
Optimizing Main-Memory
Join on Modern Hardware

Stefan Manegold, Peter Boncz, Member, IEEE, and Martin Kersten, Member, IEEE Computer Society

AbstractÐIn the past decade, the exponential growth in commodity CPU's speed has far outpaced advances in memory latency. A

second trend is that CPU performance advances are not only brought by increased clock rate, but also by increasing parallelism inside

the CPU. Current database systems have not yet adapted to these trends and show poor utilization of both CPU and memory

resources on current hardware. In this paper, we show how these resources can be optimized for large joins and translate these

insights into guidelines for future database architectures, encompassing data structures, algorithms, cost modeling, and

implementation. In particular, we discuss how vertically fragmented data structures optimize cache performance on sequential data

access. On the algorithmic side, we refine the partitioned hash-join with a new partitioning algorithm called radix-cluster, which is

specifically designed to optimize memory access. The performance of this algorithm is quantified using a detailed analytical model that

incorporates memory access costs in terms of a limited number of parameters, such as cache sizes and miss penalties. We also

present a calibration tool that extracts such parameters automatically from any computer hardware. The accuracy of our models is

proven by exhaustive experiments conducted with the Monet database system on three different hardware platforms. Finally, we

investigate the effect of implementation techniques that optimize CPU resource usage. Our experiments show that large joins can be

accelerated almost an order of magnitude on modern RISC hardware when both memory and CPU resources are optimized.

Index TermsÐMain-memory databases, query processing, memory access optimization, decomposed storage model, join

algorithms, implementation techniques.

æ

1 INTRODUCTION

CUSTOM hardwareÐfrom workstations to PCsÐhas
experienced tremendous performance improvements

in the past decades. Unfortunately, these improvements are
not equally distributed over all aspects of hardware
performance and capacity. Fig. 1 shows that the speed of
commercial microprocessors has increased roughly 70 per-
cent every year, while the speed of commodity DRAM has
improved by little more than 50 percent over the past
decade [1]. One reason for this is that there is a direct trade-
off between capacity and speed in DRAM chips, and the
highest priority has been for increasing capacity. The result
is that, from the perspective of the processor, memory is
getting slower at a dramatic rate, making it increasingly
difficult to achieve high processor efficiencies. Another
trend is the ever-increasing number of interstage and
intrastage parallel execution opportunities provided by
multiple execution pipelines and speculative execution in
modern CPUs. Current database systems on the market
make poor use of these new features; studies on several
DBMS products on a variety of workloads [2], [3], [4], [5]
consistently show that modern CPUs are stalled (i.e.,
nonworking) most of the execution time.

In this paper, we show how large main-memory joins

can be accelerated by optimizing memory and CPU

resource utilization on modern hardware. These optimi-

zations involve radical changes in database architecture,

encompassing new data structures, query processing

algorithms, and implementation techniques. Our findings

are summarized as follows:

. Memory access is a bottleneck to query processing. We
demonstrate that the performance of even simple
database operations is severely constrained by
memory access costs. For example, a simple in-
memory table scan runs on Sun hardware from the
year 2000 in roughly the same absolute time as on a
Sun from 1992, now spending 95 percent of its cycles
waiting for memory (see Section 2.2). It is important
to note that this bottleneck affects database perfor-
mance in general, not only main-memory database
systems.

. Data structures and algorithms should be tuned formemory
access. We discuss database techniques to avoid the
memory access bottleneck, both in the fields of data
structures and query processing algorithms. The key
issue is to optimize the use of the various caches of the
memory subsystem. We show how vertical table
fragmentation optimizes sequential memory access to
columndata. For equi-join,whichhasa randomaccess
pattern, we refine partitioned hash-join with a new
radix-cluster algorithm which makes its memory
access pattern more easy to cache. Our experiments
indicate that large joins canstronglybenefit fromthese
techniques.

. Memory access costs can be modeled precisely. Cache-
aware algorithms and data structures must be
tuned to the memory access pattern imposed by a
query and hardware characteristics such as cache
sizes and miss penalties, just like traditional query

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002 709

. The authors are with CWI, Kruislaan 413, 1098 SJ Amsterdam, The
Netherlands. E-mail: {manegold, boncz, mk}@cwi.nl.

Manuscript received 8 Oct. 1999; revised 10 Nov. 2000; accepted 14 Dec.
2000; posted to Digital Library 7 Sept. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110731.

1041-4347/02/$17.00 ß 2002 IEEE

optimization tunes the I/O pattern imposed by a
query to the size of the buffers available and I/O
cost parameters. Therefore, it is necessary to have
models that predict memory access costs in detail.
In this work, we provide such detailed models for
our partitioned hash-join algorithms. These models
use an analytical framework that predicts the
number of hardware events (e.g., cache misses
and CPU cycles) and scores them with hardware
parameters. We also outline our calibration tool
which extracts these cost parameters automatically
from any computer system.

. Memory optimization and efficient coding techniques
boost each others effects. CPU resource utilization can
be optimized with implementation techniques
known from high-performance computing [6] and
main-memory database systems [7], [8]. We observe
that applying these optimizations in combination
with memory optimizations yields a higher perfor-
mance increase than applying them without memory
optimizations. The same is also the case for memory
optimizations: They turn out to be more effective on
CPU-optimized code than on nonoptimized code.
Our experiments show that database performance
can be improved by an order of magnitude by
applying both CPU and memory optimization
techniques.

Our research group has studied large main-memory
database systems for the past 10 years. This research started
in the PRISMA project [9], focusing on massive parallelism,
and is now centered around Monet [10], [11]: a high-
performance system targeted to query-intensive application
areas like OLAP and data mining. We use Monet as our
experimentation platform.

1.1 Related Work

Database system research into the design of algorithms and
data structures that optimize memory access has been
relatively scarce. Our major reference is the work by Shatdal
et al. [12], which shows that join performance can be
improved using a main-memory variant of Grace Join in

which both relations are first hash-partitioned in chunks that
fit the (L2)memorycache.Therewerevarious reasons that led
us to explore this direction of research further. First, after its
publication, the observed trends in custom hardware have
continued, deepening the memory access bottleneck. For
instance, the authors list a mean performance penalty for a
cache miss of 20-30 cycles in 1994, while a range of 50-100 is
typical in 2000 (and rising). This increases the benefits of
cache optimizations and possibly changes the trade-offs.
Another development has been the introduction of so-called
level-one (L1) caches, which are typically very small regions
on the CPU chip that can be accessed at almost CPU clock-
speed. The authors of [12] provide algorithms that are only
feasible for the relatively larger off-chip L2 caches. Finally,
this previous work uses standard relational data structures,
while we argue that the impact of memory access is so severe
that vertically fragmented data structures should be applied
at the physical level of database storage.

Though we consider memory-access optimization to be
relevant for database performance in general, it is especially
important for main-memory databases, a field that, through
time, has received fluctuating interest within the database
research community. In the 1980s [13], [14], [15], [16], [17],
[18], falling DRAM prices seemed to suggest that most data
would soon be memory-resident; its popularity diminished
in the 1990s, narrowing its field of application to real-time
systems only. Currently, interest has revived into applica-
tions for small and distributed database systems, but also in
high-performance systems for query-intensive applications
like data mining and OLAP. In our research, we focus on
this latter category. Example commercial systems are the
Times Ten product [19], Sybase IQ [20], and Compaq's
Infocharger [21], which is based on an early version of
Monet [8], developed by our own group since 1994 and
commercially deployed in a data mining tool [22]. Monet is
implemented using aggressive coding techniques for
optimizing CPU resource utilization [8] that go much
beyond the usual MMDBS implementation techniques
[23]. For example, Monet is written in a macrolanguage
from which C language implementations are generated.
The macros implement a variety of techniques by virtue
of which the inner loops of performance-critical algo-
rithms like join are free of overheads like database ADT
calls, data movement, and loop condition management.
These techniques were either pioneered by our group
(e.g., logarithmic code expansion [7]) or taken from the
field of high-performance computing [6]. In this work, we
will show that these techniques allow compilers to
produce code that better exploits the parallel resources
offered by modern CPUs.

Past work on main-memory query optimization [24], [25]
models the main-memory costs of query processing
operators on the coarse level of procedure calls, using
profiling to obtain some ªmagicalº constants. As such, these
models do not provide insight into individual components
that make up query costs, which limits their predictive
value. Conventional (i.e., non-main-memory) cost model-
ing, in contrast, has I/O as the dominant cost aspect, which
makes it possible to formulate accurate models based on the
amount of predicted I/O work. Calibrating such models is
relatively easy as statistics on the I/O accesses caused

710 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 1. Trends in DRAM and CPU speed.

during an experiment are readily available in a database
system. Past work on main-memory systems was unable to
provide such cost models on a similarly detailed level for
two reasons. First, it was difficult to model the interaction
between low-level hardware components like CPU, Mem-
ory Management Unit, bus, and memory caches. Second, it
was impossible to measure the status of these components
during experiments, which is necessary for tuning and
calibration of models. Modern CPUs, however, contain
performance counters for events like cache misses and exact
CPU cycles [26], [27], [28]. This enabled us to develop a new
main-memory cost modeling methodology that first mimics
the memory access pattern of an algorithm, yielding a
number of CPU cycle and memory cache events, and then
scores this pattern with an exact cost prediction. Therefore,
the contribution of the algorithms, models, and experiments
presented here is to demonstrate that detailed cost modeling
ofmain-memory performance is both important and feasible.

1.2 Outline

In Section 2, we describe the aspects of memory and CPU
technology found in custom hardware that are most
relevant for the performance of main-memory query
execution. We identify ongoing trends and outline their
consequences for database architecture. In addition, we
describe our calibration tool, which extracts the most
important hardware characteristics like cache size, cache
line size, and cache latency from any computer system, and
provide results for our benchmark platforms (modern SGI,
Sun, Intel, and AMD hardware).

In Section 3, we introduce the radix-cluster algorithm,
which improves the partitioning phase in partitioned hash-
join by trading memory access costs for extra CPU
processing. We perform exhaustive experiments where we
use CPU event counters to obtain detailed insight into the
performance of this algorithm. First, we vary the partition
sizes to show the effect of tuning the memory access pattern
to the memory cache sizes. Second, we investigate the
impact of code optimization techniques for main-memory
databases. These experiments show that improvements of
almost an order of magnitude can be obtained by combin-
ing both techniques (cache tuning and code optimization)
rather than by each one individually. Our results are fully
explained by detailed models of both the partition (radix-
cluster) and join phase of partitioned hash-join and we
show how performance can be exactly predicted from
hardware events like cache and TLB misses.

In Section 4, we evaluate our findings and show how
they support the choices we made back in 1994 when
designing Monet, which uses full vertical fragmentation
and implementation techniques optimized for main mem-
ory to achieve high performance on modern hardware. We
conclude with recommendations for future systems.

2 MODERN HARDWARE AND DBMS PERFORMANCE

First, we describe the technical details of modern hardware
relevant for main-memory query performance, focusing on
CPU and memory architectures. We perform experiments
to illustrate how the balance between CPU and memory
costs in query processing has shifted through time and
discuss a calibration tool that automatically extracts the

hardware parameters most important for performance

prediction from any computer system. We then look at

what future hardware technology has in store and identify a

number of trends.

2.1 A Short Hardware Primer

While CPU clock frequency has been following Moore's law

(doubling every 18 months), CPUs have additionally

become faster through parallelism within the processor.

Scalar CPU's separate different execution stages for

instructions, e.g., allowing a computation stage of one

instruction to be overlapped with the decoding stage of the

next instruction. Such a pipelined design allows for inter-

stage parallelism. Modern superscalar CPUs add intrastage

parallelism as they have multiple copies of certain

(pipelined) units that can be active simultaneously.

Although CPUs are commonly classified as either RISC or

CISC, modern CPUs combine successful features of both.

Fig. 2 shows a simplified schema that characterizes how

modern CPUs work: Instructions that need to be executed

are loaded from memory by a fetch-and-decode unit. In

order to speed up this process, multiple fetch-and-decode

units may be present (e.g., the Pentium III and the Athlon

have three, the R10000 two). Decoded instructions are

placed in an instruction queue from which they are

executed by one of various functional units which are

sometimes specialized in integer, floating-point, and load/

store pipelines. The Pentium III, for instance, has two such

functional units, the R10000 has five, and the Athlon has

nine. To exploit this parallel potential, modern CPUs rely on

techniques like branch prediction to predict which instruction

will be next before the previous has finished. Also, modern

cache memories are nonblocking, which means that a cache

miss does not stall the CPU. Such a design allows the

pipelines to be filled with multiple instructions that will

probably have to be executed (also known as speculative

execution), betting on yet unknown outcomes of previous

instructions. All this is accompanied by the necessary logic

to restore order in case of mispredicted branches. As this

can cost a significant penalty, and as it is very important to

fill all pipelines to obtain the performance potential of the

CPU, much attention is paid in hardware design to efficient

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 711

Fig. 2. Modern out-of-order CPU.

branch prediction. CPUs work with prediction tables that
record statistics about branches taken in the past.

Modern computer architectures have a hierarchical
memory system, as depicted in Fig. 3, where access by the
CPU to main memory, consisting of DRAM chips on the
system board, is accelerated by various levels of cache
memories. Introduction of these cache memories, which
consist of fast but expensive SRAM chips, was necessary
due to the fact that DRAM memory latency has progressed
little through time, making its performance relative to the
CPU become worse exponentially. First, one level of cache
was added by placing SRAM chips on the motherboard.
Then, as CPU clock-speeds kept increasing, the physical
distance between these chips and the CPU became a
problem as it takes a minimum amount of time per distance
to carry an electrical signal over a wire. As a result, modern
CPUs have cache memories inside the processor chip. For
simplicity of presentation, we assume one on-chip cache,
called L1, and a typically larger off-chip cache on the system
board, called L2. Our results, however, also hold for more
complex configurations, e.g., with the L2 cache included on
the CPU chip and an optional off-chip L3 cache. We identify
three aspects that determine memory access costs:

Latency. Our exact definition of memory latency (lMem) is the
time needed to transfer one byte from the main memory
to the L2 cache. This occurs when the piece of memory
being accessed is in neither the L1 nor the L2 cache, so
we speak of an L2 miss. It is important to note that,
during this time, all current hardware actually transfers
multiple consecutive words to the memory subsystem
since each cache level has a smallest unit of transfer
(called the cache line). During one memory fetch, modern
hardware loads an entire cache line from main memory1

in one go by reading data from many DRAM chips at the
same time, transferring all bits in the cache line in
parallel over a wide bus. Similarly, with L2 latency (lL2),
we mean the time it takes the CPU to access data that is

in L2, but not in L1 (an L1 miss), and L1 latency (lL1) is the
time it takes the CPU to access data in L1. Each L2 miss is
preceded by an L1 miss. Hence, the total latency to access
data that is in neither cache is lMem � lL2 � lL1. As L1
latency cannot be avoided, we assume in the remainder
of this paper that L1 latency is included in the pure CPU
costs and regard only memory latency and L2 latency as
explicit memory access costs.

Bandwidth. We define memory bandwidth as the number of
megabytes of main memory the CPU can access per
second. On some architectures, there is a difference
between read and write bandwidth, but this difference
tends to be small. Bandwidth is usually maximized on a
sequential access pattern as only then are all memory
words in the cache lines fully used. In conventional
hardware, the memory bandwidth used is simply the
cache line size divided by the memory latency, but
modern multiprocessor systems typically provide excess
bandwidth capacity.

Address translation. The Translation Lookaside Buffer
(TLB) is a common element in modern CPUs (see
Fig. 2). This buffer is used in the translation of logical
virtual memory addresses used by application code to
physical page addresses in the main memory of the
computer. The TLB is a kind of cache that holds the
translation for the most recently used pages (typically
64). If a logical address is found in the TLB, the
translation has no additional costs. However, if a logical
address is not cached in the TLB, a TLB miss occurs. The
more pages an application uses (which is also dependent
on the often configurable size of the memory pages), the
higher the probability of TLB misses. A TLB miss can
either be handled in hardware or in software, depending
on the computer architecture. Hardware-handled TLB
fetches the translation from a fixed memory structure,
which is just filled by the operating system. Software-
handled TLB leaves the translation method entirely to
the operating system, but requires trapping to a routine
in the operating system kernel on each TLB miss.
Depending on the implementation and hardware archi-
tecture, TLB misses can therefore be more even costly
than a main-memory access. Moreover, as address
translation often requires accessing some memory
structure, this can in turn trigger additional memory
cache misses.

2.2 Experimental Quantification

We use a simple scan test to demonstrate the severe impact
of memory access costs on the performance of elementary
database operations. In this test, we sequentially scan an in-
memory buffer by iteratively reading one byte with a
varying stride, i.e., the offset between two subsequently
accessed memory addresses. We make sure that the buffer
is in memory, but not in any of the memory caches, by first
scanning it and then scanning some other buffer larger than
the largest cache size multiple times. Our experiment
mimics what happens if a database server performs a
read-only scan of a one-byte column in an in-memory table
with a certain record-width (the stride) as would happen in

712 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

1. To which cache line the memory is loaded is determined from the
memory address. An X-way associative cache allows us to load a line in X
different positions. If X > 1, some cache replacement policy chooses one
from the X candidates. Least Recently Used (LRU) is the most common
replacement algorithm.

Fig. 3. Hierarchical memory system.

a simple aggregation (e.g., SELECT MAX(column) FROM
table).

Fig. 4 shows results of this experiment on a number of
popular workstations of the past decade. The X-axis shows
the different systems, ordered by their age and, per system,
the different strides tested. The Y-axis shows the absolute
elapsed time for the experiments. For each system, the
graph is split up to show which part of the elapsed time is
spent waiting for memory (upper) and which part for CPU
processing (lower, gray-shaded).

All systems show the same basic behavior, with best
performance at stride 1, increasing to some maximum at a
larger stride, after which performance stays constant. This is
explained as follows: When the stride is small, successive
iterations in the scan read bytes that are near to each other
in memory and hit the same cache line. Therefore, the
number of L1 and L2 cache misses is low and the memory
access costs are negligible compared to the CPU costs. As
the stride increases, the cache miss rates and, thus, the
memory access costs also increase. The cache miss rates
reach their maxima as soon as the stride reaches the cache
line size. Then, every memory read is a cache miss.
Performance cannot become any worse and stays constant.

When comparing the Sun LX to the Origin2000, we see
that CPU performance has increased 10-fold, of which a
factor 5 can be attributed to faster clock frequency (from 50
MHz to 250 MHz), and a factor 2 to increased processor
parallelism (the CPU costs have fallen from 160 ns at 50
MHz = 8 cycles to 16 ns at 250 MHz = 4 cycles). While this
trend of exponentially increasing CPU performance is easily
recognizable, the memory cost trend in Fig. 4 shows a
mixed picture and has clearly not kept up with the
advances in CPU power. Consequently, while our experi-
ment was still largely CPU-bound on the Sun from 1992, it
is dominated by memory access costs on the modern
machines (even the Pentium III with fast memory spends 75
percent of the time waiting for memory). Note that the later
machines from Sun, Silicon Graphics, and DEC actually
have memory access costs that, in absolute numbers, are

even higher than on the Sun from 1992. This can be

attributed to the complex memory subsystem that comes

with SMP architectures, resulting in a high memory latency.

These machines do provide a high memory band-

widthÐthanks to the ever-growing cache line sizes2Ðbut

this does not do any good in our experiment at large strides

(when data locality is low).
This simple experiment also makes it clear why database

systems are quickly constrained by memory access, even on

simple tasks like scanning that seem to have an access

pattern that is easy to cache (sequential). The default

physical representation of a tuple is a consecutive byte

sequence (a ªrecordº) which must always be accessed by

the bottom operators in a query evaluation tree (typically,

selections or projections). The record byte-width of typical

relational table amounts to some hundreds of bytes. Fig. 4

makes it clear that such large strides lead to worst-case

performance such that the memory access bottleneck kills

all CPU performance advances.
To improve performance, we strongly recommend using

vertically fragmented data structures. In Monet, we fully

decompose relational tables on all columns, storing each in

a separate Binary Association Tables (BAT). This approach

is known in the literature as the Decomposed Storage

Model [29]. A BAT is represented in memory as an array of

fixed-size two-field records [OID, value]Ðcalled Binary

UNits (BUN)Ðwhere the OIDs are used to link together the

tuples that are decomposed across different BATs. Full

vertical fragmentation keeps the database records thin

(8 bytes or less) and is therefore the key for reducing

memory access costs (staying on the left side of the graphs

in Fig. 4). In Section 4, we will come back to specific

implementation details of Monet.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 713

Fig. 4. CPU and memory access costs per tuple in a simple table scan.

2. In one cache miss, the Origin2000 fetches 128 bytes, whereas the Sun
LX fetches only 16, an improvement of factor 8.

2.3 Calibration Tool

In order to analyze the impact of memory access costs in
detail, we need to know the characteristic parameters of the
memory system, including memory sizes, cache sizes, cache
line sizes, and access latencies. Often, not all of these
parameters are (correctly) listed in the hardware manuals.
In the following, we describe a simple but powerful
calibration tool to measure the (cache) memory character-
istics of an arbitrary machine.

2.3.1 Calibrating the Memory System

Our calibrator is a simple C program, mainly a small loop
that executes a million memory reads. By changing the
stride and the size of the memory area, we force varying
cache miss rates. Thus, we can calculate the latency for a
cache miss by comparing the execution time without misses
to the execution time with exactly one miss per iteration.
This approach only works if memory accesses are executed
purely sequentially, i.e., we have to make sure that neither
two or more load instructions nor memory access and pure
CPU work overlap. We use a simple pointer chasing
mechanism to achieve this: The memory area we access is
initialized such that each load returns the address for the
subsequent load in the next iteration. Thus, superscalar
CPUs cannot benefit from their ability to hide memory
access latency by speculative execution.

To measure the cache characteristics, we ran our
experiment several times, varying the stride and the array
size. We made sure that the stride varied at least between
four bytes and twice the maximal expected cache line size
and that the array size varied from half the minimal
expected cache size to at least 10 times the maximal
expected cache size.

Fig. 5a depicts the resulting execution time (in nanose-
conds) per iteration for different array sizes on an
Origin2000 (MIPS R10000, 250 MHz = 4 ns per cycle). Each
curve represents a different stride. From this figure, we can

derive the desired parameters as follows: Up to an array
size of 32 Kbytes, one iteration takes 8 nanoseconds (i.e.,
two cycles), independent of the stride. Here, no cache
misses occur once the data is loaded as the array completely
fits in L1 cache. One of the two cycles accounts for executing
the load instruction and the other one accounts for the
latency to access data in L1. With array sizes between
32 Kbytes and 4 Mbytes, the array exceeds L1, but still fits in
L2. Thus, L1 misses occur. The miss rate (i.e., the number of
misses per iteration) depends on the stride (s) and the L1
cache line size (LSL1). With s < LSL1,

s
LSL1

L1 misses occur
per iteration (or one L1 miss occurs every LSL1

s iterations).
With s � LSL1, each load causes an L1 miss. Fig. 5 shows
that the execution time increases with the stride, up to a
stride of 32. Then, it stays constant. Hence, L1 line size is
32 bytes. Further, L1 miss latency (i.e., L2 access latency) is
32 nsÿ 8 ns � 24 ns, or six cycles. Similarly, when the array
size exceeds L2 size (4 Mbytes), L2 misses occur. Here, the
L2 line size is 128 bytes and the L2 miss latency (memory
access latency) is 432 nsÿ 32 ns � 400 ns, or 100 cycles.
Analogously, Figs. 5b, 5c, and 5d show the results for a Sun
Ultra (Sun UltraSPARC, 200 MHz = 5 ns per cycle), an Intel
PC (Intel Pentium III, 450 MHz = 2.22 ns per cycle), and an
AMD PC (AMD Athlon, 600 MHz = 1.67 ns per cycle).

The sequential memory bandwidth for our systems, listed in
Table 1, is computed from the cache line sizes and the
latencies as follows:

bwseq �
LSL2

lMem � LSL2

LSL1
� lL2

:

We will discuss parallel memory bandwidth in the next
section.

2.3.2 Calibrating the TLB

We use a similar approach as above to measure TLB miss
costs. The idea here is to force one TLB miss per iteration,

714 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 5. Calibration tool: Cache sizes, line sizes, and latencies. (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

but to avoid any cache misses. We force TLB misses by

using a stride that is larger than the system's page size

and by choosing the array size such that we access more

distinct spots than there are TLB entries. Cache misses

will occur at least as soon as the number of spots

accessed exceeds the number of cache lines. We cannot

avoid that. But, even with fewer spots accessed, two or

more spots might be mapped to the same cache line,

causing conflict misses. To avoid this, we use strides that

are not exactly powers of two, but slightly bigger, shifted

by L2 cache line size, i.e., s � 2x � LSL2.
Fig. 6 shows the results for four machines. The X-axis

now gives the number of spots accessed, i.e., array size

divided by stride. Again, each curve represents a different

stride. From Fig. 6a (Origin2000), for example, we derive the

following: As above, we observe the base line of 8 nanose-

conds (i.e., two cycles) per iteration. The smallest number of

spots where the performance decreases due to TLB misses is

64, hence, there must be 64 TLB entries. The decrease at

64 spots occurs with strides of 32 Kbytes or more, thus, the

page size is 32 Kbytes. Further, TLB miss latency is

236 nsÿ 8 ns � 228 ns, or 57 cycles. Fig. 6d correctly reflects

the Athlon's two TLB levels with 32 and 256 entries,

respectively. The third step in the curves at 1,024 spots is

caused by L1 misses as L1 latency is five times higher than

TLB latency on the Athlon. The same holds for the second

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 715

TABLE 1
Calibrated Performance Characteristics

Fig. 6. Calibration tool: TLB entries and TLB miss costs. (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

step in the Pentium III curves (Fig. 6c) at 512 spots. On the
Origin2000 and on the Sun, L1 misses also occur with more
than 1,024 spots accessed, but their impact is negligible as
TLB latency is almost 10 times higher than L1 latency on
these machines.

Table 1 gathers the results for all four machines. The PCs

have the highest L2 latency, probably as their L2 caches are

running at only half the CPUs' clock speed, but they have

the lowest memory latency. Their very low TLB latency is

due to the hardware implementation of TLB management

on the PCs, which avoids the costs of trapping to the

operating system on a TLB miss, which is necessary in the

software-controlled TLBs of the other systems. The Ori-

gin2000 has the highest memory latency, but, due to its

large cache lines, it achieves better sequential memory

bandwidth than the Sun and the Intel PC.

2.4 Parallel Memory Access

It is interesting to note that the calibrated latencies in Table 1

do not always confirm the suggested latencies in the

sequential scan experiment from Fig. 4. For the Pentium III,

the access costs permemory readof 52ns at a strideof 32bytes

and 204 ns at a stride of 128 bytes for the Origin2000, are

considerably lower than their memory latencies (135 ns,

respectively, 424 ns),whereas, in the case of the SunUltra, the

scan measurement at L2 line size almost coincides with the

calibrated memory latency. The discrepancies are caused by

parallel memory access which can occur on CPUs that feature

both speculative execution and a nonblocking memory

system. This allows a CPU to execute multiple memory load

instructions in parallel, potentially enhancing memory

bandwidth above the level of cache-line size divided by

latency. Prerequisites for this technique are a bus systemwith

excess transport capacity and a nonblocking cache system that

allows multiple outstanding cache misses.
To answer the question about what needs to be done

by an application programmer to achieve these parallel
memory loads, let us consider a simple programming
loop that sums an array of integers. Fig. 7 shows three
implementations, where the leftmost column contains the
standard approach that results in sequential memory
loads into the buf[size] array. An R10000 processor can
continue executing memory load instructions specula-
tively until four of them are stalled. In this loop, that will
indeed happen if buf[i], buf[i+1], buf[i+2], and buf[i+3]
are not in the (L2) cache. However, due to the fact that
our loop accesses consecutive locations in the buf array,
these four memory references request the same 128-byte
L2 cache line. Consequently, no parallel memory access
takes place. If we assume that this loop takes two cycles

per iteration,3 we can calculate that 32 iterations cost 32*2
+ 124 = 188 cycles (where 124 is the memory latency on
our Origin2000); a total mean cost of 5.88 cycles per
addition.

Parallel memory access can be enforced by having one
loop that iterates two cursors through the buf[size] array
(see the middle column of Fig. 7). This causes two parallel
128 byte (=32 integer) L2 cache line fetches from memory
per 32 iterations, for a total of 64 additions. On the R10000,
the measured maximum memory bandwidth of the bus is
555 Mbytes, so fetching two 128-byte cache lines in parallel
costs only 112 cycles (instead of 124 + 124). The mean cost
per addition is, hence, 2 + 112/64 = 3.75 cycles.

It is important to note that parallel memory access is
achieved only if the ability of the CPU to execute multiple
instructions speculatively spans multiple memory refer-
ences in the application code. In other words, the parallel
effect disappears if there is too much CPU work between
two memory fetches (more than 124 cycles on the R10000)
or if the instructions are interdependent, causing a CPU stall
before reaching the next memory reference. For database
algorithms, this means that random access operations like
hashing will not profit from parallel memory access as
following a linked list (hash bucket chain) causes one
iteration to depend on the previous, hence, a memory miss
will block execution. Only sequential algorithms with CPU
processing costs less than the memory latency will profit as
in the simple scan experiment from Fig. 4. This experiment
reaches optimal parallel bandwidth when the stride is equal
to this L2 cache line size. As each loop iteration then
requests one subsequent cache line, modern CPUs will have
multiple memory loads outstanding, executing them in
parallel. Results are summarized at the bottom of Table 1,
showing the parallel effect to be especially strong on the
Origin2000, the Pentium III, and the Athlon. In other words,
if the memory access pattern is not sequential (as in equi-
join), the memory access penalty paid on these systems is
actually much higher than suggested by Fig. 4, but
determined by the latencies from Table 1.

2.5 Prefetched Memory Access

Computer systems with a nonblocking cache can shadow
memory latency by performing a memory fetch well
before it is actually needed. CPUs like the R10000, the
Pentium III, the Athlon, and the newer SPARC Ultra2
models have special prefetching instructions for this
purpose. These instructions can be thought of as memory

716 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

3. As each iteration of our loop consists of a memory load (buf[i]), an
integer addition (of ªtotalº with this value), an integer increment (of i), a
comparison, and a branch, the R10000 manual suggests a total cost of,
minimally, six cycles. However, due to the speculative execution in the
R10000 processor, this is reduced to two cycles on average.

Fig. 7. Three ways to add a buffer of intergers and costs per addition on the Origin2000.

load instructions that do not deliver a result. Their only
side effect is a modification of the status of the caches.
Mowry describes compiler techniques to generate these
prefetching instructions automatically [1]. These techni-
ques optimize array accesses from within loops when
most loop information and dependencies are statically
available and, as such, are very appropriate for scientific
code written in Fortran. Database code written in C/C++,
however, does not profit from these techniques as even the
most simple table scan implementation will typically result
in a loop with both a dynamic stride and length as these are
(dynamically) determined by the width and length of the
table that is being scanned. Also, if table values are
compared or manipulated within the loop using a
function call (e.g., comparing two values for equality
using a C function looked up from some ADT table or a
C++ method with late binding), the unprotected pointer
model of the C/C++ languages forces the compiler to
consider the possibility of side effects from within that
function, eliminating the possibility of optimization.

In order to provide the opportunity to still enforce
memory prefetching in such situations, the MipsPRO
compiler for the R10000 systems of Silicon Graphics allows
passing of explicit prefetching hints by use of pragmas, as
depicted in the rightmost column of Fig. 7. This pragma
tells the compiler to request the next cache line once in
every 32 iterations. Such a prefetch-frequency is generated
by the compiler by applying loop unrolling (it unrolls the
loop 32 times and inserts one prefetch instruction). By
hiding the memory prefetch behind 64 cycles of work, the
mean cost per addition in this routine is reduced to 2�
��124ÿ 64�=32� � 3:88 cycles. Optimal performance is
achieved in this case when prefetching two cache lines
ahead every 32 iterations (#prefetch buf[i+64] freq = 32).
The 124 cycles of latency are then totally hidden behind
128 cycles of CPU work and a new cache line is requested
every 64 cycles. This setting effectively combines prefetch-
ing with parallel memory access (two cache lines in 128
cycles instead of 248) and reduces the mean cost per
addition to the minimum two cycles, three times faster than
the simple approach.

2.6 Future Hardware Features

In spite of memory latency staying constant, hardware
manufacturers have been able to increase memory band-
width in line with the performance improvements of CPUs
by working with ever wider lines in the L1 and L2 caches.
As cache lines grew wider, buses also did. The latest Sun
Ultra II workstations, for instance, have a 64-byte L2 cache
line which is filled in parallel using a 576-bit wide PCI bus
(576 = 64*8 plus 64 bits overhead). The strategy of doubling
memory bandwidth by doubling the number of DRAM
chips and bus lines is now seriously complicating system
board design. The future Rambus [30] memory standard
eliminates this problem by providing a ªprotocol-driven
memory bus.º Instead of designating one bit in the bus for
one bit of data transported to the cache line, this new
technology serializes the DRAM data into packets using a
protocol and sends these packets over a thin (16-bit) bus
that runs at very high speeds (up to 800 MHz). While this
allows for continued growth in memory bandwidth, it does

not provide the same perspective for memory latency as
Rambus still needs to access DRAM chips and there will
still be the relatively long distance for the signals to travel
between the CPU and these memory chips on the system
board, both factors ensuring a fixed startup cost (latency)
for any memory traffic.

A radical way around the high latencies mandated by
off-CPU DRAM systems is presented in the proposal to
integrate DRAM and CPU in a single chip called IRAM
(Intelligent RAM) [31]. Powerful computer systems could
then be built using many such chips. Finding a good model
for programming such a highly parallel system seems one
of the biggest challenges of this approach. Another
interesting proposal worth mentioning here is ªsmarter
memoryº [32], which would allow the programmer to give
a ªcache-hintº by specifying the access pattern that is going
to be used on a memory region in advance. This way, the
programmer is no longer obliged to organize his data
structures around the size of a cache line. Instead, the cache
adapts its behavior to the needs of the application. Such a
configurable system is, in some sense, a protocol-driven bus
system, so Rambus is a step in this direction. However, both
configurable memory access and IRAM have not yet been
implemented in custom hardware, let alone in OS and
compiler tools that would be needed to program them
usefully.

Recent developments concerning memory caches are to
move the L2 cache closer to the CPU, either locating it on
the same multichip module (e.g., Intel's first Pentium III,
ªKatmai,º or AMD's first Athlon generation) or even
including it on the CPU's die (e.g., Intel's latest
Pentium III,ªCoppermine,º or AMD's latest Athlon
ªThunderbirdº). While reducing L2 latencyÐthe L2
caches now operate at half or even full CPU speedÐth-
ese trends do not reduce the memory latency. Further,
on-chip caches are usually smaller than off-chip caches
and, hence, provide even less potential to avoid memory
accesses. Similarly, additional L3 cachesÐalthough in-
creasing the total cache capacityÐcannot reduce memory
latency, but rather might even increase it due to an
increased management overhead.

Concerning CPU technology, it is anticipated [33] that
the performance advances dictated by Moore's law will
continue well into the millennium. However, performance
increase will also be brought by more parallelism within the
CPU. The upcoming IA-64 architecture has a design called
Explicitly Parallel Instruction Computing (EPIC) [34] which
allows instructions to be combined in bundles, explicitly
telling the CPU that they are independent. The IA-64 is
specifically designed to be scalable in the number of
functional units, so, while newer versions are released,
more and more parallel units will be added. This means
that, while current PC hardware uses less parallel CPU
execution than the RISC systems, this will most probably
change in the new 64-bit PC generation.

Summarizing, we have identified the following ongoing
trends in modern hardware:

. CPU performance will keep growing with Moore's
law for years to come.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 717

. A growing part of this performance increase will
come from parallelism within the CPU.

. New bus technology will provide sufficient growth
in memory bandwidth.

. Memory latency will not improve significantly.

This means that the failure of current DBMS technology

to properly exploit memory and CPU resources of modern

hardware [2], [4], [3], [5] will grow worse. Modern database

architecture should therefore take these new hardware

issues into account. With this motivation, we investigate the

following new approaches to large main-memory equi-joins

that are specifically aimed at optimizing resource utilization

of modern hardware.

3 PARTITIONED HASH-JOIN

Shatdal et al. [12] showed that a main-memory variant of

Grace Join in which both relations are first partitioned on

hash-number into H separate clusters fit the memory cache

and performs better than normal bucket-chained hash join.

This work employs a straightforward clustering-algorithm

that simply scans the relation to be clustered once, inserting

each scanned tuple in one of the clusters, as depicted in

Fig. 8. This constitutes a random access pattern that writes

into H separate locations. If H is too large, there are two

factors that degrade performance. First, if H exceeds the

number of TLB entries,4 each memory reference will

become a TLB miss. Second, if H exceeds the number of

available cache lines (L1 or L2), cache thrashing occurs,

causing the number of cache misses to explode.
As an improvement over this straightforward algorithm,

we propose a clustering algorithm that has a memory access

pattern that requires less random-access, even for high

values of H.

3.1 Radix-Cluster Algorithm

The radix-cluster algorithm divides a relation into H clusters
using multiple passes (see Fig. 9). Radix-clustering on the
lowerB bits of the integer hash-value of a column is achieved
in P sequential passes in which each pass clusters tuples on
Bp bits, starting with the leftmost bits (

PP
1 Bp � B). The

number of clusters created by the radix-cluster isH �
QP

1 Hp,
where each pass subdivides each cluster into Hp � 2Bp new
ones. When the algorithm starts, the entire relation is
considered one single cluster and is subdivided into H1 �
2B1 clusters. Thenext pass takes these clusters and subdivides
each into H2 � 2B2 new ones, yielding H1 �H2 clusters in
total, etc.Note that,withP � 1, radix-cluster behaves like the
straightforward algorithm.

For ease of presentation, we did not use a hash function
in the table of integer values displayed in Fig. 9. In practice,
though, it is better to use such a function, even on integers,
in order to ensure that all bits of the table values play a role
in the lower bits of the radix number.

The interesting property of the radix-cluster is that the
number of randomly accessed regions Hx can be kept low,
while a high overall number of H clusters can still be
achieved using multiple passes. More specifically, if we
keep Hx � 2Bx smaller than the number of cache lines and
the number of TLB entries, we totally avoid both TLB and
cache thrashing.

After radix-clustering a column on B bits, all tuples that
have the same B lowest bits in its column hash-value
appear consecutively in the relation, typically forming
chunks of C=2B tuples (with C denoting the cardinality of
the entire relation). Therefore, it is not strictly necessary to
store the cluster boundaries in some additional data
structure; an algorithm scanning a radix-clustered relation
can determine the cluster boundaries by looking at these
lower B ªradix-bits.º This allows very fine clusterings
without introducing overhead by large boundary struc-
tures. It is interesting to note that a radix-clustered relation
is in fact ordered on radix-bits. When using this algorithm in
the partitioned hash-join, we exploit this property by

718 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

4. If the relation is very small and fits the total number of TLB entries
times the page size, multiple clusters will fit into the same page and this
effect will not occur.

Fig. 8. Straightforward clustering algorithm.

Fig. 9. Two-pass/3-bit radix cluster (lower bits indicated between

parentheses).

performing a merge step on the radix-bits of both radix-

clustered relations to get the pairs of clusters that should be

hash-joined with each other.

3.2 Quantitative Assessment

The radix-cluster algorithm presented in the previous

section provides three tuning parameters:

1. the number of radix-bits used for clustering (B),
implying the number of clusters H � 2B,

2. the number of passes used during clustering (P),
and

3. the number of radix-bits used per clustering pass
(Bp).

In the following, we present an exhaustive series of

experiments to analyze the performance impact of the

different settings of these parameters. After establishing

which parameter settings are optimal for radix-clustering

a relation on B radix-bits, we turn our attention to the

performance of the join algorithm with varying values of

B. For both phases, clustering and joining, we investigate

how appropriate implementations techniques can improve

the performance even further. Finally, these two experi-

ments are combined to gain insight in the overall join

performance.

3.2.1 Experimental Setup

In our experiments, we use binary relations (BATs) of

8 bytes wide tuples and varying cardinalities (C),

consisting of uniformly distributed random numbers.

Each value occurs three times. Hence, in the join-

experiments, the join hit-rate is three. The result of a join

is a BAT that contains the [OID, OID] combinations of

matching tuples (i.e., a join-index [35]). Subsequent tuple

reconstruction is cheap in Monet and equal for all

algorithms, so, just as in [12], we do not include it in

our comparison. The experiments were carried out on the

machines presented in Section 2.3, an SGI Origin2000, a

Sun Ultra, an Intel PC, and an AMD PC (cf. Table 1).

To analyze the performance behavior of our algorithms

in detail, we break down the overall execution time into the

following major categories of costs:

Memory access. In addition to memory access costs for data

as analyzed above, this category also contains memory

access costs caused by instruction cache misses.

CPU stalls. Beyond memory access, there are other events

that make the CPU stall similar to branch mispredictions

or other so-called resource related stalls.

Divisions. We treat integer divisions separately as they

play a significant role in our hash-join (see below).

Real CPU. This is the remaining time, i.e., the time the CPU

is indeed busy executing the algorithms.

The four architectures we investigate provide different

hardware counters [26] that enable us to measure each of

these cost factors accurately. Table 2 gives an overview of

the counters used. Some counters yield the actual CPU

cycles spent during a certain event, others just return the

number of events that occurred. In the latter case, we

multiply the counters by the penalties of the events (as

calibrated in Section 2.3). None of the architectures provides

a counter for the pure CPU activity. Hence, we subtract the

cycles spent on memory access, CPU stalls, and integer

division from the overall number of cycles and assume that

the rest are pure CPU costs.
In our experiments, we found that, in our algorithms,

branch mispredictions and instruction cache misses do not

play a role on either architecture. The reason is that, in

contrast to most commercial DBMSs, Monet's code base is

designed for efficient main-memory processing. Monet uses

a very large grain size for buffer management in its

operators (an entire BAT), therefore processing exhibits

much code locality during execution and, hence, avoids

instruction cache misses and branch mispredictions. Thus,

for simplicity of presentation, we omit these events in our

evaluation.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 719

TABLE 2
Hardware Counters Used for Execution Time Breakdown

1 DC_misses= DC_read -DC_read_hit+DC_write-DC_write_hit.
2 EC_misses=EC_ref-EC_hit.
3 Taken from [2].
4 This counter originally includes ªDCU_miss_outstanding.º We use only the remaining part after subtracting ªDCU_miss_outstanding,º here.

3.2.2 Radix Cluster

To analyze the impact of all three parameters (B, P , Bp) on

radix clustering, we conduct two series of experiments,

keeping one parameter fixed and varying the remaining two.
First, we conduct experiments with various numbers of

radix-bits and passes, distributing the radix-bits evenly
across the passes. Fig. 10 shows an execution time break-
down for 1-pass radix-cluster (C � 8 M) on each architec-
ture. The pure CPU costs are nearly constant across all
numbers of radix-bits, taking about 3 seconds on the Origin,
5.5 seconds on the Sun, 2.5 seconds on the Pentium III, and
about 1.7 seconds on the Athlon. Memory and TLB costs are
low with small numbers of radix-bits, but grow significantly
with the rising numbers of radix-bits. With more than
6 radix-bits, the number of clusters to be filled concurrently
exceeds the number of TLB entries (64), causing the number
of TLB misses to increase significantly. On the Origin and
on the Sun, the execution time increases significantly due to
their rather high TLB miss penalties. On the Pentium III,
however, the impact of TLB misses is hardly visible due to
its very low TLB miss penalty. The same holds for TLB1

misses on the Athlon, while the impact of the more
expensive TLB2 misses is clearly visible. Analogously, the
memory costs increase as soon as the number of clusters
exceeds the number of L1 and L2 cache lines, respectively.
Further, on the Pentium III, ªresource related stallsº (i.e.,
stalls due to functional unit unavailability) play a significant
role. They make up one-fourth of the execution time when
the memory costs are low. When the memory costs rise, the
resource related stalls decrease and finally vanish comple-
tely, reducing the impact of the memory penalty. In other
words, minimizing the memory access costs does not fully
pay back on the Pentium III as the resource related stalls
partly take over their part. The Athlon, however, does not
seem to suffer from such ªresource related stalls.º

Fig. 11 depicts the breakdown for radix-cluster using the
optimal number of passes. The idea of multipass radix-
cluster is to keep the number of clusters generated per pass
lowÐand, thus, the memory costsÐat the expense of
increased CPU costs. Obviously, the CPU costs are too
high to avoid the TLB costs by using two passes with more
than 6 radix-bits. Only with more than 15 radix-bitsÐi.e.,
when the memory costs exceed the CPU costsÐwill two
passes win over one pass. The only exception is the Athlon,
where multipass radix-cluster benefits from the high clock
speed and, hence, two passes outperform one pass already
from 11 radix-bits onward.

The only way to improve this situation is to reduce the
CPU costs. Fig. 12 shows the source code of our radix-cluster
routine. It performs a single-pass clustering on theD bits that
start R bits from the right (multipass clustering in P > 1

passes onB � P �D bits is done bymaking subsequent calls
to this function for pass p � 1 through p � P with parameters
Dp � D andRp � �pÿ 1� �D, startingwith the input relation
and using the output of the previous pass as input for the
next). As the algorithm itself is already very simple,
improvement can only be achieved bymeans of implementa-
tion techniques. We replaced the generic ADT-like imple-
mentationwith a specialized one for each data type. Thus,we
could inline the hash function and replace the memcpy by a
simple assignment, saving two function calls per iteration.

Fig. 13 shows the execution time breakdown for the
optimized multipass radix-cluster. The CPU costs have
reduced significantly by almost a factor 4. Replacing the
two function calls has two effects. First, some CPU cycles
are saved. Second, the CPUs can benefit more from the
internal parallel capabilities using speculative execution as
the code has become simpler and parallelization options
more predictable. On the Pentium III, the resource stalls
have doubled, neutralizing the CPU improvement partly.
We think the simple loop does not consist of enough

720 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 10. Execution time breakdown of radix-cluster using one pass (Cardinality= 8 M). (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

instructions to fill the relatively long pipelines of the

Pentium III efficiently.
With this optimization, multipass radix-cluster is already

feasible with smaller numbers of radix-bits. On the Origin,

two passes win with more than six radix-bits, and three

passes win with more than 13 radix-bits, thus avoiding TLB

thrashing nearly completely. Analogously, the algorithm

creates at most 512 clusters per pass on the AMD PC,

avoiding L1 thrashing, which is expensive due to the rather

high L1 miss penalty on the Athlon. For the Pentium III,

however, the improvement is marginal. The severe impact

of resource stalls with low numbers of radix-bits makes the

memory optimization of multipass radix-cluster almost

ineffective.
In order to estimate the performance of radix-cluster and,

especially, to predict the number of passes to be used for a

certain number of radix-bits, we now provide an accurate

cost model for radix-cluster. The cost model takes the

number of passes, the number of radix-bits, and the

cardinality as input and estimates the number of memory

related events, i.e., L1 cache misses, L2 cache misses, and

TLB misses. The overall execution time is calculated by

scoring the events with their penalties and adding the pure

CPU costs.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 721

Fig. 12. C language radix-cluster with annotated CPU optimizations (right).

Fig. 13. Execution time breakdown of optimized radix-cluster using optimal number of passes (C � 8 M). (a) Origin2000, (b) Sun Ultra, (c) Intel PC,
and (d) AMD PC.

Fig. 11. Execution time breakdown of radix-cluster using an optimal number of passes (C � 8 M). (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and

(d) AMD PC.

Tc�P;B;C� � P �

C � wc �ML1;c
B

P
;C

� �

� lL2

�ML2;c
B

P
;C

� �

� lMem

�MTLB;c
B

P
;C

� �

� lTLB

!

with

MLi;c�Bp; C� �

2 � jRejLi �

C �
Hp

jLijLi
�min 1;

jRejLi
jLijLi

n o

;

if min Hp; jRejLi
� 	

� jLijLi

C �min 3; 1� log
Hp

jLijLi

� �n o

;

else

8

>

>

>

>

>

<

>

>

>

>

>

:

and

MTLB;c�Bp; C� �

2 � jRejPg �

jRejPg �
min Hp;jRejPgf g

jTLBj

� �

;

if min Hp; jRejPg

n o

� jTLBj

C � 1ÿ jTLBj

min Hp;jRejPgf g

� �

;

else

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�if jRejPg > jTLBj

�

C �
Hp

jL2jL2

� �

;

if Hp � jL2jL2

C �min 2; 1� log
Hp

jL2jL2

� �n o

;

else:

8

>

>

>

>

>

<

>

>

>

>

>

:

jRejLi and jCljLi denote the number of cache lines per

relation and cluster, respectively, jRejPg the number of

pages per relation, jLijLi the total number of cache lines,
both for the L1 (i � 1) and L2 (i � 2) caches, and jTLBj
the number of TLB entries. wc denotes the pure CPU costs
per tuple. To calibrate wc, we reduced the cardinality so
that all data fits in L1 and preloaded the input relation.
Thus, we avoided memory access completely. We mea-
sured wc � 100 ns on the Origin2000, wc � 200 ns on the
Sun, wc � 180 ns on the Intel PC (including resource
stalls), and wc � 75 ns on the AMD PC.

The first term of MLi;c equals the minimal number of Li
misses per pass for fetching the input and storing the
output. The second term counts the number of additional Li
misses when the number of distinct Li lines accessed
concurrently (i.e., x � min Hp; jRejLi

� 	

)5 either approaches
the number of available Li lines (x � jLijLi) or even exceeds
this. First, the probability that the requested cluster is not in
the cacheÐdue to address conflictsÐincreases until
Hp � jLijLi. Then, the cache capacity is exhausted and a
cache miss for each tuple to be assigned to a cluster is
certain. But, with further increasing Hp, the number of
cache misses also increases as now also the cache lines of
the input may be replaced before all tuples are processed.
Thus, each input cache line has to be loaded more than
once. The first two terms of MTLB;c are made up
analogously. Additionally, using a similar schema as
MLi;c, the third term modelsÐfor relations that contain
more pages than there are TLB entriesÐthe additional TLB
misses that occur when the number of clusters either
approaches the number of available L2 lines (Hp � jL2jL2)
or even exceeds this.

Fig. 14 compares our model (lines) with the experimental
results (points) on the Origin2000 for different cardinalities.
The model proves to be very accurate for the number of
cache misses (both L1 and L2) and TLB misses. The
predicted elapsed time is also reasonably accurate on all
architectures (cf. Fig. 15). The plots clearly reflect the

722 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 14. Measured (points) and modeled (lines) events of radix-cluster (Origin2000). (a) L1 misses, (b) L2 misses, and (c) TLB misses.

5. Using minfHp; jRejLig instead of simply Hp takes into account that
smaller relations may completely fit in Li, i.e., with Hp > jLijLi > jRejLi,
several (tiny) clusters share one cache line.

increase in cache and TLB misses and their impact on the
execution time whenever the number of clusters per pass
exceeds the respective limits.

The question remaining is how to distribute the number
of radix-bits over the passes. We conducted another number
of experiments using a fixed number of passes, but varying
the number of radix-bits per pass. The results showed that
even distribution of radix-bits (i.e., Bi �

B
P ; i 2 f1; ; Pg)

achieves the best performance.

3.2.3 Isolated Join Performance

We now analyze the impact of the number of radix-bits on

the pure join performance, not including the clustering

costs. With 0 radix-bits, the join algorithm behaves like a

simple nonpartitioned hash-join.

The partitioned hash-join exhibits increased performance

with an increasing number of radix-bits. Fig. 16 shows that

this behavior is mainly caused by the memory costs. While

the CPU costs are almost independent of the number of

radix-bits, the memory costs decreases with an increasing

number of radix-bits. The performance increase flattens

past the point where the entire inner cluster (including its

hash table) consists of fewer pages than there are TLB

entries (64). Then, it also fits the L2 cache comfortably.

Thereafter, performance increases only slightly until the

point that the inner cluster fits the L1 cache. Here,

performance reaches its maximum. The fixed overhead by

allocation of the hash-table structure causes performance to

decrease when the cluster sizes get too small and clusters

get very numerous. Again, the Pentium III shows a slightly

different behavior. TLB costs do not play any role, but

ªpartial stallsº (i.e., stalls due to dependencies among

instructions) are significant with small numbers of radix-

bits. With an increasing numbers of clusters, the partial

stalls decrease, but, then, resource stalls increase, almost

neutralizing the memory optimization.
As with radix-cluster, once the memory access is

optimized, the execution of partitioned hash-join is domi-

nated by CPU costs. Hence, we applied the same optimiza-

tions as above. We inlined the hash-function calls during

hash build and hash probe as well as the compare-function

call during hash probe and replaced two memcpy by simple

assignments, saving five function calls per iteration.

Further, we replaced the modulo division (ª%º) for

calculating the hash index by a bit operation (ª&º). Fig. 17

depicts the original implementation of our hash-join routine

and the optimizations we applied.
Fig. 18 shows the execution time breakdown for the

optimized partitioned hash-join. For the same reasons as

with radix-cluster, the CPU costs are reduced by almost a

factor of 4 on the Origin and the Sun, by a factor of 3 on the

Pentium III, and by a factor of 2 on the Athlon. The

expensive divisions have vanished completely. Addition-

ally, the dependency stalls on the Pentium III have

disappeared, but the functional unit stalls remain almost

unchanged, now taking about half of the execution time. It

is interesting to note the 450 MHz PC outperforms the 250

MHz Origin on nonoptimized code, but, on CPU optimized

code, where both RISC chips execute without any overhead,

the PC actually becomes slower due to this phenomenon of

resource stalls.
As for the radix-cluster, we also provide a cost model for

the partitioned hash-join. The model takes the number of

radix-bits, the cardinality,6 and the (average) join hit rate as

input.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 723

Fig. 15. Measured (points) and modeled (lines) performance of radix-cluster. (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

6. For simplicity of presentation, we assume the cardinalities of both
input relations to be equal.

Th�B;C; r� � C � wh �ML1;h�B;C; r� � lL2

�ML2;h�B;C; r� � lMem

�MTLB;h�B;C; r� � lTLB:

with

MLi;h�B;C; r� �

�2� r� � jRejLi �

C � jjCljj
jjLijj ;

if jjCljj � jjLijj

C � �4� 2r� � 1ÿ jjLijj
jjCljj

� �

;

else

8

>

>

>

>

>

<

>

>

>

>

>

:

and

MTLB;h�B;C; r� �

�2� r� � jRejPg �

C � jjCljj
jjTLBjj ;

if jjCljj � jjTLBjj

C � �4� 2r� � 1ÿ jjTLBjj
jjCljj

� �

;

else:

8

>

>

>

>

>

<

>

>

>

>

>

:

jRejLi, jRejPg, and jTLBj are as above. jjCljj, jjLijj, and
jjTLBjj denote (in bytes) the cluster size, the sizes of both
caches (i 2 f1; 2g), and the memory range covered by jTLBj
pages, respectively.

724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 16. Execution time breakdown of partitioned hash-join (cardinality = 8M). (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

Fig. 17. C language hash-join with annotated CPU optimizations (right).

wh represents the pure CPU costs per tuple for building

the hash-table, doing the hash lookup, and creating the

result. We calibrated wh � 440 ns on the Origin2000, wh �

1100 ns on the Sun, wh � 711 ns on the Pentium III

(including resource stalls), and wh � 367 ns on the Athlon.
The first term of MLi;h equals the minimal number of Li

misses for fetching both operands and storing the result.

The second term counts the number of additional Li misses

when the cluster size either approaches Li size or even

exceeds this. As soon as the clusters get significantly larger

than Li, each memory access yields a cache miss due to

cache thrashing: four memory accesses per tuple for

accessing the outer relation and the bucket array during

hash build and hash probe and two memory accesses per

join hit to access the inner relation and the chain-lists. The

number of TLB misses is modeled analogously.
Figs. 19 and 20 confirm the accuracy of our model (lines)

for the number of L1, L2, and TLB misses on the Origin2000,

and for the elapsed time on all architectures.

3.2.4 Overall Join Performance

After having analyzed the impact of the tuning parameters
on the clustering phase and the joining phase separately, we
now turn our attention to the combined cluster and join
costs. Radix-cluster gets cheaper for fewer radix-bits,
whereas partitioned hash-join gets more expensive. Putting
together the experimental data we obtained on both cluster-
and join-performance, we determined the optimum number
of B for relation cardinality.

It turns out that there are three possible strategies, which
correspond to the diagonals in Fig. 20:

phash L2 partitioned hash-join on B � log2�C � 12=jjL2jj�
clustered bits, so the inner relation plus hash-table fits the
L2cache.Thisstrategywasusedin theworkofShatdaletal.
[12] in their partitioned hash-join experiments.

phashTLBpartitionedhash-joinonB � log2�C � 12=jjTLBjj�
clusteredbits, so the inner relationplushash-table spans at
most jTLBj pages. Our experiments show a significant
improvement in the pure join performance between
phash L2 and phash TLB.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 725

Fig. 18. Execution time breakdown of optimized partitioned hash-join (C � 8 M). (a) Origin2000, (b) Sun Ultra, (3) Intel PC, and (d) AMD PC.

Fig. 19. Measured (points) and modeled (lines) events of partitioned hash-join (Origin2000). (a) L1 misses, (b) L2 misses, and (c) TLB misses.

phash L1 partitioned hash-join on B � log2�C � 12=jjL1jj�
clustered bits, so the inner relation plus hash-table fits
the L1 cache. This algorithm uses more clustered bits
than the previous ones, hence, it really needs the
multipass radix-cluster algorithm (a straightforward
1-pass cluster would cause cache thrashing on this many
clusters).

Fig. 21 shows the overall performance for the original

(thin lines) and the CPU-optimized (thick lines) versions of

our algorithms using 1-pass and multipass clustering. In

most cases, phash TLB is the best strategy, performing

significantly better than phash L2. On the Origin2000 and

the Sun, the differences between phash TLB and phash L1

are negligible. On the PCs, phash L1 performs sightly better

than phash TLB. With very small cardinalities, i.e., when the

relations do not span more memory pages than there are

TLB entries, clustering is not necessary and the nonparti-

tioned hash-join (ªsimple hashº) performs best.
Further, these results show that CPU and memory

optimization support each other and boost their effects.

The gain of CPU optimization for phash TLB is bigger

than that for simple hash and the gain of memory

optimization for the CPU-optimized implementation is

bigger than that for the nonoptimized implementation.

For example, for large relations on the Origin 2000, CPU

optimization improves the execution time of simple hash

726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

Fig. 21. Overall performance: nonoptimized (thin lines) vs. optimized (thick lines) implementation. (a) Origin2000, (b) Sun Ultra, (b) Intel PC, and (d)

AMD PC.

Fig. 20. Measured (points) and modeled (lines) performance of partitioned hash-join. (a) Origin2000, (b) Sun Ultra, (c) Intel PC, and (d) AMD PC.

by approximately a factor of 1.25, whereas it yields a
factor of 3 with phash TLB. Analogously, memory
optimization achieves an improvement of slightly less
than a factor of 2.5 for the original implementation, but
more than a factor of 5 for the optimized implementation.
Combining both optimizations improves the execution
time by almost a factor of 10.

There are two reasons for the boosting effect to occur.
First, modern CPUs try to overlap memory access with other
useful CPU computations by allowing independent instruc-
tions to continue execution while other instructions wait for
memory. In a memory-bound load, much CPU computation
is overlapped with memory access time, hence, optimizing
these computations has no overall performance effect (while
it does when the memory access would be eliminated by
memory optimizations). Second, an algorithm that allows
memory access to be traded for more CPU processing (like
radix-cluster) can actually trade more CPU for memory
when CPU-cost are reduced, reducing the impact of memory
access costs even more.

The Sun Ultra and the AMD PC achieve similar results as
the Origin2000, although the absolute gains are somewhat
smaller. With the Ultra, the CPU is so slow that trading
memory for CPU is less beneficial on this platform; with the
AMD PC, the memory access costs are somewhat lower
than on the Origin2000, thus offering less potential for
improvements.

The overall effect of our optimizations on thePentium III is
just over a factor of 2. One cause of this is the low memory
latency on the Intel PC that limits the gains when memory
access is optimized. The second cause is the appearance of the
ªresource-stallsº which surge in situations where all other
stalls are eliminated (and both RISC architectures are really
steaming). We expect, though, that future PC hardware with
highly parallel IA-64 processors and new Rambus memory
systems (which offer high bandwidth but high latencies) will
show a more RISC-like performance on our algorithms.

4 EVALUATION

In the previous section, we demonstrated that performance
of large equi-joins can be strongly improved by combining
techniques that optimize memory access and CPU resource
usage. As discussed in Section 2.6, hardware trends indicate
that the effects of such optimizations will become even
larger in the future as the memory access bottleneck will
deepen and future CPUs will have even more parallel
resources. In the following, we discuss the more general
implications of these findings to the field of database
architecture.

4.1 Implications for Data Structures

In terms of data structures for query processing, we already
noted from the simple scan experiment in Fig. 4 that full
vertical table fragmentation optimizes column wise memory
access to table data. This is particularly beneficial if the table
is accessed in a sequential scan that reads a minority of all
columns. Such table scans very often occur in both OLAP
and Data Mining workloads. When record-oriented (i.e.,
nonfragmented) physical storage is used, such an access
leads to data of the nonused columns being loaded into the
cache lines, wasting memory bandwidth. In the case of a
vertically fragmented table, the table scan just needs to load

the vertical fragments pertaining to the columns of interest.
Reading those vertical fragments sequentially achieves a
100 percent hit rate on all cache levels, exploiting optimal
bandwidth on any hardware, including parallel memory
access.

There are various ways to incorporate vertical frag-
mentation in database technology. In Monet, which we
designed for OLAP and Data Mining workloads, vertical
fragmentation is the basic building block of all physical
storage as Monet fully fragments all relations into Binary
Association Tables (BATs) (see Fig. 22). Flat binary tables
are a simple set-oriented physical representation that is
not tied to a particular logical data model, yet is
sufficiently powerful to represent, e.g., join indices [35].
Monet has successfully been used to store and query
relational, object-oriented, and network data structures
using this very simple data model and a small kernel of
algebraic operations on it [8]. In Monet, we applied two
additional optimizations that further reduce the per-tuple
memory requirements in its BATs:

. Virtual-OIDs. Generally, when decomposing a rela-

tional table, we get an identical system-generated

column of OIDs in all decomposition BATs, which is

dense and ascending (e.g., 1,000, 1001, . . . , 1007). In

such BATs, Monet computes the OID-values on-the-

fly when they are accessed, using positional lookup

of the BUN, and avoids allocating the 4-byte
OID field. This is called a ªvirtual-OIDº or VOID

column. Apart from reducing memory requirements

by half, this optimization is also beneficial when

joins or semijoins are performed on OID columns.7

When one of the join columns is VOID, Monet uses

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 727

Fig. 22. Vertical decomposition in BATs.

7. In Monet, the projection phase in query processing typically leads to
additional ªtuple-reconstructionº joins on OID columns that are caused by
the fact that tuples are decomposed into multiple BATs.

positional lookup instead of, e.g., hash-lookup,
effectively eliminating all join costs.

. Byte-encodings. Database columns often have a low
domain cardinality. For such columns, Monet uses
fixed-size encodings in 1 or 2-byte integer values. This
simple technique was chosen because it does not
require decoding effortwhen the values areused (e.g.,
a selection on a string ªMAILº can be remapped to a
selection on a byte with value of 3). A more complex
scheme (e.g., using bit-compression)might yield even
more memory savings, but the decoding-step re-
quired whenever values are accessed can quickly
become counterproductive due to extra CPU effort.
Even if decoding would just cost a handful of
cycles per tuple, this would more than double the
amount of CPU effort in simple database opera-
tions like a simple aggregation from Section 2.2,
which takes just two cycles of CPU work per tuple.

Fig. 22 shows that, when applying both techniques, the
storage needed for 1 BUN in the ªshipmodeº column is
reduced from 8 bytes to just one. Reducing the stride from 8
to 1 byte significantly enhances performance in the scan
experiment from Fig. 4, eliminating all memory access costs.

Alternative ways of using vertical table fragmentation
in a database system are to offer the logical abstraction of
relational tables but employ physically fragmentation in
transposed files [36] on the physical level (as in Non-
StopSQL [37]) or to use vertically fragmented data as a
search accelerator structure similar to a B-tree. Sybase IQ
uses this approach as it automatically creates projection
indices on each table column [20]. In the end, however, all
these approaches lead to the same kind and degree of
fragmentation.

4.2 Implications for Implementation Techniques

Implementation techniques strongly determine how CPU
and memory are used in query processing and have been
the subject of study in the field of main-memory database
engineering [23], where query processing costs are domi-
nated by CPU processing. First, we present some rules of
thumb that specifically take into account the modern
hardware optimization aspects, then we explain how they
were implemented in Monet:

. Use the most efficient algorithm. Even the most efficient
implementation will not make a suboptimal algo-
rithm perform well. A more subtle issue is tuning
algorithms with the optimal parameters.

. Minimize memory copying. Buffer copying should be
minimized as it both wastes CPU cycles and also
causes spurious main-memory access. As function
calls copy their parameters on the stack, they are also
a source of memory copying and should be avoided
in the innermost loops that iterate over all tuples. A
typical function call overhead is about 20 CPU
cycles.

. Allow compiler optimizations. Techniques like memory
prefetching and generation of parallel EPIC code in
the IA-64 rely on compilers to detect the indepen-
dence of certain statements. These compiler optimi-
zations work especially well if the hotspot of the
algorithm is one simple loop that is easily analyzable
for the compiler. Again, performing function calls in

these loops forces the compiler to assume the worst
(side effects) and prevent optimizations from taking
place. This especially holds in database code, where
those function calls cannot be analyzed at compile
time, since the database atomic type interface makes
use of C dereferenced calls on a function-pointer
looked up in an ADT table or C++ late-binding
methods.

As an example of correctly tuning algorithms, we discuss
the (nonpartitioned) hash-join implementation of Monet
that uses a simple bucket-chained hash-table. In a past
implementation, it used a default mean bucket chain length
of four [38], where, actually, a length of one is optimal
(perfect hashing). Also, we had used integer division
(modulo) by a prime-number (the number of hash buckets)
to obtain a hash-bucket number, while integer division costs
40-80 cycles on current CPUs. Later, we changed the
number of hash buckets to be a power of 2 (i.e., N � 2x)
and, hence, we could replace the expensive modulo
division by a much cheaper bit-wise AND with N ÿ 1.
Such simple tuning made the algorithm more than four
times faster.

In order to minimize copying, Monet does not do explicit
buffer management, rather it uses virtual memory to leave
this to the OS. This avoids having to copy tuple segments in
and out of a buffer manager whenever the DBMS accesses
data. Monet maps large relations stored in a file into virtual
memory and accesses it directly. Minimizing memory
copying also means that pointer swizzling is avoided at
all times by not having hard pointers and value-packing in
any data representation.

Functions calls are minimized in Monet by applying
logarithmic code expansion [7]. Performance-critical pieces of
code, like the hash-join implementation, are replicated in
specific functions for the most commonly used types. For
example, the hash-join is separated in an integer-join, a
string-join, and an ADT join, etc. (that handles all other
types). The specific integer-join processes the table values
directly as C integers without calling a hash-function for
hashing or calling a comparison function when comparing
two values. The same technique is applied for constructing
the result relation, eliminating function calls for inserting
the matching values in the result relation. To make this
possible, the type-optimized join implementations require
the result to have a fixed format: a join index containing
OIDs (in Monet, the result of joining two BATs is again a
BAT, so it has a fixed binary format and typical invocations
produce a BAT with matching OID pairs). In this way, all
function calls can be removed from an algorithm in the
optimized cases. For the nonoptimized cases, the (slower)
but equivalent implementation is employed that uses ADT
method calls for manipulating values. The Monet source
code is kept small by generating both the optimized and
ADT code instantiations with a macropackage from one
template algorithm. We refer to [8] for a detailed discussion
of this subject.

4.3 Implications for Query Processing Algorithms

Our join experiments demonstrated that performance can
strongly improve when algorithms that have a random
memory access pattern are tuned in order to ensure that the
randomly accessed region does not exceed the cache size
(be it L1, L2, or TLB). In the case of join, we confirmed the

728 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

results of Shatdal et al., who had proposed a partitioned
hash-join such that each partition joined fits the L2 cache
[12] and showed that the beneficial effect of this algorithm is
even stronger on modern hardware. Second, we introduced
a new partitioning algorithm, called radix-cluster, that
performs multiple passes over the data to be partitioned
but earns back this extra CPU work with much less memory
access cost when the number of partitions gets large.

We believe that similar approaches can be used to
optimize algorithms other than equi-join. For instance,
RonstroÈm [39] states that a B-tree with a block-size equal to
the L2 cache line size as a main-memory search accelerator
now outperforms the traditionally best-known main-mem-
ory T-tree search structure [13]. As another example,
memory cost optimizations can be applied to sorting
algorithms (e.g., radix-cluster followed by quicksort on
the partitions) and might well change the trade-offs for
other well-known main-memory algorithms (e.g., radix-sort
has a highly cachable memory access pattern and is likely to
outperform quicksort).

Main-memory cost models are a prerequisite for tuning
the behavior of an algorithm to optimize memory cache
usage as they allow us to make good optimization
decisions. Our work shows that such models can be
obtained and how to do it. First, we show, with our
calibration tool, how all relevant hardware characteristics can
be retrieved from a computer system automatically. This
calibrator does not need any OS support whatsoever and
should, in our opinion, be used in modern DBMS query
optimizers. Second, we present a methodological frame-
work that first characterizes the memory access pattern of
an algorithm to be modeled in a formula that counts certain
hardware events. These computed events are then scored
with the calibrated hardware parameters to obtain a full-
cost model. This methodology represents an important
improvement over previous work on main-memory cost
models [24], [25], where performance is characterized on
the coarse level of a procedure call with ªmagicalº cost
factors obtained by profiling. We were helped in formulat-
ing this methodology through our usage of hardware event
counters present in modern CPUs.

We think our findings are not only relevant to main-
memory databases engineers. Vertical fragmentation and
memory access costs have a strong impact on perfor-
mance of database systems at a macrolevel, including
those that manage disk-resident data. Nyberg et al. [40]
stated that techniques like software-assisted disk-striping
have reduced the I/O bottleneck, i.e., queries that analyze
large relations (like in OLAP or Data Mining) now read
their data faster than it can be processed. Hence, the main
performance bottleneck for such applications is shifting
from I/O to memory access. We therefore think that, as
the I/O bottleneck decreases and the memory access
bottleneck increases, main-memory optimization of both
data structures and algorithmsÐas described in this
paperÐwill become a prerequisite to any DBMS for
exploiting the power of custom hardware.

In Monet, we delegate I/O buffering to the OS by
mapping large data files into virtual memory, hence
treating management of disk-resident data as memory with
a large granularity (a memory page is like a large cache
line). This is in line with the consideration that disk-resident
data is the bottom level of a memory hierarchy that goes up
from the virtual memory to the main memory through the

cache memories up to the CPU registers (Fig. 3). Algorithms

that are tuned to run well on one level of the memory also

exhibit good performance on the lower levels.

5 CONCLUSION

We have shown what steps are taken in order to optimize

the performance of large main-memory joins on modern

hardware. To achieve better usage of scarce memory

bandwidth, we recommend using vertically fragmented

data structures. We refined partitioned hash-join with a

new partitioning algorithm, called radix-cluster, which

prevents performance becoming dominated by memory

latency (avoiding the memory access bottleneck). Exhaus-

tive equi-join experiments were conducted on modern

SGI, Sun, Intel, and AMD hardware. We formulated

detailed analytical cost models that explain why this

algorithm makes optimal use of hierarchical memory

systems found in modern computer hardware and very

accurately predicted performance on all three platforms.

Further, we showed that, once memory access is

optimized, CPU resource usage becomes crucial for the

performance. We demonstrated, how CPU resource usage

can be improved by using appropriate implementation

techniques. The overall speedup obtained by our techni-

ques can be almost an order of magnitude. Finally, we

discussed the consequences of our results in a broader

context of database architecture and made recommenda-

tions for future systems.

REFERENCES

[1] T.C. Mowry, ªTolerating Latency Through Software-Controlled
Data Prefetching,º PhD thesis, Computer Science Dept., Stanford
Univ., 1994.

[2] A.G. Ailamaki, D.J. DeWitt, M.D. Hill, and D.A. Wood, ªDBMSs
on a Modern Processor: Where Does Time Go?º Proc. Int'l Conf.
Very Large Data Bases (VLDB), pp. 266-277, Sept. 1999.

[3] L.A. Barroso, K. Gharachorloo, and E.D. Bugnion, ªMemory
System Characterization of Commercial Workloads,º Proc. Int'l
Symp. Computer Architecture, June 1998.

[4] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. Baker,
ªPerformance Characterization of a Quad Pentium Pro SMP Using
OLTP Workloads,º Proc. Int'l Symp. Computer Architecture, pp. 15-
26, June 1998.

[5] P. Trancoso, J.L. Larriba-Pey, Z. Zhang, and J. Torellas, ªThe
Memory Performance of DSS Commercial Workloads in Shared-
Memory Multiprocessors,º Proc. Int'l Symp. High Performance
Computer Architecture, Jan. 1997.

[6] Silicon Graphics, Inc., Performance Tuning and Optimization for
Origin2000 and Onyx2. Jan. 1997.

[7] M. Kersten, ªUsing Logarithmic Code-Expansion to Speedup
Index Access and Maintenance,º Proc. Int'l Conf. Foundation on
Data Organization and Algorithms, pp. 228-232, Oct. 1989.

[8] P. Boncz and M. Kersten, ªMIL Primitives For Querying a
Fragmented World,º The VLDB J., vol. 8, no. 2, pp. 101-119, Oct.
1999.

[9] P.M.G. Apers, C.A. van den Berg, J. Flokstra, P.W.P. J. Grefen, M.
Kersten, and A.N. Wilschut, ªPRISMA/DB: A Parallel Main
Memory Relational DBMS,º IEEE Trans. Knowledge and Data Eng.,
vol. 4, no. 6, pp. 541-554, Dec. 1992.

[10] P. Boncz, W. Quak, and M. Kersten, ªMonet and Its Geographical
Extensions: A Novel Approach to High-Performance GIS Proces-
sing,º Proc. Int'l Conf. Extending Database Technology, pp. 147-166,
June 1996.

[11] P. Boncz, A.N. Wilschut, and M. Kersten, ªFlattening an Object
Algebra to Provide Performance,º Proc. IEEE Int'l Conf. Data Eng.,
pp. 568-577, Feb. 1998.

MANEGOLD ET AL.: OPTIMIZING MAIN-MEMORY JOIN ON MODERN HARDWARE 729

[12] A. Shatdal, C. Kant, and J. Naughton, ªCache Conscious
Algorithms for Relational Query Processing,º Proc. Int'l Conf.
Very Large Data Bases (VLDB), pp. 510-512, Sept. 1994.

[13] T.J. Lehman and M.J. Carey, ªA Study of Index Structures for
Main Memory Database Management Systems,º Proc. Int'l Conf.
Very Large Data Bases (VLDB), pp. 294-303, Aug. 1986.

[14] T.J. Lehman and M.J. Carey, ªQuery Processing in Main Memory
Database Systems,º Proc. ACM SIGMOD Int'l Conf. Management of
Data, pp. 239-250, May 1986.

[15] M.H. Eich, ªMain Memory Database Research Directions,º Proc.
Sixth Int'l Workshop Database Machines, pp. 251-268, June 1989.

[16] A. Wilschut, ªParallel Query Execution in a Main-Memory
Database System,º PhD thesis, Universiteit Twente, 1991.

[17] A. Analyti and S. Pramanik, ªFast Search in Main Memory
Databases,º Proc. ACM SIGMOD Int'l Conf. Management of Data,
pp. 215-224, June 1992.

[18] H. Garcia-Molina and K. Salem, ªMain Memory Database
Systems: An Overview,º IEEE Trans. Knowledge and Data Eng.,
vol. 4, no. 6, pp. 509-516, Dec. 1992.

[19] Times Ten Team, ªIn-Memory Data Management for Consumer
Transactions the Times-Ten Approach,º ACM SIGMOD Record,
vol. 28, no. 2, pp. 528-529, June 1999.

[20] Sybase Corp., ªAdaptive Server IQ,ºWhitepaper, July 1996.
[21] Compaq Corp., ªInfocharger,º Whitepaper, Jan. 1998.
[22] M. Kersten, A.P.J.M. Siebes, M. Holsheimer, and F. Kwakkel,

ªResearch and Business Challenges in Data Mining Technology,º
Proc. Datenbanken in BuÈro, Technik und Wissenschaft, pp. 1-16, Mar.
1997.

[23] D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M. Stonebraker,
and D.A. Wood, ªImplementation Techniques for Main Memory
Database Systems,º Proc. ACM SIGMOD Int'l Conf. Management of
Data, pp. 1-8, June 1984.

[24] S. Listgarten and M.-A. Neimat, ªModelling Costs for a MM-
DBMS,º Proc. Int'l Workshop Real-Time Databases, Issues, and
Applications, pp. 72-78, Mar. 1996.

[25] K.-Y. Whang and R. Krishnamurthy, ªQuery Optimization in a
Memory-Resident Domain Relational Calculus Database System,º
ACM Trans. Database Systems, vol. 15, no. 1, pp. 67-95, Mar. 1990.

[26] R. Berrendorf and H. Ziegler, ªPCLÐThe Performance Counter
Library,º Techical Report FZJ-ZAM-IB-9816, ZAM, Forschung-
zentrum JuÈ lich, Germany, 1998.

[27] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, ªPerformance
Analysis Using the MIPS R10000 Performance Counters,º Proc.
Supercomputing '96 Conf., Nov. 1996.

[28] K. Yeager, ªThe MIPS R10000 Superscalar Microprocessor,º IEEE
Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

[29] G.P. Copeland and S. Khoshafian, ªA Decomposition Storage
Model,º Proc. ACM SIGMOD Int'l Conf. Management of Data,
pp. 268-279, May 1985.

[30] Rambus Technologies, Inc., Direct Rambus Technology Disclosure,
1996, www.rambus.com/docs/drtechov.pdf.

[31] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.
Kozyrakis, R. Thomas, and K. Yelick, ªA Case for Intelligent
RAM,º IEEE Micro, vol. 17, no. 2, pp. 34-44, Mar. 1997.

[32] S. McKee, R. Klenke, K. Wright, W. Wulf, M. Salinas, J. Aylor, and
A. Batson, ªSmarter Memory: Improving Bandwidth for Streamed
References,º Computer, vol. 31, no. 7, pp. 54-63, July 1998.

[33] Sematech, National Roadmap For Semiconductor Technology: Technol-
ogy Needs, 1997, http://www.itrs.net/ntrs/publntrs.nsf.

[34] D. August, D. Connors, S. Mahlke, J. Sias, K. Crozier, B. Cheng, P.
Eaton, Q. Olaniran, and W. Hwu, ªIntegrated Predicated and
Speculative Execution in the IMPACT EPIC Architecture,º Proc.
Int'l Symp. Computer Architecture, pp. 227-237, June 1998.

[35] P. Valduriez, ªJoin Indices,º ACM Trans. Database Systems, vol. 12,
no. 2, pp. 218-246, June 1987.

[36] D.S. Batory, ªOn Searching Transposed Files,º ACM Trans.
Database Systems, vol. 4, no. 4, pp. 531-544, 1979.

[37] J. Clear, D. Dunn, B. Harvey, M. Heytens, P. Lohman, A. Mehta,
M. Melton, H. Richardson, L. Rohrberg, A. Savasere, R.
Wehrmeister, and M. Xu, ªNonStopSQL/MX,º Proc. Int'l Conf.
Knowledge Discovery and Data Mining, Aug. 1999.

[38] P. Boncz, S. Manegold, and M. Kersten, ªDatabase Architecture
Optimized for the New Bottleneck: Memory Access,º Proc. Int'l
Conf. Very Large Data Bases (VLDB), pp. 54-65, Sept. 1999.

[39] M. RonstroÈm, ªDesign and Modeling of a Parallel Data Server for
Telecom Applications,º PhD thesis, LinkoÈping Univ., 1998.

[40] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet,
ªAlphaSort: A RISC Machine Sort,º Proc. ACM SIGMOD Int'l Conf.
Management of Data, pp. 233-242, May 1994.

Stefan Manegold received the MSc degree in
computer science from the Technical University
Clausthal, Germany, in 1994. From 1995 until
1997, he was working as a research assistant
with the Database Research Group at the
Institute for Informatics of Humboldt University,
Berlin, Germany. Since 1997, he has been
working as a database researcher with the
Database Research Group at the Centrum voor
Wiskunde en Informatica (CWI), Amsterdam,

The Netherlands. He is about to finish his PhD track, investigating
performance issues and cost modeling in main-memory database
systems. His research interests include distributed and parallel database
systems, main-memory database systems, query processing, and cost
models.

Peter Boncz received the MSc degree in
computer science from Vrije Universiteit in
1992 and the PhD degree in computer science
from the University of Amsterdam in 2002.
During his PhD track at the Database Research
Group of the CWI with Professor Kersten, he
investigated database architecture for query-
intensive applications like OLAP and Data
Mining. This research led to the development
of the Monet database kernel. During the past

seven years, he has published a series of articles on various aspects of
the Monet system in prominent database journals and conferences. The
Monet system is used at various sites in academia for research into
multimedia, GIS, XML, and medical database systems, as well as
commercially by Data Distilleries, a CWI-spinoff company that creates
data mining products. From 1998 until 2001, Dr. Boncz was working at
Data Distilleries as chief architect. His research interests include:
database architecture, parallel database systems, query languages,
query optimization, extensibility in database systems, database kernel
design and implementation, and computer architecture. He currently
acts as a program committee member of the VLDB Conference. He is a
member of the IEEE.

Martin Kersten received the PhD degree in
computer science from Vrije Universiteit in 1985
on research in database security, whereafter he
moved to CWI to establish the Database
Research Group. In his professional career, he
has developed three complete database ker-
nels. From 1979 until 1985, he developed a
small relational kernel, called Troll, which was
sold as part of a CASE tool, 1985-1991.
Between 1986 and 1991, he was codesigner of

the PRISMA database machine, a RDBMS for a 100-node multi-
processor based on the assumption that the hotset is memory resident.
In 1992, he initiated the development of his third DBMS, called Monet.
This system is an extensible main-memory-oriented DBMS which is
currently used in a commercial data mining system and the pivot in
several national projects aimed at advanced database applications,
such as image processing and geographical information systems.
Currently, he is heading a department involving 50 researchers in areas
covering data mining and data warehousing, multimedia information
systems, information engineering, and quantum computing. Since 1994,
he has been a professor at the University of Amsterdam. In 1995, he
cofounded Data Distilleries. He has published more than 130 scientific
papers and is a member of the editorial board of the VLDB Journal and
Parallel and Distributed Systems. He acts as a reviewer for ESPRIT
projects and is a trustee of the VLDB Endowment board. He is a
member of the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 4, JULY/AUGUST 2002

