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Abstract

There are multiple modes for HIV transmissions, each of which is usually associated with a 
certain key population (e.g. needle sharing among people who inject drugs). Recent field studies 
revealed the merging trend of multiple key populations, making HIV intervention difficult because 
of the existence of multiple. In this research, we aim to address this challenge by developing a 
multiplex social network framework, we propose a new random search method, named Partition-
based Random Search with Network and Memory Prioritization (PRS-NMP), to identify the 
optimal subset of high-value individuals in the social network for interventions. Numerical 
experiments demonstrated that the proposed PRS-NMP based interventions could effectively 
reduce the scale of HIV transmissions. The performance of PRS-NMP based interventions is 
consistently better than benchmark Nested Partitions method and network-based metrics.
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I. INTRODUCTION

HIV (Human immunodeficiency virus) is a major healthcare burden worldwide [1]. There 
are multiple modes for HIV transmissions, such as unprotected sex, sharing needles, mother-
to-infant transmission, and transfusing blood, etc. [2]. Behavioral research has recognized 
that the interactions between multiple key populations could facilitate the transmission of 
HIV [3]–[6]. Recent field studies found that many female sex workers (FSWs) tended to 
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have noncommercial partners that are persons who inject drugs (PWID) [7]–[9]. This 
overlap results in an elevated risk of HIV outbreaks [10], [11]. It is critical to develop 
effective intervention strategies to reduce the risk of HIV transmissions via identifying the 
optimal subset of high-value individuals in the social network.

Social network has been widely adopted to characterize and model the epidemics of HIV 
[11]–[16] and other infectious diseases [13], [17], [18]. Behavioral research with real-world 
data found that an individual’s social networking behaviors (e.g. exchanges of resources) 
underlied and sustained his or her HIV-risk behaviors [19]. Due to the limitations in 
performing large-scale experiments with human subjects, simulation has been a major tool 
to study HIV interventions on social networks. Real world social networks usually exhibit 
scalefree property [20], [21], causing difficulties in acquiring global immunity with 
randomly immunized individuals. However, their vulnerability to epidemic attacks can be 
sharply lowered by targeted immunization/intervention schemes [18], [22], [23].

Existing studies mainly represent the relationships between people with a simplex 
framework (e.g. unprotected sex) [24], [25]. However, there are usually multiple types of 
relationships through which infectious diseases transmit [2]. Field studies revealed that 
different transmission modes exhibit different transmission patterns of HIV, making the 
conventional simplex network framework inadequate to model the epidemics patterns 
accurately [7], [26], [27]. In order to model the multiple types of relationships through 
which HIV transmits among FSWs and PWID, Zhong et al. developed a multiplex network 
based model in a simulation study, and found that bridge individuals (who have connections 
in multiple key populations) played a significant role in HIV transmissions [11]. In addition, 
the authors simulated the interventions based on individuals’ positions in the multiplex 
social network, and demonstrated that preventions on bridge individuals could help reduce 
both the scale and speed of HIV transmissions. However, this preliminary study only 
examined the intervention strategies that isolated individuals based on a single network 
property (degree, betweenness centrality, or cross-layer betweenness centrality). These 
network-based intervention methods are usually not optimal. Research on the optimization 
of HIV interventions for such multiplex social networks is still yet to come. In addition, 
selecting the optimal subset of individuals in network based models is usually NP-hard [28], 
[29], making the search for high-value individuals for targeted HIV intervention very 
challenging.

In this paper, we propose a new random search method, named Partition-based Random 
Search with Network and Memory Prioritization (PRS-NMP) to address this challenge. The 
problem is based on a multiplex social network framework, in which each node represents a 
person (either in FSWs community or PWID community), and each edge represents the 
relationship between the two corresponding nodes (either unprotected sex or needle sharing). 
the optimal PRS-NMP aims to identify subset of n individuals to be isolated from the rest of 
the multiplex social network, so that the scale of HIV transmission is minimized.

The contribution of this research is twofold. First, we develop a multiplex social network 
framework to model the HIV transmissions, and simulate the outcomes of different 
intervention strategies. This framework is able to capture the multimode transmissions of 
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infectious diseases. It can also be easily applied to modeling other scenarios like marketing, 
opinion dynamics, information diffusion, social recommendations, etc. [30]–[33]. Second, 
we propose a novel networkbased partition random search method that can identify the best 
subset of individuals to form the optimal intervention strategy. The newly proposed method 
takes advantage of the network structure and the memory of prior partitions to facilitate the 
search for optimal solution. It can be expanded to solve other optimization problems in a 
network context, such as influence maximization, social synchrony, control of complex 
networks, resource allocation, traffic control etc. [28], [34]–[40].

The remaining of this paper is organized as follows. Section II introduces the background 
and preliminaries. Section III describes the proposed PRS-NMP method. Section IV presents 
results of numerical experiments. We conclude the paper with discussions of limitations and 
future work in Section V.

II. BACKGROUND AND PRELIMINARIES

In this section, we first introduce the multiplex social network framework for modeling HIV 
transmissions across key populations. Then, the preliminaries of partition-based random 
search framework are presented.

A. Multiplex Social Network Framework for Modeling HIV Transmissions across FSWs 

and PWID Communities

We construct a multiplex social network framework to model the HIV transmissions across 
two key populations – FSWs and PWID. The two populations form two communities, which 
are connected through a small number of crosscommunity bridge edges, representing the 
non-commercial partnerships between FSWs and PWID. Figure 1 presents a hypothetical 
example of the multiplex social network framework. In this example, there is a bridge 
formed by one FSW node and one PWID node (the two adjacent nodes are bridge nodes). 
The bridge could be formed by unprotected sex relationship between the two nodes, or 
sharing needles while taking drugs (in this case, both). If the initial infected node is in the 
FSWs community, the HIV virus would be transmitted to PWID community through the 
bridge nodes, and vice versa.

The network is presented as G = (V1,V2,E1,E2), where V1 is the set of nodes in the FSWs 
community, and V2 is the set of nodes in the PWID community. V = V1 ∪ V2 is the set of all 

nodes. E1 and E2 represent the unprotected sex relationships e
i j
1  and needle sharing 

relationships e
i j
2  among nodes, respectively. E = E1 ∪ E2 is the set of all edges. As both 

unprotected sex and sharing needles relationships are mutual, the network is undirected, eij ≡ 
eji. The set of bridge edges is represented by B = {e

i j
1 |vi ∈ V1,vj ∈ V2} ∪ {e

i j
2 |vi ∈ V1,vj ∈ 

V2}. Bridge edges are incident to bridge nodes C = {vi|ei j
1  ∈ B} ∪ {vi|ei j

2  ∈ B}. Both the 

FSWs community and PWID community were found to be scale-free networks, in which a 
rich-gets-richer effect exists [24], [41], [42]. Therefore, we adopted the classic preferential 
attachment model to generate the social networks of both communities [20], [21]. FSWs 
community consists of FSWs and their regular clients. PWID community consists of PWID 
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who share needles with others while using drugs. We assume that there is no homosexual 
relationship among them, thus the FSWs community a bipartite network. We modified the 
classic preferential attachment model to create a bipartite network with the scale-free 
property to represent the FSWs community.

In the numerical experiments, we constructed one multiplex social network as the platform 
for simulations, according to the descriptive data we obtained from interviewing local FSWs 
and PWID in a certain province in Southwest China [7]. The network has 500 nodes in each 
community with 5% nodes randomly selected as bridge nodes. Figure 2 shows the 
visualization of the network. As shown by the topological properties in Table I and the 
degree distribution in Figure 3, both communities follow a heavy-tail degree distribution 
(largely power-law) with relatively short distance between each other. It is worth noting that 
due to the bipartite property enforced in the modified preferential attachment model, the 
degree distribution of FSWs community does not follow a power-law perfectly when the 
degree is small. These properties are aligned with the empirical studies in the literature and 
our prior field studies [24], [26], [42].

B. Background of Partition-based Random Search

The partition-based random search (PRS) is a popular optimization scheme that iteratively 
partitions the solution space into a number of subregions, evaluates how promising each 
subregion is, and then moves to the most promising subregion to continue the partitioning 
operations. PRS has been recognized as an efficient heuristic scheme in both deterministic 
and stochastic optimization problems [43]–[48]. Below we summarize the basic framework 
of PRS:

• Partitioning. The solution space is denoted by Θ. In the initial step, the solution 
space is partitioned into τ subregions σ1,σ2,…,στ. In the latter partitioning 
operations, the partitioning of the solution space is based on the quality of 
subregions obtained from past sampled solutions, so that computational effort is 
mainly spent in areas with high quality.

• Random sampling. Solution points are generated through sampling in each 
partitioned regions.

• Evaluating the Promising Index and Backtracking. Ni points are sampled from 
region σi. The promising index I(σi) of region σi is evaluated based on sampled 
points.

In this step, one region shall be determined as the most promising region σ
j
 for the next 

iteration. Then, go back to the first step for further partitioning iterations.

There are many variants of PRS with different partitioning, sampling, promising index 
evaluation, and backtracking methods. In this research, we proposed a novel method based 
on the classic Nested Partitions method [45].
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III. METHODOLOGY

We develop a novel partitioning scheme, named Partitionbased Random Search with 
Network and Memory Prioritization (PRS-NMP) for the search for high-value individuals in 
social networks. There are two main innovations: First, while partitioning the solution space, 
PRS-NMP prioritizes the nodes with higher value of a certain network property. In this 
study, the prioritization is on nodes with high degree and high betweenness centrality, 
because these two properties have been recognized to be strongly associated with the 
connectivity of nodes [11], [21], [49]. Therefore, individuals located at the core of the 
community are critical for the robustness and resilience of the whole network [49]–[51]. 
Second, PRSNMP records the information of partitions in each iteration, and backtracks to a 
smaller promising region (where the best solution exists) for next iteration. This memory-
based backtracking method takes advantage of previous partitioning information to improve 
the efficiency of the original PRS methods. In the context of HIV intervention, the problem 
is to identify the best subset of nodes to be taken away (isolated), so that the total number of 
infected individuals can be minimized in the social network.

A. Problem Formulation

Given a network G described in Section II.A, we consider the following optimization 
problem:

min
θ
K ∈ ΘK

f θ
K (1)

where ΘK is the solution set for K isolated nodes. #V is the number of nodes in the network, 

so # ΘK =
# V

K
. θ

K is the solution for a fixed value of K. The number of nodes in each 

solution θK = {sk} ⊆ V is K, where k = 1, 2,...,K, and 1 ≤ K ≤ #V. f : ΘK → R is the 
objective function to be optimized. Though this is a simple search problem, the huge number 
of alternatives makes the enumeration approach infeasible. Most problems can only 
guarantee global optimum through checking all the alternatives. The search for an optimal 
subset of nodes in complex networks is usually NP-hard [28], [29].

We assume that as long as a node can be reached by an infected node through a connected 
path in the social network, the node is a risk node with a chance of getting infected. The 
nodes that cannot be reached by infected nodes are riskfree nodes. Here, we randomly select 
initially infected nodes. Therefore, the problem is to identify the best subset of K nodes to be 
isolated, so that the expected number of risk nodes is the lowest, or, the expected number of 
risk-free nodes is the highest. It is essentially a cut problem. For each solution θK, the 
original network G is cut into a number of connected components GθK(c), where 1 ≤ c ≤ 
#V. We aim to minimize the expected number of nodes that are connected to the initially 
infected nodes within a connected component. The objective function is then expressed as:
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f θ
K = ∑

i = 1

c

p(i) # G
θ
K(i), (2)

p(i) = 1 –

# G − K − # G
θ
K(i)

H

# G − K

H

, (3)

where H is the number of initially infected nodes, which are randomly selected from all 
nodes with equal likelihood. #GθK(i) is the number of nodes in the ith connected component 
generated by cutting the original network G with θK. p(i) represents the probability of nodes 
in GθK(i) being selected as the initially infected nodes. In this paper, we mainly investigate 
the scenarios in which H = 1, 2, thus

p(i) H = 1 =

# G
θ
K(i)

# G − K
, (4)

p(i) H = 2 =

( # G − K)2 − # G − K − # G
θ
K(i)

2
− # G

θ
K(i)

( # G − K)2 − # G + K

=

− # G
θ
K(i)2 + 2 # G # G

θ
K(i) − 2K # G

θ
K(i) − # G

θ
K(i)

# G
2 − 2 # GK + K

2 − # G + K
.

(5)

In the context of multiplex network, the problem formulation is more complicated, but 
follows the same framework. In particular, we investigate the HIV interventions in three 
scenarios:

• S-S scenario. There are two initially infected nodes, both in the FSWs 
community. In this case, the expression of p(i) is:
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p(i) H = 2 =

0 G
θ
K(i) ∩ V1′ = ∅

1 −

# V1′ − # G
θ
K

(i)

2
# V1′

2

G
θ
K(i) ∩ V1′ = G

θ
K(i)

1 −

# V1′ − # G
θ
K

1 (i)

2
# V1′

2

G
θ
K

1 (i) ⊆ G
θ
K(i)

(6)

where V1′ = V1\V1 ∩ θ
K represents the nodes in the FSWs community after 

intervention, G
θ
K

1 (i) = G
θ
K

(i) ∩ V1′  represents the FSWs community nodes that are 

in G
θ
K

(i).

• D-D scenario. There are two initially infected nodes, both in the PWID 
community. In this case, the expression of p(i) is:

p(i) H = 2 =

0 G
θ
K(i) ∩ V2′ = ∅

1 −

# V2′ − # G
θ
K

(i)

2
# V2′

2

G
θ
K(i) ∩ V2′ = G

θ
K(i)

1 −

# V2′ − # G
θ
K

2 (i)

2
# V2′

2

G
θ
K

2 (i) ⊆ G
θ
K(i)

(7)

where V2′ = V2\(V2 ∩ θ
K) represents the nodes in the PWID community after intervention, 

G
θ
K

2 (i) = G
θ
K

(i) ∩ V2′  represents the PWID community nodes that are in G
θ
K

(i).

• S-D scenario. There are two initially infected nodes, one in the PWID 
community and the other one in the PWID community. In this case, the 
expression of p(i) is:
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p(i) H = 2 = 1 −

# V1′ − # G
θ
K

1 (i) # V2′ − # G
θ
K

2 (i)

# V1′ # V2′
, (8)

B. PRS-NMP Algorithm

The proposed PRS-NMP is based on the classic Nested Partitions method for global 
optimization developed by Shi and Ólafsson [45]. Since PRS-NMP prioritizes topologically 
important nodes and takes advantage of previously identified promising region, it is expected 
to identify the optimal solution more efficiently. First, we set K (the number of isolated 
nodes) as a fixed value. Then, there are four main steps:

Step 1. Prioritization.—Before any iteration, we prioritize the nodes according to their 
values of a certain network property (e.g. degree, betweenness centrality). The rank of a 

node rank V
i

∈ ℕ+ is in descendant order by the value of the network property. The node 

with the largest value has the highest rank. For example, if the degree of v1 is 20, and the 
degree v2 is 2, then the rank of v1 is higher than the rank of v2, denoted as rank(v1) < 
rank(v2). If two or more nodes have the same value, their ranks are determined arbitrarily.

Step 2. Partitioning.—For each iteration r, the current most promising region is denoted 

as σK, r, * ∈ ΘK. The surrounding region ΘK\σK,r,∗ is denoted as σ3
K, r. Thus, σK,1, ∗ = ΘK, 

σ3
K, 1 = ∅. We define the rank of a region rank(σ) as the highest rank of all the nodes in the 

region. Thus, rank(σK,1,∗) = rank(ΘK) = 1. Then, we partition σK,r,∗ into 2 subregions σ1
K, r

and σ2
K, r ⋅ σ1

K, r represents the subregion of equal rank, rank(σ1
K, r) = rank(σK,r,∗). σ2

K, r

represents the subregion of a rank lower than the rank of the current most promising region.

Step 3. Random Sampling.—We randomly sample Nj solutions from region σ
j
K, r, and 

then calculate the outcome of the objective function for each solution

f θ
j
K, r, 1 , f θ

j
K, r, 2 , …, f θ

j

K, r, N
j , j = 1, 2, 3.

In our study, we set N1 = N2 =,...,= Nj = 100. With each region, all the solutions have equal 
positive probability to be sampled.

Step 4. Evaluating the Promising Index and Backtracking.—We estimate the 
performance of each sampled solution as follows:

I σ j
K, r = min

i ∈ 1, 2, …, N
j

f θ j
K, r, i

j = 1, 2, 3. (9)
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Then, we need to determine the most promising region σ
j
, where

j ∈ min
j

I σ j
K, r

j = 1, 2, 3. (10)

If more than one regions are equally promising, we arbitrarily choose one of them as the 

most promising region. If the newly obtained most promising region is a subregion of σ1
K, r

or σ2
K, r, we further partition the corresponding region. In the PRS-NMP method, we record 

the information of partitions in each iteration. One solution only belongs to one region. If a 
region is partitioned into several subregions, the old region is discarded. Each solution in the 
discarded region belongs to one of the newly partitioned subregions. The union of all the 
current subregions is the solution space Θ. Therefore, if the newly obtained best solution is 

in σ3
K, r (not in σK,r,∗), we determine which specific subregion (partitioned in previous 

iterations) the solution belongs to, and set that subregion as the new most promising region. 
We can then go back to Step 2 to continue the partitioning and sampling.

Stopping Criteria.: The algorithm stops if the current nonpartitionable solution is the best so 
far, and the algorithm does not backtrack to other regions for the most recent 100 iterations 
consecutively. Then, the output is the current nonpartitionable solution.

For the HIV intervention problem, we developed four variants of the PRS-NMP method, and 
three benchmark methods:

• Degree. We isolate the nodes with largest values of degree. Degree is the number 
of edges incident to the node. It has been recognized as a critical metric to 
evaluate the importance of a node in diffusing viruses. Nodes with larger degree 
tend to be the hubs of the community.

• Betweenness. We isolate the nodes with largest values of betweenness centrality. 
Betweenness centrality is the proportion of shortest path traversing through a 
node. It has been recognized as a critical metric to evaluate the importance of a 
node in diffusing viruses. Nodes with larger betweenness centrality tend to be 
those connecting different clusters in the network.

• Nested Partitions. This is the classic method on which the PRS-NMP method is 
based. We adopted algorithm AP 1 in [45].

• PRS-NMP (D). We prioritize nodes according to their degrees in Step 2. We do 
not record the information of previously partitioned subregions in Step 4.

• PRS-NMP (B). We prioritize nodes according to their betweenness centrality in 
Step 2. We do not record the information of previously partitioned subregions in 
Step 4.

• PRS-NMP (DM). We prioritize nodes according to their degrees in Step 2. We 
record the information of previously partitioned subregions in Step 4.
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• PRS-NMP (BM). We prioritize nodes according to their betweenness centrality 
in Step 2. We record the information of previously partitioned subregions in Step 
4.

IV. RESULTS

Based on the multiplex social network constructed in Section II.A, we consider three 
scenarios introduced in Section III – S-D, S-S, and D-D. For each scenario, we generated 
1000 problems through randomly selecting initially infected nodes for 1000 times. In total, 
we have 3000 problems to solve. Using the four variants of PRS-NMP methods and three 
benchmark methods, we performed a set of numerical experiments with varying intervention 
budgets (ratio of nodes to be isolated in the network). The experiments were run in four 
parallel threads on a Dell T430 Tower Server with an Intel E5–2640v4 2.4GHz CPU and 
80GB RAM.

Figure 4 presents the results of the experiments. In general, the more budget (higher ratio of 
isolated nodes) we had, the lower the ratio of risk nodes was. PRS-NMP based methods 
consistently performed better than degree/betweenness-based methods and the original 
Nested Partitions method. Note that the problems were generated randomly, thus we did not 
have ground truth of the global optimum. However, these results clearly demonstrated the 
effectiveness of the proposed PRS-NMP method in identifying an optimized set of highvalue 
individuals for HIV interventions. Specifically, the best performing method varied in 
different scenarios.

For S-D scenario, the resulted ratio of risk nodes for PRSNMP (DM) was the lowest (highest 
effectiveness). The other PRS-NMP based methods also performed well, except that PRS-
NMP (B) generated less optimized results than those of network property based methods 
when the budget was20% or more. We also found that PRS-NMP (DM) and PRS-NMP 
(BM) performed better than PRS-NMP (D) and PRSNMP (B), indicating the huge benefits 
brought by the memory mechanism of the proposed methods. In addition, degree-based 
methods were more effective, indicating the more important role played by centrally 
connected nodes.

For S-S and D-D scenarios, there were critical segregation points. Because the initially 
infected nodes were in one community, achieving these segregation points indicated that the 
HIV viruses were limited in one community, instead of transmitting to both communities. 
The results showed that, other than the classic Nested Partitions, both the PRS-NMP based 
methods and degree/betweenness-based methods could achieve the segregation points. 
Interestingly, PRS-NMP (DM) segregated the network with the lowest budget level (12.5%) 
in the S-S scenario; whereas PRS-NMP (B) achieved so in the D-D scenario with the lowest 
budget level (10%) in the D-D scenario. The different performances are due to the 
behavioral difference between FSWs and PWID. Although with the same size and density, 
the FSWs community is a bipartite network (as we do not consider homosexual 
relationships) and PWID community is a simple scale-free network. The bipartite nature of 
the FSWs community makes the nodes with higher degrees even more important in serving 
as the hub of disease transmissions and, thus, leads to the better performance of degree-
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based PRS-NMP method in the SS scenario. On the other hand, the existence of triangular 
relationships in PWID community weakens the importance of densely-connected nodes 
(high degree) and, thus, lead to the better performance of betweenness-based PRS-NMP 
method in the D-D scenario.

Comparing the results for the three scenarios, we found that the optimal solutions for D-D 
problems led to smaller ratios of risk nodes (higher effectiveness), and the segregation point 
could be reached with a lower budget level. This indicated that the HIV transmission in the 
FSWs community was relatively more difficult to constrain – the FSWs community was 
more vulnerable as compared with PWID community. Given that the network size of the 
FSWs community was the same as PWID community, this result echoed previous research 
on the controllability of bipartite network – it was found that bipartite network is easier to 
control (more vulnerable) [52]. Here the term control refers to effort to bring all nodes to the 
same state of driver nodes [34]. In this case, the role of initially infected nodes is similar as 
driver nodes. The aim of the optimization problem is to make the network less controllable 
(less vulnerable) through removing a subset of nodes. Because S-S problems set both 
initially infected nodes in the FSWs community, a bipartite network, it was expected that the 
effectiveness of intervention was lower than other scenarios.

The original Nested Partitions method did not converge to optimum for most cases. Note 
that the original Nested Partitions method is a less greedy method, thus it has a good chance 
to find the global optimum given sufficient iterations. However, the problems in this study 
are highly complicated, making the convergence process slow. Comparing the CPU time 
consumed by the random search methods (Table II), the original Nested Partitions method 
took much longer time (doubled, even tripled) to search for solutions, but still generated less 
optimized results. The PRS-NMP based methods have similar CPU time in all cases.

Figure 5 presents the average degree, betweenness centrality, and portion of bridge nodes of 
the solutions identified by different methods for each scenario. Solutions generated by the 
original Nested Partitions method did not contain sufficient high-degree and high-
betweenness centrality nodes, indicating that it was difficult to capture the network structure 
with a simple random sampling approach. On the other hand, solutions generated by degree/
betweenness-based methods comprise these nodes with highest degree/betweenness values. 
The proposed PRS-NMP methods identified better solutions that were not solely consisted 
of nodes with high degree/betweenness values. This verifies that pure networkbased 
interventions are usually not optimal. The proportion of bridge nodes varied in the solutions 
for different scenarios, and was smaller than what we expected intuitively. It turns out that 
we do not have to isolate all bridge nodes to segregate the network; instead, the isolation of 
part of the bridge nodes can effectively cut the bridges connecting the FSWs and PWID 
communities.

V. CONCLUSIONS

The merge between multiple key populations makes HIV intervention much more difficult. 
Modeling the relationships between these at-risk individuals as a multiplex social network is 
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of potential to help decision makers characterize the transmission patterns that cannot be 
captured by simplex social networks, and develop effective HIV intervention strategies.

This paper presents, to the best of our knowledge, the first optimization approach to 
identifying the optimal subset of individuals for intervention from multiplex social networks. 
Based on the classic Nested Partitions method, we develop a novel PRS-NMP method that 
prioritizes nodes with certain network properties and keeps the record of all partitions. The 
effectiveness and efficiency of this novel heuristic optimization method were demonstrated 
by a set of numerical experiments with three scenarios.

The newly proposed PRS-NMP method can be applied to other stochastic optimization 
problems, particularly those concerning the structure of a complex network. The method 
itself also has a lot of room for improvements. In particular, the partitioning, sampling 
schemes, and backtracking schemes can be modified according to the network structure. The 
current prioritization scheme is based on a deterministic rank of nodes. It can be extended to 
a stochastic prioritization scheme in which the rank of a node leads to a corresponding 
probability that determines the priority of the node. In addition, the current method only uses 
one network property for node prioritization. It would be interesting to explore if combining 
different properties could lead to more efficient algorithms.

The outcomes of this research have the potential to be translated into real value in public 
health practice. PRS-NMP can be easily implemented as a decision support systems to 
identify high-value individuals in key populations for timely interventions. It will help social 
workers optimize the use of limited intervention budget (e.g. HIV testing equipment, free 
condoms, education activities, etc.) to achieve the best intervention outcome.

In practice, front-line social workers and HIV researchers can use the PRS-NMP method to 
identify high-risk FSWs/PWID, and then inform them the risk of HIV infection caused by 
different modes. There are multiple ways to reduce their risk behaviors, including assisting 
FSWs/PWID to do HIV testing, providing free condoms and syringes/needles, and educating 
them the available healthcare services. Given the important role of identified high-risk 
FSWs/PWID, they can also help disseminate HIV prevention and intervention information 
to other at-risk people, like other FSWs and their clients. In addition to HIV interventions, 
the PRS-NMP method can be applied to other infectious diseases that have multiple modes 
of transmissions.

This research has several limitations. First, the current problem is to reduce the ratio of risk 
nodes. In reality, a risk node that is many hops away from infected nodes is actually with a 
very low risk of getting infected, even it can be reached through a connected path in the 
social network. Second, we did not consider the speed of HIV transmissions. The current 
research considers the optimal cut of networks through isolating (removing) nodes. This 
approach cannot capture detailed transmission patterns over time. In the future work, we 
plan to adopt epidemiological models (like the Susceptible Infected model) to simulate 
detailed transmission processes, in which each edge is associated with a transmission rate 
between the two corresponding nodes. We will then modify the experiment to examine the 
speed and scale of HIV transmissions in a more realistic setting, so that we can generate 
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actionable insights for public health practice. The adoption of epidemiological models can 
also reveal the behavioral differences between the two communities with a higher resolution. 
Last, we will examine the theoretical underpinnings of the proposed PRSNMP method, and 
perform experiments with larger scale and higher dimensionality.
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Fig. 1. 

Illustration of the multiplex social network representing the relationships among individuals 
in two key populations. Red and blue nodes represent individuals in the FSWs community 
and PWID community, respectively. Red and blue edges represent the existence of 
unprotected sex and needle sharing behaviors, respectively. Node 1 and node 6 form 
noncommercial partnership, resulting in an elevated risk of HIV outbreaks across the two 
key populations.
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Fig. 2. 

Visualization of the multiplex social network consisted of FSWs (red) and PWID (blue).
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Fig. 3. 

Degree distributions of FSWs and PWID communities in the multiplex social network, and 
the fitted exponent in power-law distribution.
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Fig. 4. 

The ratio of risk nodes with varying intervention budgets and different intervention methods.
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Fig. 5. 

The average degree, betweenness centrality, and portion of bridge nodes of the solutions 
identified by different methods for each scenario.
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Table I

TOPOLOGICAL PROPERTIES OF THE MULTIPLEX SOCIAL NETWORK.

Property Value

Number of nodes in the FSWs community |V1| 500

Number of nodes in the PWID community |V2| 500

Number of edges in the FSWs community |E1| 1000

Number of edges in the PWID community |E2| 1000

Fraction of bridge nodes |C| 5%

Average degree < k > 4.50

Average shortest path length < l > 5.19

Average clustering coefficient < c > 0.02

Exponent in the power-law degree distribution of the FSWs community α1 2.63

Exponent in the power-law degree distribution of the PWID community α1 2.36

Diameter D 10

IEEE Trans Cybern. Author manuscript; available in PMC 2019 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 24

T
a
b

le
 I

I

A
V

E
R

A
G

E
 C

PU
 T

IM
E

 C
O

N
SU

M
E

D
 B

Y
 E

A
C

H
 M

E
T

H
O

D
 F

O
R

 S
O

LV
IN

G
 A

 P
R

O
B

L
E

M
 O

F 
E

A
C

H
 S

C
E

N
A

R
IO

.

S
ce

n
a
ri

o
A

v
g
. 
C

P
U

 t
im

e 
(s

) 
N

es
te

d
 

P
a
rt

it
io

n
s

A
v
g
. 
C

P
U

 t
im

e 
(s

) 
P

R
S

-N
M

P
 

(D
)

A
v
g
. 
C

P
U

 t
im

e 
(s

) 
P

R
S

-N
M

P
 

(B
)

A
v
g
. 
C

P
U

 t
im

e 
(s

) 
P

R
S

-N
M

P
 

(D
M

)
A

v
g
. 
C

P
U

 t
im

e 
(s

) 
P

R
S

-N
M

P
 

(B
M

)

S-
D

83
33

43
01

43
50

45
75

45
64

S-
S

15
92

2
44

81
47

10
43

62
45

90

D
-D

89
22

42
00

41
62

44
93

43
96

IEEE Trans Cybern. Author manuscript; available in PMC 2019 December 01.


	Abstract
	INTRODUCTION
	BACKGROUND AND PRELIMINARIES
	Multiplex Social Network Framework for Modeling HIV Transmissions across FSWs and PWID Communities
	Background of Partition-based Random Search

	METHODOLOGY
	Problem Formulation
	PRS-NMP Algorithm
	Step 1. Prioritization.
	Step 2. Partitioning.
	Step 3. Random Sampling.
	Step 4. Evaluating the Promising Index and Backtracking.
	Stopping Criteria.



	RESULTS
	CONCLUSIONS
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table I
	Table II

