
Optimizing Memory Hierarchy Allocation with Loop
Transformations for High-Level Synthesis

Jason Cong, Peng Zhang, Yi Zou
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

{cong, pengzh, zouyi}@cs.ucla.edu

ABSTRACT

For the majority of computation-intensive application systems,
off-chip memory bandwidth is a critical bottleneck for both
performance and power consumption. The efficient utilization of
limited on-chip memory resources plays a vital role in reducing
the off-chip memory accesses. This paper presents an efficient
approach for optimizing the on-chip memory allocation by loop
transformations in the imperfectly nested loops. We analytically
model the on-chip buffer size and off-chip bandwidth after affine
loop transformation, loop fusion/distribution and code motion.
Branch-and-bound and knapsack reuse techniques are proposed to
reduce the computation complexity in finding optimal solutions.
Experimental results show that our scheme can save 40% of on-
chip memory size with the same bandwidth consumption
compared to the previous approaches.

Categories and Subject Descriptors: B.5.2 [Hardware]:
Design Aids – optimization

General Terms: Algorithms, Design, Experimentation

Keywords: High-Level Synthesis, Loop Transformation,
Memory Hierarchy Optimization, Data Reuse

1. INTRODUCTION
Off-chip memory bandwidth is a dominant bottleneck for
performance and power consumption in digital hardware systems.
On-chip memories have sufficient bandwidth but limited sizes due
to implementation cost [1]. Allocating a portion of large arrays in
on-chip buffers has proven to be an efficient technique to reduce
the off-chip memory accesses in digital system designs. High-
level synthesis tools enable these optimizations to be performed at
the C-code level by traditional compiler techniques. A great deal
of attention has been paid over the past two decades to optimizing
the off-chip memory bandwidth by improving data reuse and
locality [2-25]. The research can be classified into two categories.

The work in the first category focuses on improving data
locality and date reuse by code transformation, especially loop
transformation [2-11]. By changing the accessing order of array
references in the loop nests, the co-located references become

temporally “closer”, which means a smaller data reuse buffer.
Specific loop transformations, such as loop interchange, loop
skewing, loop merging and loop tiling, were studied one by one in
[2, 3], including the feasibility and profitability of the
transformations, and the sequential combination of them to form
complex transformations. But in practice, it is much harder to
analytically model the sequential combinations of these loop
transformations. Polyhedral-based loop transformation is widely
used to unify the combination of a sequence of specific loop
transformations into one single affine transformation matrix [4-9].
The pioneering work [4, 5] used unimodular transformation
matrices for a unified representation of loop interchange, loop
reversal and loop skewing transformations. To support more
general transformations and objectives, affine transformation
frameworks were established based on parametric integer linear
programming [6, 7]. Data dependence and transformation legality
constraints are expressed with a polyhedral model in a linear
form. To improve data locality, iteration distances between
dependent array instances are formulated in the objective
function. Beside affine transformation, loop fusion/distribution,
code motion and tiling for imperfectly nests loops have also been
studied in recent work [8-11]. However, these models [2-11] use
simple platform-independent objective functions, which cannot
accurately model the impact of memory hierarchy allocation in
hardware synthesis. For example, memory accesses to on-chip
and off-chip memories will have significantly different cost
models.

The work in the second category optimizes the allocation of the
reuse buffers in the memory hierarchy for a fixed loop order. The
data transfer and storage exploration (DTSE) methodology [1, 12]
established an integrated design flow for the memory hierarchy
optimization for customized memory systems. The optimization
flow first analyzes the data reuse graph which presents all the
possible data reuse buffer candidates of the array references at
each loop level in the source program [13, 14]. Then, heuristics
based on reuse buffer size and bandwidth reduction are applied to
decide the allocation of the reuse candidates and their memory
hierarchy [15-18]. In contrast to the heuristic approaches, an
optimal allocation was proposed by formulating the problem into
a mixed linear programming optimization problem [19]. For all
these hierarchy allocation approaches, an independent loop
transformation preprocessing is assumed to optimize data locality.
The final result of memory hierarchy optimization may be greatly
affected by this preprocessing.

Recently, researchers noticed the importance of considering
platform-dependent cost modeling in optimizing the loop
transformation [20]. Loop transformation and memory hierarchy
allocation are loosely coupled by introducing fast hierarchical
memory size estimators [21, 22] to evaluate the promising
transformations. But the search process lacks analytic model for

This work was supported in part by the Semiconductor Research Corporation
under Contract 2009-TJ-1879, the National Science Foundation under the
Expeditions in Computing Program CCF-0926127, and Gigascale Systems
Research Center (GSRC).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06...$10.00

guidance which makes it inefficient to search a large
transformation space. Other researchers use analytic optimization
formulations to optimize the loop tiling parameters and memory
hierarchy allocation simultaneously [23, 24]. Their formulations
are solved using non-linear optimization, such as sequential
quadratic programming [23] and geometric programming [24].
However, these schemes [23, 24] still need affine transformations
as a preprocessing procedure to improve data locality and enable
tiling. Different from previous approaches, the recent study in
[25] combines affine transformation and hierarchy allocation in
an analytic and systematic way. A model-guided searching-based
approach is used to find the optimal affine loop transformation
and hierarchy allocation. But the work is limited to perfectly
nested loops, so it is not applicable to real applications.

In this paper we propose an efficient approach for optimizing
the on-chip memory allocation with loop transformations for
imperfectly nested loops. The contributions of this work are:

 We propose an analytical modeling of hierarchy allocation
problem with loop transformations for imperfectly nested
loops. Buffer size is calculated after loop transformations such
as affine loop transformations, loop fusing/distribution and
code motion.

 We develop an efficient and optimal solution to the combined
problem, which uses the branch-and-bound approach to prune
the sub-optimal transformation space and the knapsack reuse
technique to reduce the complexity of each transformation.

The remainder of this paper is organized as follows. Section 2
demonstrates a motivation example to show the benefits of
combined optimization. Section 3 describes some preliminaries
and the formulation of our combined optimization problem.
Section 4 proposes an efficient solution to the formulated
optimization problem. Section 5 gives the experimental results,
and is followed by conclusions in Section 6.

2. MOTIVATION EXAMPLE
The work in [25] made a good case for combining loop
transformation and memory hierarchy, but it was limited to
perfectly nested loops. Here we use an example with two loop
nests in Fig. 1(a) to show the necessity for supporting imperfectly
nested loop and loop fusion/distribution. Data reuse between array
references can be exploited by allocating on-chip buffers. For
example, Fig. 1(b) shows the data reuse from reference A[i,j] to
A[i-2,j]. The on-chip reuse buffer size is 2N, because the data
fetched by reference A[i,j] will be used by reference A[i-2,j] after
two loop i iterations, and the 2N data elements accessed during
this period (two loop i iterations) need to be stored in the reuse
buffer for continuous data reuse. After the data in the buffer is
reused, it can be replaced to store new reusable data. The modulo
operation in the reuse buffer addressing indicates that the buffer is
accessed and updated in a cyclic way. By allocating the reuse
buffer, off-chip memory accesses by reference A[i-2,j] are saved*.

Loop transformation can be used to reduce the buffer size by
improving the data locality of array accesses. T0 in Fig. 1(c) is the
result of the traditional loop optimizers, which minimizes the size
of the largest reuse buffer. The largest reuse buffer in the original
code is from S1:B[i,j] to S2:B[i,j-3], whose size is N2 because S1
and S2 are in different loop nests. In T0 the largest buffer size
(from S1:A[i,j] to S2:A[i-3,j]) is reduced to 3N because reuse
buffer can be cyclically reused every three loop i iterations.

However, traditional loop transformation do not consider the
impact of memory hierarchy allocation (the selection of the reuse
* In Fig.1(b), bandwidth of A[i-1,j] can also be saved using the same reuse buffer, but we do not
show it in the figure for the clarification of data reuse from A[i,j] to A[i-2,j].

Figure 1. (a) Original code. (b) Buffer allocation. (c) Transformation T0

with a fused loop. (d) Transforamtion T1 with separately optimized loops.

TABLE I. BUFFER SIZES FOR LOOP TRANSFORMATIONS UNDER
BANDWIDTH REQUIREMENTS FOR THE EXAMPLE IN FIGURE 1

Given AC Original T0 T1

2N2 N2 3N N2

4N2 3N N 6

buffers to be allocated on-chip). T0 is the optimal transformation
when all the data reuse buffers are allocated. But in practical
cases, on-chip memory may not be sufficient for all these buffers.
Trying to optimize the locality of off-chip accesses does not have
much benefit because off-chip memories always have high
density, but will generate over-constraints for the locality
optimization of on-chip accesses. The results of traditional loop
transformation may not be optimal when a certain amount of
bandwidth needs to be traded for on-chip memory requirement.
In our example, T1 shown in Fig1. (d) has smaller on-chip buffer
size compared to T0 if we allow two reusable references to stay in
off-chip memory.

Table I shows the comparison of total on-chip buffer size (BS)
for two loop transformations (T0 and T1 in Fig. 1) under different
off-chip memory bandwidth requirements which are expressed as
off-chip access counts (AC). When the given AC is 2N2,
references S1:A[i,j] and S2:C[i,j] have to access off-chip
memory, so all the reuse buffers are allocated on-chip. T0 has
minimal buffer size in this case. When the given AC increases to
4N2, we can select two reusable references to be allocated off-
chip. For T1, after two largest buffers (S1:B[i,j] and S2:B[i,j]) are
removed, all the data reuse occurs in the inner loops. But for T0,
at least one reuse buffer is carried on the outer loop. So T1 has
smaller total buffer size than T0 in this case. The detailed
explanation of Table I is given in [26].

We can see from Table I that loop transformation is
important to improve the final result of memory hierarchy
allocation, and inversely the trade-off between buffer size and
bandwidth in hierarchy allocation impacts the optimality of the
loop transformation. This paper investigates the interactions
between loop transformation and hierarchy allocation in
imperfectly nested loops, and optimizes these two steps
simultaneously to achieve the optimal result.

3. PROBLEM FORMULATION
The challenge of combined loop transformation and memory
allocation is the modeling of links between the design space and
the overall physical design metrics, such as off-chip memory

bandwidth and on-chip memory utilization. Our problem is
specified as follow: Given the high-level program with affine loop
bounds and memory accesses, find the optimal loop
transformations and two-level memory hierarchy allocation to
minimize the on-chip buffer size under a specified off-chip
bandwidth constraint. The dual problem, minimizing bandwidth
with given buffer size, can be optimized by solving a sequence of
the primal problems using binary searching.

3.1 Loop Transformation
We use the polyhedral model [6] to represent the program in the
linear form. A program consists of a set of statements

{ | 0.. 1}nP S n N . Each statement describes a set of array

references and the computation between these references. A
statement in the loops has multiple instances which are indexed
by the iteration vector. The iteration vector specifies the iterations
of the loops surrounding the statement from the outermost level to
the innermost level: 0 1 1(, ,...,)

S

S T
Li i i i

, where SL is the number of

loops surrounding S . For example, in Fig. 1(d) iteration vectors

for S1 and S2 are 1 (,)S Ti j i

and 2 (,)S Ti i j

respectively. The
access instance in a statement can be indexed by the iteration
vector of the statement as well.

For a program with affine array accesses, standard data flow
analysis [2] can derive the dependence between array references.
The set of all the read-after-write dependence is defined as wrD ,
each element in wrD is a pair of iteration vectors of the dependent
access instances. For example, in Fig. 1(a) references S1:B[i,j]
and S2:B[i,j-1] have true data dependence, so all the dependent
iteration vector pairs 1 2 1 2{(,) | (0,1) }S S S S Ti i i i

are in wrD . We

can similarly define data reuse set rrD by considering the read-
after-read relations. Other kinds of dependence are not considered
because they can be eliminated by renaming techniques [2].

The 2d+1-dimensional representation

for affine schedules (d

being the maximal loop depth in the program) is widely used to
model loop fusion/distribution, code motion and affine loop
transformations [27, 28, 11]. The even components of schedule
are constants representing positions of the statement at different
loop levels, and the odd components are the linear combinations
of loop iterators which models the affine transformations. By
labeling the position constants as 0 1(, ,...,)S S S S T

dc c c c

, and the

affine transformation matrix as 0 1 1(, ,...,)S S S S T
d Θ

, we have

2
S S
l lc and 2 1

S S S
l l i

.

Fig. 2 shows the schedule representation of the loop
transformations in Fig. 1 (c) and Fig. 1(d). For transformation T0,
S1 and S2 has two levels of outer common loops (loop i and j),
the first two components of the position vectors are the same
(1 2 1 2

0 0 1 1 0S S S Sc c c c); within loop j, the relative order of the

two statements are determined (1 2
2 20, 1S Sc c). In T1, S1 and S2

are in the distributed loops at top level, so 1 2
0 00, 1S Sc c . For the

odd levels, T0 has the same loop iteration scanning order with the
original code, which is iterator i in the outer level and then
iterator j in the inner level for both statements. So matrices Θ for
both statements are identity matrices. But in T1, the loops
surrounding S1 are permutated, so 1SΘ is a permutation matrix and

1 1
1 3,S Sj i .

This schedule representation can model all the combinations of
affine loop transformations, fusion/distribution, and code motion.

// T0 transformation
for i=0 to N

for j=0 to N {
S1: B[i,j]=f0(A[i, j], A[i-1, j], A[i-2, j]

A[i-3, j]);
S2: C[i,j]=f1(B[i, j],B[i, j-1],B[i, j-2],

B[i,j-3]);
}

// T1 transformation
for j=0 to N

for i=0 to N
S1: B[i,j]=f0(A[i, j], A[i-1, j], A[i-2, j]

A[i-3, j]);
for i=0 to N

for j=0 to N
S2: C[i,j]=f1(B[i, j],B[i, j-1],B[i, j-2],

B[i,j-3]);

S1: 1
0 =0,Sc

S2: 2
0 =0,Sc

1
0 =(1,0),S

2
0 =(1,0),S

1
1 =0,Sc

2
1 =0,Sc

1
1 =(0,1),S

2
1 =(0,1),S

1
2 =0Sc

2
2 =1Sc

loop fusion

1=(0, ,0, ,0)S Ti j

S1: 1
0 =0,Sc

S2: 2
0 =1,Sc

1
0 =(0,1),S

2
0 =(1,0),S

1`
1 =0,Sc

2
1 =0,Sc

1
1 =(1,0),S

2
1 =(0,1),S

1
2 =0Sc

2
2 =0Sc

loop distribution

1=(0, ,0, ,0)S Tj i

2 =(1, ,0, ,0)S Ti j

loop permutatoin

2 =(0, ,0, ,1)S Ti j

1=(0,0,0)S Tc

2 =(0,0,1)S Tc

1 1 0
=

0 1
S

Θ

2 1 0
=

0 1
S

Θ

1=(0,0,0)S Tc

2 =(1,0,0)S Tc

1 0 1
=

1 0
S

Θ

2 1 0
=

0 1
S

Θ

Figure 2. Loop transformations and interleaved schedule vectors.

And legality condition of a loop transformation can be expressed

as (,) , () ()x y wr y y x x
lexi i D i i

 , which preserves the order

of the dependent statement instances after transformations. The
proof of the expressiveness and legality condition of loop
transformations are provided in [26].

3.2 Reuse Graph and Hierarchy Allocation
Data reuse graph (DRG) is widely used to represent data reuse
candidates [14, 17, 18] as Fig. 3(a). Nodes of the graph are array
references, and edges are the data reuse between the nodes. Nodes
are weighted by the access count (AC) of the reference, and edges
are weighted by the reuse buffer size (BS).

Figure 3. (a) Full data reuse graph. (b) Simplified data reuse graph.

We extend the standard DRG in the following two aspects.
First, while traditional DRG only considers read nodes, we also
model write nodes in DRG. Thus, it is possible to save the
bandwidth of the first read node (in access order), because it can
reuse data from the write node. And bandwidth of the write node
can even be saved if all the read nodes of the same array are
reused and the data is not the primary output of the design.
Second, we simplify the DRG by pruning sub-optimal buffer
allocations. In most affine programs, the reuse distance [16] for
each array reference is a constant, or can be converted to a
constant by array partitioning. By ignoring the boundary data
elements, we can assume that all the data of each node are reused
as a whole. For each node, same AC saving can be obtained by
data reuse from different nodes. So we only consider the reuse
from the nearest neighboring node as Fig. 3(b), which has the
minimal buffer size. The hierarchy allocation is modeled as
binary variables {by} where by indicates whether node y is reused
from its nearest neighbor. To model the case where write accesses
are saved, we introduce a special edge as dashed line in Fig. 3(b)
weighted by the total AC and BS of the array. If the special
edge wb of array is allocated, no other edges ()xb of the same

array need to be allocated because those buffers are already

allocated by the special edge. Using the simplified DRG and
binary variables, we can model and evaluate each hierarchy
allocation candidate:

,

, 0

y y total y y
y y

w x

BS b BS AC AC b AC

x R b b

where constant totalAC is the total AC without data reuse, and R is

the set of read references to array .

3.3 Reuse Buffer Size Calculation
As shown in the motivation example, cyclic reuse buffers are used
to reduce the buffer size. But seldom previous work has addressed
the analytic calculation of cyclic reuse buffer size in imperfectly
nested loops. Furthermore, various loop transformations make it
harder to calculate the accurate buffer size.

We analytically calculate the size of transformed reuse buffer
for node y in three steps. First, determine the access order of the
nodes, and find the nearest neighbor reference x which has the
same array with y and accesses before node y. Second, calculate
the reuse distance between nodes x and y using standard data flow
analysis [2], and get the loop level carrying the reuse (lr) and the
distance carried on the loop level (srdxy). Third, calculate the
number of array elements accessed by y in one iteration of level lr
(notated as ()rQ l), and then the buffer size is ()xy rsrd Q l .

For example we calculate the buffer size for reference
S1:A[i-2,j] in Fig 1(c). The nearest neighbor node is S1:A[i-1,j].
By data flow analysis, we can know the reuse between the two
nodes is carried at the outer loop i, and the distance at this level is
1. Within each iteration of i, there are N data accessed by both
references, so the total buffer size is 1 N N . The analytic
calculation of ()rQ l is performed by building linear constraints

for the accessed data elements and counting the integer points in
the polytope by the Barvinok library [29]. The detailed derivation
is given in [26].

3.4 Formulated Optimization Problem
From the discussion above, we can summarize our formulation as
Problem 1 stated below. Eqn. 1 and Eqn. 2 sum up the total BS
and AC where wr rrD D D . Eqn. 3 and Eqn. 4 model legal loop
transformations. Eqn. 5 defines the constraints of allocation
variables for the special edges in Section 3.2. Finally, Eqn. 6

calculates the buffer sizes where analytic form of (,)
r

x y
lQ

is

given in [26].

PROBLEM 1. Given an affine program P with array accesses,
and a bound of off-chip access count, find the optimal loop
transformation (,)c Θ

for each statement and memory hierarchy

allocation by for each reuse edge to

(,)x y
y y

y D

Minimize BS b BS

total y y required
y D

Subject to AC AC b AC AC

2 2 1, , 0.. 1

(,) ,

, 0

(,) (,) (,)
r

y y y y y
l l l l

x y wr y x
lex

w x

x y x y x y
y l y

c i l L

i i D

x R b b

BS Q srd

4. EFFICIENT SOLUTION
The buffer size calculation is non-convex, which means a
enumeration-based approach as used in [25] is needed. But the

Figure 4. Enumeration tree of loop transformation.

design space pruning in [25] is no longer applicable because of
the much larger design space for imperfectly nested loops.

4.1 Enumeration with Branch-and-Bound
Instead of enumerating all legal transformations in a brute-

force way, the features of buffer allocation are used to prune sub-
optimal partial transformations to greatly reduce the computation
complexity of finding optimal solutions for large designs.

Fig. 4 shows the enumeration tree of the motivation example in
Fig. 1. For each even level l, the statements are partitioned into
ordered groups where lc indicates the group index of each

statement. For the loop levels, we limit the matrix coefficients
S
l

as -1, 0 or 1. These matrices can model the most useful affine

transformations such as permutation, reversal and skewing as in
[25]. Illegal branches are pruned according to Eqn. 4.

Branch-and-bound approach was adopted in [27] to find good
loop transformations for parallelism, but they did not consider
memory hierarchy allocation. We propose an efficient branch-
and-bound scheme for our problem considering interaction
between partial schedule and minimal buffer size. For each loop

transformation candidates (,)c Θ

, we can calculate x

for each

statement to eliminate Eqn. 3, Eqn. 4 and Eqn. 6. The remaining
problem is optimized the hierarchy allocation to minimize total
BS subjects to AC constraints. Because a reuse candidate carried
on an outer loop will generate a much larger buffer than that
carried on an inner loop. We travel the enumeration tree branch
by branch from outer levels to inner levels. For a branch B, we
calculate the lower and upper bounds of the minimal total buffer
size for the branch according to the partial transformation of the
outer loop levels. The determined buffer set d

BD contains all the

edges carried on the outer levels that are determined by the
branch, and non-determined buffer set n

BD contains the remaining

edges. The lower bound (LBB) of the buffer size at branch B is
calculated by optimizing the allocation of buffers in d

BD and

assuming the bandwidth of n
BD are saved without BS cost. The

upper bound (UBB) of buffer size at branch B is calculated by
adding the maximal possible sizes of all the buffers in n

BD into

LBB. We can prove that the BS range of a child branch is always
covered by that of its parent branch:

Parent Child Child ParentLB LB UB UB . If two branches have non-

overlapped BS ranges, we can prune the branch with larger BS
and all its sub-branches without losing optimality.

4.2 Knapsack Reuse Technique
In addition to pruning the searching branches, we also reduce the
complexity of hierarchy allocation for each branch. In general, the
hierarchy allocation problem can be solved by integer linear

programming with an exponential computation complexity. But
we observe that hierarchy allocation problem consisting of Eqn. 1,
Eqn. 2 and Eqn. 5 can be converted into an extended knapsack
problem. Each reuse buffer is an item to be put into the knapsack.
BSy and ACy are the value and weight of item y respectively, and

1y yt b indicates whether item y is taken into the knapsack.

If we first ignore the constraint of Eqn. 5, the standard
knapsack problem can be solved by dynamic programming.
Let [,]BS i AC be the maximum value that can be attained with

weight no more than AC using up to first i items, and we have
[] ([] [])i iBS i, AC = max BS i - 1,AC , BS i - 1,AC - AC + BS .

The complexity of the dynamic programming is O(mn), where m
is number of reuse buffers, and n is total AC which can be greatly
reduced by normalizing the AC of reuse buffers to the loop
iteration count.

The extended knapsack problem cannot be directly solved in
polynomial time because the solution of the sub-problem is
dependent on the decisions of its super-problem. Fortunately, the
original dynamic programming does not specify the order of the
items, and we can make the sub-problem independent by
reordering the items. [26] shows the details of the reordering
approach and proves that the complexity remains O(mn) for the
extended knapsack problem.

Another feature of the hierarchy allocation problem is that the
determined reuse buffer set of the child branch will always
contain that of the parent branch, which means the intermediate
knapsack results of the parent branch can be reused by its child
branches. By reusing the knapsack results, the average
computation complexity can be reduced to O(Δmn), where Δm is
number of newly determined reuse buffers in the current branch,
and n is the total AC. The extended knapsack problem can also
reuse intermediate data from parent branches [26]. The reordering
process will invalidate the intermediate results because the first i
items are changed after reordering. But this kind of computation
complexity overhead is small because only one reordering process
is needed for each array, and only a part of the intermediate
results are invalidated.

5. EXPERIMENTAL RESULTS
Our memory hierarchy optimization algorithm is performed as a
source-to-source preprocessing step to a high-level synthesis tool.
Our design flow takes loop kernels in high-level specifications
like C/C++ as input, and analyzes the polyhedral intermediate
representation (IR) with dependence and reuse distances using the
ROSE compiler infrastructure [30]. The core optimizer finds the
optimal loop transformation and on-chip buffer allocation. In the
code generator, loop transformation is performed by ClooG [31],
and the on-chip buffer is generated by the ROSE infrastructure.
The optimized loop kernels are synthesized into VHDLs and then

circuit netlists by the high-level synthesis tool AutoPilot [32, 33]
and the FPGA implementation tool Xilinx ISE [34]. Our test
designs include a set of real-life data-intensive loop kernels:
FDTD and JACOBI are stencil codes chosen from polybench 3.0
[35]; DENOISE smooths a 3D image by averaging 13
neighboring pixels [36]; REG is one of the major parts of a 3D
medical image registration algorithm [36], and SEG is a two-
phase image segmentation algorithm [36]. We include the whole
programs of the benchmarks with multiple loop nests, instead of
only one main loop nest in [25]. The proposed combined loop
transformation (LT) and memory hierarchy allocation (HA)
scheme for imperfectly nested loops (LTHA-INL) is compared
with two reference points in our experiments. The first reference
point is the combined LT and HA scheme for perfectly nested
loops (LTHA-PNL) in [25], in which the loop nests are optimized
independently. And the second point is the separate LT and HA
scheme (LT+HA) that was done in [11, 19].

Experimental results of the three approaches are reported in
Table II. The second column (AC) shows the normalized access
count per loop iteration for each design, which is calculated from
the given bandwidth and performance requirement. We set the
clock frequency as 10ns, and all design implementations satisfy
the timing constraint. The FPGA implementation results of the
three approaches in the Xilinx Virtex-6 xc6vlx365t platform are
compared, such as the utilization of logic slice and on-chip Block
RAM (BRAM), the execution latency in cycles, and the power
consumption in mW. We also list the runtime (in seconds) of our
proposed algorithm in the last column. We normalize the four
metrics to the values of the LTHA-PNL scheme, and calculate the
geometric mean of the normalized data in the last row of Table II.

From the results, it is clear that loop fusion/distribution and
code motion are important to the results of hierarchy allocation.
Compared to the only LTHA-PNL scheme, the separated LT+HA
scheme can save the on-chip memory size by 60%. And our
LTHA-INL scheme gains an additional 40% memory reduction
and 19% power saving compared to the separated LT+HA
scheme. In some cases, for example JACOBI_3D, LT+HA get
worse results than LTHA-PNL because the original distributed
loops are good enough for relative sufficient bandwidth. And in
other cases such as FDTD_2D, LTHA-PNL has a much large
buffer size because of the data reuse between different distributed
loop nests. To isolate the impact of performance, we keep the
initiation interval (II) unchanged for the loop pipelining in high-
level synthesis. The II of a fused loop is set as the sum of the II of
the original loops. The logic slice saving mainly comes from the
better resource and data sharing after loop fusion. By our efficient
pruning techniques, over 100x speed-up is achieved, and the
overall execution time is within several seconds for the real-life
benchmarks with four levels of loops and tens of array references.

TABLE II. EXPERIMENT RESULTS

Design AC
 LTHA-PNL [25] Separated LT+HA [11]+[19] Proposed LTHA-INL
 Slice

(#)
BRAM

(#)
Latency
(cycle)

Power
(mW)

 Slice
(#)

BRAM
(#)

Latency
(cycle)

Power
(mW)

 Slice
(#)

BRAM
(#)

Latency
(cycle)

Power
(mW)

Runtime
(s)

JACOBI_3D 3 487 203 4.86E+8 133 504 347 4.86E+8 163 378 203 4.86E+8 112 5.52
JACOBI_4D 3 - 6054* 1.22E+11 - 548 757 1.22E+11 244 520 427 1.22E+11 179 0.28
FDTD_2D 4 398 422 6.08E+6 148 281 18 6.08E+6 57 271 10 6.08E+6 56 0.31
FDTD_3D 6 - 1218* 3.64E+8 - 390 406 3.64E+8 150 378 204 3.64E+8 112 1.34
DENOISE 4 1074 609 2.62E+8 325 836 407 2.62E+8 240 836 306 2.62E+8 221 0.32

REG 12 1569 610 1.22E+9 645 1209 636 1.22E+9 582 1170 306 1.22E+9 393 0.14
SEG 10 - 882* 8.54E+8 - 932 714 8.54E+8 315 932 586 8.54E+8 291 2.50

Geomean 1.00 1.00 1.00 1.00 0.44 0.40 1.00 0.74 0.41 0.24 1.00 0.60

*The maximum number of BRAMs in the experimental FPGA is 832, so there are no final implementation results for these cases.

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

0 10 20 30 40 50 60

O
n
‐C
h
ip
 B
u
ff
e
r
Si
ze
 (
B
yt
e
)

Off‐Chip Bandwidth (GB/s)

Jacobi_4D

LTHA‐PNL[24]

LT+HA [11]+[19]

proposed LTHA‐INL

Figure 5. Design space exploration.

Fig. 5 investigates the trade-off between bandwidth and buffer
size. When the bandwidth is low, LTHA-PNL is not good because
loop fusion is needed to optimize large buffers. When the
bandwidth is high, separate LT+HA performs poorly because it
has over-constraints for small buffers. However, Our LTHA-INL
can consistently attain optimal solutions in all cases.

6. CONCLUSION
This paper presents the first in-depth study that combines loop
transformation and hierarchy allocation for imperfectly nested
loops. It gains 40% reduction of the on-chip buffer usage under
the same off-chip bandwidth constraint with no performance
overhead. The proposed space pruning techniques are shown to be
highly effective to speed up the execution of our algorithm. Our
future work will integrate loop tiling transformation and tiling
size selection into our memory hierarchy optimization.

7. REFERENCES
[1] F. Catthoor, E. d. Greef, and S. Suytack, Custom Memory

Management Methodology: Exploration of Memory Organisation for
Embedded Multimedia System Design. Norwell, MA, USA: Kluwer
Academic Publishers, 1998.

[2] K. Kennedy and J. R. Allen, Optimizing compilers for modern
architectures: a dependence-based approach. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2002.

[3] K. S. McKinley, S. Carr, and C.-W. Tseng, “Improving data locality
with loop transformations,” ACM Trans. Program. Lang. Syst.,
vol. 18, pp. 424–453, July 1996.

[4] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
in PLDI ’91. New York, NY, USA.

[5] M. E. Wolf and M. S. Lam, “A loop transformation theory and an
algorithm to maximize parallelism,” IEEE Trans. Parallel Distrib.
Syst., vol. 2, pp. 452–471, Oct. 1991.

[6] P. Feautrier, “Some efficient solutions to the affine scheduling
problem: Part II. multidimensional time,” International Journal of
Parallel Programming, vol. 21, pp. 389–420, 1992.

[7] A. W. Lim, G. I. Cheong, and M. S. Lam, “An affine partitioning
algorithm to maximize parallelism and minimize communication,” in
ICS ’99. New York, Aug. 1999.

[8] N. Ahmed, N. Mateev, and K. Pingali, “Synthesizing transformations
for locality enhancement of imperfectly-nested loop nests,” IJPP,
vol. 29, pp. 493–544, Oct. 2001.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
PLDI ’08, pp. 101–113, New York, NY, USA,.

[10] U. Bondhugula, O. Gunluk, S. Dash, and L. Renganarayanan, “A
model for fusion and code motion in an automatic parallelizing
compiler,” in PACT ’10, pp. 343–352, Sept. 2010,.

[11] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache. “Loop transformations: convexity,
pruning and optimization,” in POPL '11, pp. 549-562, Jan. 2011.

[12] F. Catthoor, K. Danckaert, K. Kulkarni, E. Brockmeyer,
P. Kjeldsberg, T. v. Achteren, and T. Omnes, Data access and
storage management for embedded programmable processors.
Norwell, MA, USA: Kluwer Academic Publishers, 2002.

[13] T. Van Achteren, G. Deconinck, F. Catthoor, and R. Lauwereins,
“Data reuse exploration techniques for loop-dominated applications,”
in DATE’02, pp. 428–435, Mar. 2002.

[14] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “DRDU: A data
reuse analysis technique for efficient scratch-pad memory
management,” ACM Trans. Des. Autom. Electron. Syst., April 2007.

[15] S. Wuytack, J.-P. Diguet, F. V. M. Catthoor, and H. J. De Man,
“Formalized methodology for data reuse: exploration for low-power
hierarchical memory mappings,” IEEE Trans. on VLSI, 1998.

[16] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad
memory hierarchy design and management,” in DAC’02, pp. 628—
633, June 2002.

[17] E. Brockmeyer, M. Miranda, and F. Catthoor, “Layer assignment
techniques for low energy in multi-layered memory organisations,”
in DATE’03, pp. 1070–1075, Mar. 2003.

[18] J. Cong, H. Huang, C. Liu, and Y. Zou, “A reuse-aware prefetching
scheme for scratchpad memory,” in DAC’11, pp. 960–965, 2011.

[19] I. Issenin, E. Brockmeyer, B. Durinck, and N. D. Dutt, “Data-reuse-
driven energy-aware cosynthesis of scratch pad memory and
hierarchical bus-based communication architecture for
multiprocessor streaming applications,” IEEE trans. on CAD,
vol. 27, no. 8, pp. 1439–1452, 2008.

[20] M. Palkovic, F. Catthoor, and H. Corporaal, “Trade-offs in loop
transformations,” ACM Trans. Des. Autom. Electron. Syst., vol. 14,
pp. 22:1–22:30, April 2009.

[21] P. R. Panda, N. D. Dutt, and A. Nicolau, “Local memory exploration
and optimization in embedded systems,” IEEE Trans. on CAD,
vol. 18, no. 1, pp. 3–13, 1999.

[22] Q. Hu, P. G. Kjeldsberg, A. Vandecappelle, M. Palkovic, and
F. Catthoor, “Incremental hierarchical memory size estimation for
steering of loop transformations,” ACM Trans. Des. Autom. Electron.
Syst., vol. 12, September 2007.

[23] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic data movement and
computation mapping for multi-level parallel architectures with
explicitly managed memories,” in PPoPP’08, pp. 1–10, Feb. 2008.

[24] Q. Liu, G. A. Constantinides, K. Masselos, and P. Cheung,
“Combining data reuse with data-level parallelization for FPGA-
targeted hardware compilation: A geometric programming
framework,” IEEE Trans. on CAD, vol. 28, no. 3, 2009.

[25] J. Cong, P. Zhang, and Y. Zou, “Combined loop transformation and
hierarchy allocation in data reuse optimization,” in ICCAD’11, pp.
185–192, Nov. 2011.

[26] J. Cong, P. Zhang, and Y. Zou, “Optimizing Memory Hierarchy
Allocation with Loop Transformations for High-Level Synthesis,”
Technical Report, Computer Science Department, UCLA,
TR200019, 2012.

[27] Kelly, W. A. Optimization within a Unified Transformation
Framework, Ph.D. dissertation, University of Maryland, 1996.

[28] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-Automatic Composition of Loop
Transformations for Deep Parallelism and Memory Hierarchies,”
IJPP, vol. 34, no. 3, June 2006.

[29] Barvinok library. http://freshmeat.net/projects/barvinok
[30] ROSE compiler infrastructure. http://rosecompiler.org/
[31] The ClooG code generator. http://www.cloog.org/
[32] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and

Z. Zhang, “High-level synthesis for FPGA: From prototyping to
deployment,” IEEE Trans. on CAD, vol. 30, no. 4, 2011.

[33] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong,
“AutoPilot: A Platform-Based ESL Synthesis System,” High-Level
Synthesis: From Algorithm to Digital Circuit, ed. P. Coussy and A.
Morawiec, Springer Publishers, 2008.

[34] Xilinx ISE Design Suite. http://www.xilinx.com/products/design-
tools/ise-design-suite/.

[35] Polyhedral benchmark suite v3.1. http://www.cse.ohio-state.edu/-
~pouchet/software/polybench/ .

[36] J. Cong, V. Sarkar, G. Reinman and A. Bui, "Customizable Domain-
Specific Computing," IEEE Design and Test of Computers, vol. 28,
no. 2, pp. 5-15, March/April 2011.

