
increase in the incidence of de novo malignancies during GH
replacement. Fasting glucose levels have been shown to rise
after the commencement of GH therapy in children (121), and
there have been reports of the development of diabetes mel-
litus during treatment (122). Data from the NCGS (117) and
KIGS have not suggested an increase in the incidence of type
1 diabetes, but the KIGS database did demonstrate a higher
than expected incidence of type 2 diabetes in a heterogeneous
population including children treated with GH for short
stature not due to GHD (123). The incidence was, however,
very small (34 cases per 100,000 yr of GH treatment), and it
was postulated that the higher rates may indicate an accel-
eration of the disorder in predisposed individuals.

A number of other adverse events occur more commonly
during GH therapy in children. Slipped capital femoral
epiphysis (117, 124), gynecomastia (116), and juvenile osteo-
chondritis (114) have all been reported during treatment,
although a direct causal relationship with GH has not been
established. Interestingly, edema and carpal tunnel syn-
drome only occur only very rarely in pediatric practice (117),
although these are commonly reported in adult-onset GH-
deficient patients receiving GH replacement (125). The rea-
son for this discordance is not clear.

E. Predictors of response to therapy

Several reports from large cohorts of GH-deficient chil-
dren have provided some information on factors that influ-
ence the growth response to GH replacement (51, 66, 72, 73,
76, 82, 88, 89, 92, 108, 126). Analysis of the KIGS database
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suggested that first year height velocity was negatively cor-
related with age and height sd score and positively correlated
with birth weight, weight at beginning of therapy, GH dose,
frequency of injection, target height sd score, and degree of
GHD, as judged by the peak GH response to a stimulation
test (81, 127). Analysis of final height data demonstrated no
effect of GH dose on adult height, although the duration of
GH therapy was a significant factor (88). This underscores
the need to begin GH therapy as early as possible to attain
the maximum final height, and also suggests that, within the
dose range used (10th–90th centiles; 0.11–0.24 mg/kg/wk),
variations in weekly GH dose has little effect on final height.
Data from the NCGS are consistent with these findings, sug-
gesting that the initial response to GH therapy may be pre-
dicted by age, degree of GHD, weight adjusted for height,
GH dose, injection frequency, and midparental height (82).
Final height was dependent on pretreatment height and age,
duration of treatment, sex, and first year growth rate (66).
Thus, knowledge of a number of baseline parameters will
help predict the response to therapy. From these data, mod-
els have been developed that allow reasonably accurate pre-
diction of the first year growth velocity after GH therapy.
However, although a greater initial response to treatment
will be psychologically important to the patient and is likely
also to improve compliance, the final height achieved is
generally considered to be the most important goal of ther-
apy. The model developed from the KIGS database (127) has
been extended to examine second, third, and fourth year
growth response and has demonstrated that first year height
velocity is the most important predictor of subsequent
growth. Extrapolation of these results would suggest that
first year height velocity is likely to be an important deter-
minant of final height; however, this has yet to be established,
and at present these models can predict only the initial
growth after the institution of GH replacement and not the
overall response to therapy.

There are also a number of other markers that may help
predict the initial growth response. Markers of bone turnover
are significantly reduced in GH-deficient children and in-
crease after GH replacement (128). The increase in serum
bone alkaline phosphatase levels (a marker of bone forma-
tion) after 3 months of GH replacement has been shown to
correlate with improvements in the height sd score in the first
year of therapy. Serum leptin levels also alter with GH status,
predominately as a result of changes in fat mass and distri-
bution. Leptin levels reduce during GH replacement (129),
and changes in leptin concentration 1 and 3 months after the
beginning of GH therapy have been shown to correlate with
growth in the first year of treatment (130). These observations
of changes in bone alkaline phosphatase and serum leptin
indicate that metabolic markers are potential predictors of
the short-term growth response to GH therapy.

Standard GH replacement therapy in GH-deficient chil-
dren thus consists of daily injections of rhGH, usually ad-
ministered at a weight-based dose of between 0.17 and 0.3
mg/kg/wk. Treatment is initiated as soon as possible once
the diagnosis has been made and is continued until the at-
tainment of final height. This is usually defined as either a
slowing of growth to an annualized height velocity of less
than 1 cm/yr or the demonstration of fusion of the long bone

epiphyses (131). Improvements in linear growth have been
almost the sole indication for the use of GH in pediatric
practice. There are some data, however, concerning the use
of GH in normally growing GH-deficient patients after sur-
gery for craniopharyngioma (132), which demonstrated ben-
eficial metabolic effects of treatment resulting in advanta-
geous changes in body composition and suggested that GH
replacement is indicated in these children despite their nor-
mal growth. In addition, data from the use of GH therapy in
children with Prader-Willi syndrome have demonstrated
beneficial effects of treatment on body composition, muscle
strength, and respiratory function (133–135). These unusual
situations highlight the potential benefits of GH replacement
in childhood other than linear growth.

GH replacement has evolved since the pioneering work of
the 1950s using cadaveric pituitary-derived GH. Numerous
studies have helped define the optimal management of GH
replacement during childhood. The recognition of the im-
portance of GHD during adult life has necessitated a more
detailed study of GHD and the impact of treatment, which
has resulted in a reevaluation of pediatric practice. The mon-
itoring of parameters other than linear growth to help refine
GH therapy should now be incorporated into childhood GH
replacement. Further research will be required to define the
optimal management of the transition from pediatric to adult
GH replacement, and a smooth changeover will only be
accomplished once the benefits of GH after the completion
of growth are accepted by pediatric and adult endocrinolo-
gists alike.

V. Adult GH Replacement: Historical Perspective

The earliest report of the beneficial effects of GH in the
treatment of adult hypopituitarism was in 1962, when in-
creased vigor and well being were reported by a 35-yr-old
hypopituitary patient treated with cadaveric GH (136). This
was followed, approximately 30 yr later, by a series of ran-
domized, placebo-controlled trials, in which it was convinc-
ingly demonstrated that treatment of GHD adults with rhGH
led to significant improvements in body composition, well
being, and serum lipoprotein levels (1–6). Almost coincident
with these studies came the first (137) of several reports
(138–140) to suggest that hypopituitarism is associated with
decreased life expectancy compared with age-matched
healthy controls, despite adequate replacement with glu-
cocorticoids, thyroid hormone, and sex steroids. Although it
remains an intriguing possibility that the increased visceral
adiposity and abnormal cardiovascular risk profile associ-
ated with adult GHD contribute to the demonstrable de-
creased life expectancy, there are at present no solid data to
support this hypothesis or that treatment with rhGH im-
proves mortality outcome in adult hypopituitarism.

VI. Rationale and Strategies for GH Replacement
in Adults

In the absence of evidence that GH replacement therapy
for adult GHD is associated with an improvement in mor-
tality outcome, it is the development of symptoms of a char-
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acteristic clinical syndrome, discussed in detail below, that is
the most frequent trigger for consideration of treatment of
hypopituitary adults with rhGH. Unlike other hormones
used for the treatment of hypopituitarism, for which the
benefits of replacement therapy are universally accepted,
there is considerable national variation in the clinical indi-
cations for the prescription of GH. This variation relates in
part to financial constraints, but it is also indicative of an area
of clinical practice in which the sudden availability of an
unlimited supply of drugs has necessitated a rapid evalua-
tion of the indications for its use and, hence, a strategy for its
monitoring. Essentially three main approaches to the practice
of GH replacement have been used. One is that because of its
cost and the lack of evidence of its long-term efficacy in
improving cardiovascular risk and reducing mortality, GH
replacement should not be offered to hypopituitary patients
A second approach, adopted by some countries, is that all
hypopituitary patients with GHD require GH replacement,
simply on the principle of complete hormone replacement
therapy. In most countries, however, a third approach is
adopted involving selection of patients for GH replacement.
In the United Kingdom and many other European countries,
selection is made largely on the basis of quality of life and/or
bone mineral density considerations, but alternative strate-
gies could include selection of patients with a particularly
high cardiovascular risk profile.

The potential improvement of several of the adverse
features of the adult GHD syndrome with rhGH therapy
means, in turn, that changes in these parameters are used
as clinical indicators of GH efficacy during replacement
therapy. During the double-blind placebo-controlled trials
of GH replacement, and in the immediate period after its
license for use in adults, it was thought, by analogy with
pediatric practice, that clinical monitoring would be suf-
ficient and that markers such as body composition would
simply substitute for linear growth. However, with time
and shared clinical experience, it has become apparent that
individual responsiveness to GH is highly variable and
that the dose should be adjusted to suit each individual
patient. This, in turn, is accomplished using a combination
of tolerability (i.e., the occurrence of side effects), clinical
response, and measurement of biochemical indices of GH
action. In the debate surrounding the optimization of GH
dosing schedules, supportive evidence comes from a com-
bination of placebo-controlled studies (both single- and
multicenter) and information collected through interna-
tional outcomes-based multicenter research databases, in
which data are recorded during longitudinal follow-up in
a conventional clinical setting. Although patient numbers
may be limited in a single center, it is often the case that
those patients have been treated by a single physician or
group of physicians in an identical manner, such that it
becomes possible to draw conclusions about specific treat-
ment protocols. In contrast, dosing strategies vary be-
tween centers, but large databases permit the identifica-
tion of subtle trends regarding individual susceptibility,
together with early detection of important safety issues
that may not be possible from a single center or even a
single country.

VII. Tolerability

rhGH has an identical amino acid sequence to endogenous
GH (61), such that side effects of GH replacement therapy are
almost exclusively due to excess dosing. In the early trials of
GH replacement, symptoms related to the antinatriuretic
actions of GH, such as edema, arthralgia, and myalgia, were
common and necessitated dose reductions in up to 40% of
patients (2, 3). Side effects were more common in elderly and
obese patients (141), both of whom would have received
disproportionately larger doses, in the early studies using
weight-based dosing regimens, than would be predicted
from the physiological principles of GH secretion outlined
above. Side effects were significantly reduced by beginning
GH at smaller doses, building up to the (then) weight-based
target dose. Conversely, trials involving mostly lean and
young adults have been associated with fewer side effects
(142). However, even when GH doses are lowered because
of adverse symptoms, biochemical markers of GH action,
such as serum IGF-I, remain elevated in up to one-third of
patients (143), suggesting that the absence of classical symp-
toms of GH overtreatment is a relatively crude method of
judging excess GH exposure.

VIII. Clinical Response to GH Replacement

In the absence of conclusive evidence that GH replacement
reduces cardiovascular mortality, it is the potential reversal
of many of the features of GHD, most notably abnormal body
composition, impaired quality of life, osteopenia with in-
creased fracture risk, and cardiac dysfunction, that leads to
the initiation of treatment. It might therefore be argued that
each of these could be used as a marker of efficacy during GH
replacement. In discussing the merits of different approaches
to adult GH replacement therapy, it is important to note that
supportive evidence comes from both placebo-controlled
and open-label studies, each of which provide separate, but
complementary, information.

A. Body composition

GHD adults have increased android (abdominal and vis-
ceral) fat, decreased lean body mass, and decreased total
body water compared with age-matched healthy controls (1,
2, 144). Several double-blind, placebo-controlled studies, all
slightly different in design, have shown consistent, beneficial
effects on all these parameters with GH replacement therapy
(1, 2, 3–5), attributable to its known lipolytic (145), protein
synthetic (146), and antinatriuretic actions. A variety of tech-
niques are available for the assessment of body composition
in clinical trials of GH therapy in adult hypopituitarism,
including bioimpedance analysis (147), isotope dilution es-
timation of total body water (TBW) (148), total body potas-
sium (TBK) estimation using a 40K counter (149), dual energy
x-ray absorptiometry (150), anthropometry (151), and CT
scanning (152). Although some groups have used a four-
compartment model of body composition (144), most studies
have monitored changes in body composition on the basis of
a two-compartment model [fat mass (FM) and lean body
mass (LBM)], each of which has distinct physico-chemical

432 Endocrine Reviews, August 2001, 22(4):425–450 Drake et al. • GH Therapy in Adults and Children

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/22/4/425/2423987 by guest on 20 August 2022



properties. For example, estimates of LBM from measure-
ments of TBK rely on an assumption of 60 mmol potassium
per kg LBM (153). FM is then calculated by subtracting the
derived LBM from the total body weight. Isotopic dilution
measurements of TBW may be used to calculate LBM on the
basis that water constitutes 73% of LBM (hence LBM � TBW/
0.73). It is important to note that such calculations are based
on models of body composition in healthy, GH-replete in-
dividuals and that extrapolation to GHD adults may not be
strictly valid. Further, although most techniques measure
body fat with accuracy and precision, some techniques, no-
tably bioimpedance analysis and dual energy x-ray absorp-
tiometry, may overestimate LBM changes (154). However, as
can be seen from Table 1, the qualitative effects of GH re-
placement on body composition in adult GHD (both AO and
CO) have been strikingly similar in the trials listed, all of
which were randomized, double-blind, and placebo con-
trolled. Some of the quantitative differences between studies
may, at least in part, be attributed to different GH dosing
regimens used and the discrepancies known to exist between
the various techniques available for the measurement of
body composition (154). Although many of the above tech-
niques are not routinely available outside supervised clinical
trials, it should be noted that the simple measurement of
waist-hip ratio correlates well with the reduction in visceral
FM that occurs with GH replacement and provides a sensi-
tive and reproducible method of monitoring certain aspects
of altered body composition during GH therapy (2).

Since the original demonstration, in placebo-controlled
clinical trials, that weight-based doses of GH replacement
therapy favorably modify various indices of body compo-
sition, a number of open-label studies have examined the
value of using such changes as the major determinant of
dosing during replacement therapy. Johannsson et al. (158)

randomized 60 patients to one of two dosing regimens of GH:
a high dose of 12 �g/kg/d or an individualized dose, in
which a low starting dose of GH was followed by individual
dose adjustments according to measurements of serum IGF-I
and changes in body composition, with relative weighting
given to the more abnormal parameter. Dose increments
were generally made on account of a serum IGF-I level below
the age-related reference range, but in those patients with a
normal baseline serum IGF-I, dose adjustments were made
according to measurements of body composition. Improve-
ments in body composition were similar in the two groups
but, in some individualized dose patients, dose increments
on account of persistently abnormal body composition re-
sulted in elevated serum IGF-I levels. This would suggest
that, in some hypopituitary patients, attributing the totality
of abnormal body composition solely to GHD may not be
appropriate and that increasing the dose of GH in an attempt
to normalize body composition may result in overtreatment,
judged by biochemical markers of GH action.

In a separate study (159), assessments of body composition
and measurements of biochemical markers of GH action
(IGF-I, IGFBP-1, and BP-3 and ALS) were monitored during
12 months of treatment with a weight-based GH dosing
regimen. Significant improvements in body composition
were observed. Although no individualized dosing was
made on the basis of the above measurements, dose reduc-
tions were necessary in 7 of 20 patients because of side effects
of fluid retention. Even with these dose reductions, serum
IGF-I remained elevated in seven patients (35%), while ALS
and IGFBP-3 were above the age-related reference range in
five (25%) and three (15%) patients, respectively (159).

De Boer et al. (143) conducted a 12-month placebo-
controlled trial of GH replacement, randomizing 46 GHD
male patients to one of four treatment protocols: placebo for

TABLE 1. Effects of GH on body composition in various randomized controlled trials

First author (yr) Patients Duration Technique Dose GH used Observed

Salomon (1989)
(2)

24 (AO/CO) 6 months TBK, AP 0.5 IU/kg/wk
� 25 �g/kg/d

LBM 1 5.5 kg
FM 2 5.9 kg

Jorgensen
(1989) (1)

21 (CO) 4 months CT 2 IU/m2 Quadriceps muscle
Quadriceps fat volume

Bengtsson
(1993) (3)

10 (AO) 6 months TBK, CT, BIA 0.25–0.5 IU/kg/wk
� 13–26 �g/kg/d

LBM 1 4.6 kg
FM 2 6.1 kg

Johannsson
(1996) (155)

68 (AO) 6 months DEXA, BIA 0.24 IU/kg/wk
12 �g/kg/d

LBM 1 2 kg
FM 2 2.6 kg
TBW 1 1.6 kg

Attanasio (1997)
(156)

97 (AO)
74 (CO)

6 months BIA, AP 0.25 IU/kg/wk
� 12.5 �g/kg/d

LBM 1 3.5 kg
FM 2 4.9 kg (AO)
LBM 1 3.7 kg
FM 2 5.5 kg (CO)

Whitehead
(1992) (5)

14 (MO) 6 months AP, CT 0.5 IU/kg/wk
� 25 �g/kg/d

LBM 1 3.6 kg
FM 2 2.2 kg

Christ (1997)
(157)

13 (MO) 3 months BIA, IDL 0.25 IU/kg/wk
� 12.5 �g/kg/d

LBM 1 3.4 kg
FM 2 2.4 kg
TBW 1 2.5 kg

AO, Adult-onset GHD; CO, childhood-onset GHD; FM, fat mass; MO, mixed-onset GHD; TBK, total body potassium; BIA, bioimpedance
analysis; CT, computed tomography; AP, anthropometry; IDL, isotope dilution; LBM, lean body mass.
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6 months followed by GH 2 IU/m2/d; or one of three doses
of GH for 12 months (1, 2, and 3 IU/m2/d). Some reductions
in dose were necessary due to unacceptable side effects of GH
excess, but the absence of such symptoms was a poor guide
to overtreatment, judged by serum IGF-I levels (Fig. 2). Most
of the patients treated with the highest dose of GH had serum
IGF-I levels outside the age-related reference range. It should
be noted that, in this study, the doses of GH necessary to
normalize serum IGF-I were also associated with restoration
of normal tissue hydration, emphasizing the potential use of
clinical markers of GH efficacy during GH dose titration.

A more global assessment of the effect of GH on body
composition and the relationship to serum IGF-I comes from
a recent international report of 1,018 patients receiving GH
replacement in 20 different countries (160). Improvements in
body composition, as determined by the simple measure-
ment of waist-hip ratio, were similar in patients enrolled at
the time of initiation of GH (GH “naı̈ve” patients) and non-
naı̈ve patients (those already taking GH at enrollment into
the database). However, mean GH dose and mean serum
IGF-I were significantly higher in non-naı̈ve patients, most of
whom had previously been treated with weight-based GH
regimens, with subsequent adjustment of dose during clin-
ical follow up. Overtreatment with GH (defined as a serum
IGF-I greater than 2 sd scores above the mean) was seen in
both groups of patients, but was significantly more common
in non-naı̈ve patients (23.3 vs. 15.9%). This might suggest that
the “extra” GH received by non-naı̈ve patients is not asso-
ciated with a significant benefit in terms of improved body
composition, but is associated with a significantly greater
incidence of excess GH exposure, judged by elevated levels
of serum IGF-I (160).

B. Quality of life and well-being

Reduced quality of life and sense of vitality are well recog-
nized features of the adult GHD syndrome (161, 162). Although

this may in part relate to abnormal body composition and
impaired muscle strength, there is widespread agreement that
the low energy levels, social isolation, increased emotional
stress, impaired socio-economic performance, and greater dif-
ficulties forming relationships evident in many hypopituitary
patients are directly due to GHD. In many countries, availa-
bility of GH is limited to patients with severe GHD associated
with one or a combination of these symptoms, and their im-
provement is therefore an important clinical parameter by
which to judge the efficacy of GH replacement. The early trials
of GH replacement used a variety of generic methods to mea-
sure and monitor well-being such as the Nottingham Health
Profile (NHP) (163) and the Psychological General Well-Being
Schedule (PGWBS) (164). The NHP questionnaire consists of a
number of specific questions, with yes/no responses, about
energy levels, sleep, relationships, emotional responses, physi-
cal mobility, and pain. The Psychological General Well-Being
Schedule (PGWBS) involves the use of a rating (from 0, worst,
to 5, best) for a series of questions about affective categories such
as anxiety, depression, positive well-being, general health, and
vitality.

A number of placebo-controlled studies have documented
statistically significant improvements in well-being, assessed
by various methods, after the initiation of GH replacement
(3, 162, 165), although such results have not been universally
reported (5, 166). The reasons for such discrepancies are not
entirely clear, although it is interesting to note that many
patients in the study of Baum et al (166) did not achieve
significant increments in serum IGF-I levels, suggesting that
compliance with GH therapy may have been suboptimal. It
is also important to note that patients who participated in the
early trials of GH therapy were frequently the most severely
disadvantaged in terms of psychological distress (167) and
therefore more likely to wish to continue with GH replace-
ment after a therapeutic trial (168). Hence, because of these
findings, caution should be exercised in the interpretation of
psychological well being data.

Since these placebo-controlled studies, a number of open-
label studies have examined the clinical utility of using well-
being scores as a marker of efficacy during GH replacement.
In most cases, these studies have used doses of GH that
would now be considered inappropriately high, and the pro-
portion of patients with a serum IGF-I above the age-related
reference range was, in some cases, as high as 56% (169). In
one study (170), the effect of two different GH dosing reg-
imens (0.012 and 0.024 mg/kg/d) on well-being, judged by
NHP and PGWB scores, was investigated. Identical improve-
ments in well-being were observed in both groups, yet 45%
of the patients in the higher dose group had an elevated
serum IGF-I compared with 24% receiving the lower dose. In
other words, the extra GH administered resulted in no
greater clinical benefit in terms of well-being, but was asso-
ciated with biochemical overtreatment in nearly twice as
many patients. In the same report, of those patients that chose
to continue GH therapy after the conclusion of the trial, 33%
had a supranormal serum IGF-I compared with 30% of those
who elected to discontinue due to a lack of improvement in
well-being. If the dose of GH in the “non-improvers” had
been increased because of a poor clinical response, it may
have pushed serum IGF-I further into the acromegalic range.

FIG. 2. Measurement of IGF-I response in 46 men with CO-GHD
randomized to receive one of three starting doses of GH with subse-
quent adjustment according to clinical characteristics. F, Symptoms
of GH excess. E, No symptoms of GH excess. [Reproduced with per-
mission from H. de Boer et al.: J Clin Endocrinol Metab 81:1371–1377,
1996 (143). © The Endocrine Society.]
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More recently, attempts have been made to use scoring
systems for psychosocial morbidity that are more specific to
GHD. The adult GHD assessment (AGHDA) score (171–173)
provides a sensitive and highly reproducible method of mon-
itoring improvements in the psychosocial consequences of
GHD that may accompany GH replacement therapy. The
AGHDA questionnaire consists of 25 questions derived from
the symptoms most frequently reported by patients with
adult-onset GHD. A score of 25/25 represents the worst
possible well-being score, while scores of 4/25 or less have
been recorded in a normal control population (174). In those
patients whose well-being improves with GH, improve-
ments in AGHDA scores occur within 3 months of GH re-
placement therapy in the majority of patients and are main-
tained at 6 and 12 months (175). Interestingly, improvements
in AGHDA scores may be seen in some patients treated with
GH whose dose is insufficient to have caused a significant
increment in serum IGF-I, suggesting that improvements in
the psychological aspects of GHD may, at least in part, be
mediated directly by GH rather than via generation of IGF-I
(175). It is not known whether patients exposed to excess GH
(either in the context of acromegaly or by overtreatment with
GH in hypopituitarism) have AGHDA scores that are dif-
ferent from control populations. However, an interesting
comparison can be made between hypopituitary patients
treated initially on weight-based dosing schedules, with sub-
sequent dose adjustment during clinical follow-up and pa-
tients initially started on low doses of GH with subsequent
careful dose titration on the basis of levels of serum IGF-I
(175). Maintenance doses of GH and serum IGF-I levels were
significantly higher in the patients initially treated with
weight-based dosing schedules, yet well-being, as judged by
AGHDA score, was no different.

C. Bone density and bone remodeling

It is thought that, in childhood, GH promotes longitudinal
bone growth by a combination of a direct effect on epiphyseal
chondrocytes (176) and by paracrine generation of IGF-I
(177). However, it is now widely accepted that GH also has
an important role to play in the achievement of peak bone
mass after the completion of linear growth and also in the
maintenance of bone mass through adult life. AO hypopi-
tuitary patients receiving conventional endocrine replace-
ment therapy are osteopenic compared with age-matched
healthy controls (178, 179), an observation that is almost
certainly clinically relevant given the increased fracture rate
evident in this patient group (180). Furthermore, there are
data to suggest that the severity of bone loss is proportional
to the biochemical severity of GHD (181). The mechanisms
for this disadvantage are not fully understood but are likely
to relate, at least in part, to reduced bone remodeling activity.
Activity of the bone remodeling unit (i.e., the rate of bone
turnover) may be assessed by measuring markers of the
activity of the two limbs of the bone remodeling unit. Os-
teoclasts mediate bone resorption, and indices of their ac-
tivity include pyridinoline, deoxypyridinoline, and serum
type I carboxy-terminal cross-linked telopeptide. Markers of
osteoblastic activity (bone formation) include the bone-
specific isoenzyme of alkaline phosphatase (BSAP), osteo-

calcin, and carboxy-terminal propeptides of type I collagen.
GH stimulates proliferation and differentiation of osteoblasts
in vitro in humans (28) and in mice (182) and further, sur-
rogate, evidence for an important effect of GHD in vivo is
supported by the observation of subnormal levels of osteo-
calcin and BSAP in adults with GHD (142, 183).

Although osteopenia is an important factor in considering
a trial of GH replacement, few clinicians would regard it as
the sole reason to begin treatment. However, changes in
BMD represent an important marker of efficacy of GH ther-
apy, and a review of the data in this regard is appropriate.
A number of placebo-controlled trials have examined the
effect of GH replacement on bone metabolism and BMD.
From these studies it is apparent that GH replacement is
frequently associated with a reduction in bone density in the
short term (184–186), probably as a result of an expansion of
the bone remodeling space (186). However, with more pro-
longed treatment increases of bone density of 4–10% above
baseline, measurements have been recorded (185, 187). The
study of Baum et al. (187) is particularly noteworthy as the
increments in BMD were achieved with a dosing regimen of
GH that specifically aimed to avoid overtreatment by main-
taining serum IGF-I levels within the age-adjusted normal
range. The timescale over which these changes occur clearly
preclude placebo-controlled studies of the long-term effects
of GH on BMD, but a number of open-label studies suggest
that the increments in BMD above baseline that are evident
in placebo-controlled trials continue with more prolonged
GH replacement therapy over several years (142, 188, 189).

An earlier indication of the efficacy of GH replacement on
bone than that evident by changes in BMD is provided by
measurement of markers of bone resorption and formation.
Several placebo-controlled studies have documented signif-
icant increases in markers of bone metabolism as early as 4
months after beginning GH (190), possibly earlier (189). From
these and other reports it is clear that individual response is
highly variable and that measurement of markers of bone
metabolism have little use outside the setting of a clinical
trial. Furthermore, there is increasing evidence that the re-
sponse to GH in terms of BMD is, in part, gender dependent
(189, 191). In men, prolonged GH replacement is associated
with sustained increments in BMD, whereas in women the
benefits appear to be limited to a stabilization of bone den-
sity. In both of these studies serum IGF-I was maintained
within the age-related reference range, although the GH
doses used were higher in women, further emphasizing the
need for individualized GH dosing.

Although, as stated earlier, osteopenia is seldom the sole
reason to initiate GH replacement for adult hypopituitarism,
the timescale of the effect of GH on BMD is such that a
cautionary review of the potential effects of overtreatment is
appropriate, particularly as most of the studies reviewed
above used unphysiological, weight-based doses. GH excess
in the context of acromegaly is associated with elevated se-
rum levels of osteocalcin (192), changes that are similar to
those seen in many of the studies of GH replacement on bone
and which are corrected by successful surgical and/or med-
ical treatment (192, 193). When not associated with hypogo-
nadism, acromegaly is also associated with increased bone
mass and density, periosteal growth, and bone widening
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(194). Hence, it seems prudent for patients with GHD and
low bone mass who are treated with GH to have their BMD
monitored at intervals during therapy, starting around 12–18
months after the beginning of GH therapy. Increments in
BMD can be anticipated in most patients, and maintaining
serum IGF-I levels within the age-related reference range is
likely to avoid the potential adverse consequences on bone
of excess GH exposure.

D. Cardiovascular risk factors and cardiac structure
and function

The association of hypopituitarism with increased mor-
tality has directed attention to a possible role of GH in the
regulation of various cardiovascular risk factors. However,
independent of this and the possible role for GH replacement
in favorably modifying an individual’s cardiovascular risk
profile (see Section XII.A), there is some evidence that GH
improves cardiorespiratory function and exercise perfor-
mance in hypopituitary adults. This aspect of GH replace-
ment has not been the subject of such intensive research as,
for example, the effects of GH on body composition and
quality of life. Furthermore, it may be difficult to separate the
direct effects of GH therapy on exercise performance and
cardiac dimensions and function from secondary effects con-
sequent upon changes in body composition, cardiac after-
load, and sodium and water balance associated with GH
therapy.

Nass et al. (195) demonstrated, in a placebo-controlled trial,
that GH therapy was associated with improvements in max-
imum oxygen uptake and exercise capacity, in the absence of
any significant change in cardiac structure, as determined by
transthoracic echocardiography. More recently, Woodhouse
et al. (196) showed that GH replacement improved submaxi-
mal exercise performance and was associated with an in-
crease in type I skeletal muscle fiber size, benefits that per-
sisted after discontinuation of GH at the conclusion of the
study. No significant change was observed in quadriceps
strength, although improvements have been documented in
muscle strength in a separate, open-label study of longer
duration (197).

The relative contribution of a change in cardiac function to
the improved exercise capacity associated with GH therapy
is difficult to assess. Indeed, the role of GH in the regulation
of cardiac structure and function in adult life is far from clear.
Several indices of cardiac structure and function (exercise
capacity, left ventricular wall thickness, and fractional short-
ening) are abnormal in GHD adults compared with age-
matched healthy controls (198). This is most striking in pa-
tients with childhood-onset GHD, in which there is
echocardiographic and radionuclide evidence of reduced
cardiac output and impaired diastolic function (142, 199).
Evidence for similar abnormalities of cardiac function in
adult-onset GHD, however, is rather conflicting. There is
little doubt that the documented abnormalities are less
marked (198), although this may simply reflect the duration
of GHD at the time of study. GH replacement in hypopitu-
itary adults has been associated with an increase in LV wall
thickness, stroke volume, fractional shortening, and diastolic
function, as measured by prolonged isovolumic relaxation

time and early/atrial peak velocity ratio (E/A ratio) in open-
label studies of GH replacement (198, 200), but has not con-
clusively been shown in placebo-controlled trials. Further-
more, in those open studies, individual response to a uniform
(weight-based) GH treatment regimen was extremely vari-
able. Although this aspect of GH replacement certainly mer-
its further investigation, the current literature does not over-
whelmingly support decreased cardiovascular performance
and exercise capacity as an indication for the clinical use of
GH. If GH does indeed improve cardiac function, the ther-
apeutic window is likely to be narrow, particularly with
respect to the induction of left ventricular hypertrophy (201).
GH hypersecretion (in the context of acromegaly) leads to a
specific cardiomyopathy in which, after an initial phase of
cardiac hyperkinesis, myocardial hypertrophy and diffuse
interstitial fibrosis gradually lead to diastolic dysfunction
and, ultimately, congestive cardiac failure (201). The detec-
tion of subtle signs of left ventricular hypertrophy and im-
paired diastolic relaxation may be difficult using standard
transthoracic echocardiography, particularly outside the set-
ting of clinical trials, where interobserver variation of mea-
surements may be considerable. Treatment protocols that
maintain serum IGF-I levels in the age-related normal range
are likely to avoid the theoretical dangers of subtle GH excess
on cardiac function.

E. Conclusions

It may be seen, from the above discussion, that clinical
monitoring is clearly an important part of the practice of GH
replacement (a characteristic clinical syndrome is, after all,
the most common indication for a trial of GH therapy). How-
ever, individual response to treatment with GH is so variable
that an apparent lack of improvement in a single clinical
parameter may prompt dose increments that result in levels
of IGF-I outside the age-adjusted normal range, but which
are not associated with symptoms of GH excess. The question
therefore arises as to whether long-term elevation of serum
IGF-I is acceptable in the context of the treatment of GHD
and, further, whether clinical efficacy is compromised by
adopting strategies that specifically aim to avoid this.

IX. Is Overtreatment Acceptable in the
Asymptomatic Patient?

The relatively recent advent of unlimited supplies of rhGH
and its use for the treatment of AO-GHD means that there are
no long-term data regarding the effects of an elevated level
of serum IGF-I in hypopituitarism. In the absence of such
information, indirect evidence must be extrapolated from
clinical experience in the treatment of acromegaly, a condi-
tion known to be associated with excess morbidity and mor-
tality (202), chiefly from cardiovascular causes and pre-
sumed to be on account of the associated insulin resistance,
hypertension, and characteristic cardiomyopathy. The issue
of insulin resistance deserves particular mention in the light
of the recent report of an increased incidence of type II
diabetes mellitus among children treated with GH (123). It is
not possible to extrapolate directly such data to adult prac-
tice, on account of the heterogeneity of the pediatric popu-
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lation reported (including, for example, patients with Turner
syndrome and chronic renal failure), but, nevertheless, the
argument for the avoidance of pharmacological doses of GH
would appear to be strengthened by such experience. Recent
reports, both from a single center and from an international
study, of the effect of more physiological doses of GH in
hypopituitary adults, are reassuring (160, 203).

Aside from the issue of avoiding iatrogenic biochemical
acromegaly and its theoretical complications, there are epi-
demiological data to suggest that an individual’s risk of
developing carcinoma of the prostate (in men) (204, 205) or
breast (in women) (206) may be influenced, at least in part,
by their serum IGF-I level, with values in the upper tertile
being associated with a higher incidence of developing ma-
lignant change in those organs. It is important to note, how-
ever, that these studies were performed in normal, GH-
replete, adults and that it may not be appropriate to
extrapolate such findings to the practice of GH replacement
in adult hypopituitarism. Nonetheless, it seems prudent to
avoid the use of GH doses that are associated with supra-
physiological serum IGF-I levels until more data are avail-
able in this regard.

X. Biochemical Monitoring of GH Replacement

Concern about the long-term consequences of iatrogenic
overtreatment with GH has caused attention to shift in recent
years toward the use of biochemical indices of GH action in
the treatment of AO-GHD. IGF-I, the tissue effector of many
of the actions of GH, circulates as a ternary complex of 150
kDa in association with IGFBP-3 and ALS. All three peptides
are known to be GH dependent and, in theory at least, may
be considered as potential markers of GH efficacy. Of the
three, IGF-I is widely regarded as the most sensitive and
the most useful for the purposes of dose monitoring. In the
report of De Boer et al. (143), several patients in the highest
dose treatment group (3 IU/m2/d) reported side effects of
GH excess. Serum IGF-I was elevated above the age-adjusted
normal range in a number of these patients, but in far fewer
were there supranormal levels of IGFBP-3 and ALS. This
would suggest that these latter two peptides are less sensitive
markers of GH action during GH replacement than serum
IGF-I. This is supported by the data of Drake et al. (175) who
treated 50 consecutive adult hypopituitary patients with an
identical dose titration regimen, with dose adjustments every
4 wk on the basis of measurements of serum IGF-I made
every 2 wk. In addition, serum IGFBP-3 and ALS were mea-
sured in one-third of these patients, but the results were
found to be too variable for routine clinical use (175) (Fig. 3).
In that study, “optimum” GH replacement was arbitrarily
defined as a serum IGF-I above the median but below the
upper limit of the age-related reference range. This was done
to allow those patients with severe GHD in association with
a low-normal serum IGF-I the maximum opportunity to ben-
efit from GH replacement. Maintenance GH doses, once the
serum IGF-I was in the target range, were higher, and the
time taken to reach the target serum IGF-I was longer in
females than males (median daily dose 1.2 U vs. 0.8, median
time taken 9 wk vs. 4 wk, respectively). Further, the mean

increment in serum IGF-I from baseline, once maintenance
dose was achieved, was less in females than males, despite
the higher dose, confirming their overall decreased suscep-
tibility to GH. In spite of this smaller increment in IGF-I, there
was no gender difference in the extent of clinical improve-
ment, as determined by QoL AGHDA and measurement of
waist-hip ratio. Importantly, the extent of clinical improve-
ment was similar to that seen in the original trials that used
weight-based dosing. Similar findings were reported by
Murray et al. (207) whose regimen for GH therapy defined
“optimum” GH replacement as when symptomatic clinical
improvement (judged by PGWB and QoL AGHDA) coin-
cided with a normal serum IGF-I. Together, these studies
indicate that the recent use of lower, more physiological
doses of GH, in which a major consideration is the avoidance
of elevated serum levels of IGF-I, is not associated with a loss
of efficacy.

In spite of the above evidence, there remain some impor-
tant concerns with regard to the simplistic use of serum IGF-I
levels as the sole guide to the restoration of normal GH status
during replacement therapy. Serum IGF-I levels do not al-
ways reflect the true GH status of an individual patient, as
demonstrated by the fact that up to 30% of patients with
proven severe GHD have serum IGF-I levels in the lower part
of the age-adjusted normal range (208). Furthermore, some
patients with active, symptomatic acromegaly with mean
GH levels above the safe range (i.e., �5 mU/liter) (202) ex-
hibit normal serum IGF-I levels. The discrepancies observed
in some studies between GH status, as judged by indices of
body composition, compared with serum IGF-I levels, may
be, in part, consequent upon the method of administration of
GH, as suggested by studies in rats (209). It should also be
noted that most blood samples for serum IGF-I measure-
ments are drawn in the early morning. Given that there is a
significant diurnal variation in serum IGF-I level with a sin-
gle subcutaneous nightly GH injection (with a peak in the
morning and a nadir at night) (210), it may be that such
dosing strategies are associated with a falsely high incidence
of supranormal levels of serum IGF-I.

It should also be noted that changes in serum IGF-I levels
in response to GH administration to hypopituitary adults
persist long after the effects on protein and lipid metabolism
(211). Changes in serum IGF-I correlate poorly with changes
in leucine and glycerol kinetics, suggesting that restoration
of a normal circulating IGF-I does not necessarily imply
normalization of normal body composition (212).

XI. Gender Differences in GH Responsiveness

A compelling argument for the use of individualized, as
opposed to simplistic weight- and/or surface area-based GH
dosing, is the marked difference in GH doses that are re-
quired to achieve an equivalent clinical and biochemical
response in men and women. The reasons for this discrep-
ancy are not entirely clear, although attenuation of GH action
by estrogen is an obvious candidate. In healthy postmeno-
pausal women, administration of estrogen decreases serum
IGF-I levels, despite an increase in pituitary GH secretion,
and attenuates IGF-I production during an IGF-I generation
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test (33, 34). Further, oral estrogen administration partially
ameliorates the symptoms and signs of acromegaly (31) and,
when GH excess is reversed by surgical adenomectomy, the
subsequent accumulation of fat mass is more marked in men
than women (213). This would imply that estrogen has a
modulatory effect on the lipolytic effect of GH, resulting in
less marked accumulation of fat when the GH excess is cor-
rected. Clearly, such findings, in healthy and acromegalic
individuals, cannot be directly extrapolated to exogenous
GH administration to patients with GHD. However, in a
placebo-controlled trial, an identical (weight-based) GH dose

administered to GHD men and women resulted in a greater
reduction in fat mass and serum lipoprotein levels in men
compared with women, effects that were accompanied by a
statistically greater increase in serum IGF-I levels (214). Re-
cent, open-label studies also support the view that hypopi-
tuitary female patients require higher maintenance GH doses
than males for a given clinical and biochemical response
(175, 215).

The route of estrogen administration has received consid-
erable attention as a possible determinant of maintenance
GH dose in hypopituitary women. In healthy, postmeno-

FIG. 3. Serum IGF-I (A), IGFBP-3 (B),
and ALS (C) vs. time in patients treated
by dose titration. Adult GH deficiency
assessment (AGHDA) score (D) and
waist-hip ratio (E) at baseline and with
GH therapy show no difference between
males and females, despite higher doses
and longer time to reach maintenance
dose in females. [Reproduced with per-
mission from W. M. Drake et al. : J Clin
Endocrinol Metab 83:3913–3919, 1998
(175). © The Endocrine Society.]
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pausal women, transdermal estrogen does not modulate he-
patic IGF-I production to the same extent as oral estrogen,
although a similar effect may be observed when the number
of estrogen patches is increased (33). In an open-label study
examining GH doses required to maintain serum IGF-I in the
upper part of the reference range, Cook et al. (215) demon-
strated that women taking oral estrogen required approxi-
mately twice as much GH as women taking transdermal
estrogen, whose maintenance dose was similar to men. Al-
though other, larger studies have not demonstrated a sig-
nificant difference in maintenance GH dose on the basis of
estrogen usage (160, 175), those studies did not specifically
examine the use of transdermal estrogen as a variable. The
findings of Cook et al. (215) clearly have important implica-
tions in terms of the cost of maintenance GH dosing and
merit further investigation.

XII. Adult GHD and Vascular Disease

Attempts to unravel the possible mechanisms by which
GHD may contribute to the increased mortality of hypopi-
tuitarism are severely hampered by the lack of a true control
population, i.e., patients with anterior pituitary failure but
normal GH reserve. This is because of the predictable way in
which hypopituitarism develops, with GHD characteristi-
cally antedating failure of gonadotropin secretion and defi-
ciencies in TSH and ACTH reserve. Hence, while it would be
logical to compare mortality outcome between patients with
hypopituitarism and GHD to those who are hypopituitary
but GH replete, the clinical reality is that such patients do not
exist. In the absence of a satisfactory control population,
observational studies of various surrogate markers of car-
diovascular morbidity and their improvement with GH re-
placement provide some evidence for an etiological role for
GH in the increased cardiovascular risk that may be prev-
alent in hypopituitary patients. These markers include dys-
lipidemia (156, 216), hyperfibrinogenemia (217), elevated
levels of plasminogen activator inhibitor (217), and increased
abdominal fat distribution (218). Further surrogate evidence
for increased vascular morbidity in hypopituitarism comes
from measurements of the structure of and flow in peripheral
arteries. Arterial intima-media thickness is a well-validated
indicator of early atheroma in epidemiological studies, and
observations of easily accessible arteries such as the carotid
and femoral correlate well with disease elsewhere such as in
the epicardial coronary arteries. The percentage of peripheral
arteries containing atheromatous plaques and the number of
plaques contained within those arteries are both greater in
hypopituitary patients compared with age- and sex-matched
controls (219). Measurements of brachial artery and large
arterial compliance suggest a reduction in large vessel dis-
tensibility (220, 221), but population studies examining
whether this translates into significant changes in blood pres-
sure are difficult to interpret on account of the greater med-
ical attention afforded to hypopituitary patients compared
with healthy volunteers. GH has both vasodilatory (222) and
antinatriuretic (223) actions: hence, the effects of GHD on
systemic blood pressure are likely to be complex.

A. GH replacement therapy and dyslipidemia

The effect of GH replacement on lipid metabolism has
been studied in several placebo-controlled trials (2, 5, 156,
218). The results of these studies were strikingly similar, with
significant decreases observed in serum total cholesterol.
Reductions in low-density lipoprotein cholesterol and/or an
increase in high-density lipoprotein cholesterol were also
observed, although these did not reach significance in all
studies. GH replacement appears to have little effect on
plasma triglycerides or ApoA levels. Changes in Lp(a) levels,
known to be an independent risk factor for vascular disease,
high-density lipoprotein cholesterol, and triglycerides have
been inconsistent, vary considerably with the assay meth-
odology (224), and may depend, at least in part, on the
patient’s apoE phenotype (225).

Although these abnormalities and their improvement with
GH replacement are frequently cited as evidence that GHD
is associated with increased mortality, it is important to note
that many of these studies used weight-based dosing regi-
mens that would now be regarded as excessive (0.25 IU/
kg/wk, 12/5 �g/kg/d, with the exception of one study (2)
in which twice this dose was used). Such concerns apply
equally to other surrogate markers of increased cardiovas-
cular morbidity such as hyperfibrinogenemia (217) and el-
evated levels of plasminogen activator inhibitor (217). In a
recent open-label study of the effects on lipid profiles of GH
replacement delivered by dose titration to maintain serum
IGF-I above the median but within the age-adjusted normal
range, statistically significant reductions in total cholesterol
and LDL-cholesterol were evident (203). However, the
changes were lower than those observed in the original pla-
cebo-controlled trials, and the greatest benefit was seen in
patients with the highest values at baseline. Abs et al. (160)
reported that, since the advent of dose titration, the use of
more physiological doses of GH has been associated with
only modest improvements in lipid profiles in males and
little change in females. These reports emphasize that it is not
possible to extrapolate data from studies utilizing pharma-
cological doses of GH to modern clinical practice in which
lower, more “physiological” doses are used; and that it is far
from clear whether GH replacement invariably improves the
cardiovascular risk profile of patients with GHD.

XIII. Alternative Mechanisms for Accelerated
Vascular Disease

Aside from GHD, unphysiological hormonal replacement
is another possible cause of accelerated atherogenesis. Many
features of glucocorticoid (GC) excess (glucose intolerance,
central obesity, hyperinsulinemia, and raised triglycerides)
are similar to those of hypopituitarism with GHD and known
to be associated with increased vascular disease (226, 227).
GC monitoring regimens vary significantly between centers,
but measurements of circulating cortisol in patients taking
hydrocortisone generally suggest excess GC exposure dur-
ing the day and underreplacement at night (228, 229). Fur-
ther, metabolism of cortisol to inactive cortisone is GH de-
pendent (230, 231), such that administered hydrocortisone
may remain metabolically active for longer in GHD subjects.

Drake et al. • GH Therapy in Adults and Children Endocrine Reviews, August 2001, 22(4):425–450 439

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/22/4/425/2423987 by guest on 20 August 2022



The long-term effects of prolonged overnight hypoadrenal-
ism on atherogenesis are unknown.

There is evidence that subclinical primary hypothyroidism
is associated with accelerated atherogenesis (232). This risk,
although somewhat attenuated, may extend to individuals
with compensated hypothyroidism associated with dyslip-
idemia. Biochemical assessment of thyroid function in hy-
popituitarism is restricted to measurement of circulating T4
and T3, levels of which may vary by at least 2-fold in healthy
subjects. It is therefore difficult to be certain that subtle un-
derreplacement with thyroid hormone is not an etiological
factor for premature vascular disease in hypopituitarism.
Conversely, given the recent demonstration of increased car-
diovascular morbidity associated with a low TSH (233), it is
equally difficult to be sure that marginal overreplacement is
not contributing to increased cardiovascular mortality.

In summary, it is now accepted that AO-onset hypopitu-
itarism is associated with reduced longevity. The relative
contribution of premature vascular disease to this increased
mortality has not been consistent, but there is a substantial
body of indirect evidence that hypopituitary patients have an
unfavorable cardiovascular risk profile. The extent to which
GH replacement corrects this adverse risk profile is not clear,
because many studies have used pharmacological rather
than physiological doses of GH. Data from a large, multi-
national outcome-based research database suggest that fast-
ing lipid profiles are significantly improved by the lower
doses of GH now considered to be more appropriate for
replacement, although the effects are less dramatic than those
observed in the early placebo-controlled trials (160). It will
require several more years of large-scale surveillance to de-
termine the net effect of GH on cardiovascular morbidity and
mortality in hypopituitarism.

XIV. Transition from Pediatric to Adult Clinic

The completion of linear growth has, traditionally, been
the logical endpoint at which to discontinue GH therapy for
GHD children. Indeed, for many patients, particularly those
with isolated GHD, this is likely to have been predicted by
the child’s physician at the start of treatment. However, in the
light of the above discussion on the effects of GH in adult
hypopituitarism, the practice of discontinuation of GH at
final height requires careful reevaluation. Adults and chil-
dren with GHD have traditionally been managed by physi-
cians in separate departments, and the clinical research per-
formed by those departments has, in general, focused on
different clinical endpoints. This means that there is a paucity
of data on which to base management decisions in young
adults who have completed their linear growth. As discussed
earlier, GH secretion rates decline rapidly once puberty is
complete and continue to decline steadily thereafter (39).
Hence, the diagnostic criteria for severe GHD in adults (�3
�g/liter, 9 mU/liter during a provocative test) (234) may not
be appropriate for an individual who has just completed
linear growth. The definition of severe GHD in this age group
has yet to be defined, but it is likely to be more closely allied
to the pediatric range (�5–10 �g/liter, �15–30 mU/liter) (235).

Observational discontinuation studies provide some sur-

rogate evidence as to the effects of GH discontinuation at the
completion of linear growth. Such studies require cautious
interpretation, because of the fact that a substantial propor-
tion of patients treated with GH replacement in childhood
show evidence of normal GH status by the time final height
is achieved (236–240). This observation makes retesting man-
datory before re-starting GH can be considered. The guide-
lines from a consensus meeting on the diagnosis of GHD in
adults (7) suggested that in patients with isolated idiopathic
GHD, two biochemical tests of GH status are required, while
a single provocative test is sufficient in patients with multiple
pituitary hormone deficits. The issue is further clouded by
the fact that, until fairly recently, supplies of GH were lim-
ited, such that some of the older publications in which GHD
adolescents have been compared with age-matched healthy
controls may have included patients treated with suboptimal
GH dosing regimens due to the lack of availability of pitu-
itary-derived GH.

XV. Effects of Discontinuation of GH Treatment at
Final Height

It is not sufficient merely to cite evidence from the adult
literature as an argument for continuing treatment with GH
in GHD adolescents after the completion of linear growth.
Several observations, such as lower IGF-I levels, lower lean
body mass, reduced height, less reduction in quality of life
assessment, and less marked derangement of serum lipopro-
tein levels in CO-GHD, suggest that the CO- and AO-GHD
states should be considered as two separate entities (156).
Given that the logic for continuation of GH into adult life lies
in the prevention of the adult GHD syndrome, a brief review
of the evidence that withdrawal of GH therapy in this patient
group is associated with adverse pathophysiological changes
is necessary before possible dosing strategies can be discussed.

A. Body composition

There is some evidence, in GHD young adults, that with-
drawal of GH therapy is associated with adverse changes in
body composition. Rutherford et al. (241) reported a statis-
tically significant decrease in muscle strength and an increase
in fat mass in adolescent patients with CO-GHD 1 yr after
cessation of GH. Similar changes in fat mass were subse-
quently reported by Colle and Auzerie (242) and, although,
both studies were small (eight and six patients, respectively),
analysis of nine separate studies that have examined this
question does suggest that withdrawal of GH at the com-
pletion of final height is associated with the development of
abnormal body composition (243). In a recent report of the
effects of discontinuation of GH at final height (244), adverse
changes in body composition within 12 months of with-
drawal of GH were documented, in patients subsequently
shown to be GHD on retesting at the conclusion of the study.
However, interpretation of these data is made difficult be-
cause IGF-I levels in those patients subsequently shown to
have persisting GHD were approximately 50% greater than
those with normal GH reserve on retesting. In other words,
such data may relate more closely to the effects of the reversal
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of GH excess than to the discontinuation of more physio-
logical doses of GH.

In a recent study, Vahl et al. (245) randomized patients
either to continue with a weight-based GH dose or placebo
for 12 months after the completion of linear growth. At the
end of this time, all patients continued GH. Statistically sig-
nificant increases in body fat were noted in the placebo-
treated patients, changes that were, in large part, reversed
when GH was recommenced. Interestingly, despite these
changes in body composition, no significant differences were
noted in insulin sensitivity between the two groups (246).
These findings provide important, complementary evidence
to observational discontinuation studies, but must be inter-
preted with a degree of caution. The (weight-based) doses of
GH used in the study were closer to those employed in
pediatric than adult practice, despite the fact that several of
the patients were in their mid-20s. Serum IGF-I levels were
elevated in several patients at the start of the study and
remained elevated in many of those randomized to continue
GH. Studies in similar patients, utilizing lower, more phys-
iological, doses of GH, are needed.

B. Bone mineral density

As discussed earlier, there is clear evidence that GH is
important for the maintenance of BMD in adults, and it is
likely to be important in accruing bone mass early in life (179,
247). Most bone mass is acquired during late adolescence or
young adulthood and, together with subsequent age-related
loss, determines an individual’s fracture risk later in life.
Patients with CO-GHD are relatively osteopenic compared
with age-matched healthy controls (179, 247). This is true
both for patients with isolated GHD and those with multiple
pituitary hormone deficiencies (247), supporting a role for
GH in the attainment of peak bone mass. After cessation of
GH therapy in young men with AO-GHD, far from signif-
icant bone loss, BMD continues to increase for at least the
next 18 months (248), although it remains unknown whether
this increase in bone mass is suboptimal in the absence of GH
replacement. However, the confounding issue of the ade-
quacy of GH treatment may be particularly important in this
area, as BMD is significantly higher in younger patients
treated with rhGH compared with patients treated initially
with cadaveric GH (249). Although it is generally accepted
that GHD in childhood is associated with a failure to reach
peak bone mass, there are no data at present from controlled
trials to justify a recommendation of continuation with GH
therapy at final height. However, it is clear that BMD should
be assessed in these patients and, indeed, continuation of GH
therapy until the achievement of peak bone mass has been
advocated (249).

In summary, there is some evidence that withdrawal of
GH therapy on completion of linear growth in GHD ado-
lescents may be associated with impaired somatic develop-
ment and adverse changes in body composition. To date,
there is little evidence that such patients are significantly
disadvantaged in terms of quality of life and well-being,
insulin sensitivity, or surrogate markers of cardiovascular
risk. In the absence of such data to justify widespread con-
tinuation of GH into adult life and the paucity of evidence of

the consequences of delaying reintroduction of therapy, a
number of potential strategies exist. One approach is to con-
tinue GH therapy in a seamless manner into adult life with
only a brief cessation of therapy to allow reassessment of GH
status. A second strategy, given that the greatest short-term
benefit of GH replacement in adult life is improved quality
of life and that psychological benefit is proportional to the
degree of pretreatment morbidity, is to offer GH replacement
only to those patients who, on withdrawal of GH at final
height, are most disadvantaged in terms of QoL. A propor-
tion of GH-deficient patients report entirely normal QoL
while off treatment, and this is more common in CO disease
(156). Hence, a period of time off treatment would allow an
assessment of whether GH therapy is likely to be symptom-
atically beneficial. A policy of seamless transition from child-
hood to adulthood would not permit the identification of
such patients. Furthermore, the prospect of life-long therapy
with GH may not be particularly appealing to an adolescent
patient who has completed treatment to final height. Com-
pliance with further therapy is likely to be greatly enhanced
if the patient is allowed to experience a significant period
of symptomatic GHD before beginning replacement in
adult life. A third strategy for the management of GH
during transition to adult life is to continue with GH for
a few years after the completion of growth to facilitate the
development of peak bone mass, after which therapy could
be discontinued.

XVI. Dosing Strategies for the Adolescent Patient

In addition to the timing of GH therapy during transition
from childhood to adult life, a question remains regarding
the most appropriate dose to employ. The doses of GH used
toward the end of linear growth are approximately 3–6 times
the average dose used in adult GH replacement. This is in
keeping with the decline in normal GH secretion after the
completion of puberty. A number of different approaches
may be taken to dosing in such patients, and the most ap-
propriate method will depend, at least in part, on the timing
of the recommencement of GH after retesting. If GH therapy
were stopped for a number of years after the attainment of
final height, restarting treatment at a low dose and gradually
titrating up according to the IGF-I response (i.e., the increas-
ingly standard practice in adults) would probably be most
appropriate. However, if a seamless transition of GH therapy
into adult life is used, various, alternate, options exist. A
low-dose titration regimen could be instituted as soon as the
decision has been made to continue treatment. However, it
is likely that the dose required to normalize serum IGF-I
levels in the period immediately after the completion of
linear growth will be closer to the pediatric than adult dose,
and building up to an appropriate maintenance dose may
take some time. It may therefore be more appropriate initially
to continue treatment at the pediatric dose and gradually
titrate down according to serum IGF-I levels. A further po-
tential approach would be to continue GH at the higher
pediatric dose until the completion of somatic development
to allow maximal accrual of bone and muscle mass before
transition to adult replacement levels. There are no current
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data that indicate the correct approach to adopt although
current studies are addressing this issue. Regardless of the
strategy adopted, robust age-related reference ranges for
GH-dependent serum markers are mandatory.

XVII. Influence of Adult GH Replacement Studies on
Pediatric Practice: Reevaluation of

Pediatric Practice

It may be considered a disadvantage of adult GH replace-
ment that there is no easily definable clinical endpoint of
treatment, such as linear growth, against which therapy can
be titrated. However, the absence of an easily measurable
effect of treatment has necessitated a far more detailed study
of GH replacement that has widened our knowledge of the
regulation and actions of GH in adult life. This has also been
assisted by the much wider scope for clinical studies in adults
compared with children. Placebo-controlled studies are ex-
tremely difficult to perform in pediatric practice, particularly
when there is only a finite window of opportunity for growth
to occur. In addition, assessment of some parameters such as
BMD and quality of life in children is problematic. Thus, the
extension of GH therapy to adults has provided new infor-
mation that has prompted a reassessment of pediatric prac-
tice and raised a number of important questions.

The results of retesting patients treated for GHD during
childhood have demonstrated that a significant propor-
tion have normal GH responses to provocative tests after
the completion of linear growth (65, 236). It has been
suggested that this may indicate that GHD can be tem-
porary, but no convincing evidence for this theory has
been produced. A more likely explanation is that a sig-
nificant proportion of children diagnosed as GH deficient
in childhood actually have normal GH reserve. While the
proportion of individuals inappropriately labeled GH de-
ficient will vary between different cohorts (groups with
more organic GH deficiency are likely to have fewer pa-
tients with normal GH reserve) (236), on retesting it is
likely that all large groups of GH-deficient children will
contain some GH-replete patients. This has implications
for the interpretation of data from studies of childhood GH
replacement. The peak GH response to provocative tests
negatively correlates with final height in GH-treated chil-
dren, suggesting that GH-replete subjects will not respond
as well to GH replacement as severely GH-deficient pa-
tients. This is supported by the observation that GH treat-
ment of children with idiopathic short stature, Turner
syndrome, or skeletal dysplasia (all of whom have normal
GH secretion), does not result in the same magnitude of
growth response as treatment of severely GH-deficient
children. Thus, the presence of GH-replete subjects in a
cohort of GH-deficient children will dilute the observed
response to GH therapy, and studies of GH replacement
may therefore be underestimating the benefit of treatment
if they contain a significant proportion of normal individ-
uals. In addition, data from treatment of children with
idiopathic short stature and Turner’s syndrome suggest
that larger doses of GH are required to enhance growth of
GH-replete children. Clinicians need to be aware of these

possible flaws in previous studies and of the potential
problems with diagnosis of GHD in childhood.

Studies of the treatment of GH-deficient adults have dem-
onstrated the wide range of actions of GH and have indicated
the potential abnormalities associated with GHD and the
changes that occur with GH replacement. This has confirmed
that the benefits of GH replacement during childhood extend
beyond linear growth and suggest that the assessment of
parameters other than height may be useful. The efficacy of
GH therapy in childhood has, however, been almost entirely
evaluated by changes in linear growth. Decisions regarding
the selection of patients for GH therapy, the dosing schedules
used, and the duration of treatment are based, to a great
extent, on auxological criteria, and achievement of a maximal
final height is the ultimate (and in some cases the only) goal
of therapy. Indeed, a recent commentary on the use of GH
for short children over the last four decades focused almost
entirely on linear growth (87).

There is, however, a flaw in concentrating only on linear
growth when considering the optimal treatment of GH-
deficient children. Studies in non-GHD children given GH
therapy for idiopathic short stature or Turner syndrome have
demonstrated that pharmacological GH treatment results in
increased growth velocity and an improvement in final
height in GH-replete individuals if enough GH is given and
treatment is initiated at an early enough age. This is, of
course, no surprise given the increased linear growth ob-
served in children with pituitary gigantism. Thus, excessive
replacement of GH-deficient patients may confer a minor
growth advantage over physiologically replaced individu-
als. Complete reliance on growth parameters to monitor ther-
apy is therefore likely to result in overtreatment of some
patients. It could be argued that it is more important to
maximize the final height of a GH-deficient child than to
attempt to achieve near-physiological GH replacement. This
is contrary, however, to standard practice in other areas of
endocrinology in which physiological replacement of a de-
ficient hormone is usually considered the ideal of therapy.
With modern treatment protocols, the majority of GH-
deficient subjects will reach a height within the normal range,
and it must be questioned, therefore, whether supraphysi-
ological treatment can be justified on clinical or financial
grounds.

Finally, the reliance on final height as the ultimate goal
of therapy ignores the fact that moderate short stature
per se does not confer any physical disadvantage on
patients. Rather, it is assumed that short stature has a
deleterious effect on psychosocial functioning, for which
there is some evidence (250, 251). More recent reports,
however, have failed to confirm this (252–255) and have
suggested that the original studies were flawed by referral
bias, as short children with academic or behavioral prob-
lems were more likely to be referred to clinics and were
therefore more likely to participate in studies than chil-
dren with short stature who did not have such difficulties
(256). Studies of nonreferred populations have failed to
show any psychosocial disadvantage in normal short chil-
dren (257), suggesting that social and behavioral problems
may have been inappropriately attributed to short stature.
Thus, while there is evidence of psychosocial disadvan-
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tage among GH-deficient patients, the extent to which this
can be attributed to short stature per se, and therefore the
extent to which improvements in final height will be ben-
eficial, is doubtful.

There are very few data concerning the impact of GH
status on parameters other than growth, such as body com-
position, BMD, and lipids during childhood. This relates, in
part, to the paucity of normative data for comparison in
younger subjects, and the difficulties presented by the impact
of linear growth and pubertal development on BMD and
body composition measurements, particularly in GH-defi-
cient patients in whom poor growth and delay in pubertal
development may be apparent. A few studies, however, have
demonstrated reduced BMD in GH-deficient children com-
pared with age- and sex-matched normal controls, with im-
provements after the initiation of GH replacement (249, 258,
259). Despite this, studies in young adults have demon-
strated low bone mass after GH replacement in childhood
(179, 247, 260, 261). This is likely to be a result of periods of
untreated GHD either before the start of childhood treatment
or between the completion of childhood therapy and the
assessment of bone mass, although the possibility of subop-
timal childhood GH replacement also exists.

Changes in body composition are well recognized effects
of GH replacement during childhood, although this has
rarely been formally assessed. An increase in lean body mass
with an associated reduction in fat mass has been demon-
strated following commencement of GH therapy (129, 258).
After discontinuation of therapy at the completion of linear
growth, unfavorable changes in body composition occur
within the first 12 months (244). Similarly, beneficial effects
on lipid profiles have been observed during childhood GH
therapy (258), with adverse changes occurring after the com-
pletion of treatment in adolescence (242). Measurement of
some of these parameters during childhood will assist in
defining an individual’s response to therapy. This will be of
particular importance at the end of linear growth and may
be helpful in deciding the optimal management strategy
during the transition to adulthood.

Studies of GH replacement in adult life have also provided
information regarding the correct replacement dose for GH-
deficient patients. Symptoms of GH excess are relatively
more common during the treatment of adults (262), partic-
ularly in the initial studies of adult GH replacement in which
patients were commonly given supraphysiological doses. In
addition, with potentially life-long treatment, some concern
exists about the health risks, and extra financial burden, of
mild overtreatment. This has been emphasized by recent
reports linking circulating IGF-I levels in the upper part of
the normal range with breast and prostate cancer in normal
individuals (204–206). As a result, efforts have been made to
ensure that GH is administered in a physiological fashion,
and methods for optimally monitoring therapy have been
investigated (143, 263, 264). In adults, measurement of serum
IGF-I appears to be the most reliable way of assessing the
appropriateness of GH dose, and this, in combination with
clinical evaluation, forms the basis for the monitoring of
therapy (7).

In pediatric practice, the dose of GH is usually calcu-
lated according to weight or surface area, and the appro-

priateness of this dose is not monitored biochemically.
This does not allow for any interindividual variability in
GH sensitivity or residual GH secretion. Unfortunately,
there are few data regarding IGF-I levels in children
treated with GH; a pathologically low level while on treat-
ment implies poor compliance or suboptimal dosage (78),
but the fear that many children might only achieve an
increase in growth velocity at the expense of a patholog-
ically elevated IGF-I level has not been born out in practice
(77, 78), although more data are required. Thus, it is likely
that some children treated with GH are receiving supra-
physiological doses. Because of the relatively short dura-
tion of treatment during childhood compared with that
potentially used in adult practice, concerns regarding side
effects of mild overtreatment are less. There are no data,
however, that confirm the long-term safety of mild GH
excess during childhood. In addition, the financial re-
straints imposed on most practices would argue for using
the lowest efficacious dose possible. Thus, it would seem
reasonable to aim for physiological replacement as an
ideal goal of therapy. Extrapolation from adult practice
would suggest that maintaining the IGF-I within the nor-
mal range is the most reliable way of achieving this, and
monitoring of IGF-I levels during treatment would pro-
vide a relatively simple method of individualizing GH
replacement. However, there is likely to be some reluc-
tance to rely entirely on the IGF-I level as the indicator of
optimal treatment dose in patients who have responded
well to GH replacement in terms of growth but demon-
strate a high level of IGF-I. There are no data at present that
indicate whether reducing the dose to that which will
maintain the IGF-I within the normal range would have
any deleterious effect on growth. For the time being, linear
growth remains the main goal of childhood GH treatment.
The usefulness of knowing the IGF-I level in terms of
titrating the GH dose remains to be proven in pediatric
practice.

Finally, the demonstration of the benefits of GH in adult
life suggest that, instead of being a treatment that is con-
fined to childhood, GH replacement should be considered
potentially as life-long. The management of the transition
between pediatric and adult GH replacement remains a
challenge. Preparation for the possibility of treatment in
adult life should begin during childhood with discussions
of the possible need for continuation of therapy after the
completion of linear growth. The most appropriate man-
agement of the transition period will depend, to a great
extent, on the patient’s reaction to the possibility of the
continuation of treatment, and this in turn will depend on
the information provided by the pediatrician during child-
hood therapy. A patient who has been assured that GH
injections need only be continued until the completion of
linear growth is less likely to be receptive to the idea of
continuing therapy into adult life than the patient who has
been adequately prepared. Thus, the acceptance of treat-
ment during adulthood will be determined, to some
extent, by the acceptance of the benefits of adult GH
replacement by pediatricians. This will require recognition
that there is more to GH replacement than growth itself.
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