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1. Introduction Q

Simulation of various physical, blologlcal or social

Special

complex systems allows us to develop elaborate models for
them and helps in the process of making valid inferences
from them. There are many situations in which systems can
not be easily described in a compact form for analysis and
prediction. The modern computer simulations allow us to
represent such systems by series of simpler models and thus
help wus in providing reasonable solutions to complex pro-
blems.

A schematic representation of the simulation strategy
for developing models of complex systems has been given by

Ziegler et. al. (1979).

Object Specification =+ Model
Modelling - Simulation
Available Knowledge -~

Validaticn

Figure 1

The validation of models requires some sort of optimiza-
tion. One has to provide criteria of optimization and

possible techniques to achieve that optimization to
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complete the process of validation.
Optimizing techniques are also required in other

aspects of simulation experiment such as in their design

and ultimate analysis. The method of optimization form a
vast body of knowledge spreading over several fields. We
have classified optimizing methods broadly in the follow-
ing categories and have arranged the list of references in
that order.

A. Classical cptimizing techniques;

Numerical procedures;

Mathematical programming methods;
Stochastic approximation methods;
Optimum seeking methods and response
surface methodology;

Optimal Design Theory;

G. Miscellaneous methods.

In this brief account, we emphasize those optimiza-
tion techniques which are of potential use in simulation
methodology. We shall concentrate here on Optimizing
Criteria, Classical Methods, Numerical Methods, Optimal
Search Procedures, Response Surface Methods and Optimal
Designs of Regression Experiments.

However, technical references are provided on various

other optimization techniques for the interested reader.
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2. Optimizing Criteria

Optimization is basically dependent on the criteria
used in a given situation. The same problem may lead tc
different solutions depending upon the criteria of
optimalivy utilized. The criteria depend on the nature
of the problem and are many times dictated by practical
considerations. Consider the case of least sguare estima-
tion of parameters in hypothesized models. The critericn
of minimizing the sum of squares of residuals, was
dictated more as a mathematical convenience than from
heuristic point of view. It allows simple mathematical
solution is most cases. However, if the crite?ion of
optimality is chosen to be that of minimizing the sum of
absolute deviations of residuals, the mathematical simpli=-
made to numeri-

ficatien is minimal and reccurse has to be

cal solutions. It may be highly important to select the

"right" criterion of optimality in a given situation.
There does not seem to be a simple and logical
approach of choosing among a class of competing criteria

of optimality for a given problem. Experience and
intuition in a given setting may be the ultimate judge
for proper selection. In many situations, however, more is

known about the comparative properties of the optimality
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criteria and the experimenter is guided by such considera-
ticns to select the appropriate criterion. We shall dis-
cuss some of the most commonly used criteria in this

section.

Least Squares Criterion

One of the most common criterion used in validation
of mcdels is that of least sqguares. Given the realization
of the process from simulatiocns or actual observations,
the observed and the expected value under the assumed
models are compared. If the sums of squared deviation is
minimized, this method provides the unknown parameters of
the model. Various other criteria such as sum of absolute
deviations or weighted least squares criterion are also in
use. The criterion to be chosen heavily depends on the

experimental situation.

Example (Milstein (1979))
In a biochemical process, the equations of the pro-
cess are described by the following
d
aél: f(%, }é),
5(0) = 'Ei,

i=l, 2, LEEE K Y f,,
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and the vector b is n-dimensional with nonnegative compo-
nents, % is a vector of parameters having p unknown
components, f is a vector function. The vector ¢ re-
presents the given initial condition. Let the data be
given by ys(tr) at rth time point t, and let the corres-
ponding value of x be given by x(k, tr)' Let HP be the
matrix of known weights, then a common measure of the
discrepency between the data points y and the trajectories
can be the following

L

M .
- s s s 5
F(k) = sgl rgl[x () - x7 (ks t Mg Ly (x ) - Ak, t,)

M is the number of points chosen. The object will be
to determine the unknown parameters k which can be ob-
tained by using the c¢riterion of minimizing F(E).

A computer algorithm is given in terms of an iterated
numerical procedure starting with a first guessed value of
5 by Milstein (1979).

In the context of design of experiments, which are
highly pertinent to the simulation experiments, we discuss

a few criteria which are in commonly use.

Consider the model,

-




where vy is the observation vector in n-dimensions, X is
¥ a¥)

f£n x p cdesign matrix, B, & p x 1 vector of unknown para-
4N

meters and £, {nx 1 vector of residuals. If we use

least squares methed to estimate E’ it is well known that

v timiz ‘e = -Xg) ' (y- 2 i i
we optimize €'e (K ig) Y %%) leading to the optimal

estimates of B as given by
a")
2 - ) !‘1
g = (X*X)X X
In the problem ¢f finding optimum % such that the para-

meter g is estimated optimally, cne considers the covari-

oW >

ance matrix of given by

V(é) = (x'x)" Loz

where % is assumed to have means zerc and covariance ozi.
By an experimental design, we mean the choice of
levels of X. Consider the case in one dimension for
present and assume that there are n observations available.
We are interested in knowing the method of allocation of
these observations to the various levels of x's. That is,
the problem is find levels X15 Xgs ceny X tO be repeated
Mys Bps +ves Ny times such that n, ¢ n, + ... 40 =N,

5 £ ot 3 Ly 3 3
The set of X;'s with n;'s is called the design of an

experiment. In place of integers n;, we can use fractions

a
E
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with = p; and Jp; = 1. The collection of x;'s with

pi's describes generally a discrete probability measure.
The theory of optimal design of experiments is concerned
with obtaining such a measure so as to optimize some
objective function of the parameters in the assumed mcdel
for the experiment.

There are several optimality criteria in the case of
regression design of experiments and they are given in
terms of the matrix %‘ﬁ. Suppose § = (x

X1v Xg» -oe5 Xpls

with X3 1= 1, 2, ..., n being p-vectors and let x; & X.

Criterion of &-Optimality

It is also known as the eriterion of minimax

optimality.
Find L such that

max (X' (X'X)71x}
Xi X €
i=l, 2, ..., 1

Criterion of D-Optimality

In this criterion, we find x; such that determinant
of the matrix X'X is maximized. That is, find x:, such

that we have




E max detv (X'X)
. 5 x.
1

Criterion of A-Optimelity

i find x. such that
r\,l

= min trace (X'X)"t

T ®.
e 1

Criterion of E-Optimality

This criterion is concerned with finding X; such that

mininum eigenvalue of ¥'X is maximized. That is,

max{min eigenvalue of X'¥)
x. VN
1

Many other kinds of optimality criterion in the context of

design of regressicn experiments have been discussged in

the literature, for reference, see Federov (1972).

Integrated Mean Square Error Criterion

Recently Brown (1979) has proposed the integrated
mean sguare error as an optimization criterion in the
context of linear inverse.

This criterion has been used in other contexts as
well, see Tapia and Thompson (1978). A commcn measure
of discrepency between the observed and expected value

is obtained in terms of mean squared errors (MSE).
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Consider the model,

a + Bx

E{Y|®)

"
Q

and V(Y |x)

Let L £ ®x € U, be the interval of possible x values. The
MSE(x) is the mean squared error of x as obtained from y.

Let w(x) be a weight function. Then Integrated Mean Sguare

Error is defined as

u
IMSE = [ MSE(x) W(x)dx
L

In calibraticn problems, Brown has shown that optimization
of IMSE gives much better results as compared to simply
minimizing MSE. In case, no special form of the weight
functiorn W(x) is suggestible from the problem, W(x) may be

taken tc be uniform over the range (L, U).

3. Classical Methods of Optimization

The basic problem of optimization is concerned with
finding a value Xg in a finite dimensional set A, for which
a function f{x) defined on the set A, attains a maximum or
a minimum. If A is a finite set, the minimizing and

maximizing values always exist. They need not exist when

A is not finite.




Suppose f(x) =

X > X 0.

Then the function f(x) defined our x > 0, the non-negative
part of the real line does not have a minimum which can be
attained. The ideas of infimum and supremum are introduced
to take care of such a situation.

Detine supremum of f(x)or sup f{x) by the least

value of A such ~hat
f(x) < A, for all x eA.

Similarly infimum of f(x) or inf f(x) is defined by the

largest value X such that f(x) > X,

An important result in this regard is given by the

following theocremn.

Theorem 3.1. If f(x) is continuous and the set A is
finite and closed interval then f(x) attain its minimum or
maximum (extrema) values in A,

For prcof, see any book on calculus, for example,
Whittle (1971).

The necessary and sufficient conditions for extrema
are given by the following theorems, usually available in

standard calculus books.
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Theorem 3.2. (Necessary Conditions for an extremum)

If the derivative %% exist at an interior point, X of

the set A, and if Xy is an extremum point, then %g = 0 at

s X
X 0

A

Define the Hessian of a function f(x) by the matrix

of second order partial derivations as follows.

The sufficient condition that f(x) has a maximum

(minimum) at an interior point Xy € A is that H exist and

1
: a { 3 :
oo® 3¢ a%f 9% 3
- 3x§ §x15x2 §x1 X g
5 i
N - " s 2 s 22¢ als
. 9x 9%y Bxg *27%n :
7 r\ i‘ » - - L)
- - [
R t . . . . »
:s . . . - . [y . é‘
i 2%f als X
X L axnaxl an3x2 sz
}} Theorem 3.3. (Sufficient Condition for an extremum)
i
v
ii

be negative definite (positive definite).
The proofs require expanding the function f(x) with
the help of Taylor's theorem using H. For details see,

Whittle (1971).
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Constrained QOptimization

In finding extrema of a function f(x) over the set A,
these may be additional constraints added such as by the
condition, g{x) = b. Essentially the constraints intrcduce
a subset of the set A over which f(x) should be optimized.
The case when the constraints are introduced by inequali-
ties is dealt with by mathematical programming methcds.

The method of Lagrange multipliers has been used
extengively for solving constrained optimization problems,
The method requires optimizing

f(x) + xg(x)
where A 1s some unknown constant. If the number of con-
straint equation is more than one, Lagrange's method re-

quires optimizing
+ ¥
f(x) Q %(x)

where g is the vector of function given and the vector A
is unknown. TFor an extensive discussion, see Whittle

(1971).
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b, Numerical Methods of Optimization

By the very nature of the simulation process, numeri-
cal methods are necessary for coptimizing techniques for
gimulation models. In the case of functioné of one
variable, it may sometimes be easy to graph the functien
and then obtain the optimizing value. 1In the case of
several variables, the process involves large numbers of
calculation and may exceed the limit of computers.

The optimization of functions in many cases reduces
to finding the solutions of equations since the extremi-
zing values are given by the derivatives or partial
derivatives if they exist. We first consider methods of
solving an equaticn of the type,

f(x) = 0 (4.1)
General methods for solutions are available in textbooks
of numevrical analysis, for example see Ralston (196%). We
first define Lagrange polynomials which are used in inter-

polation. Lagrange polynomial of (n-1)-th degree are

defined by
() pn(x)
2. (% = v j=l 2 seap NN ('4.2)
5 = a;)p,(a; ’ > o
where
PL(x) = (x-al)(x-az) e (x-an) (4,3)

T Y
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is a polynomial of nth degree with given contants ays a5,

S an.

pé(aj) gives the derivative of the polynomial pn(x)

at a;. For example, lLagrange polyrnomials of order 3 are
J
given by
) (x-a,) (x-a3) N
2. (%) (L, 4
1 (al—az)(al—a3)

(x—al)(x-az)

,({x) = (4.5)
2 (az-afT(a2-a3)
(x-al)(x—az) (6. 6)
L.{x) = L.
3 (az-ajitag-ay)
Iterative procedure for roots of the equation, f(x) = 0.

Suppose inverse of the function f exists. Let
y = f{x) soc that x = f'l(y) = g(y). We are loocking for
g(0) which will be the root a. That is, g(0) = a.

The Lagrange interpolation formula gives an approxi-

mation for gl{y) by h(y), denoted by, g{y) ¥ hiy).

hiy) =

n.M:j

ij(y)g(yj)

=1

lj(y)xi_j+l (L.7)

"
IOV e |

j=1

where g(yj) RSP given the points, ¥i, Yps -ees Y.

An approximation of a by ®s4q is given by h(0). That is,

Ripg = jzl £j(0) xi+l—j (4.8)

gy o

3!
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Notice that
n
(0 (-1) Y1¥p---¥i_1Y441r Y,
3 (yj‘yl)(yj'yz)"'(yj'yj-lj(yj'yj+1>"'(yj'yg)
(4.9)
The equation (4.9) gives an n-point iteration process.
That is given Xis X319 +++5 X4_(p-1)> We can find X541
Or the n-point iteration function is given by
j xi+1 = Fi(xi, )(i_l, reey xi_(n-l)) (4.10)
~ Most iteration procedures use only one point iteration
' and the same function for iteration. That is,
% ' Ripq = F(xi) (4.11)
. There are many methods of iteration. We shall discuss -
i E &
i here the most commonly used methods such as those of
;. - Newton=-Raphson.
T
:-. Newton-Raphson Procedure
! 1 In this procedure, we use
3 f(xi)
A l Using the approximation of f'(x;) by
> flx,)=f(x, .)
£1(x;) N =l (4.13)
| i
£(%:) (s =% _y)
g - _ 1 i M1-17 o
» | we have Xj41 % X§ - Tl )-f(x;_;)
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x;80(x; 1) X5 .100x;)

= - (4.14)

The above two-point iteration is known as the secant
method.
In the case of several equations, @ generalized cne-

pcint Newton-Raphson iteration procedure can be similarly

x
described. Let x = (xl) be a two dimensional vector. Let
2
fl(f) = 0 and f?(x) = 0

be the two simultaneous equations to be solved. Then the

Netwon-Raphson iteration requires the following:

1

r vy =1 (
af, 3F) £1(x))
axl 3x2
%i‘l 2:5. - (“015)
of of
2 2
f,(x,)
3)(2 BXQ J { 2 q,2 )

Gradient Method

Gradient method was introduced by Cauchy in 18u47.

This method utilizes the gradient of the function f(x)

given by 2(x) = (g%%, gg% s seey f?i )'. The gradient
n

represents the direction cosines of the normal to the
tangent hyperplane at point X of the surface f(g). The

method utilizes steepest ascent for a maximum and steepest
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descent feor a minimum, to increase the speed of approach

to the optimum. Consider the matric

2 _ '
a° = (*-x) B(§-x)

where B is a given matrix and x and y are any two vectors,
A A

Then the direction of steepest ascent is the direction

from the point x, to the ellipsoid

0

(x-xy)"' Blx=x,) = K.

The following theorem gives an explicit form for optimi-

zation.

Theorem 4.1. TFor a function f(ﬁ)’ the maximum occurs

. . . . . n=1
in the direction 6(%0) given by 6(%0) = B (2(%0)) where

i(ﬁo) is the gradient of f‘ﬁ) at x,. For proof and other
relevant material the reader is referred to Crockett an<d

Chernoff (1955).

Optimal Search Procedures

In optimum seeking methods, the aim is to design the
most economic or shortest time consuming procedure.
Suppose a function is to be explored over the points

Xys Xgs -0y X Let 0 < x5 < 1. Consider the following

n‘
two situations with n = 3 in Figures 1 and 2, where the

values of the function are given by verticle lines.




Figure 1 Figure 2

i

+
Xl K.-‘, Xa Xz 23

In Figure 1, the maximum may be in the interval (0, x )

2
and in Figure 2, it be in the interval (xl, x3}. Such an
interval is called the interval of uncertainty. In general

the interval of uncertainty is (xk—l’ xk+l)' The length

of the interval of uncertainty is ziven by i(xk, k).
Several search plans based on the interval of uncertainty

are given below.

Minimax Search. A plan which minimizes the maximum

interval of uncertainty. That is,

min max ln(xk,k).
xl, Koy +on 1<k<n

Uniform Pairg Search. It regquires that the intervals

chosen should be of uniform length. One such plan is to

take
asot®dy 0
xk = %T - {{T] - [7]}5

where [a) denotes the integral part of a.
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Cther plans including the Fibonacci Search or Sequential

Search plan,which is based on the Fibonacei sequence,and

Golden Section Search plan,are also used in practice., For

literature on optimum-seeking methods, see Wilde (198u).
An important class of optimum seeking procedures is con-
cerned with optimizing the regression function in
statistics. Such procedures have become known as Response

Surface Methods. We shall discuss some elements of this

methodology in the next section.

6. Response Surface Methods

The response surface methodology was developed to
solve some problems in chemical investigation. - However,
its use became universal and in simulation methodology
response surface techniques are very commonly used. The
preblem can be stated as follows. Let a region K, of

kx dimensions be called the factor space of with points

x = (xl, Xps oees xk)'. Let the mean, ¢ of a response Yy

depend on the factors xu through the function ¢.

Uy = ¢(§u)' (6.1)

Let v have variance o?. The problem then is to find a

peint §° in the smallest number of experiments so as to

At

el
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optimize ¥, over the region rX.

This ~lassical problem was stated by Hotelling (19ul)
and Friedman and Savage (1947). Box and Wilson (1951)
provided the basic framework to develop optimal response
surface designs and their techniques have found consider-
able use in many applications. Myers (1971) has collected
the available material in a book on response surfaces.
We discuss elements of response surface methodology based
on the paper of Box and Wilson. One of their major con-
tributions was to develop new types of designs in place
of complete factorial designs.

Let the distance, r, from thé origin to the point x
be Euclidean, with

r? = TxZ. (6.2)

The object here is to choose x in such a way that
"

¢(x) - ¢(0) (€.3)
is maximized with the constraints in (6.2).
Using Lagrange's method, we maximize
¢ = 801 - 6(0) - 3 2 Ix] . (6.4)

The statienary solution is given by equating to zero the

partial derivatives with respect to X;. We have

_ 9¢
Axi - S?C_-' (:)a {6.5)

1

e

R

1
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Squaring and summing over all i and simplifying, we get

@(5)

1, 9 2.1/2
A= = z {(~e=)" 1
r il 9%

(6.6)
That is, the maximizing point should have coordinates
proportional to the derivatives of ¢.

Suppose the conditions of Taylor's expansion for ¢(§)
in the neighborhood of the corigin hold, then ¢(¥) can be
expanded to linear, quadratic and higher order terms. If
we assume that second and higher order terms in the ex-
pansion of ¢ are zero, then, ¢(¥) is approximatec by a

linear function of the feollowing type:

Q(x) = BD v oByxy ¢+ 82x2 + ...+ kak (6.7)
Then,
3¢(§)
axi = Bi, i=1,2, ..., k {(€.8)

and the optimal ¥, are proportional to B8;. Similarly
exprassions involving coefficients of linear and gquadratic
terms can be obtained if the Taylor's expansion of ¢(¥)
does not contain third and higher order terms. The move
almng the derivatives of the response function gives the

steepest ascent approach to a maximum.

] .
s .
. B .
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For the sake of clarity of presentation, we assume
k = 2. Suppose @(5) has third and higher order derivatives

zero. Hence we represent ¢(¥) as follows:
- V4 2
OLX) = By * Byxy * ByXp * ByyX] * BypxgXp b BpoXd
(6.9)
Using the usual least squares theory, the regression
equations (€.9) can be estimated by at ieast six or mcre

reints, since there are six unknown constants, As a rule,

one would consider a complete 3x3 factorial experiment

Figure 3

Ax
2
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with nine points so as to provide estimates for the

quadratic regression (6.3). However,®Box and Wilson pro- i

viled a design, not of the factorial type which has five
points on the vertices of a pentagen and the sixth at the
origin. Such a design would give the estimates of the
coefficients in the regression model and hence about the
derivatives. These estimates then can be used to define
the path of steepest ascent.

Several designs such as fractional factorials have
also been used in response surface techniques and are
available in text becoks on design of exepriments, for
example, see Kempthorne (1978) and Myers {1371) providing

a large number of new designs which are commonly applied !

in response surface methodology. J
7. Optimal Design of Regression Experiments

The theory of optimal design of regression experi-
ments is concerned with choosing the levels of the inde-~
pendent variable x for the model

y = f(x)
so as to optimize a certain function of parameters to be
estimated in the model. We have given several optimality

criteria as commonly used in optimal design thecry in

i
]
I
|
i
i
1
i




Section 2. In simulation studies such criteria assume

further importance since the design of a simulation may

require several replications in a given problem. There
is an extensive literature on optimality of designs. For
a recent survey, see Federov (1972). Reviews of various
other aspects of optimal designs have been presented more
recently in the statistical literature. A review of

? D-optimality for regression designs has been given by

St. John and Draper (1975) with an extensive bibliography.

A tvpical problem of optimal design theory is of the

following type.

Example:

Consider the simple linear regression model

I A
E We assume that the errors €. are uncorrelated and have

common variance c?. Let

z z (yl, Yos seavs yn)', 8 = (60, 91)' (7.2)
and X = 1 X (7.3)
v 1 x
2
l X
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Using the general linear model and results in Section 2,

we find .
n le
S = z'x {7.4)
Y
Ixi le
and \
1 Ix2  -Ix; (7.5)
S =
-in n
Zyi
X'y = (7.8)
"
inyl
where
= 1 (7.7)
n}(x;-%)
The estimates are given by
~ { 2
5] DxE vy -IxgInys |
g = = a (7.8)
4" A~
% -Ix;lygtnlx;ys
and
-~ -~ 2
Cov(eo, 61) = - ag Xxi (7.9)
o 2v. 2
v(e,) = ao Ix§ (7.10)
V(e ) = ac’n"? (7.11)
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Suppose V(el) is to be minimized to obtain optimal
xi's. That is, the optimization problem is to maximize
=y 2 2
Tix, =)<, (7.12)
1

Assuming that x's are between -1 and 1, the solution to
the above problem is that %'s should be placed at -1 and 1,
half at each place to make (7.12) a maximum. For D-
optimality, we maximize the determinant of S. That is,
again we maximize
=2

nZ(xi—x) . (7.13)
Hence the same answer obtains as in minimizing the variance
of el.

Comparisons of Optimality Criteria

G-optimality (minimax optimality) was introduced by
Smith (1918) and was explcited by Kiefer and Wolfowitz
(1959). Wald (19u43) used the criterion of D-optimality -
in some other context and was so named by Kiefer and
Wolfowitz (1959). VOne of the most important results in
optimal design theory is the equivalence and characteri-
zations of G-optimality and D-optimality under various
conditions. This was established by Kiefer and Wolfowitz.

Recently such results have alsc been extended to nen-

linear models by White (1973). Various computer algorithms
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to generate D-optimum designs are available in the
literature. Essentially the algorithm of Federov (1272),
reguires the following steps:
n Select any non-degenerate starting design,
2) Compute the dispersion matrix,
3) Find the point of maximum variance,
é. L) Add the point of maximum variance to
- the design, with measure proportional to
its variance
5) Update the design measure.
For further details, the reader is referred to the

exposition by $t. John and Draper (1975).
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