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Optimizing MIMO Antenna Systems With Channel
Covariance Feedback

Steven H. Simon and Aris L. Moustakas, Member, IEEE

Abstract—In this paper, we consider a narrowband point-
to-point communication system with transmitters and
receivers. We assume the receiver has perfect knowledge of the
channel, while the transmitter has no channel knowledge. We
consider the case where the receiving antenna array has uncorre-
lated elements, while the elements of the transmitting array are
arbitrarily correlated. Focusing on the case where = 2, we
derive simple analytic expressions for the ergodic average and
the cumulative distribution function of the mutual information
for arbitrary input (transmission) signal covariance. We then
determine the ergodic and outage capacities and the associated
optimal input signal covariances. We thus show how a transmitter
with covariance knowledge should correlate its transmissions to
maximize throughput. These results allow us to derive an exact
condition (both necessary and sufficient) that determines when
beamforming is optimal for systems with arbitrary number of
transmitters and receivers.

Index Terms—Information rates, information theory, multi-
input–multi-output (MIMO) systems.

I. INTRODUCTION

T HE IDEA OF exploiting knowledge of channel covari-
ance in multi-input–multi-output (MIMO) systems was

proposed by Moustakaset al. [1], Sengupta and Mitra [2], and
also by Visotsky and Madhow [3], Jafar and Goldsmith [4], and
Narulaet al.[5] for the many-input–single-output (MISO) case.
It has been shown in these works that increases in throughput
can be obtained by appropriately exploiting this knowledge. A
very detailed analytic study of the MISO case has previously
been performed by the current authors [6]. In this paper, we
focus on the simplest MIMO situation—that of two transmitters
and many receivers two-input–many-output (TIMO)—where
exact results can again be obtained analytically. It will turn
out, however, that by studying this case in detail, we will also
be able to deduce some important results for the more general
case of arbitrary number of transmitters.

As with previous works [1], [6], we focus on how the mutual
information changes as we change the input signal covari-
ance (i.e., adapt the transmitter) to maximize the throughput.
Of course, the mutual information of a random channel in-
stantiation is also a random quantity and must be described
appropriately. In this paper, we consider two measures of the
typical mutual information for an ensemble of channels. One
such measure is the average mutual information (or “ergodic
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capacity” [7], [8]). Another useful measure is the “percent
outage,” which is defined to be the minimum mutual informa-
tion that occurs in all but percent of the instantiations of the
channel. (In other words, if we measure the mutual information
of the channel many times—in many instantiations of the
random channel—we would find that a mutual information
greater than the 5% outage would occur 95% of the time).
Typically, system design aims to optimize either the ergodic
average or some given outage. In this paper, we will aim to
determine the input signal covariance at the transmitter that
optimizes one of these quantities. In order to perform such an
optimization, one needs to be able to calculate the ergodic or
outage mutual information as a function of the input signal
covariance. This can be done, for example, by integrating over a
Gaussian channel with known, fixed nontrivial correlations. In
the past, this has been done typically by Monte Carlo methods
(see, for example, [3] and [4]). Given that the averaging over
the channel realizations is performed mostly numerically, the
optimization process has, in the past, been very tedious and
slow. Perhaps more importantly, the brute-force optimization
allows little room to obtain intuition on the performance of a
particular scheme.

An alternative approach, which we adopt in this paper for
TIMO systems, is toanalytically(or mostly analytically) calcu-
late the ergodic or the outage mutual information as a function
of the input signal covariance. One can then simply optimize
with respect to this covariance. Although this approach cannot
be easily applied for general statistics of the channel, we show
that for a particular case of interest, the problem is tractable.
Specifically, the case we will address in this paper is that of
a channel with zero mean and a fixed covariance—where the
channel has known nontrivial correlations at the transmitter and
trivial correlations at the receiver (a case also discussed by Jafar
[9]). This situation is likely to be quite representative of a re-
ceiving base station with well-spaced multiple antenna elements
(so that the correlations on the receiving end become trivial) and
a mobile with antenna elements that are spatially correlated due
to finite angle spread of incoming signals and/or close antenna
spacing [10]. The idea that the covariance at the transmitter end
of the channel would be known by the transmitter is quite real-
istic for many wireless systems where the channel is changing
rapidly, but correlations in the channel change at a slower pace.
(One could also easily imagine feeding back the covariance to
the transmitter to enable optimization of transmission and up-
dating the covariance only very occasionally.) Such a scheme is
qualitatively similar to closed-loop transmit diversity (CLTD)
[11], where only a few bits describing the channel are fed back
to the transmitter. Alternatively the transmitter could determine
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the covariance of the downlink channel through uplink channel
measurements.

For this simplified case where the covariance has the above
described simple form, the problem of calculating both ergodic
and outage capacities can be further reduced to evaluation of a
single integral of known functions. This analytic approach is far
simpler than Monte Carlo approaches, being that Monte Carlo
requires averaging over complex random variables (with

number of transmit antennas and number of receive
antennas). We note that in the limit of large numbers of antennas,
certain calculations (such as average mutual information or op-
timizing the covariance of transmissions) simplify substantially
[1], [2], [12]. The techniques used in such calculations are quite
different from those used here, and we will leave discussion of
those methods to a different paper.

In this paper, we will study the case of two transmitters and an
arbitrary number of receivers (TIMO) in detail. It will turn out,
however, that what we learn in this case will allow us to address
questions regarding optimality of beamforming in systems with
an arbitrary number of transmitters. The reason for this gener-
ality is essentially that beamforming amounts to using the full
antenna array as a single (directed) antenna. The optimality con-
dition for beamforming roughly requires that using the array as a
single effective transmit antenna should be better than using the
array as two effective transmitting antennas. It thus turns out that
understanding TIMO systems allows us to determine a beam-
forming optimality condition for more general MIMO systems
with an arbitrary number of receivers. As would be expected, at
high enough antenna cross correlation, beamforming is optimal.
The interpretation of this is clear. If one has very high antenna
correlation, then it is very difficult to send more than one in-
dependent signal, so beamforming is optimal. Whereas at low
antenna correlation the antennas are completely independent, it
is typically advantageous to send more than one data stream to
take advantage of the usual MIMO diversity gains. Similarly,
low signal strength always tends to favor beamforming since it
is already hard to decode a single data stream, and splitting the
stream into two streams just makes matters worse.

A. Outline and Summary of Contribution

We begin with some general definitions in Section I-B and C
applicable for general MIMO systems. As discussed above, in
this paper, we focus only on the case where there are no corre-
lations at the receiver antennas, but the transmitter antennas are
correlated. In other words, we assume the channel matrix has
zero mean, correlated rows, and uncorrelated columns—a rea-
sonable model for certain multiantenna wireless systems [9].

In Section II-A, we present a number of novel results
giving explicit analytic forms for the probability distribution
function, cumulative distribution function, and ergodic average
of the mutual information for a given transmission covariance
in TIMO systems (two transmitters, arbitrary numbers of
receivers). Prior work has obtained analytic expressions only
for the case of single-receive antennas [6]. Although one might
consider generalizing the method to more than two transmitters,
the algebra quickly becomes so horrible that it appears essen-
tially intractable. The tractability of TIMO case seems to be a

result of the simplicity of the expression for the determinant
of two-dimensional (2-D) matrices. We do not completely rule
out, however, the possibility that a very determined researcher
might extend the method to more complex cases.

In Section II-B, we discuss how to use these new analytic
expressions to optimize over transmission covariance to max-
imize capacities (both ergodic and outage). Detailed examples
of using these methods and interpretation of results are given in
Section III.

In Section II-C, we use the above analytic results to discuss
the question of whether beamforming is optimal or whether
sending multiple data streams is optimal in MIMO systems with
anarbitrary numberof transmit antennas (and also an arbitrary
number of receive antennas). In Section II-C1, we focus on opti-
mizing the ergodic capacity. For this case, we are able to present
a new, simple analytic condition for establishing whether beam-
forming is optimal. Specifically, our analytic result determines
for any given signal-to-noise level and any given antenna cor-
relation at the transmitter, whether beamforming is optimal or
whether multiple data streams should optimally be used. Prior
work in this field has obtained such an exact analytic result only
for the simpler case of one receive antenna [4], [6], [13]. For the
case of more than one receiver, bounds have been previously
established to give a range where the transition between beam-
forming and multiple data streams might occur [9]. However,
these bounds were not particularly tight. In the current work,
we have improved these results by determiningpreciselywhere
the transition occurs rather than just bounding the possible loca-
tions of the transition. In addition, our result is analytically just
as simple as the expressions previously derived for the bounds.
In addition, we derive an even simpler approximation to this an-
alytic condition, which is asymptotically exact for large num-
bers of receivers and seems to be numerically quite accurate for
more than one receiver. In Section II-C2, we look at optimality
of beamforming in the case where one is attempting to maximize
some outage capacity. For this situation, we derive a bound (a
necessary condition) for the transition, which we believe may be
tight (i.e., also sufficient) in many circumstances, but is known
not to be a tight result in certain cases.

Finally, in Section III, we return to the case of TIMO systems
(two transmitters) and present a number of results to demon-
strate more general applications of these methods. In Fig. 3, we
show a typical case of how the transmission with optimal covari-
ance improves capacity over either beamforming or fully inde-
pendent transmission. However, we also see that the gain over
the better of these two options is rather small (a few percent).
This result tends to be generic—one can always stay very close
to the optimal capacity (either outage or ergodic) by simply
switching from independent transmission to beamforming at the
appropriate antenna cross correlation. However, we will also see
that having the covariance feedback leads to substantial capacity
gains, which may be as high as a factor of two over an open-loop
scenario.

Finally, in Figs. 4–7, we show how the transmission covari-
ance should be optimized as a function of the number of receive
antennas, the SNR, and the antenna cross correlation. We show
results for optimizing both the ergodic capacity and the 10%
outage capacity.
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B. Definition of Channel

In the narrowband MIMO problem— transmitters and
receivers—the channel is defined by

(1)

where is the -dimensional complex vector of received sig-
nals, is the -dimensional complex vector of transmitted
signal, is the complex channel from theth transmitter to the

th receiver, and is the complex noise at theth receiver. We
will typically use the notation that roman indices repre-
sent the transmitter antennas and take values , whereas
Greek indices represent the receiver end and go from

. In the above channel equation, to make our normal-
izations easier, we have conveniently chosen to include a factor
of , where is the SNR per transmit antenna, which we
will define more precisely below. In this paper, boldface quan-
tities denote matrices or vectors (hopefully, usage will make
clear which one is which); so, for example, we can also write

.
We define a transmitted signal covariance matrix to be given

by , where means expectation value (or
temporal average), and is a 2-D non-negative definite her-
mitian matrix. Similarly, we define the noise to be an in-
dependent and identically distributed (i.i.d.) complex Gaussian
random vector. We have assumed that there are no notrivial
correlation between the received noises. Note, however, that in
Appendix A, the more general case of nontrivial correlations is
considered briefly.

In this paper, we assume that the channel matrixis
, i.e., a complex Gaussian random by

-dimensional matrix with zero mean and covariance matrix
. (Here, is an -dimensional hermitian matrix

representing antenna correlations at the transmitter end, and
1 is an -dimensional unit matrix representing trivial an-
tenna correlations at the receiver end.) By this, we mean that

, where is the Kronecker delta, and the
brackets represent an ensemble average over instantiations
of (frequently, this ensemble average is written as ). In
other words, the rows of the channel matrix are i.i.d., whereas
the columns are correlated (a case also discussed by Jafar [9],
[14]). One could have equivalently described this ensemble of
channels as , where is an by i.i.d. matrix.
In Appendix A, the more general case of nontrivial correlations
at the receiver are also considered briefly (i.e., where theis
replaced by a more general matrix or, equivalently, whereis
also multiplied on the right by a second matrix as well).

Since we have separated out a factor of (with the
signal-to-noise parameter) in the definition of the channel, we
can choose a normalization Tr Tr . We can
now more precisely define the signal-to-noise parameterto
be given as , where is the (i.i.d.) noise power at
each receive antenna, and is the signal power received at
each receive antennaunder conditions where (with 1
the -dimensional unit matrix here), i.e., for uncorrelated
transmissions. (For general transmission covariance, the
received signal power divided by the noise at each receive

antenna is Tr Tr ). This normalization is chosen so
that the total transmitted power stays fixed as the transmission
covariance is changed subject to the normalization constraint
Tr . We will frequently refer to the signal-to-noise
parameter as the “SNR per transmit antenna” even though
this is only precisely correct for . We will leave the
quotation marks around the phrase “SNR per transmit antenna”
to remind ourselves that this interpretation is not precise.

Finally, we note that we will also frequently use the notation
that are the eigenvalues of which are necessarily
non-negative since both and are non-negative definite.

C. Definitions of Quantities to Calculate

For a given instantiation of , if the receiver knows the
channel (which in practice is achieved by sending pilots), the
mutual information is given by

(2)

where is an -dimensional unit matrix. Throughout this
paper, we will measure information in nats/s/Hz, where 1 nat is
equal to bits ( ), i.e., the in this equation is
defined to be a natural log.

The probability distribution function PDF of the mutual
information in (2) over the ensemble of instantiations(with

fixed) can then be written as

PDF (3)

where again, the brackets represent an ensemble average over
realizations of with the Dirac delta function. Note that
the probability density function (PDF) is implicitly a function
of , , and , as well as . We will not usually make all of
these dependencies explicit.

In terms of the PDF, we can define the so-called ergodic av-
erage of the mutual information to be the average (mean) of
over the ensemble

PDF (4)

We also define the cumulative distribution function (CDF)

CDF PDF (5)

It is convenient to define an inverse function of this CDF,
which we will call the outage mutual information OUT. More
specifically, for a fixed and , we define OUT such
that

OUT (6)

when

CDF (7)

Since PDF , the inversion is unique. The meaning of
OUT is that there is a probability that in

any instantiation of from the ensemble, we will obtain a mu-
tual information less than . This is the usual definition of
outage (as we have already described it above). We note that the
50% outage is the median of the distribution.
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II. A NALYTIC RESULTS

A. TIMO Analytic Results

We begin by stating a number of results for the case where
there are two transmitters ( , i.e., TIMO systems) and an
arbitrary number of receivers . The transmission covariance
is , the channel covariance at the transmitter is, and we
use the notation that for , 2, are the eigenvalues of

. If one of the two eigenvalues of is zero, this
corresponds to a beamforming solution where one is using only
one effective “eigen”-antenna. Mathematically, this corresponds
to the divergence of either or . We note in passing that
one can take this limit analytically to recover the results (PDF,
CDF, and ergodic average) for one to transmission discussed
previously in [6]. Finally, we note that the analytic results stated
here have all been verified with Monte Carlo simulations.

1) PDF: In Appendix A, the PDF is found to be

PDF

(8)

With some algebraic effort, the contour integral can be inte-
grated analytically to yield

PDF

(9)

We note that this expression is in fact symmetric under inter-
change of and although this is not obvious from these ex-
pressions. Also, we could perform the integral of the first term
in brackets analytically, although we write in this form for sim-
plicity of notation.

2) Mean (Ergodic) Mutual Information:The mean mutual
information can be derived by integrating the PDF [as shown
in (4)]. Again, the calculation is complicated but is outlined in
Appendix A, yielding

(10)

where

(11)

Note that the symmetry betweenand is now explicit again.

The integral defining can be done analytically (simply
defining a new integration variable ), yielding

Ei

Ei (12)

with the incomplete gamma function
and Ei the exponential integral. [The relation
between the two expression in (12) is established by using suc-
cessive integrations by parts.] Although this form looks messy,
for small , the answer is quite simple. For example, for

, we have

Ei (13)

Ei
... (14)

3) CDF: Analogous expressions for the CDF can be derived
by directly integrating the PDF in the form of (8) to yield

CDF

(15)

Again this contour integral can also be done explicitly, resulting
in (16), shown at the bottom of the next page. Again, a symmetry
between and exists, although it is not apparent in this form.

B. Optimization Over

To reach the full information capacity of the communication
link, the transmitter has to optimize the transmitting signal co-
variance matrix . Of course, in the closed-loop case when the
transmitter has perfect channel knowledge, this is very straight-
forward (using so-called “waterpouring” on the eigenvalues of
the channel matrix ). However, the situation is more compli-
cated when the transmitter has only partial (statistical) channel
knowledge (i.e., the transmitter knows).

The transmitter may either choose to maximize the average
mutual information , yielding the ergodic capacity [7], or the
transmitter may choose to maximize the outage mutual infor-
mation for a fixed outage probability . As seen for the
MISO case [6], the resulting capacities and optimalmatrices
in these two cases can be quite different. This should be con-
trasted with the closed-loop case, where we obviously choose
the same ’s independent of whether we are maximizing er-
godic capacity or outage capacity.

In either case (outage capacity or ergodic capacity), it is suf-
ficient to optimize over the eigenvalues of in the basis of
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(i.e., and should be simultaneously diagonalizable). The
proof of this statement is given by Jafar [14] for the ergodic
capacity case. We give a similar proof in Appendix B general-
ized to apply to the case of outage capacity as well. We note
that in the TIMO case of two transmitters, optimization over
the 2-D matrix —either for maximizing ergodic or outage ca-
pacity—reduces to a trivial numerical optimization over a single
parameter (recall that the trace ofis fixed).

C. Optimality of Beamforming

We define beamforming to be the transmission of all of the
power through the maximum eigenvalue and corresponding
eigenvector of . (If the transmitter had full channel knowl-
edge, one would prefer to beamform using the maximum
eigenvalue and corresponding eigenvector of . However,
we assume the transmitter has only knowledge of the channel
covariance , which is more realistic since changes very
slowly compared to the channel itself and could, therefore, be
fed back to the transmitter much more easily.) Whenhas
more than one nonzero eigenvalue, we would like to know
when beamforming remains optimal for maximizing either the
ergodic average or some given outage capacity.

We write the eigenvalues of as and the eigenvalues of
as . As noted above, and are simultaneously diago-

nalizable so that we can work in a basis with both of these ma-
trices diagonal. Without loss of generality, we use a basis such
that . The beamforming mode is such
that , and all other ’s are zero. We note also that if

, then beamforming is never optimal, so we may as-
sume that . We will also assume although our
result can be trivially generalized for . For the beam-
forming solution to be optimal in maximizing the ergodic ca-
pacity , we must have decrease as is reduced, and any
other is increased to preserve the constraint . In
fact, it is easy to show that since , if it is not
advantageous to move some power from the strongest mode
to the next strongest mode, then it is also not advantageous
to move power to any of the weaker modes. Thus, the condition
for beamforming can be written as

(17)

where represents either the ergodic mutual informationor
an outage mutual information . An equivalent condition has
previously been derived by Visotsky [3] and Jafar [4], [9].

The above condition (17) requires us to think about the case
where only two ’s are nonzero ( is nonzero and to differen-
tiate with respect to , we need to consider small but nonzero
values of ). Since only two ’s are nonzero, the beamforming

criterion is equivalent to a TIMO problem. Since we know that
the optimal transmission covarianceis diagonal in the same
basis as , we can work in a basis whereand are both diag-
onal (which can be done without loss of generality by a simple
unitary transformation). Now if a given is zero, this means
that no power is transmitted from this “eigen”-transmitter, and
we can eliminate that transmitter from the problem. Thus, if only

and are nonzero, we have a TIMO problem. More specifi-
cally, examining (2) for the mutual information, again assuming

and are diagonal, when only and are nonzero, only
a 2 submatrix of the channel matrix can contribute to
the result. In fact, in that case the mutual information in (2) only
depends on a 2 submatrix of . If and are both diag-
onal, then this 2 matrix will be the tworows corresponding
to the and eigenvalues values of Thus, we can equiva-
lently write a 2 TIMO problem and obtain an analytic
condition for beamforming optimality by appropriately differ-
entiating our analytic expressions for TIMO capacities.

1) Ergodic Average Beamforming Optimality Condi-
tion: Since as a function of is convex ( )
over [0, 1] subject to and for
(as shown by Jafar in [4]), then (17) is in fact a necessary and
sufficient condition for beamforming to optimize the ergodic
mutual information .

We take the relevant derivatives (17) of the expression for
ergodic average (10) to yield (with a bit of algebra and some
integrations by parts) the beamforming optimality condition

(18)

with the incomplete gamma function and the SNR.
When (18) is not satisfied, beamforming is no longer optimal.
For the case of our result agrees with the result previ-
ously derived in [4], [6], and [13] in studies of the MISO system.
For the more general case of arbitrary numbers of receivers,
prior work in [9] has only been able to obtain two separate con-
ditions for bounding the location of the optimality boundary.
The bounds, however, were not particularly tight. Here, we have
been able to derive a condition which gives theexactlocation of
the boundary (being a both necessary and sufficient condition)
which applies to systems with arbitrary numbers of transmitters
and receivers [the only restriction being that the channel statis-
tics are of the form ].

We note that by using different methods [1], [2], [12], a sim-
pler approximate form of (18) can be derived

(19)

CDF

(16)
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Fig. 1. Beamforming optimality condition for maximizing the ergodic
capacity. The two axes represent�s and �s , where � = n p is the
signal-to-noise ands ands are the two largest eigenvalues of the transmitter
antenna array correlation matrix�. Each curve separates the region of
signal-to-noise ratio (SNR) below (and to the right of) which beamforming
is optimal forn receive antennas (n = 1 . . . 5). Note that the curves are
both a necessary and sufficient condition for beamforming optimality. The
solid curves are exact results (18), whereas the dotted curves are a simple
approximation (19).

which becomes rigorously valid in the limit of large numbers of
antennas.

In Fig. 1, we show the regions of parameters and for
which beamforming optimizes the ergodic capacity for

receivers where is the signal-to-noise param-
eter, and , are the two largest eigenvalues of the transmit an-
tenna array covariance matrix. The exact results (solid curves)
were calculated using (18). The region below (and to the right
of) each curve is where beamforming is optimal, whereas in the
region above (and to the left) beamforming is not optimal. We
have also shown in this figure approximate results (dotted) ob-
tained from the much simpler (19) which are extremely accurate
for and, for larger , become almost indistinguishable
from the exact results.

2) Outage Capacity Beamforming Optimality:We now turn
to the case of outage capacity. We can again use (17) here,
using the above analytic results for the outage capacity (CDF)
of TIMO systems. Taking the derivatives explicitly, one obtains
(with a bit of algebra) the beamforming condition

(20)

where again is the total signal-to-noise parameter (
being the signal-to-noise per antenna) and is the outage
capacity for beamforming. Explicitly, we can write

where is the CDF of the beamforming solution [6]

(21)

Equation (20) turns out to be necessary but not sufficient in gen-
eral. As shown in [6], the outage capacity can sometimes be a

Fig. 2. Beamforming necessary condition for 10% outage capacity. The axes
represent�s and�s , where� = pn is the signal-to-noise parameter and
s , s are the two largest eigenvalues of the transmit antenna array covariance
matrix �. Each curve separates the region of SNR below (and to the right
of) which the beamforming condition (20) is satisfied forn receive antennas
(n = 1 . . . 5). Again, we emphasize that although these curves formally
define a necessary, but not sufficient condition, over a large portion of the curves,
the condition is also sufficient and the difference between the necessary and
sufficient conditions are always numerically small.

nonconvex function (although the nonconvexity is typically very
slight). Thus, the optimal can jump discontinuously from a fi-
nite value to zero. We note, however, that in many cases, there is
no discontinuity in , and the derived analytic condition does
indeed define the optimality boundary. Furthermore, in all the
cases we have looked at numerically—even when such a discon-
tinuity exists—the above expression is not very different from
the actual beamforming optimality boundary (typical deviations
in the position of the boundary are on the order of a percent).
This is just the statement that the outage capacity is not “too”
nonconvex. We leave a detailed study of convexity (and deter-
mining when this necessary condition is also sufficient) to later
work. For the time being, since we do not address convexity in
any rigorous way here, the validity of (20) needs to be checked
explicitly in every case numerically.

In Fig. 2, we focus on the case of 10% outage, and we show
the regions of parameters and for which the beam-
forming condition (20) is satisfied for receivers,
where is the signal-to-noise parameter, and, are
the two largest eigenvalues of the transmit antenna array covari-
ance matrix . We emphasize again that although this condition
is formally necessary but not sufficient, it differs only a very
small amount (at most) from the sufficient condition. Note that
at high SNR, the curves for look very similar to the
above curves in Fig. 1 for the ergodic capacity. This is simply
the statement that the PDF is quite peaked so that the outage ca-
pacity and the ergodic capacity are not too different.

III. TIMO R ESULTS AND DISCUSSION

In this section, we focus on the case of transmitters
(TIMO).
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Fig. 3. Comparison of mutual information for different modes of transmission.
Here, we are considering the case of two transmitters and three receivers with
a signal-to-noise parameter “SNR/antenna”= p = 1. The abscissa is the
antenna cross-correlationx = (s �s )=2. Shown are curves for beamforming
(q = 2, q = 0), uncorrelated transmission (q = q = 1), and the full
capacity corresponding to the optimalvalues ofq , q . The solid curves are
ergodic (mean) capacities, whereas the dotted curves are 50% outage (median)
capacities.

In Fig. 3, we show an example of calculated mutual infor-
mation as a function of the transmit antenna cross correlation

. (Antenna elements that are either very closely
spaced or are receiving incoming waves from only a very narrow
range of angles might be expected to have a large cross corre-
lation.) Here, we have shown curves for three types of trans-
mission covariance: beamforming ( and ), in-
dependent transmission ( ), and optimal transmis-
sion covariance (optimized and subject to ).
Fig. 3 corresponds to receive antennas ( ) with a
signal-to-noise parameter of “SNR/transmit antenna” 1.
We have shown both the ergodic (mean) capacity (solid) and the
50% outage (median) capacity (dotted). The fact that the median
and the mean are so similar indicates that the PDFs are roughly
symmetric. It is interesting to note that the optimized capacity is
nonmonotonic as a function of antenna cross correlation. This
is clearly because at high cross-correlation beamforming is very
effective, at low cross correlation, transmission of multiple data
streams is very effective, but for intermediate cross correlations,
both schemes are less effective.

It is clear from this figure that using beamforming at low
antenna cross correlation or using independent transmission at
high antenna cross correlation are both extremely inefficient.
Note that as one might expect, at higher antenna cross-corre-
lation, beamforming is favored and becomes optimal at a cross
correlation of roughly 0.78 for this particular case. Furthermore,
we see that using the optimal transmission covariance allows
more capacity than either beamforming or independent trans-
mission for intermediate cross correlations. However, it is also
clear that switching from beamforming to independent trans-
mission at an appropriate antenna cross correlation can come
reasonably close to (within 5% of) the full capacity. This turns

out to be generically true for any TIMO system we have exam-
ined: For any number of receivers and any signal-to-noise level
and for either ergodic capacity or outage capacity maximization,
we have found that either beamforming or fully independent
transmission ( ) is always within roughly 5% of the max-
imum capacity that can be obtained with optimized transmission
covariance (optimizing ). Thus, having a system that can only
beamform or use fully independent transmission is always close
to optimal. However, one must correctly choose when beam-
forming is better and when independent transmission is better.
Were one to mistakenly choose beamforming at low antenna
correlation at high SNR and with high number of receivers, one
may fall short of the optimal capacity by up to 50% (in Fig. 3, the
penalty is roughly 25%, but it increases as the signal strength in-
creases). Similarly, incorrectly choosing independent transmis-
sion at high antenna correlation and low signal-to-noise could
also cost roughly a factor of two (in Fig. 3, the penalty is again
roughly 25%, but increases strongly at lower signal strength).
The situation can be even more extreme when optimizing outage
capacity for low outages (for example 10% outage), where the
penalty for incorrectly choosing beamforming can be even more
than a factor of two. This makes sense since beamforming is
very susceptible to fading compared with independent trans-
mission. Thus, it is clear that having covariance feedback of
this sort can be quite advantageous, even if one is not fully op-
timizing, but rather just choosing between independent trans-
mission and beamforming. We note that employing independent
transmission does not require channel covariance knowledge at
the transmitter. Indeed, in absence of transmission covariance
knowledge (open loop), independent transmission is the optimal
strategy. Thus, particularly at low signal strength, feeding back
the channel covariance () can result in substantial gains over
open loop (up to factors of two or more at low enough signal
strength or high antenna cross correlation) as it allows one to
use beamforming when the there is high antenna cross correla-
tion.

In Figs. 4 and 5, we focus on the transmission correlation
that maximizes the ergodic capacity. In both figures, we plot the
optimal (fraction of power to the nonbeamforming mode),
where corresponds to independent transmission and

corresponds to beamforming. As can be seen quite
clearly from these figures, adding additional receive antennas
( ) is quite similar to increasing the overall signal-to-
noise, as one might expect. Note in particular the similarities
between the curves in Fig. 3 with receive antennas with
signal-to-noise parameter , 2, 3, 4 to the curves in Fig. 3
for with , 3, 4, 5 receive antennas. In both of these
figures, it is clear that high antenna cross correlation

and low effective SNR (low or ) favors beamforming.
This trend makes sense, as high antenna cross correlation makes
transmission of independent data streams difficult.(Indeed, if
the cross correlation were unity, then it would be impossible to
transmit two independent data streams.) At such high antenna
cross correlations, only at very high signal strengths does one
want to “pour water” into the second, much weaker, eigen-an-
tenna. Conversely, at low antenna cross correlation and high
signal strength, one would like to make use of both transmis-
sion modes to get the full MIMO capacity enhancement so that
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Fig. 4. Optimal power to nonbeamforming modeq with two transmit
antennas andn receive antennas, as a function of the antenna cross-correlation
x = (s � s )=2 of the transmit antennas. Here, we optimizeq to maximize
the ergodic average. In this figure, we fix the signal-to-noise parameter
“SNR/transmit antenna”= p = 1. Here,q = 0 corresponds to beamforming,
andq = 1 corresponds to power being equally distributed between each of the
two transmission eigenmodes. With increasing receive diversity, beamforming
becomes optimal at much higher antenna cross correlation.

Fig. 5. Optimal power to nonbeamforming modeq with two transmit
antennas and two receive antennas, as a function of the antenna cross-correlation
x = (s � s )=2 of the transmit antennas. Here, the optimization ofq is
to maximize the ergodic capacity. In this figure, we fix the various curves to
correspond to different signal-to-noise parameters “SNR/transmit antenna”
= p = 0:1, 0.5, 1, 2, 3, 4, and 10. Again,q = 0 corresponds to beamforming,
and q = 1 corresponds to power being equally distributed between each
of the two transmission eigenmodes. With increasing receive signal-to-noise,
beamforming becomes optimal only at a much higher antenna cross correlation.

independent transmission is greatly favored. These trends are
similar to those previously obtained in the MISO case [6].

In Figs. 6 and 7, we focus on the transmission correlation that
maximizes the 10% outage capacity. These plots are analogous
to Figs. 4 and 5 only, and it is the 10% outage we are maxi-
mizing rather than the ergodic (mean) capacity. For high receive
antenna number, it is clear that the optimization of 10% outage
is quite similar to optimizing the ergodic capacity. This is a re-
flection of the fact that the PDF becomes very peaked. However,

Fig. 6. Optimal power to nonbeamforming modeq with two transmit
antennas andn receive antennas, as a function of the antenna cross-correlation
x = (s � s )=2 of the transmit antennas. Here, the optimizationis to
maximize the 10% outage capacity. In this figure, we fix the signal-to-noise
parameter “SNR/transmit antenna”= p = 1. Here,q = 0 corresponds to
beamforming, andq = 1 corresponds to power being equally distributed
between each of the two transmission eigenmodes.

Fig. 7. Optimal power to nonbeamforming modeq with two transmit
antennas and two receive antennas, as a function of the antenna cross-correlation
x = (s �s )=2of the transmit antennas. Here, the optimization is to maximize
the 10% outage capacity. In this figure, the various curves correspond to
different signal-to-noise parameters “SNR/transmit antenna”= p = 0:1,
0.5, 1, 2, 3, 4, and 10. Again,q = 0 corresponds to beamforming and
q = 1 corresponds to power being equally distributed between each of
the two transmission eigenmodes. With increasing receive signal-to-noise,
beamforming becomes optimal at higher antenna cross correlation.

for low receive antenna number—due to the relatively wider dis-
tribution of mutual informations—the optimizations yield sub-
stantially different results.

We note in passing that in all of the curves plotted in Figs. 6
and 7, the beamforming condition (20) above does indeed pre-
cisely define the optimality boundary [i.e., in these cases (20) is
both necessary and sufficient].

One interesting feature that appears in Fig. 6 is the nonmono-
tonicity as a function of . (Similar nonmonotonicity is ob-
served in Fig. 2 at low signal strength.) We understand this as
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follows. With low numbers of receive antennas ( ), the
system is highly susceptible to fades, so beamforming is ex-
tremely disfavored. This is more true for the case of outage ca-
pacity than for ergodic capacity since the PDF is very broad, and
the fades can make the 10% outage very low. As we increase the
number of antennas, the susceptibility to these fades drops, and
beamforming is more favored. Further, averaging over the re-
ceivers makes the PDF more narrow, and optimizing the outage
becomes the same as optimizing the ergodic capacity. Then, we
have a similar trend as with the ergodic case where beamforming
becomes less favored again as we go to higher numbers of re-
ceivers. In essence, the nonmonotonicity stems from change in
the breadth of the PDF which is crucial for determining outage
capacities but is irrelevant for ergodic capacities.

IV. SUMMARY

In this paper, we have shown how to analytically calculate
outages and ergodic averages of the mutual information of
TIMO systems (two transmitting and receiving antennas) as
a function of the transmission covariance, thus enabling us
to determine which maximizes the mutual information. We
have considered cases where the channel is described generally
as being , i.e., having mean 0 and covariance

with respect to the transmitter and trivial correlations at
the receiver. This case represents realistic situations where
only partial channel information is fed back to the transmitter.
While the channel itself may change quickly, the covariance
may change much more slowly, thus allowing adaptation of
the transmitter to the slowly varying properties of the channel.
Using these TIMO results, we have also derived conditions for
the optimality of beamforming applicable to MIMO systems
with covariance feedback with arbitrary numbers of transmit-
ters and receivers.

APPENDIX A
DETAILS OF CALCULATIONS

For a TIMO system with two transmitters andreceivers, the
ensemble of 2 channel matrices is defined by

(22)

with representing the correlations at the tranmitting antennas
and representing the correlations at the receiving antennas. It
is perhaps simplest conceptually to write with

and i.i.d. matrix (i.e., ) such that (22) is
satisfied. The expectation of an arbitrary operatorcan then be
written explicitly as

(23)

where the integration measure is defined by

Re Im Tr (24)

which correctly defines as an i.i.d. matrix.

We write the mutual information as
, where is a fixed 2 2 matrix (representing the

covariance of transmission), andis a fixed by matrix (rep-
resenting the covariance of the noises at the different receivers).
We then rewrite this in terms of as
with and . We thus have

PDF (25)

(26)

(27)

It is convenient to rewrite the 2 2 determinant in terms of its
four elements as

(28)

The subscripts here indicate an element of the 22 matrix.
The 11 and 22 terms on the first line are real. The first term in
parentheses on the second line is real, whereas the second term
in parentheses is imaginary. We can then write

PDF

(29)

To see that this is the same as (27), one can perform the integral
over , , and explicitly to leave only the first delta func-
tion remaining. Inside that delta function, one would then have
the determinant written in the form of (28).

Using the Fourier representation of the delta function
yields (30) and (31), shown at the bottom of the

next page, where is the matrix

(32)

We now aim to integrate out. It is well-known that Gaussian
integrals of this sort can always be done trivially. In our case,
we have

Tr Re

Im Tr

(33)
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where the outer product is defined as follows: Since
is a 2-D matrix (with indices ) and is

an -dimensional matrix (with indices ),
then is a 2 -dimensional matrix with indices

. The elements of
are given by .

Thus, we can integrate out to obtain (34), shown at the
bottom of the page. It is trivial to integrate out and , shown
in (35), at the bottom of the page. Here, we have also used the
fact that to move around factors of

and in rewriting the determinant.
Let us define the eigenvalues of to be which all must

be non-negative (these are also the eigenvalues of ).
Let us also work in a basis whereis diagonal with (again non-
negative) eigenvalues and (these are also the eigenvalues
of ). We can then can write the determinants as

(36)

(37)

We then notice that and only ever occur in the combination
. Thus, we define so we have (dropping the

index 1 from the remaining and for notational simplicity)

PDF

(38)

We next aim to integrate out. We note that all of the poles are
in the upper half plane. Thus, the integration restricts .
Very generally, we can perform this contour integral to obtain
(assuming all of the eigenvalues to be different for now) in
(39), shown at the bottom of the next page. Note that a similarly
general expression for the cumulative distribution function can
be found at this point by analytically integrating this with re-
spect to . Another thing to note about this expression is that
(although it is not obvious) it must be symmetric under inter-
change of and . In general, the integral overcan be per-
formed analytically. For example, for the general case of 22
transmission, we obtain

PDF

(40)

PDF

(30)

Tr

(31)

PDF

(34)

PDF

(35)
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where Ei , and represents the
first term in brackets with and interchanged. Unfortunately,
this expression is not easily simplified further. For this reason,
we limit our attention to the case where there are trivial corre-
lations at the receiver end; in other words, we consider the case
where (and, hence, ) is proportional to the unit matrix. In
this case, all of the’s are the same (it is then convenient to ab-
sorb one factor of into each ). The contour integral over
then isolates a singleth-order pole yielding (41), shown at the
bottom of the page. The integration overis now trivially done
to yield (8).

To obtain the ergodic average capacity, one starts with the
form of the PDF in (8) and integrate explicitly as prescribed in
(4) to yield

Ei
(42)

with Ei exponential integral function which we then rewrite
using the identity

Ei (43)

The contour is closed in the lower half plane and the result is
simplified to give (10).

APPENDIX B
OPTIMAL IS DIAGONAL

We show that that the that maximizes the capacity (either
outage or ergodic) is diagonal. We will need to use the fact that
the capacity (outage or ergodic) is only a function of the eigen-
values of and that the capacity is a monotonic increasing
function of the signal-to-noise parameter. We will proceed by
considering an arbitrary with off-diagonal components and
explicitly constructing a diagonal with greater or equal ca-
pacity (both ’s must satisfy the trace condition Tr ).

We work in a basis where is diagonal with eigenvalues
without loss of generality. We construct

the matrix and make a unitary transformation such that we
write it as with an appropriate diagonalizing
unitary matrix and the diagonal matrix of eigenvalues. By
choosing appropriately, we can arrange such that the elements
of are ordered as . We now construct a
new matrix . (If has zero eigenvalues, we define
the corresponding elements of to be also zero.) The matrix

is explicitly constructed such that the eigenvalues of are
exactly the same as the eigenvalues of . Thus, transmission
with covariance has precisely the same capacity as trans-
mission with covariance . However, we can also show (see
the Lemma below) that Tr Tr . This inequality means
that the power transmitted with is lower than that transmitted
with . Thus, we can bring the power up to the original strength
by constructing Tr Tr , effectively increasing
the signal strength parameter. This new matrix is thus diag-
onal, has the same trace as, and, since we have now increased
the power, must have more capacity than. Thus, we conclude
that the optimal is always diagonal.

Lemma: Tr Tr or equivalently Tr
Tr .

Consider two sets of numbers and .
Construct a sum of products such that each number is
used in exactly one product. As shown by Jafar [9], the per-
mutation which minimizes the sum is such that the largest
is paired with the smallest, the second largest is paired
with the second smallest, and so forth, Thus, of all possible
pairings of the eigenvalues and , the one constructed by
Tr yields the minimal value in its sum. In other words,
if we permute the order of the eigenvalues ofor so that
they are not in increasing order, we will obtain a larger trace.
We can state this mathematically by considering permutation
matrices with the property that all elements are either zero
or one and that there is exactly one nonzero element in any row
or any column, and we have Tr Tr for any
such permutation matrix . We now have

Tr (44)

PDF

(39)

PDF

(41)
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We now claim (see below for the proof) that we can make the
following decomposition:

(45)

where each is a permutation matrix, each and
. Thus, we have

Tr Tr

Tr Tr (46)

proving the Lemma.
Proof of Claim: We will explicitly construct the desired

decomposition. (Note that the decomposition is not unique in
general.) For simplicity of notation, write . All
elements of are non-negative definite. Sinceis unitary, we
have for any , and similarly, for any .
Find the smallest nonzero element of , let us call this .
Assume there are elements of that are nonzero with

(the sum conditions require there to be at least one
nonzero element per row and one nonzero element per column).
Choose any of the permutation matrices which have a 1 in the

, slot and have a zero in any of the slots whereis already
zero (it is guaranteed that we can do this since there is at least
one nonzero element per row and per column). Call the chosen
permutation matrix . Now, construct ,
where . We still have all of the elements of being
non-negative (since we have subtracted the magnitude of the
smallest nonzero element, and we have not subtracted anything
from any of the zero elements). Now, we have
for any , and similarly, for any . If the
resulting is zero (i.e., if is zero), then we are done,
and we have completely decomposed the matrix. Otherwise,
we repeat the process: Find the smallest nonzero element of,
call it , and choose a permutation matrix with 1 in
the , slot and zeros any place that is already zero. Now,
construct with and so forth until
we have fully decomposed (it is obvious that this process
ends in no more than steps). Thus, we have proved the
claim.
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