
Optimizing Graph Algorithms for Improved Cache Performance*

Joon-Sang Park, Michael Penner, and Viktor K Prasanna
University of Southern California

{jsp, mipenner, prasanna} @usc.edu
http://advisor.usc.edu

Abstract
Tiling has long been used to improve cache performance.
Recursion has recently been used as a cache-oblivious
method of improving cache performance. Both of these
techniques are normally applied to dense linear algebra
problems. We develop new implementations by means of
these two techniques for the fundamental graph problem
of Transitive Closure, namely the Floyd-Warshall
Algorithm, and prove their optimality with respect to
processor-memory traffic. Using these implementations
we show up to 10x improvement in execution time. We
also address Dijkstra's algorithm for the single-source
shortest-path problem and Prim's algorithm for Minimum
Spanning Tree, for which neither tiling nor recursion can
be directly applied. For these algorithms, we
demonstrate up to a 2x improvement by using a cache
friendly graph representation. Experimental results are
shown for the Pentium III, UltraSPARC III, Alpha 21264,
and MIPS R12000 machines using problem sizes between
1024 and 4096 vertices. We demonstrate improved cache
performance using the Simplescalar simulator.

1. Introduction

The topic of cache performance has been well studied

in recent years. It has been clearly shown that the amount
of processor-memory traffic is the bottleneck for
achieving high performance in many applications [4][21].
While cache performance has been well studied, much of
the focus has been on dense linear algebra problems, such
as matrix multiplication and FFT [4][9][15][24]. All of
these problems possess very regular access patterns that
are known at compile time. In this paper, we take a
different approach to this topic by focusing on some
fundamental graph problems.

Optimizing cache performance to achieve better
overall performance is a difficult problem. Modern
microprocessors are including deeper and deeper memory
hierarchies to hide the cost of cache misses. The
performance of these deep memory hierarchies has been

shown to differ significantly from predictions based on a
single level of cache [21]. Different miss penalties for
each level of the memory hierarchy as well as the TLB
also play an important role in the effectiveness of cache-
friendly optimizations. These penalties vary among
processors and cause large variations in execution time.

The area of graph problems are fundamental in a
wide variety of fields, most notably network routing,
distributed computing, and computer aided circuit design.
Graph problems pose unique challenges to improving
cache performance due to their irregular data access
patterns. These challenges often cannot be handled using
standard cache-friendly optimizations [7]. The focus of
this research is to develop methods of meeting these
challenges.

In this paper we present a number of optimizations to
the Floyd-Warshall algorithm, Dijkstra’s algorithm, and
Prim’s algorithm. For the Floyd-Warshall algorithm we
present a recursive implementation that achieves a 6x
improvement over the baseline implementation. We also
show that by tuning the base case for the recursion, we
can further improve performance by up to 2x. We also
show a novel approach to tiling for the Floyd-Warshall
algorithm that achieves performance very close to that of
the recursive implementation. Note that today’s state of
the art research compilers cannot generate this
implementation [7].

There are some natural combinations of
implementation and data layout that decrease overhead
costs, such as index computation, and yield performance
advantage. In this paper, we show that our
implementations of the Floyd-Warshall algorithm perform
roughly equal with either the Morton layout or the Block
Data Layout.

For Dijkstra's algorithm and Prim's algorithm, to
which tiling and recursion are not directly applicable, we
present a cache-friendly graph representation. By
matching the data layout of the representation to the
access pattern we show up to a 2x improvement in
execution time.

The remainder of this paper is organized as follows:
In Section 2 we give the background needed and briefly
summarize some related work in the areas of cache
optimization and compiler optimizations. In Section 3 we

* Supported by the US DARPA Data Intensive Systems Program under
contract F33615-99-1-1483 monitored by Wright Patterson Airforce
Base and in part by an equipment grant from Intel Corporation.

discuss optimizing the Floyd-Warshall algorithm. In
Section 4 we discuss optimizing Dijkstra’s algorithm and
the graph representation. In Section 5 we apply the
optimizations discussed in Section 4 to Prim’s algorithm.
In Section 6 we draw conclusions.

2. Background and Related Work

In this section we give the background information

required in our discussion of various optimizations in
Section 3 - 5. In Section 2.1 we give a brief outline of the
graph algorithms. For more details of these algorithms
see [6]. In Section 2.2 we discuss some of the challenges
that are faced in making the transitive closure problem
cache-friendly. We also discuss the model that we use to
analyze cache performance and the four architectures that
we use for experimentation throughout the paper. Finally,
in Section 2.3 we give some information regarding other
work in the fields of cache analysis, cache-friendly
optimizations, and compiler optimizations and how they
relate to our work.

2.1. Overview of Key Graph Algorithms

For the sake of discussion, suppose we have a

directed graph G with N vertices labeled 1 to N and E
edges. The Floyd-Warshall algorithm (FW) is a dynamic
programming algorithm, which computes a series of N,
NxN matrices where Dk is the k th matrix and is defined as
follows: Dk

(i,j) = shortest path from vertex i to vertex j
composed of the subset of vertices labeled 1 to k.

Dijkstra’s algorithm is designed to solve the single-
source shortest path problem. It does this by repeatedly
extracting from a priority queue Q the nearest vertex u to
the source, given the distances known thus far in the
computation (Extract-Min operation). Once this nearest
vertex is selected, all vertices v that neighbor u are
updated with a new distance from the source (Update
operation).

Prim’s algorithm for Minimum Spanning Tree is very
similar to Dijkstra’s algorithm for the single-source
shortest path problem. In both cases a root node or source
node is chosen and all other nodes reside in the priority
queue. Nodes are extracted using an Extract-min
operation and all neighbors of the extracted vertex are
updated. The difference in Prim’s algorithm is that nodes
are updated with the weight of the edge from the extracted
node instead of the weight from the source or root node.

2.2. Challenges

Transitive closure presents a very different set of

challenges from those present in dense linear algebra
problems such as matrix multiply and FFT. These
challenges are highlighted here and discussed in more

detail in [17]. In the Floyd-Warshall algorithm, the
operations involved are comparison and add operations.
Also, we are faced with unique data dependencies
between iterations of the outer loop. This data
dependency from one k th loop to the next eliminates the
ability of any commercial or research compiler to improve
data reuse. We have explored using the SUIF research
compiler and found that it cannot perform the
optimizations discussed in Section 3 without user
provided knowledge of the algorithm [7]. These
challenges mean that often transitive closure displays
much longer running times than other problems
equivalent in complexity.

In Dijkstra’s algorithm and Prim’s algorithm, the
largest data structure is the graph representation. An
optimal representation, with respect to space, would be
the adjacency-list representation. However, this involves
pointer chasing when traversing the list. The priority
queue has been highly optimized by various groups over
the years. Unfortunately, the update operation is often
excluded, as it is not necessary in such algorithms as
sorting. The asymptotically optimal implementation that
considers the update operation is the Fibonacci heap.
Unfortunately this implementation includes large constant
factors and did not perform well in our experiments.

The model that we use in this paper is that of a uni-
processor, cache-based system. We refer to the cache
closest to the processor as L1 with size C1, and subsequent
levels as Li with size Ci. Throughout this paper we refer
to the amount of processor-memory traffic. This is
defined as the amount of traffic between the last level of
the memory hierarchy that is smaller than the problem
size and the first level of the memory hierarchy that is
larger than or equal to the problem size. In most cases we
refer to these as cache and memory respectively. Finally,
we assume an internal TLB with a fixed number of
entries.

We use four different architectures for our
experiments. The Pentium III Xeon running Windows
2000 is a 700 MHz, 4 processor shared memory machine
with 4 GB of main memory. Each processor has 32 KB
of level-1 data cache and 1 MB of level-2 cache on-chip.
The level-1 cache is 4-way set associative with 32 B lines
and the level-2 cache is 8-way set associative with 32 B
lines. The UltraSPARC III machine is a 750 MHz SUN
Blade 1000 shared memory machine running Solaris 8. It
has 2 processors and 1 GB of main memory. Each
processor has 64 KB of level-1 data cache and 8 MB of
level-2 cache. The level-1 cache is 4-way set associative
with 32 B lines and the level-2 cache is direct mapped
with 64 B lines. The MIPS machine is a 300 MHz
R12000, 64 processor, shared memory machine with 16
GB of main memory. Each processor has 32 KB of level-
1 data cache and 8 MB of level-2 cache. The level-1
cache is 2-way set associative with 32 B lines and the

level-2 cache is direct mapped with 64 B lines. The
Alpha 21264 is a 500 MHz uniprocessor machine with
512 MB of main memory. It has 64 KB of level-1 data
cache and 4 MB of level-2 cache. The level-1 cache is 2-
way set associative with 64 B lines and the level-2 cache
is direct mapped with 64 B lines. It also has an 8 element
fully-associative victim cache. All experiments are run
on a uniprocessor or on a single node of a multiprocessor
system. Unless otherwise specified the Simplescalar
simulations are done using 16 KB of level-1 data cache
and 256 KB of level-2 cache parameters.

2.3. Related Work

A number of groups have done research in the area of

cache performance analysis in recent years. Detailed
cache models have been developed by Weikle, McKee,
and Wulf in [23] and Sen and Chatterjee in[21]. XOR-
based data layouts to eliminate cache misses have been
explored by Valero and others in [10].

A number of papers have discussed the optimization
of specific dense linear algebra problems with respect to
cache performance. Whaley and others discuss
optimizing the widely used Basic Linear Algebra
Subroutines (BLAS) in [24]. Chatterjee and Sen discuss a
cache efficient matrix transpose in [4]. Frigo and others
discuss the cache performance of cache oblivious
algorithms for matrix transpose, FFT, and sorting in [9].
Park and Prasanna discuss dynamic data remapping to
improve cache performance for the DFT in [15]. One
characteristic that all these problems share is a very
regular memory accesses that are known at compile time.

Another area that has been studied is the area of
compiler optimizations (see for example [19]).
Optimizing blocked algorithms has been extensively
studied (see for example [12]). The SUIF compiler
framework includes a large set of libraries including
libraries for performing data dependency analysis and
loop transformations. In this context, it is important to
note that SUIF does not handle the data dependencies
present in the Floyd-Warshall algorithm in a manner that
improves the processor-memory traffic. It will not
perform the transformations discussed in Section 3
without user intervention [7].

Although much of the focus of cache optimization
has been on dense linear algebra problems, there has been
some work that focuses on irregular data structures.
Chilimbi et. al. discusses making pointer-based data
structures cache-conscious in [5]. He focuses on
providing structure layouts to make tree structures cache-
conscious. LaMarca and Ladner developed analytical
models and showed simulation results predicting the
number of cache misses for the heap in [13]. However,
the predictions they made were for an isolated heap, and
the model they used was the hold model, in which the

heap is static for the majority of operations. In our work,
we consider Dijkstra’s algorithm and Prim’s algorithm in
which the heap is very dynamic. In both Dijkstra’s
algorithm and Prim’s algorithm O(N) Extract-Mins are
performed and O(E) Updates are performed. Finally in
[20], Sanders discusses a highly optimized heap with
respect to cache performance. He shows significant
performance improvement using his sequential heap . The
sequential heap does support Insert and Delete-min very
efficiently, however the Update operation is not
supported.

In the presence of the Update operation, the
asymptotically optimal implementation of the priority
queue, with respect to time complexity, is the Fibonacci
heap. This implementation performs O(N*lg(N) + E)
operations in both Dijkstra’s algorithm and Prim’s
algorithm. In our experiments the large constant factors
present in the Fibonacci heap caused it to perform very
poorly. For this reason, we focus our work on the graph
representation and the interaction between the graph
representation and the priority queue.

We have recently published work on the Floyd-
Warshall algorithm in [17] that showed a 2x improvement
using the Unidirectional Space Time Representation.
Compared with [17], this paper represents a new approach
to optimizing the Floyd-Warshall algorithm, namely
recursion and a novel tiled implementation, which gives
up to an additional 3x improvement in execution time.
Further, we expand our scope of algorithms to include
Dijkstra’s algorithm for the single source shortest path
problem and Prim’s algorithm for the minimum spanning
tree problem.

3. Optimizing FW

In this section we address the challenges of the

Floyd-Warshall algorithm. In Section 3.1 we introduce
and prove the correctness of a recursive implementation
for the Floyd-Warshall algorithm. We also analyze the
cache performance and show experimental results for this
implementation compared with the baseline. We also
show that by tuning the recursive algorithm to the cache
size, we can improve its performance by up to 2x. In
Section 3.2, we present a novel tiled implementation of
the Floyd-Warshall algorithm. Finally, in Section 3.3, we
address the issue of data layout for both the blocked
implementation and the recursive implementation.

Throughout this section we make the following
assumptions. We assume a directed graph with N vertices
and E edges. We assume the cache model described in
Section 2.2, where Ci < N2 for some i and the TLB size is
much less than N. To experimentally validate our
approaches and their analysis, the actual problem sizes
that we are working with are between 1024 and 4096
nodes (1024 ≤ N ≤ 4096). Each data element is 8 bytes.

Many processors currently on the market have in the
range of 16 to 64 KB of level-1 cache and between 256
KB and 4 MB of level-2 cache. Many processors have a
TLB with approximately 64 entries and a page size of 4 to
8 KB.

In [11], it was shown that the lower bound on
processor-memory traffic was Ω(N3/ C) for the usual
implementation of matrix multiply. By examining the
data dependency graphs for both matrix multiplication
and the Floyd-Warshall algorithm, it can be shown that
matrix multiplication reduces to the Floyd-Warshall
algorithm with respect to processor-memory traffic.
Therefore, we have the following:

Lemma 3.1: The lower bound on processor-
memory traffic for the Floyd-Warshall
algorithm, given a fixed cache size C , is
Ω(N3/ C), where N is the number of vertices in
the input graph.

3.1. A Recursive Implementation of FW

As stated earlier, recursive implementations have

recently been used to increase cache performance. It was
stated in [8] that recursive implementations perform
automatic blocking at every level of the memory
hierarchy. To the authors’ knowledge, there does not
exist a recursive implementation of the Floyd-Warshall
algorithm. The reason for this, is that the Floyd-Warshall
algorithm not only contains all the dependencies present
in ordinary matrix multiplication, but also additional
dependencies that can not be satisfied by the simple
recursive implementation of matrix multiply. What is
shown here is a novel recursive implementation of the
Floyd-Warshall algorithm. We also prove the correctness
of the implementation and show analytically that it
reaches the asymptotically optimal amount of processor
memory traffic.

In order to design a recursive implementation of the
Floyd-Warshall algorithm, first examine the standard
implementation when applied to a 2x2 matrix. The
standard implementation loops over the variables k , i, and
j from 1 to N . When the 2x2 case is unrolled we have the
code shown in Figure 1a. Notice that 8 calls are made to
the min() operation and each call requires 3 data values
from the matrix. This is converted into a recursive
program by replacing the call to the min() function with a
recursive call. Instead of passing 3 data values, we pass 3
sub-matrices corresponding to quadrants of the input
matrix. This code is shown in Figure 1b. The initial call
to the recursive algorithm passes the entire input matrix as
each argument. Subsequent calls pass quadrants of their
input arguments as shown in Figure 1b. The code similar
to Figure 1a calling the min() operation is used as the base
case for when the input matrices are of size 2x2.

Theorem 3.1: The recursive implementation of
the Floyd-Warshall algorithm detailed above
satisfies all dependencies in the Floyd-Warshall
algorithm and computes the correct result.
For a proof of Theorem 3.1, namely the correctness

of the recursive implementation of the Floyd-Warshall
algorithm see [14].

Theorem 3.2: The recursive implementation
reduces the processor-memory traffic by a factor
of B, where ()CB Ο= .
Proof:
Note that the running time of this algorithm is given

by

())(
2

*8 3N
N

TNT Θ=





=

Define the amount of processor memory traffic by
the function D(x). Without considering cache, the
function behaves exactly as the running time.

())(
2

*8 3N
N

DND Θ=





=

Consider the problem after k recursive calls. At this
point the problem size is N/2k. There exists some k such
that N/2k = ()CΟ , where C = cache size. For simplicity
we set B = N/2k. At this point, all data will fit in the cache
and no further traffic will occur for recursive calls below
this point. Therefore:

() ()2BOBD =
By combining Equation 2 and Equation 3 it can be

shown that:

() ())(*
3

3

3

B
N

OBD
B
N

ND ==

Therefore, the processor-memory traffic is reduced
by a factor of B. <

Theorem 3.3: The recursive implementation
reduces the traffic between the ith and the (i-1)th

Floyd-Warshall (A) {
 A11 = min(A11, A11+A11);
 A12 = min(A12, A11+A12);
 A21 = min(A21, A21+A11);
 A22 = min(A22, A21+A12);
 A22 = min(A22, A22+A22);
 A21 = min(A21, A22+A21);
 A12 = min(A12, A12+A22);
 A11 = min(A11, A12+A21);
}

FWR (A, B, C) {
 if (not base case) {
 FWR(A11, B11, C11);
 FWR(A12, B11, C12);
 FWR(A21, B21, C11);
 FWR(A22, B21, C12);
 FWR(A22, B22, C22);
 FWR(A21, B22, C21);
 FWR(A12, B12, C22);
 FWR(A11, B12, C21);
 }
 else {
 /* run base case */
 }
}

Figure 1, a&b: Recursive implementation of FW.

1

4

2

3

level of cache by a factor of Bi at each level of
the memory hierarchy, where ()ii CB Ο= .

Proof:
Note first of all, that no tuning was assumed when

calculating the amount of processor-memory traffic in the
proof of Theorem 3.2. Namely, Equation 3 holds for any
N and any B where ()CB Ο= .

In order to prove Theorem 3.3, first consider the
entire problem and the traffic between main memory and
the mth level of cache (size Cm). By Theorem 3.2, the
traffic will be reduced by Bm where ()mm CB Ο= . Next

consider each problem of size Bm and the traffic between
the mth level of cache and the (m-1)th level of cache (size
Cm-1). By replacing N in Theorem 3.2 by Bm, it can be
shown that this traffic is reduced by a factor of Bm-1 where

()11 −− Ο= mm CB .

This simple extension of Theorem 3.2 can be done
for each level of the memory hierarchy, and therefore the
processor-memory traffic between the ith and the (i-1)th
level of cache will be reduced by a factor of Bi, where

()ii CB Ο= . <

Finally, recall from Lemma 3.1 that the lower bound
on processor-memory traffic for the Floyd-Warshall
algorithm is given by Ω(N3/ C), where C is the cache
size. Also recall from Theorem 3.2 the upper bound on
processor-memory traffic that was shown for the
recursive implementation was O(N3/B), where B2 = O(C).
Given this information we have the following Theorem.

Theorem 3.4: Our recursive implementation is
asymptotically optimal among all
implementations of the Floyd-Warshall
algorithm with respect to processor-memory
traffic.
As a final note in the recursive implementation, we

show up to 2x improvement when we set the base case
such that the base case would utilize more of the cache
closest to the processor. Once we reached a problem size
B, where B2 is on the order of the cache size, we execute a
standard iterative implementation of the Floyd-Warshall
algorithm. This improvement varied from one machine to
the other and is due to the decrease in the overhead of
recursion. It can be shown that the number of recursive
calls in the recursive algorithm is reduced by a factor of
B3 when we stop the recursion at a problem of size B. A
comparison of full recursion and recursion stopped at a
larger block size showed a 30% improvement on the
Pentium III and a 2x improvement on the UltraSPARC
III.

In order to further improve performance, B 2 must be
chosen to be on the order of the L1 cache size. The
simplest and possibly the most accurate method of
choosing B is to experiment with various tile sizes. This

is the method that the Automatically Tuned Linear
Algebra Subroutines (ATLAS) project employs [24].
However, it is beneficial to find an estimate of the optimal
block size. In order to get an estimate we used the block
size selection heuristic for finding this estimate discussed
in [14].

The baseline we use for our experiments is a
straightforward implementation of the Floyd-Warshall
algorithm. It was shown in [17] that standard
optimizations yield limited performance increases on
most machines. The Simplescalar results in Table 1 for
the recursive implementation show a 30% decrease in
level-1 cache misses and a 2x decrease in level-2 cache
misses for problem sizes of 1024 and 2048. In order to
verify the improvements on real machines, we compare
the recursive implementation of the Floyd-Warshall
algorithm with the baseline. For these experiments the
best block size was found experimentally. The results
show a 10x improvement in overall execution time on the
Alpha, better than 7x improvement on the Pentium III and
the MIPS, and almost a 3x improvement on the
UltraSPARC III. These results are shown in Figures 3 -
6. Differences in performance gains between machines
are expected, due to the wide variance in cache
parameters and miss penalties.

3.2. A Tiled Implementation for FW

Compiler groups have used tiling to achieve higher

data reuse in looped code. Unfortunately, the data
dependencies from one k-loop to the next in the Floyd-
Warshall algorithm make it impossible for current
compilers including research compilers to perform 3
levels of tiling. In order to tile the outermost loop we
must cleverly reorder the tiles in such a way that satisfies
data dependencies from one k-loop to the next as well as
within each k-loop.

Consider the following tiled implementation of the
Floyd-Warshall algorithm. Tile the problem into BxB
tiles. During the k th block iteration, first update the (k ,k)th

Data level-1 cache misses
N Baseline Recursive

1024 0.806 0.546
2048 6.442 4.362

(billions)

Data level-2 cache misses
N Baseline Recursive

1024 0.537 0.280
2048 4.294 2.232

(millions)

Table 1: Simplescalar result

tile, then the
remainder of the kth
row and kth column,
then the rest of the
matrix. Figure 2
shows an example
matrix tiled into a
4x4 matrix of
blocks. Each block
is of size BxB .
During each
outermost loop, we
would update first
the black tile
representing the

(k ,k)th tile, then the grey tiles, then the white tiles. In this
way we satisfy all dependencies from each k th loop to the
next as well as all dependencies within each k th loop.

Theorem 3.5: The proposed tiled
implementation of the Floyd-Warshall algorithm
reduces the processor-memory traffic by a factor
of B where B2 is on the order of the cache size.
Proof sketch: At each block we perform B3

operations. There are N/B x N/B blocks in the array and
we pass through each block N/B times. This gives us a
total of N3 operations. In order to process each block we
require only 3*B2 elements. This gives us a total of N3/B
total processor-memory traffic. <

Given this upper bound on traffic for the tiled
implementation and the lower bound shown in Lemma
3.1, we have.

Theorem 3.6: The proposed tiled
implementation is asymptotically optimal among
all implementations of the Floyd-Warshall

0

1000

2000

3000

4000

5000

6000

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Baseline 91.99 697.17 5918.44

Recursive 13.18 103.48 820.45

Tiled 12.59 99.09 778.39

1024 2048 4096

Figure 4: UltraSPARC III results.

0

2000

4000

6000

8000
E

xe
cu

ti
o

n
 t

im
e

(s
ec

)

Baseline 80.87 681.14 6079.11

Recursive 38.27 307.33 2460.53

Tiled 33.47 270.85 2179.26

1024 2048 4096

0

2000

4000

6000

8000

10000

12000

E
xe

cu
ti

o
n

 t
im

e
(s

ec
)

Baseline 110.690 1123.230 11276.81

Recursive 12.330 99.100 797.140

Tiled 12.46 99.65 800.64

1024 2048 4096

Figure 3: Pentium III results.

Data level-1 cache misses
N Baseline Tiled

1024 0.806 0.542
2048 6.442 4.326 109

Data level-2 cache misses
N Baseline Tiled

1024 0.537 0.276
2048 4.294 2.195 106

Table 2: Simplescalar result

Figure 2: Tiled
implementation of FW.

Figure 6: Alpha results.

0

2000

4000

6000

E
xe

cu
tio

n
tim

e
(s

ec
)

Baseline 149.52 1546.15 10984.9

Recursive 22.73 175.50 1453.13

Tiled 17.27 138.81 1106.44

1024 2048 4096

Figure 5: MIPS results.

algorithm with respect to processor-memory
traffic.
When implementing the tiled implementation of the

Floyd-Warshall algorithm, it is important to use the best
possible block size. As mentioned in Section 3.1, the best
block size should be found experimentally, and the block
size selection heuristic discussed in Section 3.1 can be
used to give a rough bound on the best block size.
However, when implementing the tiled implementation, it
is also important to note that the search space must take
into account each level of cache as well as the size of the
TLB. Given these various solutions for B the search
space should be expanded accordingly.

Simplescalar results for the tiled implementation are
shown in Table 2. These results show a 2x improvement
in level-2 cache misses and a 30% improvement in level-1
cache misses. Experimental results show a 10x
improvement in execution time for the Alpha, better than
7x improvement for the Pentium III and the MIPS and
roughly a 3x improvement for the UltraSPARC III (See
Figures 3 - 6).

3.3. Data Layout Issues

It is also important to consider the data layout when

implementing any algorithm. It has been shown by a
number of groups that data layouts tuned to the data
access pattern of the algorithm can reduce both TLB and
cache misses (see for example [15], [18]). In the case of
the recursive algorithm, the access pattern is matched by a
Z-Morton data layout. See [4] for a definition of the
Morton ordering.

In the case of the tiled implementation, the Block
Data Layout (BDL) matches the access pattern. The BDL
is a two level mapping that maps a tile of data, instead of
a row, into contiguous memory. See [14] for a definition
of the BDL. By setting the block size equal to the tile size
in the tiled computation, the data layout will exactly
match the data access pattern.

We experimented with both of these data layouts for
each of the algorithms. The results are shown in Tables 3
and 4. All of the execution times were within 15% of
each other with the Z-Morton data layout winning slightly
for the recursive implementation and the BDL winning
slightly for the tiled implementation. The fact that the Z-
Morton was slightly better for the recursive
implementation and likewise the BDL for the tiled
implementation was exactly as expected, since they match
the data access pattern most closely. The closeness of the
results is mostly likely due to the fact that the majority of
the data reuse is within the final block. Since both of
these data layouts have the final block laid out in
contiguous memory locations, they perform equally well.

4. Optimizing the Single-Source Shortest

Path Problem

Due to the structure of Dijkstra’s algorithm neither

tiling nor recursion can be directly applied. Much work
has been done to generate cache friendly implementations
of the heap, however, the update operation has not been
considered in great detail (see section 2.3). In the
presence of the update operation, the Fibonacci heap
represents the asymptotically optimal implementation
with respect to time complexity. Unfortunately the
performance of the Fibonacci heap was very poor
compared with even a straightforward implementation of
the heap [14].

As mentioned in Section 2, the largest data structure
is the graph representation. This structure will be of size
O(N+E), where E can be as large as N2 for dense graphs.
In contrast, the priority queue, the other data structure
involved, will be of size O(N). For these reasons, we
focus primarily on optimizing the graph representation
and on eliminating the cache conflicts between the graph
representation and the priority queue.

One difficulty we face when optimizing the graph
representation is the access pattern. In Dijkstra’s
algorithm each element in the representation is accessed

Recursive Implementation
N Morton

Layout
Block Data

Layout

2048 103.48 111.42
4096 820.45 878.89 (sec)

Tiled Implementation

N Morton
Layout

Block Data
Layout

2048 99.25 99.39
4096 779.53 780.41 (sec)

Recursive Implementation
N Morton

Layout
Block Data

Layout

2048 307.33 311.26
4096 2460.53 2488.88 (sec)

Tiled Implementation

N Morton
Layout

Block Data
Layout

2048 278.48 271.35
4096 2248.20 2184.09 (sec)

Table 3: Pentium III results. Table 4: Ultrasparc III results.

exactly once. For each node that is extracted from the
heap, the corresponding list of adjacent nodes is read from
the graph representation. Once each node is extracted
from the heap, the computation is complete. In this
context, we can take advantage of two things. The first is
prefetching. Modern processors perform aggressive
prefetching in order to hide memory latencies. The
second is to optimize at the cache line level. In this case,
a single miss would bring in multiple elements that would
subsequently be accessed and result in cache hits. This is
known as minimizing cache pollution.

There are two commonly used graph representations.
This representation is of size O(N2). It has the nice
property that elements are accessed in a contiguous
fashion and therefore, cache pollution will be minimized
and prefetching will be maximized. However, for sparse
graphs, the size of this representation is inefficient. Each
node in the list includes the cost of the edge from the
given node to the adjacent node. This representation has
the property of being of optimal size for all graphs,
namely O(N+E). However, the fact that it is pointer
based, leads to cache pollution and difficulties in
prefetching. See [6] for more details.

Consider a simple combination of these two
representations. For each node in the graph, we have a
corresponding array of adjacent nodes. The size of this
array is exactly the out-degree of the given node. There
are simple methods to construct this representation when
the out-degree is not known until run time. For this

representation, the elements at each point in the array look
similar to the elements stored in the adjacency list. Each
element must store both the cost of the path and the index
of the adjacent node. Since the size of each array is
exactly the out-degree of the corresponding node, the size
of this representation is exactly O(N+E). This makes it
optimal with respect to size. Also, since the elements are
stored in arrays and therefore in contiguous memory
locations, the cache pollution will be minimized and
prefetching will be maximized. Subsequently this
representation will be referred to as the adjacency array
representation.

In order to demonstrate the performance
improvements using our graph representation, we
performed Simplescalar simulations as well as
experiments on two different machines, the Pentium III
and UltraSPARC III, for Dijkstra’s algorithm. The
Simplescalar simulations show a significant improvement
in level-2 cache miss rate for the adjacency array
representation compared with the adjacency list
representation (see Table 5). This is due to the reduction

0

200
400

600

800
1000

1200

1400
1600

1800

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Adj. Array

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Adj. Array
FW-Tiled

Figure 12: Dijkstra’s
algorithm vs. best FW on
UltraSPARC III, N = 2048

Figure 11: Dijkstra’s
algorithm vs. best FW on
Pentium III, N = 2048

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

Graph density

E
xe

cu
tio

n
tim

e
(s

)

Linked-List
Adj. Array
FW-Tiled

0
50

100
150
200
250
300
350
400
450
500

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Adj. Array

Figure 8: Dijkstra’s alg. on
Pentium III, N = 4096

Figure 7: Dijkstra’s alg. on
Pentium III, N = 2048

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)
Linked-List

Adj. Array

Figure 9: Dijkstra’s alg. on
UltraSPARC III, N = 2048

Figure 10: Dijkstra’s alg. on
UltraSPARC III, N = 4096

0

500

1000

1500

2000

2500

3000

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Adj. Array

Cache miss rates
 Linked-List Adj. Array

D-Level 1 0.2936 0.2622
D-Level 2 0.4242 0.3545
(DL1:16k, DL2:256k, Input: 2048 nodes, 0.9 density)

Table 5: Simplescalar results.

in cache pollution and increase in prefetching that was
predicted. The experimental results also demonstrate
improved performance. Figures 7 - 10 show a 2x
improvement for Dijkstra’s algorithm on the Pentium III
and a 20% improvement on the UltraSPARC III. This
significant difference in performance is due primarily to
the difference in the memory hierarchy of these two
architectures.

A second comparison to observe is between the
Floyd-Warshall algorithm and Dijkstra’s algorithm for
sparse graphs, i.e. edge densities less than 20%. For these
graphs, Dijkstra’s algorithm is more efficient for the all
pairs shortest path problem. By using the adjacency array
representation of the graph in Dijkstra’s algorithm, the
range of graphs over which Dijkstra’s algorithm
outperforms the Floyd-Warshall algorithm can be
increased. Figures 11 & 12 show a comparison of the
best Floyd-Warshall algorithm with Dijkstra’s algorithm
for sparse graphs. On the Pentium III, we were able to
increase the range for Dijkstra’s algorithm from densities
up to 5% to densities up to 20%. On the
UltraSPARC III we increased the range
from densities up to 20% to densities up to
30%.

This first set of experiments was done
using the problem sizes used in Section 3 in
order to compare the Floyd-Warshall
algorithm with Dijkstra’s algorithm for the
all pairs shortest path problem. Also, with
these problem sizes, the cache is much
larger than the data set size and cache
conflicts are not a significant problem. If
the problem set is much larger, the conflict
between the graph representation and the
priority queue should be considered. In our
data layout the priority queue is placed in
memory such that it maps only to the top
half of the cache. The graph representation
is placed in memory such that it maps only
to the bottom half of the cache. In this way
the conflicts between the graph
representation and the priority queue will be
eliminated. It should be noted that this
scheme may increase the cache conflicts

within the priority queue, since it is a frequently accessed
data structure.

Experimental results for problem sizes larger than the
cache size are shown in Table 6. For these problem sizes
the performance gains were somewhat smaller than the
gains for smaller problems. This is most likely due to the
fact that the priority queue is much larger and causes
more traffic. Also, due to memory limitations, the
experiments were run for very sparse graphs, E = O(N).
The adjacency array graph representation should give
more performance improvements for denser graphs,
simply because the number of adjacent nodes will be
greater. In the case of 512 K nodes, the experiment had a
higher percentage of edges and showed better
performance improvements.

5. Optimizing the Minimum Spanning Tree

Problem

As mentioned in Section 2, Prim’s algorithm for

minimum spanning tree is very similar to Dijkstra’s
algorithm for the single source shortest path problem. For
this reason the optimizations applicable to Dijkstra’s
algorithm are applicable to Prim’s algorithm. Figures 13 -
16 show the result of applying the optimization to the
graph representation discussed in Section 4 to Prim’s
algorithm. Recall that this was an optimization to the
graph representation replacing the adjacency list
representation with the adjacency array representation.

0
50

100
150
200
250
300
350
400
450
500

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 13: Prim’s alg. on
Pentium III, N = 2048

Figure 15: Prim’s alg. on
UltraSPARC III, N = 2048

Figure 16: Prim’s alg. on
UltraSPARC III, N = 2048

0

50

100

150

200

250

300

350

400

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

0

200

400

600

800

1000

1200

1400

1600

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.0 0.2 0.4 0.6 0.8 1.0

Graph density

E
xe

cu
tio

n
tim

e
(m

s)

Linked-List

Array

Figure 14: Prim’s alg. on
Pentium III, N = 4096

N Linked-
List

Adj.
Array

Adj. Array
w/ coloring

512 K 13.57 10.24 10.41
1 M 14.369 13.879 14.864
2 M 32.324 32.108 31.419
4 M 71.908 69.796 66.531

(sec)

Table 6: Dijkstra’s algorithm on UltraSPARC III.

Our results show a 2x improvement on the Pentium III
and 20% for the UltraSPARC III. These results are for
problem sizes 2048 and 4096. This result is very similar
to the results we saw for the same comparison in
Dijkstra’s algorithm. Recall that our Simplescalar results
for Dijkstra’s algorithm showed an improvement in the
level-2 cache misses. Based on the similarity between
Dijkstra’s algorithm and Prim’s algorithm, we could
expect similar cache performance for Prim’s algorithm.

6. Conclusion

Using various optimizations for graph algorithms, we

have showed a 3x to 10x improvement for the Floyd-
Warshall algorithm and a 20% to 2x improvement for
Dijkstra’s algorithm and Prim’s algorithm. Our
optimizations to the Floyd-Warshall algorithm represent a
novel recursive implementation as well as a novel tiled
implementation of the algorithm. For Dijkstra’s
algorithm and Prim’s algorithm, we presented a cache-
friendly graph representation that gave significant
performance improvements.

One area for future work is the optimization of the
priority queue in Dijkstra’s algorithm and Prim’s
algorithm. As mentioned, the Fibonacci heap is the
asymptotically optimal implementation for priority queue
in the presence of the update operation, however, due to
large constant factors, it performed poorly in experiments.

This work is part of the Algorithms for Data
IntensiVe Applications on Intelligent and Smart
MemORies (ADVISOR) Project at USC [1]. In this
project we focus on developing algorithmic techniques for
mapping applications to architectures. Through this we
understand and create a framework for application
developers to exploit features of advanced architectures to
achieve high performance.

7. References

[1] ADVISOR Project. http://advisor.usc.edu/.
[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Menlo Park, California, 1974.
[3] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, June, 1997.
[4] S. Chatterjee and S. Sen. Cache Efficient Matrix
Transposition. In Proc. of International Symposium on High
Performance Computer Architecture, January 2000.
[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
Conscious Structure Layout. In Proc. of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, May 1999.
[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

[7] P. Diniz. USC ISI, Personal Communication, March,
2001.
[8] Jeremy D. Frens and David S. Wise. Auto-blocking
matrix-multiplication or tracking BLAS3 performance from
source code. In Proc. of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, June 1997.
[9] M. Frigo, C. E. Leiserson, H. Prokop, and S.
Ramachandran. Cache-Oblivious Algorithms. In Proc. of 40th
Annual Symposium on Foundations of Computer Science, 17-18,
New York, NY, USA, October, 1999.
[10] A. Gonzalez, M. Valero, N. Topham, and J. M.
Parcerisa. Eliminating Cache Conflict Misses through XOR-
Based Placement Functions. In Proc. of 1997 International
Conference on Supercomputing, Vienne, Austria, July, 1997.
[11] J. Hong and H. Kung. I/O Complexity: The Red Blue
Pebble Game. In Proc. of ACM Symposium on Theory of
Computing, 1981.
[12] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache
Performance and Optimizations of Blocked Algorithms. In
Proc. of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
Palo Alto, California, April 1991.
[13] A. LaMarca and R. E. Ladner. The Influence of Caches
on the Performance of Heaps. ACM Journal of Experimental
Algorithmics, 1, 1996.
[14] J. Park, M. Penner, and V. K. Prasanna. Optimizing
Graph Algorithms for Improved Cache Performance. Technical
Report USC-CENG 02-01, Department of Electrical
Engineering, USC, January 2002.
[15] N. Park, D Kang, K Bondalapati, and V. K. Prasanna.
Dynamic Data Layouts for Cache-conscious Factorization of the
DFT. In Proc. of International Parallel and Distributed
Processing Symposium, May 2000.
[16] D. A. Patterson and J. L. Hennessy. Computer
Architecture A Quantitative Approach. 2nd Ed., Morgan
Kaufmann Publishers, Inc., San Francisco, California, 1996.
[17] M. Penner and V. K. Prasanna. Cache-Friendly
Implementations of Transitive Closure. In Proc. of
International Conference on Parallel Architectures and
Compiler Techniques, Barcelona, Spain, September 2001.
[18] G. Rivera and C. Tseng. Data Transformations for
Eliminating Conflict Misses. In Proceedings of the 1998 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Montreal, Canada, June 1998.
[19] F. Rastello and Y. Robert. Loop Partitioning Versus
Tiling for Cache-Based Multiprocessor. In Proc. of
International Conference Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, 1998.
[20] P. Sanders. Fast Priority Queues for Cached Memory.
ACM Journal of Experimental Algorithmics , 5, 2000.
[21] S. Sen, S. Chatterjee. Towards a Theory of Cache-
Efficient Algorithms. In Proc. of Symposium on Discrete
Algorithms, 2000.
[22] SPIRAL Project. http://www.ece.cmu.edu/~spiral/.
[23] D. A. B. Weikle, S. A. McKee, and Wm.A. Wulf.
Caches As Filters: A New Approach To Cache Analysis. In
Proc. of Grace Murray Hopper Conference, September 2000.
[24] R. C. Whaley and J. J. Dongarra. Automatically Tuned
Linear Algebra Software. High Performance Computing and
Networking, November 1998.

