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ABSTRACT 

For the majority of computation-intensive application systems, 
off-chip memory bandwidth is a critical bottleneck for both 
performance and power consumption. The efficient utilization of 
limited on-chip memory resources plays a vital role in reducing 
the off-chip memory accesses. This paper presents an efficient 
approach for optimizing the on-chip memory allocation by loop 
transformations in the imperfectly nested loops. We analytically 
model the on-chip buffer size and off-chip bandwidth after affine 
loop transformation, loop fusion/distribution and code motion. 
Branch-and-bound and knapsack reuse techniques are proposed to 
reduce the computation complexity in finding optimal solutions. 
Experimental results show that our scheme can save 40% of on-
chip memory size with the same bandwidth consumption 
compared to the previous approaches.  

Categories  and  Subject Descriptors: B.5.2 [Hardware]: 
Design Aids – optimization 

General Terms: Algorithms, Design, Experimentation 

Keywords:  High-Level Synthesis, Loop Transformation, 
Memory Hierarchy Optimization, Data Reuse 

1. INTRODUCTION 
Off-chip memory bandwidth is a dominant bottleneck for 
performance and power consumption in digital hardware systems. 
On-chip memories have sufficient bandwidth but limited sizes due 
to implementation cost [1]. Allocating a portion of large arrays in 
on-chip buffers has proven to be an efficient technique to reduce 
the off-chip memory accesses in digital system designs. High-
level synthesis tools enable these optimizations to be performed at 
the C-code level by traditional compiler techniques. A great deal 
of attention has been paid over the past two decades to optimizing 
the off-chip memory bandwidth by improving data reuse and 
locality [2-25]. The research can be classified into two categories. 

The work in the first category focuses on improving data 
locality and date reuse by code transformation, especially loop 
transformation [2-11]. By changing the accessing order of array 
references in the loop nests, the co-located references become 

temporally “closer”, which means a smaller data reuse buffer. 
Specific loop transformations, such as loop interchange, loop 
skewing, loop merging and loop tiling, were studied one by one in 
[2, 3], including the feasibility and profitability of the 
transformations, and the sequential combination of them to form 
complex transformations. But in practice, it is much harder to 
analytically model the sequential combinations of these loop 
transformations. Polyhedral-based loop transformation is widely 
used to unify the combination of a sequence of specific loop 
transformations into one single affine transformation matrix [4-9]. 
The pioneering work [4, 5] used unimodular transformation 
matrices for a unified representation of loop interchange, loop 
reversal and loop skewing transformations. To support more 
general transformations and objectives, affine transformation 
frameworks were established based on parametric integer linear 
programming [6, 7]. Data dependence and transformation legality 
constraints are expressed with a polyhedral model in a linear 
form. To improve data locality, iteration distances between 
dependent array instances are formulated in the objective 
function. Beside affine transformation, loop fusion/distribution, 
code motion and tiling for imperfectly nests loops have also been 
studied in recent work [8-11]. However, these models [2-11] use 
simple platform-independent objective functions, which cannot 
accurately model the impact of memory hierarchy allocation in 
hardware synthesis. For example, memory accesses to on-chip 
and off-chip memories will have significantly different cost 
models. 

The work in the second category optimizes the allocation of the 
reuse buffers in the memory hierarchy for a fixed loop order. The 
data transfer and storage exploration (DTSE) methodology [1, 12] 
established an integrated design flow for the memory hierarchy 
optimization for customized memory systems. The optimization 
flow first analyzes the data reuse graph which presents all the 
possible data reuse buffer candidates of the array references at 
each loop level in the source program [13, 14]. Then, heuristics 
based on reuse buffer size and bandwidth reduction are applied to 
decide the allocation of the reuse candidates and their memory 
hierarchy [15-18]. In contrast to the heuristic approaches, an 
optimal allocation was proposed by formulating the problem into 
a mixed linear programming optimization problem [19]. For all 
these hierarchy allocation approaches, an independent loop 
transformation preprocessing is assumed to optimize data locality. 
The final result of memory hierarchy optimization may be greatly 
affected by this preprocessing.  

Recently, researchers noticed the importance of considering 
platform-dependent cost modeling in optimizing the loop 
transformation [20]. Loop transformation and memory hierarchy 
allocation are loosely coupled by introducing fast hierarchical 
memory size estimators [21, 22] to evaluate the promising 
transformations. But the search process lacks analytic model for 
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guidance which makes it inefficient to search a large 
transformation space. Other researchers use analytic optimization 
formulations to optimize the loop tiling parameters and memory 
hierarchy allocation simultaneously [23, 24]. Their formulations 
are solved using non-linear optimization, such as sequential 
quadratic programming [23] and geometric programming [24]. 
However, these schemes [23, 24] still need affine transformations 
as a preprocessing procedure to improve data locality and enable 
tiling. Different from previous approaches, the recent study in 
[25] combines affine transformation and hierarchy allocation in 
an analytic and systematic way. A model-guided searching-based 
approach is used to find the optimal affine loop transformation 
and hierarchy allocation. But the work is limited to perfectly 
nested loops, so it is not applicable to real applications.  

In this paper we propose an efficient approach for optimizing 
the on-chip memory allocation with loop transformations for 
imperfectly nested loops. The contributions of this work are: 

 We propose an analytical modeling of hierarchy allocation 
problem with loop transformations for imperfectly nested 
loops. Buffer size is calculated after loop transformations such 
as affine loop transformations, loop fusing/distribution and 
code motion.  

 We develop an efficient and optimal solution to the combined 
problem, which uses the branch-and-bound approach to prune 
the sub-optimal transformation space and the knapsack reuse 
technique to reduce the complexity of each transformation.  

The remainder of this paper is organized as follows. Section 2 
demonstrates a motivation example to show the benefits of 
combined optimization. Section 3 describes some preliminaries 
and the formulation of our combined optimization problem. 
Section 4 proposes an efficient solution to the formulated 
optimization problem. Section 5 gives the experimental results, 
and is followed by conclusions in Section 6. 

2. MOTIVATION EXAMPLE 
The work in [25] made a good case for combining loop 
transformation and memory hierarchy, but it was limited to 
perfectly nested loops. Here we use an example with two loop 
nests in Fig. 1(a) to show the necessity for supporting imperfectly 
nested loop and loop fusion/distribution. Data reuse between array 
references can be exploited by allocating on-chip buffers. For 
example, Fig. 1(b) shows the data reuse from reference A[i,j] to 
A[i-2,j]. The on-chip reuse buffer size is 2N, because the data 
fetched by reference A[i,j] will be used by reference A[i-2,j] after 
two loop i iterations, and the 2N data elements accessed during 
this period (two loop i iterations) need to be stored in the reuse 
buffer for continuous data reuse. After the data in the buffer is 
reused, it can be replaced to store new reusable data. The modulo 
operation in the reuse buffer addressing indicates that the buffer is 
accessed and updated in a cyclic way. By allocating the reuse 
buffer, off-chip memory accesses by reference A[i-2,j] are saved*.  

Loop transformation can be used to reduce the buffer size by 
improving the data locality of array accesses. T0 in Fig. 1(c) is the 
result of the traditional loop optimizers, which minimizes the size 
of the largest reuse buffer. The largest reuse buffer in the original 
code is from S1:B[i,j] to S2:B[i,j-3], whose size is N2 because S1 
and S2 are in different loop nests. In T0 the largest buffer size 
(from S1:A[i,j] to S2:A[i-3,j]) is reduced to 3N because reuse 
buffer can be cyclically reused every three loop i iterations.  

However, traditional loop transformation do not consider the 
impact of memory hierarchy allocation (the selection of the reuse 
* In Fig.1(b), bandwidth of A[i-1,j] can also be saved using the same reuse buffer, but we do not 
show it in the figure for the clarification of data reuse from A[i,j] to A[i-2,j].  

 
Figure 1. (a) Original code. (b) Buffer allocation. (c) Transformation T0 

with a fused loop. (d) Transforamtion T1 with separately optimized loops. 

TABLE I.  BUFFER SIZES FOR LOOP TRANSFORMATIONS UNDER 
BANDWIDTH REQUIREMENTS FOR THE EXAMPLE IN FIGURE 1 

Given AC Original T0 T1 

2N2 N2 3N N2 

4N2 3N N 6 

buffers to be allocated on-chip).  T0 is the optimal transformation 
when all the data reuse buffers are allocated. But in practical 
cases, on-chip memory may not be sufficient for all these buffers. 
Trying to optimize the locality of off-chip accesses does not have 
much benefit because off-chip memories always have high 
density, but will generate over-constraints for the locality 
optimization of on-chip accesses. The results of traditional loop 
transformation may not be optimal when a certain amount of 
bandwidth needs to be traded for on-chip memory requirement.  
In our example, T1 shown in Fig1. (d) has smaller on-chip buffer 
size compared to T0 if we allow two reusable references to stay in 
off-chip memory. 

Table I shows the comparison of total on-chip buffer size (BS) 
for two loop transformations (T0 and T1 in Fig. 1) under different 
off-chip memory bandwidth requirements which are expressed as 
off-chip access counts (AC). When the given AC is 2N2, 
references S1:A[i,j] and S2:C[i,j] have to access off-chip 
memory, so all the reuse buffers are allocated on-chip. T0 has 
minimal buffer size in this case. When the given AC increases to 
4N2, we can select two reusable references to be allocated off-
chip. For T1, after two largest buffers (S1:B[i,j] and S2:B[i,j]) are 
removed, all the data reuse occurs in the inner loops. But for T0, 
at least one reuse buffer is carried on the outer loop. So T1 has 
smaller total buffer size than T0 in this case. The detailed 
explanation of Table I is given in [26]. 

We can see from Table I that loop transformation is 
important to improve the final result of memory hierarchy 
allocation, and inversely the trade-off between buffer size and 
bandwidth in hierarchy allocation impacts the optimality of the 
loop transformation. This paper investigates the interactions 
between loop transformation and hierarchy allocation in 
imperfectly nested loops, and optimizes these two steps 
simultaneously to achieve the optimal result.    

3. PROBLEM FORMULATION 
The challenge of combined loop transformation and memory 
allocation is the modeling of links between the design space and 
the overall physical design metrics, such as off-chip memory 



bandwidth and on-chip memory utilization. Our problem is 
specified as follow: Given the high-level program with affine loop 
bounds and memory accesses, find the optimal loop 
transformations and two-level memory hierarchy allocation to 
minimize the on-chip buffer size under a specified off-chip 
bandwidth constraint. The dual problem, minimizing bandwidth 
with given buffer size, can be optimized by solving a sequence of 
the primal problems using binary searching. 

3.1 Loop Transformation 
We use the polyhedral model [6] to represent the program in the 
linear form. A program consists of a set of statements 

{ | 0.. 1}nP S n N   . Each statement describes a set of array 

references and the computation between these references. A 
statement in the loops has multiple instances which are indexed 
by the iteration vector. The iteration vector specifies the iterations 
of the loops surrounding the statement from the outermost level to 
the innermost level: 0 1 1( , ,..., )

S

S T
Li i i i 


, where SL is the number of 

loops surrounding S . For example, in Fig. 1(d) iteration vectors 

for S1 and S2 are 1 ( , )S Ti j i


and 2 ( , )S Ti i j


respectively. The 
access instance in a statement can be indexed by the iteration 
vector of the statement as well.  

For a program with affine array accesses, standard data flow 
analysis [2] can derive the dependence between array references. 
The set of all the read-after-write dependence is defined as wrD , 
each element in wrD is a pair of iteration vectors of the dependent 
access instances. For example, in Fig. 1(a) references S1:B[i,j] 
and S2:B[i,j-1] have true data dependence, so all the dependent 
iteration vector pairs 1 2 1 2{( , ) | (0,1) }S S S S Ti i i i 

   
are in wrD . We 

can similarly define data reuse set rrD by considering the read-
after-read relations. Other kinds of dependence are not considered 
because they can be eliminated by renaming techniques [2]. 

The 2d+1-dimensional representation


for affine schedules (d 

being the maximal loop depth in the program) is widely used to 
model loop fusion/distribution, code motion and affine loop 
transformations [27, 28, 11]. The even components of schedule 
are constants representing positions of the statement at different 
loop levels, and the odd components are the linear combinations 
of loop iterators which models the affine transformations. By 
labeling the position constants as 0 1( , ,..., )S S S S T

dc c c c


, and the 

affine transformation matrix as 0 1 1( , ,..., )S S S S T
d   Θ

  
, we have 

2
S S
l lc  and 2 1

S S S
l l i   


.  

Fig. 2 shows the schedule representation of the loop 
transformations in Fig. 1 (c) and Fig. 1(d). For transformation T0, 
S1 and S2 has two levels of outer common loops (loop i and j), 
the first two components of the position vectors are the same 
( 1 2 1 2

0 0 1 1 0S S S Sc c c c    ); within loop j, the relative order of the 

two statements are determined ( 1 2
2 20, 1S Sc c  ). In T1, S1 and S2 

are in the distributed loops at top level, so 1 2
0 00, 1S Sc c  . For the 

odd levels, T0 has the same loop iteration scanning order with the 
original code, which is iterator i in the outer level and then 
iterator j in the inner level for both statements. So matrices Θ  for 
both statements are identity matrices. But in T1, the loops 
surrounding S1 are permutated, so 1SΘ is a permutation matrix and 

1 1
1 3,S Sj i   . 

This schedule representation can model all the combinations of 
affine loop transformations, fusion/distribution, and code motion.  

// T0 transformation
for i=0 to N

for j=0 to N {
S1: B[i,j]=f0(A[i, j], A[i-1, j], A[i-2, j]

A[i-3, j]);
S2: C[i,j]=f1(B[i, j],B[i, j-1],B[i, j-2], 

B[i,j-3]);
}

// T1 transformation
for j=0 to N

for i=0 to N
S1: B[i,j]=f0(A[i, j], A[i-1, j], A[i-2, j]

A[i-3, j]);
for i=0 to N

for j=0 to N
S2: C[i,j]=f1(B[i, j],B[i, j-1],B[i, j-2], 

B[i,j-3]);
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Figure 2. Loop transformations and interleaved schedule vectors. 

And legality condition of a loop transformation can be expressed 

as ( , ) , ( ) ( )x y wr y y x x
lexi i D i i  

    
 , which preserves the order 

of the dependent statement instances after transformations. The 
proof of the expressiveness and legality condition of loop 
transformations are provided in [26]. 

3.2 Reuse Graph and Hierarchy Allocation 
Data reuse graph (DRG) is widely used to represent data reuse 
candidates [14, 17, 18] as Fig. 3(a). Nodes of the graph are array 
references, and edges are the data reuse between the nodes. Nodes 
are weighted by the access count (AC) of the reference, and edges 
are weighted by the reuse buffer size (BS).  

 
Figure 3. (a) Full data reuse graph. (b) Simplified data reuse graph. 

We extend the standard DRG in the following two aspects. 
First, while traditional DRG only considers read nodes, we also 
model write nodes in DRG. Thus, it is possible to save the 
bandwidth of the first read node (in access order), because it can 
reuse data from the write node. And bandwidth of the write node 
can even be saved if all the read nodes of the same array are 
reused and the data is not the primary output of the design. 
Second, we simplify the DRG by pruning sub-optimal buffer 
allocations. In most affine programs, the reuse distance [16] for 
each array reference is a constant, or can be converted to a 
constant by array partitioning. By ignoring the boundary data 
elements, we can assume that all the data of each node are reused 
as a whole. For each node, same AC saving can be obtained by 
data reuse from different nodes. So we only consider the reuse 
from the nearest neighboring node as Fig. 3(b), which has the 
minimal buffer size. The hierarchy allocation is modeled as 
binary variables {by} where by indicates whether node y is reused 
from its nearest neighbor. To model the case where write accesses 
are saved, we introduce a special edge as dashed line in Fig. 3(b) 
weighted by the total AC and BS of the array. If the special 
edge wb of array  is allocated, no other edges ( )xb of the same 



array  need to be allocated because those buffers are already 

allocated by the special edge. Using the simplified DRG and 
binary variables, we can model and evaluate each hierarchy 
allocation candidate:  

,     

, 0

y y total y y
y y

w x

BS b BS AC AC b AC

x R b b


  

   

 
 

where constant totalAC is the total AC without data reuse, and R is 

the set of read references to array  . 

3.3 Reuse Buffer Size Calculation 
As shown in the motivation example, cyclic reuse buffers are used 
to reduce the buffer size. But seldom previous work has addressed 
the analytic calculation of cyclic reuse buffer size in imperfectly 
nested loops. Furthermore, various loop transformations make it 
harder to calculate the accurate buffer size.  

We analytically calculate the size of transformed reuse buffer 
for node y in three steps. First, determine the access order of the 
nodes, and find the nearest neighbor reference x which has the 
same array with y and accesses before node y. Second, calculate 
the reuse distance between nodes x and y using standard data flow 
analysis [2], and get the loop level carrying the reuse (lr) and the 
distance carried on the loop level (srdxy). Third, calculate the 
number of array elements accessed by y in one iteration of level lr 
(notated as ( )rQ l ), and then the buffer size is ( )xy rsrd Q l .  

For example we calculate the buffer size for reference     
S1:A[i-2,j] in Fig 1(c). The nearest neighbor node is S1:A[i-1,j]. 
By data flow analysis, we can know the reuse between the two 
nodes is carried at the outer loop i, and the distance at this level is 
1. Within each iteration of i, there are N data accessed by both 
references, so the total buffer size is 1 N N  . The analytic 
calculation of ( )rQ l is performed by building linear constraints 

for the accessed data elements and counting the integer points in 
the polytope by the Barvinok library [29]. The detailed derivation 
is given in [26]. 

3.4 Formulated Optimization Problem  
From the discussion above, we can summarize our formulation as 
Problem 1 stated below. Eqn. 1 and Eqn. 2 sum up the total BS 
and AC where wr rrD D D  . Eqn. 3 and Eqn. 4 model legal loop 
transformations. Eqn. 5 defines the constraints of allocation 
variables for the special edges in Section 3.2. Finally, Eqn. 6 

calculates the buffer sizes where analytic form of ( , )
r

x y
lQ  
 

is 

given in [26]. 

PROBLEM 1. Given an affine program P with array accesses, 
and a bound of off-chip access count, find the optimal loop 
transformation ( , )c Θ


for each statement and memory hierarchy 

allocation by for each reuse edge to  

( , )x y
y y

y D

Minimize BS b BS  


 
 

total y y required
y D

Subject to AC AC b AC AC


  
2 2 1, , 0.. 1

( , ) ,

, 0

( , ) ( , ) ( , )
r

y y y y y
l l l l

x y wr y x
lex

w x

x y x y x y
y l y

c i l L

i i D

x R b b

BS Q srd




  

 

     

    

 

   

 


  


     

 

4. EFFICIENT SOLUTION 
The buffer size calculation is non-convex, which means a 
enumeration-based approach as used in [25] is needed. But the  

 
Figure 4. Enumeration tree of loop transformation. 

design space pruning in [25] is no longer applicable because of 
the much larger design space for imperfectly nested loops.  

4.1 Enumeration with Branch-and-Bound  
Instead of enumerating all legal transformations in a brute-

force way, the features of buffer allocation are used to prune sub-
optimal partial transformations to greatly reduce the computation 
complexity of finding optimal solutions for large designs.  

Fig. 4 shows the enumeration tree of the motivation example in 
Fig. 1. For each even level l, the statements are partitioned into 
ordered groups where lc indicates the group index of each 

statement. For the loop levels, we limit the matrix coefficients 
S
l


as -1, 0 or 1. These matrices can model the most useful affine 

transformations such as permutation, reversal and skewing as in 
[25].  Illegal branches are pruned according to Eqn. 4.  

Branch-and-bound approach was adopted in [27] to find good 
loop transformations for parallelism, but they did not consider 
memory hierarchy allocation. We propose an efficient branch-
and-bound scheme for our problem considering interaction 
between partial schedule and minimal buffer size. For each loop 

transformation candidates ( , )c Θ


, we can calculate x


for each 

statement to eliminate Eqn. 3, Eqn. 4 and Eqn. 6. The remaining 
problem is optimized the hierarchy allocation to minimize total 
BS subjects to AC constraints. Because a reuse candidate carried 
on an outer loop will generate a much larger buffer than that 
carried on an inner loop. We travel the enumeration tree branch 
by branch from outer levels to inner levels. For a branch B, we 
calculate the lower and upper bounds of the minimal total buffer 
size for the branch according to the partial transformation of the 
outer loop levels. The determined buffer set d

BD contains all the 

edges carried on the outer levels that are determined by the 
branch, and non-determined buffer set n

BD contains the remaining 

edges. The lower bound (LBB) of the buffer size at branch B is 
calculated by optimizing the allocation of buffers in d

BD and 

assuming the bandwidth of n
BD are saved without BS cost. The 

upper bound (UBB) of buffer size at branch B is calculated by 
adding the maximal possible sizes of all the buffers in n

BD into 

LBB. We can prove that the BS range of a child branch is always 
covered by that of its parent branch: 

Parent Child Child ParentLB LB UB UB   . If two branches have non-

overlapped BS ranges, we can prune the branch with larger BS 
and all its sub-branches without losing optimality.  

4.2 Knapsack Reuse Technique  
In addition to pruning the searching branches, we also reduce the 
complexity of hierarchy allocation for each branch. In general, the 
hierarchy allocation problem can be solved by integer linear 



programming with an exponential computation complexity. But 
we observe that hierarchy allocation problem consisting of Eqn. 1, 
Eqn. 2 and Eqn. 5 can be converted into an extended knapsack 
problem. Each reuse buffer is an item to be put into the knapsack. 
BSy and ACy are the value and weight of item y respectively, and 

1y yt b  indicates whether item y is taken into the knapsack.  

If we first ignore the constraint of Eqn. 5, the standard 
knapsack problem can be solved by dynamic programming. 
Let [ , ]BS i AC be the maximum value that can be attained with 

weight no more than AC using up to first i items, and we have 
[ ] ( [ ] [ ] )i iBS i, AC = max BS i - 1,AC , BS i - 1,AC - AC + BS . 

The complexity of the dynamic programming is O(mn), where m 
is number of reuse buffers, and n is total AC which can be greatly 
reduced by normalizing the AC of reuse buffers to the loop 
iteration count.  

The extended knapsack problem cannot be directly solved in 
polynomial time because the solution of the sub-problem is 
dependent on the decisions of its super-problem. Fortunately, the 
original dynamic programming does not specify the order of the 
items, and we can make the sub-problem independent by 
reordering the items. [26] shows the details of the reordering 
approach and proves that the complexity remains O(mn) for the 
extended knapsack problem. 

Another feature of the hierarchy allocation problem is that the 
determined reuse buffer set of the child branch will always 
contain that of the parent branch, which means the intermediate 
knapsack results of the parent branch can be reused by its child 
branches. By reusing the knapsack results, the average 
computation complexity can be reduced to O(Δmn), where Δm is 
number of newly determined reuse buffers in the current branch, 
and n is the total AC. The extended knapsack problem can also 
reuse intermediate data from parent branches [26]. The reordering 
process will invalidate the intermediate results because the first i 
items are changed after reordering. But this kind of computation 
complexity overhead is small because only one reordering process 
is needed for each array, and only a part of the intermediate 
results are invalidated.  

5. EXPERIMENTAL RESULTS 
Our memory hierarchy optimization algorithm is performed as a 
source-to-source preprocessing step to a high-level synthesis tool. 
Our design flow takes loop kernels in high-level specifications 
like C/C++ as input, and analyzes the polyhedral intermediate 
representation (IR) with dependence and reuse distances using the 
ROSE compiler infrastructure [30]. The core optimizer finds the 
optimal loop transformation and on-chip buffer allocation. In the 
code generator, loop transformation is performed by ClooG [31], 
and the on-chip buffer is generated by the ROSE infrastructure. 
The optimized loop kernels are synthesized into VHDLs and then 

circuit netlists by the high-level synthesis tool AutoPilot [32, 33] 
and the FPGA implementation tool Xilinx ISE [34]. Our test 
designs include a set of real-life data-intensive loop kernels: 
FDTD and JACOBI are stencil codes chosen from polybench 3.0 
[35]; DENOISE smooths a 3D image by averaging 13 
neighboring pixels [36]; REG is one of the major parts of a 3D 
medical image registration algorithm [36], and SEG is a two-
phase image segmentation algorithm [36]. We include the whole 
programs of the benchmarks with multiple loop nests, instead of 
only one main loop nest in [25]. The proposed combined loop 
transformation (LT) and memory hierarchy allocation (HA) 
scheme for imperfectly nested loops (LTHA-INL) is compared 
with two reference points in our experiments. The first reference 
point is the combined LT and HA scheme for perfectly nested 
loops (LTHA-PNL) in [25], in which the loop nests are optimized 
independently. And the second point is the separate LT and HA 
scheme (LT+HA) that was done in [11, 19]. 

Experimental results of the three approaches are reported in 
Table II. The second column (AC) shows the normalized access 
count per loop iteration for each design, which is calculated from 
the given bandwidth and performance requirement. We set the 
clock frequency as 10ns, and all design implementations satisfy 
the timing constraint. The FPGA implementation results of the 
three approaches in the Xilinx Virtex-6 xc6vlx365t platform are 
compared, such as the utilization of logic slice and on-chip Block 
RAM (BRAM), the execution latency in cycles, and the power 
consumption in mW. We also list the runtime (in seconds) of our 
proposed algorithm in the last column. We normalize the four 
metrics to the values of the LTHA-PNL scheme, and calculate the 
geometric mean of the normalized data in the last row of Table II.  

From the results, it is clear that loop fusion/distribution and 
code motion are important to the results of hierarchy allocation. 
Compared to the only LTHA-PNL scheme, the separated LT+HA 
scheme can save the on-chip memory size by 60%. And our 
LTHA-INL scheme gains an additional 40% memory reduction 
and 19% power saving compared to the separated LT+HA 
scheme. In some cases, for example JACOBI_3D, LT+HA get 
worse results than LTHA-PNL because the original distributed 
loops are good enough for relative sufficient bandwidth. And in 
other cases such as FDTD_2D, LTHA-PNL has a much large 
buffer size because of the data reuse between different distributed 
loop nests. To isolate the impact of performance, we keep the 
initiation interval (II) unchanged for the loop pipelining in high-
level synthesis. The II of a fused loop is set as the sum of the II of 
the original loops. The logic slice saving mainly comes from the 
better resource and data sharing after loop fusion. By our efficient 
pruning techniques, over 100x speed-up is achieved, and the 
overall execution time is within several seconds for the real-life 
benchmarks with four levels of loops and tens of array references. 

TABLE II.  EXPERIMENT RESULTS 

Design AC 
 LTHA-PNL [25]  Separated LT+HA [11]+[19]  Proposed LTHA-INL 
 Slice 

(#) 
BRAM 

(#) 
Latency 
(cycle) 

Power 
(mW) 

 Slice 
(#) 

BRAM
(#) 

Latency 
(cycle) 

Power
(mW) 

 Slice 
(#) 

BRAM 
(#) 

Latency 
(cycle) 

Power
(mW) 

Runtime
(s) 

JACOBI_3D 3  487 203 4.86E+8 133  504 347 4.86E+8 163  378 203 4.86E+8 112 5.52 
JACOBI_4D 3  - 6054* 1.22E+11 -  548 757 1.22E+11 244  520 427 1.22E+11 179 0.28 
FDTD_2D 4  398 422 6.08E+6 148  281 18 6.08E+6 57  271 10 6.08E+6 56 0.31 
FDTD_3D 6  - 1218* 3.64E+8 -  390 406 3.64E+8 150  378 204 3.64E+8 112 1.34 
DENOISE 4  1074 609 2.62E+8 325  836 407 2.62E+8 240  836 306 2.62E+8 221 0.32 

REG 12  1569 610 1.22E+9 645  1209 636 1.22E+9 582  1170 306 1.22E+9 393 0.14 
SEG 10  - 882* 8.54E+8 -  932 714 8.54E+8 315  932 586 8.54E+8 291 2.50 

Geomean   1.00 1.00 1.00 1.00  0.44 0.40 1.00 0.74  0.41 0.24 1.00 0.60  

*The maximum number of BRAMs in the experimental FPGA is 832, so there are no final implementation results for these cases. 
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Figure 5.    Design space exploration. 

Fig. 5 investigates the trade-off between bandwidth and buffer 
size. When the bandwidth is low, LTHA-PNL is not good because 
loop fusion is needed to optimize large buffers. When the 
bandwidth is high, separate LT+HA performs poorly because it 
has over-constraints for small buffers. However, Our LTHA-INL 
can consistently attain optimal solutions in all cases. 

6. CONCLUSION 
This paper presents the first in-depth study that combines loop 
transformation and hierarchy allocation for imperfectly nested 
loops. It gains 40% reduction of the on-chip buffer usage under 
the same off-chip bandwidth constraint with no performance 
overhead. The proposed space pruning techniques are shown to be 
highly effective to speed up the execution of our algorithm. Our 
future work will integrate loop tiling transformation and tiling 
size selection into our memory hierarchy optimization.  
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