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1. Introduction

Simulation of various physical, biological or social

complex systems allows us to develop elaborate models for

them and helps in the process of making valid inferences

from them. There are many situations in which systems can

not be easily described in a compact form for analysis and

prediction. The modern computer simulations allow us to

represent such systems by series of simpler models and thus

help us in providing reasonable solutions to complex pro-

blems.

A schematic representation of the simulation strategy

for developing models of complex systems has been given by

-.Ziegler et. al. (1979).

Object Specification - Model

AModelling Simulation
Available Knowledge -

- I Validation

I igure 1

I The validation of models requires some sort of optimiza-

tion. One has to provide criteria of optimization and

possible techniques to achieve that optimization to

-I
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complete the process of validation.

Optimizing techniques are also required in other J
aspects of simulation experiment such as in their design

and ultimate analysis. The method of optimization form a i
vast body of knowledge spreading over several fields. We

have classified optimizing methods broadly in the follow-

ing categories and have arranged the list of references in J
that order.

A. Classical optimizing techniques; I
B. Numerical procedures;

C. Mathematical programming methods;

D. Stochastic approximation methods;

E. Optimum seeking methods and response

surface methodology;

F. Optimal Design Theory;

G. Miscellaneous methods.

In this brief account, we emphasize those optimiza- I
tion techniques which are of potential use in simulation

L methodology. We shall concentrate here on Optimizing I
Criteria, Classical Methods, Numerical Methods, Optimal

Search Procedures, Response Surface Methods and Optimal

Designs of Regression Experiments. 3
However, technical references are provided on various

other optimization techniques for the interested reader.

,, f -,--.3*- p --r--r- -- -W .
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2. Optimizing Criteria

Optimization is basically dependent on the criteria

I used in a given situation. The same problem may lead to

different solutions depending upon the criteria of

optimality utilized. The criteria depend on the nature

of the problem and are many times dictated by practical

considerations. Consider the case of least square estima-

tion of parameters in hypothesized models. The critericn

of minimizing the sum of squares of residuals, was

dictated more as a mathematical convenience than from

heuristic point of view. It allows simple mathematical

solution is most cases. However, if the criterion of

optimality is chosen to be that of minimizing the sum of

absolute deviations of residuals, the mathematical simpli-

fication is minimal and recourse has to be made to numeri-

cal solutions. It may be highly important to select the

"right" criterion of optimality in a given situation.

J There does not seem to be a simple and logical

approach of choosing among a class of competing criteria

I" of optimality for a given problem. Experience and

jJ intuition in a given setting may be the ultimate judge

for proper selection. In many situations, however, more is

known about the comparative properties of the optimality

opialt
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criteria and the experimenter is guided by such considera-

tions to select the appropriate criterion. We shall dis-

cuss some of the most commonly used criteria in this

section.

Least Squares Criterion

One of the most common criterion used in validation

of models is that of least squares. Given the realization

of the process from simulations or actual observations,

the observed and the expected value under the assumed

models are compared. If the sums of squared deviation is

minimized, this method provides the unknown parameters of

the model. Various other criteria such as sum of absolute f
deviations or weighted least squares criterion are also in

use. The criterion to be chosen heavily depends on the

experimental situation.

Example (Milstein (1979))

In a biochemical process, the equations of the pro-

cess are described by the following

_ x(O) -

i r i, 2, ... ,
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and the vector x is n-dimensional with nonnegative compo-

nents, k is a vector of parameters having p unknown

components, f is a vector function. The vector c re-

presents the given initial condition. Let the data be

given by y S(t r ) at rth time point tr and let the corres-

ponding value of x be given by x(k, t ). Let W be the
% r

matrix of known weights, then a common measure of the

. - discrepency between the data points y and the tra;ectories

can be the following

i M
*~~% ,~k 3[X Lr( ) )] r[y 5(xr) - t ),

s. 61 r=l It,~ r

A M is the number of points chosen. The object will be

to determine the unknown parameters k which can be ob-

tained by using the criterion of minimizing F(k).

A computer algorithm is given in terms of an iterated

numerical procedure starting with a first guessed value of

k by Milstein (1979).

In the context of design of experiments, which are

highly pertinent to the simulation experiments, we discuss

a few criteria which are in commonly use.

i Consider the model,

X0 X+ CR -I )B~



where y is the observation vector in n-dimensions, X 1;

i n x p design matrix, 8, 9 p x 1 vector of unknown para-

meters and E, n x 1 vector of residuals. If we use

least squares method to estimate B, it is well known that

we pti mize Cc = (-X)'(-X8) leading to the optimal

estimates of S as given by E
(X'X)X'-1

In the problem of finding optimum X such that the para-
Ft

meter B is estimated optimally, one considers the covari-

ance matrix of 6 given by

V(t) = (X'X)-1a

where E is assumed to have means zero and covariance o21.

By an experimental design, we mean the choice of

levels of X. Consider the case in one dimension for

present and assume that there are n observations available.

We are interested in knowing the method of allocation of

these observations to the various levels of xs. That is,

the problem is find levels xl, x 2, ..., xk to be repeated

ni, n2, ... , n k times such that n1 + n 2 + ... + n k = n.y
The set of Xi's with ni's is called the design of an

experiment. In place of integers ni we can use fractions

P19 "' Pk
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n.with - - =pi and [Pi 1 . The collection of xi's with

pi's describes generally a discrete probability measure.

The theory of optimal design of experiments is concerned

with obtaining such a measure so as to optimize some

objective function of the parameters in the assumed model

for the experiment.

There are several optimality criteria in the case of

regression design of experiments and they are given in

terms of the matrix X'X. Suppose X = (xl, x2' "

with xi, i , 2, . n.., being p-vectors and let x i E X.

"] 1

]Criterion of G-Optimality

J It is also known as the criterion of minimax

optimalaty.

j Find xi such that

min max {X'(X'X)-1 X}

X. X E

3 i:l, 2, ..., n

3 -Criterion of D-Optimality

- In this criterion, we find xi such t!iat determinant

of the matrix X'X is maximized. That is, find xi, such

i I that we have

.='



max der (X'X)
x i

Criterion of A-Optimaiy --

Find xi such that

q4

min trace (X'X) -

faCriterion of E-Optimaiy

This criterion is concerned with finding xi such that

nnizmum eigenvalue of X'X is maximized. That is,

max(min eigenvalue of X'X)2.% %

Many other kinds of optimality criterion in the context of

design of regression experiments have been discussed in -

the literature, for reference, see Federov (1972). -

Integrated Mean Square Error Criterion -

Rcently Brown (1979) has proposed the integrated

me an square error as an optimization criterion in the

context of linear inverse.

This criterion has been used in other contexts as

well, see Tapia and Thompson (1978). A common measure

of discrepency between the observed and expected value

A is obtained in terms of mean squared errors (MSE). i



Consider the model,

E(Ylx) = a + ex

and V(YIX) = 02

Let L < x < U, be the interval of possible x values. The

MSE(x) is the mean squared error of x as obtained from y.

Let w(x) be a weight function. Then Integrated Mean Square

Error is defined as

U
IMSE f MSE(x) W(x)dx

L

In calibration problems, Brown has shown that optimization

of IMSE gives much better results as compared to simply_

minimizing MSE. In case, no special form of the weight

function W(x) is suggestible from the problem, W(x) may be

taken to be uniform over the range (L, U).

3. Classical Methods of Optimization

J' The basic problem of optimization is concerned with

finding a value x0 in a finite dimensional set A, for which

a function f(x) defined on the set A, attains a maximum or

a minimum. If A is a finite set, the minimizing and

I maximizing values always exist. They need not exist when
I

A is not finite.

Z7.



10L

l, x 0
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Suppose f(x)

x, x > 0.

Then the function f(x) defined our x > 0, the non-negative

part of the real line does not have a minimum which can be

attained. The ideas of infimum and supremum are introduced 7-

to take care of such a situation.

Define supremum of f(x)orsup f(x) by the least

value of X such that

f(x) < A. for all x cA.

Similarly infimum of f(x) or inf f(x) is defined by the 1-
0 largest value X such that f(x) > X.

An important result in this regard is given by the

following theorem. [
Theorem 3.1. If f(x) is continuous and the set A is

finite and closed interval then f(x) attain its minimum or

maximum (extrema) values in A.

For proof, see any book on calculus, for example,

Whittle (1971).

The necessary and sufficient conditions for extrema

are given by the following theorems, usually available in

standard calculus books. 3
I



1 Theorem 3.2. (Necessary Conditions for an extremum)

If the derivative L- exist at an interior point, x 0 , of

the set A, and if x0 is an extremum point, then D- 0 at

x - x0.

Define the Hessian of a function f(x) by the matrix

of second order partial derivations as follows.

,f _ _f a2f
2 ax;x a

a x1  12 i n

... 2 .2 . . .
a . I " ••• 2x

a 2 f f 2f

2I a xn

Theorem 3.3. (Sufficient Condition for an extremum)

The sufficient condition that f(x) has a maximum

[ (minimum) at an interior point x0 c A is that H exist and

be negative definite (positive definite).

The proofs require expanding the function f(x) with

the help of Taylor's theorem using H. For details see,

Whittle (1971).

I C
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Constrained Optimization

In finding extrema of a function f(x) over the set A,

these may be additional constraints added such as by the

condition, g(x) z b. Essentially the constraints introduce

a subset of the set A over which f(x) should be optimized.

The case when the constraints are introduced by inequali-

I ties is dealt with by mathematical programming methcds. --

I The method of Lagrange multipliers has been used

extensively for solving constrained optimization problems.

The method requires optimizing

f(x) + xg(x)

- where A is some unknown constant. If the number of con-

straint equation is more than one, Lagrange's method re-

quires optimizing I
f(x) + lk(x)

L
where k is the vector of function given and the vector A

is unknown. For an extensive discussion, see Whittle

(1971).

--| I
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4. Numerical Methods of Optimization

By the very nature of the simulation process, numeri-

cal methods are necessary for optimizing techniques for

simulation models. In the case of functions of one

variable, it may sometimes be easy to graph the function

and then obtain the optimizing value. In the case of

several variables, the process involves large numbers of

calculation and may exceed the limit of computers.

The optimization of functions in many cases reduces

to finding the solutions of equations since the extremi-

zing values are given by the derivatives or partial

derivatives if they exist. We first consider methods of

- solving an equation of the type,

f(x) : 0 (4.1)

General methods for solutions are available in textbooks

.-' I of numerical analysis, for example see Ralston (1965). We

first define Lagrange polynomials which are used in inter-

polation. Lagrange polynomial of (n-l)-th degree are

defined by

t.(x)(x)
tj (x) Pn j 1, 2, ... n (4.2)I jt

where

SPn (x) (x-a9 1 (x-a n2 . -a n (4.3)

WI I
1i
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is a polynomial of nth degree with given contants al, a2,

n

Pn(a gives the derivative of the polynomial p.rx)

at aA. For example, Lagrange polynomials of order 3 are

given by

(x-a2 )(x-a 3 )

(x) - ala2 ) (a .a 3

(x-al)(x-a
2 ) (4.5)

(x-a )(x-a 2 )
la-x) 3 (a _ (4.6) -.

Iterative procedure for roots of the equation, f(x) = 0.

Suppose inverse of the function f exists. Let

y = f(x) so that x f-(y) = g(y). We are looking for r

g(0) which will be the root a. That is, g(O) = a.

The Lagrange interpolation formula gives an approxi-

mation for g(y) by h(y), denoted by, g(y) % h(y).

h (y) : .C(y~gCy.) an

X .(y)x.- ~ ( 7
-- £j Y)×ij~l(4.7)

where g(y5 ) = xi_j+l, given the points, Y., Y2, "..1 y'

An approximation of a by xi+l is given by h(). That is, 3
n

=i 4 j t(0) xi~l1 5  ('4.8)

.A U
a t .-. AZa''.- -- " .--.---. -- ---- ________________________________

i~4
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Vn

t..()] : (yj Yl-.( j y2---_, (yjYjl)(ynj l . .~ ~ n

(j y )y y2 .. y- y - )(Y2 j n ____

." The equation (4.9) gives an n-point iteration process.

j.That is given x i, xi-l' "'''- Xi-(n-Il' we can find xi+ I .

Or the n-point iteration function is given by

I.

xi+ Fi-(xi, Xi-1, ... i_(n-l ))  (4.10)

I

SMost iteration procedures use only one point iteration

and the same function for iteration. That is,

xi+ 1 = F(xi ) (4.11)

There are many methods of iteration. We shall discuss
.JL Ii

here the most commonly used methods such as those of

-4Newton-Raphson.

S ..

Newton-Raphson Procedure

A In this procedure, we use

-- i) (4.12)

Using the approximation of ft(x i ) by

.-I )  f(x1 )-f(x. 1)f 2 (4.13)

xi-xi) 1

we have xi 1  xi - =(x.)-f(x1 1 )

imi Rn -I I
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x f(x, x) xt.fX) (4.14)

The above two-point iteration is known as the secant

merhod.

In the case of several equations, a generalized one-

point Newton-Raphson iteration procedure, can be similarly

descibed. Let x Z () be a two dimensional vector. Let

f Cx) = 0 and f (x) 0

be the two simultaneous equations to be solved. Then the

Netwon-Raphson iteration requires the following:

af at f (x)

ax1  ax2

- jx (4.15)

at 2  af2f (
ax 2  v22^

Gradient Method

Gradient method was introduced by Cauchy in 1847.

This method utilizes the gradient of the function f(x)

given by ) () (f f a ... a The gradient

1y' "2 " n-
represents the direction cosines of the normal to the

tangent hyperplane at point x of the surface f(x). The

method utilizes steepest-ascent for a maximum and steepest
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descent for a minimum, to increase the speed of approach

to the optimum. Consider the matric

:~ =(-k)' B(x-x)

I where B is a given matrix and x and y are any two vectors.

Then the direction of steepest ascent is the direction

ffrom the point x0 to the ellipsoid
1 - (x- 'B2

(x-x P B(x-x0) k

The following theorem gives an explicit form for optimi-

zation.
a -.

Theorem 4.l. For a function f(x), the maximum occurs

I in the direction 6(x0 ) given by 6(x B- (I x0 )) where

"(x0 ) is the gradient of f(x) at x For proof and other

A relevant material the reader is referred to Crockett and

# ..
Chernoff (1955).

5. Optimal Search Procedures

In optimum seeking methods, the aim is to design the

I most economic or shortest time consuming procedure.

Suppose a function is to be explored over the points

1 l , '2' -. xn . Let 0 < xi < I. Consider the following

two situations with n = 3 in Figures 1 and 2, where the

values of the function are given by verticle lines.

II
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Figure 1 Figure 2 18

I

InFiue e the ' 1

0 x I  X2  X3  10 xI  x 2  x3  1

In Figure 1, the maximum may be in he interval (0, x 2

arid in Figure 2, it be in the interval (x1 , x). Such an

interval is called the interval of uncertainty. In general

the interval of uncertai=ny is (xkl1, Xk+l). The length I
o- the interval of uncertainty is given by i(xk k).

Several search plans based on the interval of uncertainty I.

are given below. I
Minimnax Search. A plan which minimizes the maximum

interval of uncertainty. That is,

min max n (Xk'bk).
,,r X2 . xn  l<k<n

-A.. Uniform Pairs Search. It requires that the intervals

chosen should be of uniform length. One such plan is to

take (l+e)[k]

X (I___ [k+l)I-CkDXk n 2

where [a] denotes the integral part of a. I

.M[I*1 _______
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I Other plans including the Fibonacci Search or Sequential

Search planwhich is based on the Fibonacci sequence,and

J Golden Section Search plan, are also used in practice. For

literature on optimum seeking methods, see Wilde (1964).

An important class of optimum seeking procedures is con-

S cerned with optimizing the regression function in
4

statistics. Such procedures have become known as Response

Surface Methods. We shall discuss some elements of this

methodology in the next section.

6. Response Surface Methods

The response surface methodology was developed to

solve some problems in chemical investigation.- However,

Jits use became universal and in simulation methodology

response surface techniques are very commonly use&. Thc

A problem can be stated as follows. Let a region R, of

k dimensions be called the factor space of with points

x = (x I , x2, ...X , XQ'. Let the mean, o of a response yu

depend on the factors x through the function *.

Let y have variance 02. The problem then is to find a

I point x0 in the smallest number of experiments so as to
5 1
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* optimize Pu over the region R .r

This classical problem was stated by Hotelling (1941)

and Friedman and Savage (1947). Box and Wilson (1951) *

* provided the basic framework to develop optimal response -

surface designs and their techniques have found consider-

able use in many applications. Myers (1971) has collected
S

the available material in a book on response surfaces.

We discuss elements of response surface methodology based

on the paper of Box and Wilson. One of their major con-

tributions was to develop new types of designs in place

of complete factorial designs.

Let the distance, r, from the origin to the point x

'-A be Euclidean, with
2

r = y x . (6.2)

The object here is to choose x in such a way that

Ox) - *(O) (6.3)

* is maximized with the constraints in (6.2).

Using Lagrange's method, we maximize

V*(X) Z ¢(x) - 0(0) - )xi (6.4)

The stationary solution is given by equating to zero the

I
partial derivatives with respect to x We have

7-
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Squaring and summing over all i and simplifying, we get

1(x) 2 }1/ (6.6)
i Z-) }__ 66

iUl 2

That is, the maximizing point should have coordinates

. proportional to the derivatives of 4.

Suppose the conditions of Taylor's expansion for 4(x)

in the neighborhood of the origin hold, then O(x) can be

expanded to linear, quadratic and higher order terms. If

we assume that second and higher order terms in the ex-

pansion of 4 are zero, then, O(x) is approximated by a

linear function of the following type:SI i

S(x) + 81x + 82x 2 + + BkXk (6.7)

Then,

1 34(x)

'xi  1, 2, ... , k (6.8)

I and the optimal xi are proportional to Oi . Similarly

I exprassions involving coefficients of linear and quadraticIS
terms can be obtained if the Taylor's expansion of O(x)

does not contain third and higher order terms. The move

along the derivatives of the response function gives the

I steepest ascent approach to a maximum.

U
I
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For the sake of clarity of presentation, we assume

IjI
zero. Hence we represent OWCx as follows:

+* X + a 2
1 +2 6- 2x~x2  ~222

(6.9)1

Using the usual least squares theory, the regression

equations (6.9) can be estimated by at least six or mcre

points, since there are six unknowni constants. As a rule,

one would consider a complete 3x3 factorial experiment

Figure 31

0 >x

VOW*
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with nine points 
so as to provide estimates 

for the 23

J quadratic regression (6.9). However,oBox and Wilson pro-

vided a design, not of the factorial type which has five

points on the vertices of a pentagon and the sixth at the

origin. Such a design would give the estimates of the

coefficients in the regression model and hence about the

derivatives. These estimates then can be used to define

the path of steepest ascent.

Several designs such as fractional factorials have

-iso been used in response surface techniques and are

available in text books on design of exepriments, for

A example, see Kempthorne (1978) and Myers (1971) providing

a large number of new designs which are commonly applied

'j & in response surface methodology.

7. Optimal Design of Regression Experiments

aThe theory of optimal design of regression experi-

J ments is concerned with choosing the levels of the inde-

pendent variable x for the modelJy :1(lx)

so as to optimize a certain function of parameters to be

estimated in the model. We have given several optimality

. criteria as commonly used in optimal design theory in

..........
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Section 2. In simulation studies such criteria assume 2- .-

further importance since the design of a simulation may

require several replications in a given problem. There -

is an extensive literature on optimality of designs. For

a recent survey, see Federov (1972). Reviews of various

other aspects of optimal designs have been presented more

recently in the statistical literature. A review of

D-optimality for regression designs has been given by

St. John and Draper (1975) with an extensive bibliography.

A typical problem of optimal design theory is of the

following type.

Example:

Consider the simple linear regression model

j. Yi = e0 + lli + Ci' i = 1, 2,...,n (7.1)

We assume that the errors E. are uncorrelated and have

common variance a% Let

(y1 , y2  Yn)', 0 (o 0 1 (7.2)

and x 1 x I ] (7.3)

|x
4, Ii 2

ni
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Using the general linear model and results in Section 2,

I we find

S =X'X I(7.4)

and

S1 a 1x -x (7.5)

IyI
X'Y (7.6)

where

a (7.7)

"' he estimates are given by

6 (7.8)

and

Cov(;80 , ac) a 2 1x, (7.9)

I VC80  ac2 x (7.10)

*~~~ ~ 1 -.-. -
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Suppose V(01 ) is to be minimized to obtain optimal

x 's. That is, the optimization problem is to maximize

i ) 2 .  (7.12)

Assuming that x's are between -l and 1, the solution to

the above problem is that x's should be placed at -1 and 1,

half at each place to make (7.12) a maximum. For D-

optimality, we maximize the determinant of S. That is,

again we maximize

nI(xi-i). (7.13)

Hence the same answer obtains as in minimizing the variance

of 01,

Comparisons of Optimality Criteria

A. G-optimality (minimax optimality) was introduced by

1. Smith (1918) and was exploited by Kiefer and Wolfowitz

-; (1959). Wald (1943) used the criterion of D-optimality -

in some other context and was so named by Kiefer and

Wolfowitz (1959). One of the most important results in

optimal design theory is the equivalence and characteri-
.4

zations of G-optimality and D-optimality under various

conditions. This was established by Kiefer and Wolfowitz.

Recently such results have also been extended to non-

linear models by White (1973). Various computer algorithms

=mma
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to generate D-optimum designs are available in the

literature. Essentially the algorithm of Federov (1972),

requires the following steps:

1) Select any non-degenerate starting design,

2) Compute the dispersion matrix,

3) Find the point of maximum variance,

. 4) Add the point of maximum variance to

the design, with measure proportional to

its variance

5) Update the design measure.

For further details, the reader is referred to the

S !.exposition by St. John and Draper (1975).
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