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Abstract—Determination of ligand binding pathways is an
important factor to predict drug efficacy in drug discovery.
Ligand-receptor binding involves the motion of many degrees of
freedom, which can make binding pathways difficult to discover
with traditional methods. Interactive molecular docking tools can
allow users to explore the high dimensional energy landscape
of the ligand-receptor system with rigid molecular models to
determine low energy ligand states and pathways to binding. To
introduce the effect of ligand flexibility in molecular docking
with rigid body models, we use ensembles of distinct ligand
conformation states that can be swapped during exploration. Our
method emulates ligand flexibility effects in rigid body docking at
no extra computational cost. Our automated method simulates
user search performance with a path optimization algorithm.
We find that allowing the algorithm to include different ligand
conformations in its search for states of lower energy can result
in optimized low energy pathways with reduced search times in
difficult areas near energy barriers. This method can be adapted
to include molecular flexibility effects in interactive rigid body
molecular docking running in commodity hardware, such as
molecular docking games.

Index Terms—molecular docking, receptor-ligand binding, mo-
tion planning, ligand flexibility

I. INTRODUCTION

Ligand binding pathways are biologically feasible lowest

energy routes for a free ligand to reach the ligand-receptor

bound state in the high-dimensional energy landscape of a

multi-molecular system. Determining ligand binding pathways

is a central problem in drug discovery. The efficacy of a drug

may depend not only on the affinity of the ligand-receptor

interaction, but also on the time scales involved with binding

events and on the molecular conformational changes that occur

during binding [1], [2].

The large number of degrees of freedom of the molecular

system makes the search for ligand binding pathways com-

putationally expensive [3]. Therefore, to perform computa-

tionally efficient global explorations of the interaction energy

landscape of receptor and ligand, the degrees of freedom

of the problem need to be reduced. Interactive molecular

docking programs achieve this by keeping ligands and recep-

tors rigid, which reduces the computational cost of energy

calculations [4]. While the problem is oversimplified by fixing

the internal degrees of freedom of the molecules, much can

be gained by adding a human operator who is able to use

sensorial cues such as visual and haptic feedback to aid the

high-dimensional search of low energy ligand states around the

receptor [4]–[6]. To allow realtime visual and tactile feedback

in interactive molecular docking, energy and force calculations

need to be performed quickly. The data generated by users as

they manipulate the ligand around the receptor can be later

used to find low energy ligand pathways.

Gamification of interactive molecular docking can enable

the collection of large crowdsourced datasets of ligand con-

formations [7], [8]. As the number of users grow, so does the

probability of finding ligand states near the binding site on the

receptor, possibly leading to improved pathways. Molecular

docking games incorporate game design features (eg. score,

leaderboard) to help users explore the ligand-receptor interac-

tion energy landscape to find new low energy ligand states [7]–

[9]. The need for computationally efficient interactive molecu-

lar docking is greater if these games are distributed to players

who mostly use commodity hardware [7], [8].

As molecules generally change conformations during bind-

ing events, pathways determined from rigid body models may

miss critical information about binding. In particular, close to

the binding site, rigid body docking can sample high energy

states representing atomic collisions. Since such states are

not physical, molecular flexibility is critical to prevent atoms

from overlapping. However, implementing molecular flexibil-

ity in interactive molecular docking can require specialized

hardware [5]. Moving the internal degrees of freedom of
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the molecules can slow down energy calculations, making

interactive docking in commodity hardware prohibitive. There-

fore, implementation of computationally expensive features

in molecular docking games, such as molecular flexibility,

requires novel approaches.

To optimize the search of low energy pathways of ligand

binding, in this paper we demonstrate a proof-of-concept for

mimicking ligand flexibility in rigid body molecular dock-

ing that can run efficiently in commodity hardware. Ligand

flexibility is introduced as an ensemble of distinct rigid

body ligand conformations. This ensemble includes ligand

conformations that are bond rotated from the original docked

ligand conformation. The ability to select different rigid body

models of the ligand during docking adds complexity to

the data at little computational cost. Resulting pathways can

incorporate many different ligand conformations to overcome

energy barriers while docking. Here we test the feasibility

of this method for molecular docking. The path optimization

method is summarized in Figure 1. We start with a roadmap

made of simulated data consisting of thousands of random

ligand samples (in random positions and orientations) around

the known binding site on the receptor. Once a low energy

path is found (Figure 1(a)), the roadmap is updated to exclude

unused samples and to include new samples generated around

the path (Figure 1(b)). A new, lower energy path is then

determined from the new roadmap (Figure 1(c)), and this is

done iteratively until there is no improvement in the pathways,

or no new low energy ligand states are found (Figure 1(d)).

This automated motion planning path optimization technique

aims to emulate user exploration: Users could tend to over-

explore near previously found low energy states. This iterative

search and improvement on the initial low energy pathway

explores more densily the region around the original path.

We find indications that extending rigid body state search

with an ensemble of distinct ligand conformations may allow

more efficient path optimization in difficult areas of the

search space while maintaining the same computational cost

as searches with a single conformation. The benefits of ligand

conformation ensembles in interactive molecular docking will

be examined in future studies with user participation.

II. RELATED WORK

A. Simulation of Ligand-Receptor Kinetics

Proteins rely on molecular flexibility to accomplish their

function and to react to their environment [10]. Receptor

proteins and ligands may change conformation during binding

events. In principle, their interactions and subsequent motions

can be simulated directly in molecular dynamics (MD) sim-

ulations. Molecular dynamics is a physics-based mechanical

simulation of atomic systems [11]. It uses molecular structure

and atom bond connectivity information from experimental

data to simulate dynamics of individual atoms, and molecular

flexibility stems directly from such simulations. Since MD

takes into account the dynamic motion of each atom, which
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Fig. 1: Schematics of our pathway optimization method. (a)

Initial ligand samples (gray circles) and start and goal states

(stars) are added to the roadmap (edges not shown). A low

energy path (dashed black line) is found that connects the start

state to goal state. Ligand states along the path are shown

in black. (b) First optimization iteration: Ligand states not

included in the initial path are discarded. New ligand states

(green diamonds) are sampled in a volume around the original

path (shaded gray area) and a new roadmap is created. (c) A

new low energy path is found (green solid line) for the updated

roadmap that may include samples in the original path (black

circles) and new samples (green diamonds). (d) The procedure

depicted in steps (b) and (c) is repeated: unused states are

discarded, new ligand states are created around the green path

(pink triangles in shaded green area), the roadmap is updated

and and a new path is found (dotted pink line). This is done

until there is no improvement on the path.

is influenced by all other atoms in both the ligand and the

receptor, simulation of receptor-ligand binding comes at a

large computational cost, and pathways analysis that require

long time scales become prohibitive.

However, classical MD simulations can still be useful in

understanding ligand-receptor kinetics. Recent work has used

ensembles of MD trajectories to extract Markov states that

may be involved in ligand binding pathways [12]. Brownian

dynamics coupled with MD methods have also been used

to estimate ligand-receptor kinetics [2]. Other methods have

used metadynamics techniques that apply MD force fields to

explore receptor-ligand kinetics [13]. For some receptor-ligand

systems, metadynamics has been able to not only confirm the

existence of known pathways but also can find new ones [1].

In drug discovery, ensemble-based virtual screening can

combine multiple receptor conformations to make docking site

predictions [14], [15]. While in this paper we use a similar

approach with an ensemble of ligand conformations, here the

docking site is known but pathways to binding are unknown.

B. Interactive Molecular Docking

Interactive molecular docking combines various modes of

feedback including realtime potential energy scoring to guide

a human operator towards finding potentially docked states.



These docking tools can respond with haptic feedback, al-

lowing the operator to feel the potential energy interactions

between molecules [6], [16], [17]. Users can also be immersed

in 3D visual feedback [18]. To enable further exploration

of molecular interactions, high end graphics hardware can

be utilized for realtime receptor flexibility [5]. Interactive

molecular docking can be gamified as a puzzle game. A

docking game can be crowdsourced to expand ligand state

exploration and find better pathways [7]–[9]. This avenue has

also seen success in the context of protein folding [19].

C. Motion Planning with Roadmaps

Molecular docking can be expressed as a motion planning

problem where the task is to find a series of valid state

transitions from an initial state to a goal state. This study uses a

version of the Probabilistic Roadmap method (PRM) [20] that

has been extended to support a rigid body molecular model. In

a PRM, the possible state space (also known as configuration

space) is sampled at random for states that are collision-

free (also known as valid states). Edges are then added if

they evaluate to valid state transitions. Once a roadmap has

been constructed, it can be efficiently queried repeatedly to

produce motion paths. PRMs have been applied to molecular

motions before, notably in the context of protein folding

prediction [21]. Input from a human operator can be combined

with this method to inform the motion planner [22] and, more

specifically, within rigid body molecular docking [16]. Prelim-

inary studies were also done with roadmaps built from human

contributed data in an interactive game environment [7]. The

quality of paths resulting from roadmap methods will depend

on the state samples being a good approximation of the space

and useful for planning in narrow spaces full of obstacles.

D. Path Optimization

Motion paths produced by roadmap methods can be of low

quality in a discrete robotic environment [23], let alone with

complex potential fields as obstacles. Paths can be optimized

to overcome these drawbacks according to various criteria.

In robotics, this may mean smoothing out sharp angular

turns [24], optimizing for sensor coverage [25] or maximiz-

ing clearance from obstacles [23]. Higher quality paths can

also be obtained from PRM methods by using another more

specialized sampling based method after a query has been

performed [26]. Our approach is a similar two-stage method

that uses a second PRM with a dense sampling focused around

the path obtained from the global planner.

E. Robotics Methods in Molecular Binding and Unbinding

Simulations

Molecular docking prediction problems can be investi-

gated with motion planning methods originally designed for

robotics by representing molecules as semi-flexible bodies,

with any flexibility of the molecule represented as articulate

joint degrees of freedom [27]. One approach views ligand

motion pathway planning as a disassembly problem, using

tree-based search methods to determine which flexible degrees

Fig. 2: Model of immunophilin-immunosuppressant molecular

complex used in this study (taken from entry 1FKF from

RCSB). The ligand molecule is seen in blue in its native

(docked) state with the receptor (in tan).

of freedom are important in finding collision-free states away

from the bound state [28], or representing atomic structures as

deformable mesh to reduce dimensionality while minimizing

energy [29]. Individual docked states for challenging structures

can be found using an incremental assembly method [30].

These methods take advantage of algorithms originally de-

signed to plan in high-dimensional spaces to find motions in

the similarly difficult space of molecular interactions.

III. METHODS

A. Molecular Models

A model of the molecular immunophilin and immunosup-

pressant complex (PDB ID 1FKF) [31] is used as an example

in this study (Figure 2). Hydrogen atoms were added to the

model via the “AddH” tool in the molecular visualization

and analysis software Chimera [32]. The final model of the

receptor contains 1663 atoms and the ligand has 126 atoms.

We generate 9 ligand conformations by performing bond

rotations in Chimera on the original native (docked) ligand

conformation extracted from the PDB file. Bond rotations are

performed using the “Adjust Torsions” setting. The ligand

contains 129 bonds, but only up to 9 bonds were selected

for rotation. Each selected bond i can be rotated by a random

angle ∆αi. Table I shows the atomic bond ID and ∆αi values

for each of the non-native ligand conformations (labeled ‘2’

to ‘10’; The native state is labeled ‘1’). The bottom line in

Table I shows the Root Mean Squared Deviation (RMSD)

values for each non-native conformation as compared to the

native ligand state. The native state is not shown on the table

since it has no bond rotations, and its RMSD is zero. The

ensemble of ligand conformations used in this work contains

10 states, including all 9 bond-rotated ligands from Table I

plus the native ligand state. By adding states with conformal

flexibility, we hypothesize that rigid body collisions near the

binding site can be mostly avoided.

B. All-Atom Energy Calculation

To score the quality of individual rigid body states, an all-

atom intermolecular potential energy function is used. Since

only electrostatic and van der Waals potentials are calculated,

scoring can be done fast enough to support even interactive

applications on commodity hardware [7]. The potential energy

is calculated as the sum of energy between all atoms i in a



TABLE I: Identification of individual rotated bonds for each non-native conformation. Each value in the table is the angle ∆αi

by which the original bond i was rotated. Dashes mean that the bond was not rotated in relation to the native ligand state. The

RMSD is calculated relative to the native conformation.

Non-Native Ligand Conformations

Bond ID 2 3 4 5 6 7 8 9 10

C27—C28 110◦ 110◦ - - - 110◦ - - -70◦

C21—C38 -235◦ -235◦ -10◦ 20◦ - -235◦ - -110◦ -
C15—O8 -150◦ -150◦ - - - -150◦ - - -
C10—O6 -33◦ -33◦ - - - -33◦ - - -
C31—O11 -126◦ -126◦ - - - -126◦ - - -
C38—C39 -60◦ -60◦ - - - -60◦ - - -
C26—C27 - -190◦ - - - 114◦ - - -
C28—C29 - - - -15◦ - - 60◦ - -
O11—C45 - - - - 20◦ - - - -

RMSD (Å) 2.03 2.88 0.17 0.32 0.06 3.11 1.00 0.81 1.37

receptor molecule R and all atoms j in a ligand molecule L,

as shown in Equations 1, 2, 3.

Uesp(i, j) = C
qiqj
rij

(1)

Uvdw(i, j) =
√
ǫiǫj

[

(

ρi + ρj
rij

)12

− 2

(

ρi + ρj
rij

)6
]

(2)

U =
R
∑

i

L
∑

j

[Uesp(i, j) + Uvdw(i, j)] (3)

C is the electrostatic constant, qi(j) is the atomic charge

of atom i (or j), rij is the distance between atoms i and

j, ǫi(j) is the van der Waals well depth parameter of atom

i (or j) and ρi(j) is the van der Waals radius parameter of

atom i (or j). All the amino acid parameters are given by the

Amber99 force field [33]. Ligand parameters were obtained

from Antechamber [34] calculations.

C. Roadmap Construction

This study constructs state transition roadmaps using PRMs,

producing roadmaps that can be efficiently queried for motion

paths (Algorithm 1). Ligand states are generated at random

in a Gaussian distribution N and evaluated according to

their potential energy, sampling a 6-dimensional space of

states x, y, z, p, t, r. Then, edges are formed between states

if the RMSD length is within a threshold, representing a state

transition. Finally, these transitions are weighted according to

the difference in potential energies (Equation 4), allowing a

shortest weighted path algorithm to query for a path between

any two states in the roadmap.

Wij(∆E) =

{

1/ ln(−∆E), if ∆E ≤ −2 kcal/mol

c1∆E + c2, if ∆E > −2 kcal/mol
(4)

The edge weight function (Equation 4) is used to penal-

ize transitions into higher potential energy states while still

differentiating between transitions into lower ones. In this

equation, the constants are c1 = 0.1858 and c2 = 1.8142,

and ∆E = Ej −Ei is the energy difference between the final

(j) and initial (i) states connected by an edge. This expression

for the edge weight function guarantees that all Wij(∆E) > 0.

Construct a roadmap from new samples

Given a set of states in M and edge limit dlimit;

for Each state i in M do

for Each other state j in M do

Let drmsd be the RMSD between i and j;

if drmsd ≤ dlimit then

Find potential energies xi and xj ;

Calculate weight Wij using Equation 4;

Add edge Eij with weight Wij to M ;

end

end

end

Result: M is now a roadmap of edges and states

Algorithm 1: Roadmap Construction

Paths obtained from the initial roadmap are optimized

according to Algorithm 2 by constructing additional roadmaps

of higher density, as illustrated in Figure 1. States that do

not belong to the path are excluded. A new roadmap is

created that includes the states along the path and a new

set of states. These new states are sampled with Gaussian

distributions centered at each original state of the path. In

this path optimization step, the values for µ and σ2 in the

Gaussian distribution N should be smaller than those used

for the initial roadmap. To ensure more optimal states are

considered in the roadmap construction step, states are only

kept if their potential energy is lower than the original state

energy xi. Next, a new roadmap is constructed (Algorithm 1)

and the original query is repeated to find an lower energy path.

Roadmap creation and path optimization steps are iterated as

necessary to continue lowering the pathway energy.
To analyze the effect of multiple ligand states in path opti-

mization, we compare four different scenarios for the addition

of ligand states in roadmap construction. Figure 3 shows a

flowchart representation of the types of roadmaps constructed

in our method. In Figure 3, Top, the two original roadmaps



Initialization step

Let P be input path;

Let N be samples per iteration;

Let F be the available ligand conformation states;

Let c be number of conformations in F ;

Let dlimit be the RMSD edge length limit;

for I iterations do

Sample new lower energy states

Let m be number of states in P ;

Let M be a new empty roadmap;

for Each state i in P do

Let xi be the potential energy of state Pi;

Add Pi to M ;

while M < N
m

samples do

Choose S ∈ x, y, z, p, t, r from N (µ, σ2);
Choose f ∈ F from U(1, c);
Calculate potential energy xs of state S, f ;

if xs ≤ xi then

Add S, f to M ;

end

end

end

Construct roadmap with M and dlimit (Algorithm 1);

Find the new path and repeat

Query P1 (start) to Pm (goal) in M ;

Set P to the new path yielded;

end

Result: P is now the optimized path

Algorithm 2: Path Optimization

used in our study: One generated with only native ligand states,

MN , and another generated with all 10 ligand states in the

ensemble, ME . Once low energy paths are determined from

these roadmaps (Figure 1(a), (b)), future roadmap construction

in the optimization iterations (Algorithms 1, 2) will: (1) add

only native states (c = 1, F = {1}) to the original paths

from initial roadmaps, and to future iterations on the optimized

paths (MNN and MEN in Figure 3, Bottom); or (2) add any

ligand state from the ensemble (c = 10, F = {1, ..., 10})

to roadmaps created from the original path, and to future

iterations on the optimized paths (MNE and MEE in Figure 3,

Bottom). The four scenarios we compare are the iterations

represented by MNN , MNE , MEN , and MEE .

IV. RESULTS

To examine the effects of selecting distinct ligand confor-

mation states while exploring the state space of rigid body

molecular docking, a path optimization scheme was applied to

low energy paths obtained from querying two initial roadmaps.

The two orginal roadmaps MN and ME were created by

constructing edges of length no greater than 5Å RMSD be-

Native-

Native 

(MNN)

Native-

Ensemble 

(MNE)

Ensemble-

Native 

(MEN)

Ensemble-

Ensemble 

(MEE)

Initial Roadmaps

Future Iterations on Initial Roadmaps

Single State: 

Native (MN)

Ensemble of 

States (ME)

Fig. 3: Roadmaps used in the pathway optimization method.

Top: Two original roadmaps are created. One roadmap contains

only native conformations of the ligand (MN , left), and

another contains any ligand state from the ensemble of 10

states (ME , right). A low energy path (original path) is found

in each of these roadmaps as shown in Figure 1(a). Bottom:

Future iterations on the initial roadmaps. New samples around

the original pathways of MN and ME are created as shown in

Figure 1(b-d). From the initial roadmaps, 4 scenarios of future

iterations exist: Native-native (MNN ), starting from roadmap

MN and adding new samples that are only in the native con-

formations for all iterations; Native-Ensemble (MNE), starting

from roadmap MN and adding new samples that belong to

the ensemble of 10 ligand states for all iterations; Ensemble-

Native (MEN ), starting from roadmap ME and adding new

samples that are only in the native conformations for all

iterations; Ensemble-Ensemble (MEE), starting from roadmap

ME and adding new samples that belong to the ensemble of

10 ligand states for all iterations.

tween states among 50,000 Gaussian distributed state samples

with a mean around the native state, a translation deviation of

10Å and a rotational deviation of 180° as seen in Figure 4.

States from the roadmap containing only states in the native

conformation (referred to as the “Single-State (Native)”, or

MN Roadmap) are shown in Figure 4, red. States in the

other roadmap comprised of the 10 ligand conformations

chosen uniformly at random (herein called the “Ensemble of

States”, or ME Roadmap) is shown in Figure 4, blue. Most

states obtained with RMSD < 10 Å are high energy states

due to atomic collisions. Edges were weighted according to

Equation 4. Shortest weighted path queries were performed

on the roadmaps to obtain two paths to be analyzed for

optimization. Figure 5(a) shows the original low energy path

in the MN roadmap (black line), and Figure 5(b) shows the

original low energy path in the ME roadmap (black line).

From the original paths, we resampled new ligand states

from a Gaussian distribution using a mean centered around the

states of the original path with a translation standard deviation

of 2.5Å and a rotational standard deviation of 5°. New states

are accepted when they are a potential energy equal to or lesser

than the original state’s energy, and this was repeated until 500

states were found per iteration. A new roadmap is constructed

from these states using an edge limit of 5Å (Algorithm 1) and



Fig. 4: The initial roadmaps (MN and ME in Figure 3, Top) of

our analysis (only states are shown, not edges). Each roadmap

contains 50,000 Gaussian distributed rigid body ligand states.

Ligand states are represented by dots. The intermolecular

potential energy is plotted against the RMSD from known

native state. States were generated with a mean centered

around the native state, 10.0Å in translation deviation and

180° in angular deviation. Single state (native, MN ) roadmap

(red) can be seen against the roadmap made of an ensemble

of conformations (ME), in blue. Most states obtained in

RMSD ∈ [0, 10] Å are high energy collision states and are

not shown in the plot.

the original query is performed iteratively on this new roadmap

to obtain a possibly more optimal path (Algorithm 2).

In this study path optimization was able to find more

energetically feasible paths regardless of the roadmap (4th

iterations shown as dotted lines in Figure 5). The path ob-

tained for the 4th iteration of MNN and MEN (dotted red

lines) is shorter than those obtained in the 4th iteration of

MNE and MEE (dotted blue lines), but with slightly higher

potential energies. This is because non-native conformations

can increase the RMSD distance (up to 3.11Å in this study

with conformation state ‘7’), resulting in fewer edges meeting

the 5 Å limit in the iterative roadmaps as shown in Table II,

which yield fewer shortcuts in the shortest path algorithm.

Path optimizations on MNE and MEE resulted in a slight

reduction of potential energy over optimizations on MNN and

MEN , and the number of samples that had to be evaluated

for potential energy was reduced. The number of evaluations

that had to be performed to obtain 500 acceptable state

samples per iteration are shown in Table II with MNE ,MEE

optimization only requiring about half as many samples by the

4th iteration, as compared to MNN ,MEN respectively (values

shown in bold). This reduces the computation time by almost

6 hours (in the worst case), eliminating a significant amount

of computational cost (on a single core of an Intel Xeon E3-

1240 running at 3.7GHz). Lower potential energies in difficult

locations were more likely to be found when exploring paths

in MNE ,MEE .
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(b) Initial Roadmap: Ensemble of states, ME

Fig. 5: Queries performed on a roadmap built with Gaussian

distributed ligand states. Edges between states are formed if

they are closer than 5.0Å RMSD. The query is performed from

a start state 14.0Å RMSD from the native state.

Even though ligand conformations in MNE ,MEE optimiza-

tions are chosen in an uniformly random distribution, the

histograms in Figure 6 show that the distribution of states with

potential energies low enough to be accepted by Algorithm 2

during the sampling step is not uniform, especially towards

later iterations. States ‘2’, ‘3’, and ‘7’ were common in itera-

tions 3 and 4 of the path optimization. States ‘2’ and ‘7’ were

commonly chosen for later iterations over the MNE roadmaps

(Figure 6a), while ‘3’ and ‘7’ were common in the MNE

roadmaps (Figure 6b). Due to continual path refinement over

subsequent iterations, these later iterations had lower potential

energy barriers. Therefore, in these particular roadmaps, non-

native conformation states with RMSD to native greater than

2 Å aided exploration of challenging state space.

V. CONCLUSIONS

We have shown that providing an ensemble of confor-

mations to support ligand flexibility in rigid body molec-



TABLE II: Number of potential energy samples calculated

while refining paths taken from both roadmaps. These samples

are taken around the states in the original paths in a Gaussian

distribution with 2.5Å deviation for translation and 5.0° devi-

ation for rotation. Samples are taken until there are 500 states

that satisfy potential energy limits that are equal to or lesser

than the original path states, per iteration. Computation time

was recorded on a DELL T3620 MT Precision Workstation

with an Intel Xeon E3-1240 (3.7GHz).

Roadmap Iteration Samples Computation Avg. Edges
Evaluated Time (min) per State

MNN 1 2372 1.0 110
2 11840 5.1 175
3 304526 131.3 192
4 1660565 716.0 171

MNE 1 2461 1.1 77
2 7536 3.2 113
3 273516 117.9 121
4 838231 361.4 107

MEN 1 2593 1.1 107
2 19260 8.3 126
3 146895 63.3 179
4 649615 280.1 194

MEE 1 2150 0.9 78
2 8955 3.9 99
3 95097 41.0 96
4 366425 158.0 112

ular docking can explore regions in the high-dimensional

energy landscape that may be initially unreachable with a

single ligand rigid body conformation. Even though paths

were improved regardless of state selection, the ensemble of

ligand conformations improves performance of the sampler

as it finds new ligand states within decreasing potential en-

ergy constraints. This indicates the possibility of improved

exploration of the energy landscape by users of interactive

molecular docking within the limited computational resources

of commonly available mobile devices.

Figure 7 shows four out of seven states that were chosen

in the 4th iteration of the path optimization of MEE . Even

though the algorithm found low energy paths, these may not

correspond to the correct biological pathways of binding. The

ligand states selected for this work were generated randomly,

as our goal was not to determine biological pathways for

drug discovery, but to demonstrate feasibility of the method.

To guarantee that the paths obtained by the algorithm are

biologically feasible, ligand states should be generated by

a physics-based method such as molecular dynamics, with

individual states identified with Markov state models such as

in [12]. Conversely, large RMSD differences in the final ligand

pathway can be smoothed using methods such as targeted

molecular dynamics.

The performance of exploration with an ensemble of ligand

conformation states is limited by the ability to sample the

conformation space of molecules, and requires a more robust

method to be applicable to general interactive molecular dock-

ing environments. This study only considered ligand flexibility,
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Fig. 6: Composition of ligand conformation states accepted for

each iteration of (a) MNE and (b) MEE path optimizations

(500 each iteration). State ‘1’ is the native conformation state

and ‘2’–‘10’ are the non-native ligand conformation states.

Some iterations showed a heavy preference towards particular

conformation states, particularly states ‘2’, ‘3’, and ‘7’.

but receptor flexibility also has a large impact on docking

pathways. The number of flexible states a human operator can

effectively utilize is also unknown. This work will be applied

to future user studies of interactive docking to understand these

limits and test interfaces for conformation selection.
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(a) State 1 (Start State) (b) State 3 (Conformation ‘9’)

(c) State 5 (Conformation ‘2’) (d) State 7 (Native Conformation)

Fig. 7: States along the path obtained in the 4th iteration

of MEE (7 in total). All queries started with the same state

(a) and ended with the known bound state (d). Intermediate

states along the path are shown in between along with the

conformation state.
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