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Optimizing MIMO Antenna Systems With Channel
Covariance Feedback

Steven H. Simon and Aris L. Moustakddember, IEEE

Abstract—In this paper, we consider a narrowband point- capacity” [7], [8]). Another useful measure is the percent
to-point communication system with nr transmitters and nr  outage,” which is defined to be the minimum mutual informa-
receivers. We assume the receiver has perfect knowledge of theyion that occurs in all but percent of the instantiations of the

channel, while the transmitter has no channel knowledge. We h L (In oth ds. if th tal inf f
consider the case where the receiving antenna array has uncorre- channel. (In other words, if we measure the mutual information

lated elements, while the elements of the transmitting array are Of the channel many times—in many instantiations of the
arbitrarily correlated. Focusing on the case whereny = 2, we random channel—we would find that a mutual information

derive simple analytic expressions for the ergodic average and greater than the 5% outage would occur 95% of the time).
the cumulative distribution function of the mutual information Typically, system design aims to optimize either the ergodic

for arbitrary input (transmission) signal covariance. We then . t In thi il aim t
determine the ergodic and outage capacities and the associated@Verage or some given outage. In this paper, we will aim to

optimal input signal covariances. We thus show how a transmitter determine the input signal covariance at the transmitter that
with covariance knowledge should correlate its transmissions to optimizes one of these quantities. In order to perform such an
maximize throughput. These results allow us to derive an exact optimization, one needs to be able to calculate the ergodic or
condition (both necessary and sufficient) that determines when ;1546 mutual information as a function of the input signal
beamforming is optimal for systems with arbitrary number of : . . .
transmitters and receivers. covariance. This can_be done, fo_r example,_ py |ntegrat|r_19 overa
Gaussian channel with known, fixed nontrivial correlations. In
the past, this has been done typically by Monte Carlo methods
(see, for example, [3] and [4]). Given that the averaging over
the channel realizations is performed mostly numerically, the
. INTRODUCTION optimization process has, in the past, been very tedious and

HE IDEA OF exploiting knowledge of channel covari-Slow. Perhaps more importantly, the brute-force optimization
ance in multi-input—multi-output (MIMO) systems wasallows little room to obtain intuition on the performance of a
proposed by Moustakaet al. [1], Sengupta and Mitra [2], and Particular scheme.
also by Visotsky and Madhow [3], Jafar and Goldsmith [4], and An alternative approach, which we adopt in this paper for
Narulaet al.[5] for the many-input-single-output (MISO) caseTIMO systems, is t@analytically (or mostly analytically) calcu-
It has been shown in these works that increases in throughfaue the ergodic or the outage mutual information as a function
can be obtained by appropriately exploiting this knowledge. éf the input signal covariance. One can then simply optimize
very detailed analytic study of the MISO case has previoushith respect to this covariance. Although this approach cannot
been performed by the current authors [6]. In this paper, vbe easily applied for general statistics of the channel, we show
focus on the simplest MIMO situation—that of two transmitterthat for a particular case of interest, the problem is tractable.
and many receivers two-input—-many-output (TIMO)—wher8pecifically, the case we will address in this paper is that of
exact results can again be obtained analytically. It will tura channel with zero mean and a fixed covariance—where the
out, however, that by studying this case in detail, we will alschannel has known nontrivial correlations at the transmitter and
be able to deduce some important results for the more gendriadal correlations at the receiver (a case also discussed by Jafar
case of arbitrary number of transmitters. [9]). This situation is likely to be quite representative of a re-
As with previous works [1], [6], we focus on how the mutuateiving base station with well-spaced multiple antenna elements
information changes as we change the input signal cova($o thatthe correlations on the receiving end become trivial) and
ance (i.e., adapt the transmitter) to maximize the throughpatmobile with antenna elements that are spatially correlated due
Of course, the mutual information of a random channel ine finite angle spread of incoming signals and/or close antenna
stantiation is also a random quantity and must be describguhcing [10]. The idea that the covariance at the transmitter end
appropriately. In this paper, we consider two measures of tbkthe channel would be known by the transmitter is quite real-
typical mutual information for an ensemble of channels. Oristic for many wireless systems where the channel is changing
such measure is the average mutual information (or “ergodgpidly, but correlations in the channel change at a slower pace.
(One could also easily imagine feeding back the covariance to
Manuscript received April 30, 2002; revised November 26, 2002. the transmitter to enable optimization of transmission and up-
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the covariance of the downlink channel through uplink channedsult of the simplicity of the expression for the determinant
measurements. of two-dimensional (2-D) matrices. We do not completely rule
For this simplified case where the covariance has the abawat, however, the possibility that a very determined researcher
described simple form, the problem of calculating both ergodigight extend the method to more complex cases.
and outage capacities can be further reduced to evaluation of &n Section 1I-B, we discuss how to use these new analytic
single integral of known functions. This analytic approach is faxpressions to optimize over transmission covariance to max-
simpler than Monte Carlo approaches, being that Monte Caifoize capacities (both ergodic and outage). Detailed examples
requires averaging overnr complex random variables (with of using these methods and interpretation of results are given in
nr = number of transmit antennas amg = number of receive Section Ill.
antennas). We note that in the limit of large numbers of antennas|n Section II-C, we use the above analytic results to discuss
certain calculations (such as average mutual information or dpe question of whether beamforming is optimal or whether
timizing the covariance of transmissions) simplify substantiallgending multiple data streams is optimal in MIMO systems with
[1], [2], [12]. The techniques used in such calculations are qui@@ arbitrary numberof transmit antennas (and also an arbitrary
different from those used here, and we will leave discussion @#mber of receive antennas). In Section II-C1, we focus on opti-
those methods to a different paper. mizing the ergodic capacity. For this case, we are able to present
In this paper, we will study the case of two transmitters and &{1€W, simple analytic condition for establishing whether beam-
arbitrary number of receivers (TIMO) in detail. It will turn out,forming is optimal. Specifically, our analytic result determines
however, that what we learn in this case will allow us to addref any given signal-to-noise level and any given antenna cor-
questions regarding optimality of beamforming in systems wifl§/ation at the transmitter, whether beamforming is optimal or
an arbitrary number of transmitters. The reason for this gen¥f€ther multiple data streams should optimally be used. Prior
ality is essentially that beamforming amounts to using the forkin t.hIS field has obtained SL_Jch an exact analytic result only
antenna array as a single (directed) antenna. The optimality ng{_the simpler case of one receive antenna [4], [6], [13]. Fo_r the
dition for beamforming roughly requires that using the array asgse of more than one receiver, bounds have been previously

single effective transmit antenna should be better than using éabllshed to give a range where the transition between beam-

array as two effective transmitting antennas. It thus turns out th fming and multiple data st_reams ”?'ght occur [9]. However,
. : these bounds were not particularly tight. In the current work,
understanding TIMO systems allows us to determine a beam- . S
we have improved these results by determirpreciselywhere

I/Sirtrr?:r?a‘igtiltrrgilItr{ucrﬁgglr“c())fnr(f;()::air\?grrse %znﬁgilgﬂgggxsi?; r:ﬁhe transition occurs rather than just bounding the possible loca-
: y - - EXp . 'tions of the transition. In addition, our result is analytically just
high enough antenna cross correlation, beamforming is optim 'simple as the expressions previously derived for the bounds.

The interpretation of this is clear. If one has very high ame,”'l"r‘?addition, we derive an even simpler approximation to this an-

correlation, then it is very difficult to send more than one IN3ivtic condition, which is asymptotically exact for large num-

dependent signal, so beamforming is optimal. Whereas at Igf,q of receivers and seems to be numerically quite accurate for
antenna correlation the antennas are completely independen ife than one receiver. In Section 11-C2, we look at optimality
is typically advantageous to send more than one data streany{Beamforming in the case where one is attempting to maximize
take advantage of the usual MIMO diversity gains. Similarlyome outage capacity. For this situation, we derive a bound (a
low signal strength always tends to favor beamforming sincejgcessary condition) for the transition, which we believe may be

stream into two streams jUSt makes matters worse. not to be a t|ght result in certain cases.

Finally, in Section I, we return to the case of TIMO systems
(two transmitters) and present a number of results to demon-

We begin with some general definitions in Section I-B and €trate more general applications of these methods. In Fig. 3, we
applicable for general MIMO systems. As discussed above,show a typical case of how the transmission with optimal covari-
this paper, we focus only on the case where there are no coaree improves capacity over either beamforming or fully inde-
lations at the receiver antennas, but the transmitter antennaspaedent transmission. However, we also see that the gain over
correlated. In other words, we assume the channel matrix lihs better of these two options is rather small (a few percent).
zero mean, correlated rows, and uncorrelated columns—a r&his result tends to be generic—one can always stay very close
sonable model for certain multiantenna wireless systems [9]to the optimal capacity (either outage or ergodic) by simply

In Section 1I-A, we present a number of novel resultswitching fromindependenttransmission to beamforming at the
giving explicit analytic forms for the probability distribution appropriate antenna cross correlation. However, we will also see
function, cumulative distribution function, and ergodic averagbat having the covariance feedback leads to substantial capacity
of the mutual information for a given transmission covarianagains, which may be as high as a factor of two over an open-loop
in TIMO systems (two transmitters, arbitrary numbers afcenario.
receivers). Prior work has obtained analytic expressions onlyFinally, in Figs. 4—7, we show how the transmission covari-
for the case of single-receive antennas [6]. Although one migintice should be optimized as a function of the number of receive
consider generalizing the method to more than two transmitteasitennas, the SNR, and the antenna cross correlation. We show
the algebra quickly becomes so horrible that it appears essesults for optimizing both the ergodic capacity and the 10%
tially intractable. The tractability of TIMO case seems to be autage capacity.

A. Outline and Summary of Contribution
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B. Definition of Channel antenna i9Tr{QX}/Tr{X}). This normalization is chosen so
In the narrowband MIMO problem+- transmitters and » that the totalltransmitted power stays fixed as thg transmiss_ion
receivers—the channel is defined by covariancd) is changed subject to the normalization constraint
Tr{Q} = nr. We will frequently refer to the signal-to-noise
n parametem as the “SNR per transmit antenna” even though
Yo = \/EZ Goiti + T D) this is only precisely correct fo = 1. We will leave the
=1 guotation marks around the phrase “SNR per transmit antenna”
wherey,, is then g-dimensional Comp|ex vector of received SigIO remind ourselves that this interpretation is not precise.
nals, z; is the ny-dimensional complex vector of transmitted Finally, we note that we will also frequently use the notation
signal,G;., is the complex channel from tfith transmitter to the thata; are the eigenvalues ¢hQ3)~" which are necessarily
ath receiver, ang, is the complex noise at theth receiver. We Nnon-negative since bot) andX are non-negative definite.
will typically use the notation that roman indicgg, . . . repre-
sent the transmitter antennas and take valuesnr, whereas
Greek indicesy, 3, . .. represent the receiver end and go from For a given instantiation ofz, if the receiver knows the
1...ng. In the above channel equation, to make our normathannel (which in practice is achieved by sending pilots), the
izations easier, we have conveniently chosen to include a faatoutual information/((y, G); x) is given by
of \/p, wherep is the SNR per transmit antenna, which we
Will\{i_efine more precisely be?ow. In this paper, boldface quan- I((y,G);x) = logdet (1 + G'pQG) 2
tities denote matrices or vectors (hopefully, usage will makghere 1 is an ny-dimensional unit matrix. Throughout this
clear which one is which); so, for example, we can also writgaper, we will measure information in nats/s/Hz, where 1 nat is
y = \/ﬁGTX + 7. equal toe bits (e = 2.718...), i.e., thelog in this equation is
We define a transmitted signal covariance matrix to be givefefined to be a natural log.
by Qi; = E{zjz;}, whereE{-} means expectation value (or The probability distribution function PO#) of the mutual

temporal average), an@ is a 2-D non-negative definite her-information? in (2) over the ensemble of instantiatio@s(with
mitian matrix. Similarly, we define the noisg to be an in- Q fixed) can then be written as

dependent and identically distributed (i.i.d.) complex Gaussian ;
random vector. We have assumed that there are no notrivial PDHI) = (§ (I —logdet (1+ G'pQG))) 3)

correlati_on between the received noises. No_tt_e, however_, thawHere again, the brackefts represent an ensemble average over
Appe_ndlx A, the more general case of nontrivial correlations {3 5, ations ofG with 8() the Dirac delta function. Note that
considered briefly. the probability density function (PDF) is implicitly a function

In this paper, we assume that the channel maGixis ¢ q ) andx, as well asl. We will not usually make all of
N(0,¥ ® 1), i.e.,, a complex Gaussian randomy by these dependencies explicit.

nr-dimensional matrix with zero mean and covariance matrix |, terms of the PDF, we can define the so-called ergodic av-

¥ el (_Here, 3 is an nT-d|_menS|onaI hermltlz_;m matrix erage of the mutual information to be the average (mea) of

representing antenna correlations at the transmitter end, %%r the ensemble

1 is an ng-dimensional unit matrix representing trivial an- oo

tenna correlations at the receiver end.) By this, we mean that Iy = / dITPDKI). (4)

(Gr,Gjip) = Xijdap. Whered, g is the Kronecker delta, and the Jo

brackets(-) represent an ensemble average over instantiatioig also define the cumulative distribution function (CDF)

of G (frequently, this ensemble average is writterFgs}). In I

other words, the rows of the channel matrix are i.i.d., whereas CDF(I) = / dI'PDF(I") . (5)

the columns are correlated (a case also discussed by Jafar [9], J0o

[14]). One could have equivalently described this ensemble ofit is convenient to define an inverse function of this CDF,

channels a& = VXZ, whereZ is annr by ng i.i.d. matrix. which we will call the outage mutual information OUT. More

In Appendix A, the more general case of nontrivial correlationspecifically, for a fixedQ andX, we define OUTP,.) such

at the receiver are also considered briefly (i.e., wherédhds that

replaced by a more general matrix or, equivalently, wtkis

also multiplied on the right by a second matrix as well). Tou = OUT (Pout) (6)
Since we have separated out a factorgf (with p the when

signal-to-noise parameter) in the definition of the channel, we

can choose a qormallzgtlon{E} = Tr{Q} = nr. We can Pout = CDF(Iowt) . @)

now more precisely define the signal-to-noise parametter

be given ap = P/v, wherev is the (i.i.d.) noise power at Since PDEI) > 0, the inversion is unique. The meaning of

each receive antenna, atlis the signal power received atl,,; = OUT(P,y) is that there is a probability’,,; that in

each receive antennander conditions wher€) = 1 (with 1 any instantiation ofz from the ensemble, we will obtain a mu-

the np-dimensional unit matrix here), i.e., for uncorrelatedual information! less thanl,,,;. This is the usual definition of

transmissions. (For general transmission covaria@cethe outage (as we have already described it above). We note that the

received signal power divided by the noise at each recei®8% outage is the median of the distribution.

C. Definitions of Quantities to Calculate
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[I. ANALYTIC RESULTS The integral definingF,, can be done analytically (simply
A. TIMO Analytic Results defining a new integration variable= z + y), yielding
We begin by stating a number of results for the case where n-l (n — 1) (—y)iev ]
there are two transmittera{ = 2, i.e., TIMO systems) and an yFa(y) = Z M——l;j)!r(_J +1,9)
arbitrary number of receiversg. The transmission covariance i=0
is Q, the channel covariance at the transmitteEisand we =1+ (n — 1)ye”Ei[-y]
use the notation that; for i« = 1, 2, are the eigenvalues of (n—1)ly?
(pQX)~1L. If one of the two eigenvalues &Q is zero, this + Z (n—1—- )51 - 1)!
corresponds to a beamforming solution where one is using only j=2
one effective “eigen”-antenna. Mathematically, this corresponds o i1 L
to the divergence of either; or ay. We note in passing that < |eYEil—y] = Y (k= 1D!(—y)~ (12)
k=1

one can take this limit analytically to recover the results (PDF,
CDF, and ergodic average) for onetg transmission discussed,, it T(a,b) = foo
previously in [6]. Finally, we note that the analytic results stat
here have all been verified with Monte Carlo simulations.

1) PDF: In Appendix A, the PDF is found to be

e~tt*~1dt the incomplete gamma function
ethd E{b) = T'(0,—b) the exponential integral. [The relation
between the two expression in (12) is established by using suc-
cessive integrations by parts.] Although this form looks messy,
for smalln, the answer is quite simple. For example, fo=

r—1
PDF(I) = ¢! (—ia1az)" / / ("’7 - 1) 2,3,..., we have

yFaly] =1 + ye?Ei[-y] (13)
o {Lk ()~ 1)(12)} ® yFslyl =(1 +y) + (2y +°) e’Ei[—y]
(ng— 1) [k —i%]"" 7" [k — iaq] :

(14)

With some algebraic effort, the contour integral can be inte-

grated analytically to yield 3) CDF: Analogous expressions for the CDF can be derived

by directly integrating the PDF in the form of (8) to yield

Y —a,) R r—1
PDF(1) Z% CDF(I) = (—iaa2)" / / <:17 — 1)
. /E dre~(@=Da exp [Lk (e —z) — (z - 1)a2>}
: | - . 15)
: [eal(eII) _ (e )/ (ng — ! (k —i0%) [k — 221" 7" [k — daq]

in (16), shown at the bottom of the next page. Again, a symmetry

z betweeru; andas exists, although itis not apparentin this form.

nn=2 1 j Again this contour integral can also be done explicitly, resulting
)]

=0

We note that this expression is in fact symmetric under intes: Optimization OveQ
change of:; anda» although this is not obvious from these ex- . . . —

To reach the full information capacity of the communication
pressions. Also, we could perform the integral of the first term

link, the transmitter has to optimize the transmitting signal co-
in brackets analytically, although we write in this form for sim-

variance matrixQ. Of course, in the closed-loop case when the
plicity of notation.

2) Mean (Ergodic) Mutual Information:The mean mutual #L?\?,Sargtt(i;?nasS:ggﬁ;ghivnarlglrkgs:lv;ed%en :EE; V:r:zaslggéggft'
information(7) can be derived by integrating the PDF [as show 9 P 9 9

e channel matrixz). However, the situation is more compli-
in (4)]. Again, the calculation is complicated but is outlined in

cated when the transmitter has only partial (statistical) channel
Appendix A, yielding

knowledge (i.e., the transmitter kno&3.
/oo o= 1 4109\ "R The transmitter may either choose to maximize the average
1= (“ae2)
( )

— mutual information7), yielding the ergodic capacity [7], or the
transmitter may choose to maximize the outage mutual infor-
<(a1 +2) (a2 + x)ﬂ (10) mationl,, for afixed outage probability’, ... As seen for the
z MISO case [6], the resulting capacities and optiQanatrices
in these two cases can be quite different. This should be con-
trasted with the closed-loop case, where we obviously choose
1 [ e~ 71 the sameQ’s independent of whether we are maximizing er-
Faly) = " / ZW (11) godic capacity or outage capacity.
' ' In either case (outage capacity or ergodic capacity), it is suf-
Note that the symmetry betweenandas is now explicitagain. ficient to optimize over the eigenvalues Qfin the basis ot

ng —1)! T

-F,

nR

where
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(i.e., Q and X should be simultaneously diagonalizable). Theriterion is equivalent to a TIMO problem. Since we know that
proof of this statement is given by Jafar [14] for the ergodithe optimal transmission covarian€eis diagonal in the same
capacity case. We give a similar proof in Appendix B generdbasis a&, we can work in a basis whe@ andX are both diag-
ized to apply to the case of outage capacity as well. We nairal (which can be done without loss of generality by a simple
that in the TIMO case of two transmitters, optimization oveunitary transformation). Now if a givesq, is zero, this means
the 2-D matrixQ—either for maximizing ergodic or outage ca-that no power is transmitted from this “eigen”-transmitter, and
pacity—reduces to a trivial numerical optimization over a singl@e can eliminate that transmitter from the problem. Thus, if only

parameter (recall that the trace @fis fixed). q1 andg, are nonzero, we have a TIMO problem. More specifi-
o _ cally, examining (2) for the mutual information, again assuming
C. Optimality of Beamforming Q andX are diagonal, when only; andg, are nonzero, only

We define beamforming to be the transmission of all of the 2 X nr submatrix of the channel matri& can contribute to
power through the maximum eigenvalue and correspondifitg result. In fact, in that case the mutual information in (2) only
eigenvector ofe. (If the transmitter had full channel knowl- depends ona & np submatrix ofG. If Q andX are both diag-
edge, one would prefer to beamform using the maximugnal, then this Z nr matrix will be the tworows corresponding
eigenvalue and corresponding eigenvectoGad . However, to thes; ands, eigenvalues values af Thus, we can equiva-
we assume the transmitter has only knowledge of the chanlgitly write a 2x np TIMO problem and obtain an analytic
covarianceX, which is more realistic sinc& changes very condition for beamforming optimality by appropriately differ-
slowly compared to the channel itself and could, therefore, B8tiating our analytic expressions for TIMO capacities.
fed back to the transmitter much more easily.) Wirhas 1) Ergodic Aveage Beamforming Optimality Condi-
more than one nonzero eigenvalue, we would like to knotign: Since(I) as a function ofj, is convex §*(I)/dq3 < 0)
when beamforming remains optimal for maximizing either thever [0, 1] subject ta; + ¢2 = nr andg; = 0 for j > 2
ergodic average or some given outage capacity. (as shown by Jafar in [4]), then (17) is in fact a necessary and

We write the eigenvalues @) asg; and the eigenvalues of sufficient condition for beamforming to optimize the ergodic
> ass;. As noted aboveQ and X are simultaneously diago- mutual information(7).
nalizable so that we can work in a basis with both of these ma-We take the relevant derivatives (17) of the expression for
trices diagonal. Without loss of generality, we use a basis sugfgodic average (10) to yield (with a bit of algebra and some
thats; > sp > s3--- > s,,. The beamforming mode is suchintegrations by parts) the beamforming optimality condition
thatq; = np, and all otherg’s are zero. We note also that if 1 ng

_ N : i (_ _) (ps1)"" ps2 <— )
s1 = o, then beamforming is never optimal, so we may as T'(—ng, > — = (18)
sume thats; > s». We will also assume, > s3 although our Ps1 1+ ps2
result can be trivially generalized fep = s3. For the beam- with I' the incomplete gamma function apd= nrp the SNR.
forming solution to be optimal in maximizing the ergodic cawhen (18) is not satisfied, beamforming is no longer optimal.
pacity (7), we must havel) decrease ag is reduced, and any For the case ofiz = 1 our result agrees with the result previ-
otherg; is increased to preserve the constraintg; = nr. In ously derived in [4], [6], and [13] in studies of the MISO system.
fact, it is easy to show that sineg > s3 > ---, ifitis not For the more general case of arbitrary numbers of receivers,
advantageous to move some power from the strongest modeyrior work in [9] has only been able to obtain two separate con-
to the next strongest modg, then it is also not advantageousiitions for bounding the location of the optimality boundary.
to move power to any of the weaker modes. Thus, the conditifhe bounds, however, were not particularly tight. Here, we have

for beamforming can be written as been able to derive a condition which gives éxactiocation of
A the boundary (being a both necessary and sufficient condition)
[— - —} <0 (17)  which applies to systems with arbitrary numbers of transmitters
8(12 dql q1=n7,q;=0,j>2

and receivers [the only restriction being that the channel statis-
whereZ represents either the ergodic mutual informatignor  tics are of the formV (0, X ® 1)].
an outage mutual informatiafy,.. An equivalent condition has  We note that by using different methods [1], [2], [12], a Sim-
previously been derived by Visotsky [3] and Jafar [4], [9].  pler approximate form of (18) can be derived

The above condition (17) requires us to think about the case

) . . 2ps1
where only twog's are nonzerod; is nonzero and to differen- pss <
tiate with respect tg,, we need to consider small but nonzero 14+ (ng—1)ps1+ \/[(nR — 1) ps1 — 1° + 4ngps:
values ofgs). Since only twag's are nonzero, the beamforming (29)
CDF(I) _ agR /e.I dxe_(m_l),,,2 |:(£ _ 1)n,R—1 + (_1)nRe—H,1(91_m)
(nr =1y
. "e? 1 i .
+ (=1)mrthgmale —a)/a Z i [al (e' —2) (; - 1)} [1—(1—a)"= 7] (16)

7=0
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Beamforming Optimality Boundary for Ergodic Capacity Beamforming Condition for 10% Outage Capacity
10 T T T 10 T T T

Solid = Exact Condition
Dotted = Large N Approximation beamforming

not optimal
for ng =1

The Necessary Condition is Plotted

Note: In many cases, the necessary beamforming not
condition is also sufficient. In cases optimal for ng=1
where the two differ, they typically differ

by less than a few percent

beamforming
optimal
for ng =1

PSS =PN;s, PSS =pPn;s,

Fig. 1. Beamforming optimality condition for maximizing the ergodicFig. 2. Beamforming necessary condition for 10% outage capacity. The axes
capacity. The two axes represemt; and ps., wherep = nrp is the represenps; andpsz, wherep = pnr is the signal-to-noise parameter and
signal-to-noise and; ands. are the two largest eigenvalues of the transmittes, , s, are the two largest eigenvalues of the transmit antenna array covariance
antenna array correlation matriX. Each curve separates the region ofmatrix 3. Each curve separates the region of SNR below (and to the right
signal-to-noise ratio (SNR) below (and to the right of) which beamformingf) which the beamforming condition (20) is satisfied fox receive antennas

is optimal forn i receive antennas:z = 1...5). Note that the curves are (ny = 1...5). Again, we emphasize that although these curves formally
both a necessary and sufficient condition for beamforming optimality. Thaiefine a necessary, but not sufficient condition, over a large portion of the curves,
solid curves are exact results (18), whereas the dotted curves are a sintipdecondition is also sufficient and the difference between the necessary and
approximation (19). sufficient conditions are always numerically small.

which becomes rigorously valid in the limit of large numbers afionconvex function (although the nonconvexity is typically very

antennas. slight). Thus, the optimaj, can jump discontinuously from a fi-

In Fig. 1, we show the regions of parametgss andps» for  nite value to zero. We note, however, that in many cases, there is
which beamforming optimizes the ergodic capacity#igr = no discontinuity ingz, and the derived analytic condition does
1,...,5 receivers wherg = pnr is the signal-to-noise param-indeed define the optimality boundary. Furthermore, in all the

eter, andsq, s, are the two largest eigenvalues of the transmit anases we have looked at numerically—even when such a discon-
tenna array covariance matdx The exact results (solid curves)tinuity exists—the above expression is not very different from
were calculated using (18). The region below (and to the rigtite actual beamforming optimality boundary (typical deviations
of) each curve is where beamforming is optimal, whereas in threthe position of the boundary are on the order of a percent).
region above (and to the left) beamforming is not optimal. WEhis is just the statement that the outage capacity is not “too”
have also shown in this figure approximate results (dotted) oienconvex. We leave a detailed study of convexity (and deter-
tained from the much simpler (19) which are extremely accurat@ning when this necessary condition is also sufficient) to later
forng > 1 and, for largen g, become almost indistinguishablework. For the time being, since we do not address convexity in
from the exact results. any rigorous way here, the validity of (20) needs to be checked
2) Outage Capacity Beamforming Optimalitye now turn explicitly in every case numerically.
to the case of outage capacity. We can again use (17) herdn Fig. 2, we focus on the case of 10% outage, and we show
using the above analytic results for the outage capacity (CDiRe regions of parameteyss; and pss for which the beam-

of TIMO systems. Taking the derivatives explicitly, one obtain®rming condition (20) is satisfied forgr = 1, ..., 5 receivers,
(with a bit of algebra) the beamforming condition wherep = pnr is the signal-to-noise parameter, and s, are
the two largest eigenvalues of the transmit antenna array covari-
pso [I’“—R tnp— 1} <1 (20) ance matrix:. We emphasize again that although this condition
elout — 1 is formally necessary but not sufficient, it differs only a very

where agairp = nyp is the total signal-to-noise parametgr (small amount (at most) from the sufficient condition. Note that

being the signal-to-noise per antenna) dfig, is the outage &t Nigh SNR, the curves forz > 1 look very similar to the
capacity for beamforming. Explicitly, we can writg,,, — above curves in Fig. 1 for the ergodic capacity. This is simply

C(1,,) whereC' is the CDF of the beamforming solution [6] the statement that the PDF is quite peaked so that the outage ca-
out pacity and the ergodic capacity are not too different.
1 -1
o(I)= ——T (nm e—> . 1)
(n—1)! ps1 l1l. TIMO RESULTS AND DISCUSSION

Equation (20) turns out to be necessary but not sufficient in gen-n this section, we focus on the casergf = 2 transmitters
eral. As shown in [6], the outage capacity can sometimes b§TdMO).
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2 to 3 transmission ; p ="SNR/transmit antenna =1

25 ‘ : : T ‘ : : , out to be generically true for any TIMO system we have exam-
ined: For any number of receivers and any signal-to-noise level
and for either ergodic capacity or outage capacity maximization,
we have found that either beamforming or fully independent
| transmission@ = 1) is always within roughly 5% of the max-
e imum capacity that can be obtained with optimized transmission
covariance (optimizin@). Thus, having a system that can only
beamform or use fully independent transmission is always close
to optimal. However, one must correctly choose when beam-
forming is better and when independent transmission is better.
Were one to mistakenly choose beamforming at low antenna
1 correlation at high SNR and with high number of receivers, one
3 may fall short of the optimal capacity by up to 50% (in Fig. 3, the
Solid = Ergodic Average (Mean) \.1 penaltyis roughly 25%, but it increases as the signal strength in-
Dotted = 50% Outage (Median) \| creases). Similarly, incorrectly choosing independent transmis-
sion at high antenna correlation and low signal-to-noise could
also cost roughly a factor of two (in Fig. 3, the penalty is again
roughly 25%, but increases strongly at lower signal strength).
Fig.3. Comparison of mutual information for different modes of transmissior.N€ Situation can be even more extreme when optimizing outage
Here, we are considering the case of two transmitters and three receivers w,'@tpacity for low outages (for example 10% outage), where the
a signal-to-noise parameter "SNR/antenma’p = 1. The abscissa is the hanayty for incorrectly choosing beamforming can be even more
antenna cross-correlatian= (s; —s»)/2. Shown are curves for beamforming . . . .
(11 = 2, ¢. = 0), uncorrelated transmission:( = ¢» = 1), and the full than a factor of two. This makes sense since beamforming is
capacity corresponding to the optimalvaluesqef ¢». The solid curves are very susceptible to fading compared with independent trans-
ergodi_c‘ (mean) capacities, whereas the dotted curves are 50% outage (meqﬁ@;ion Thus, it is clear that having covariance feedback of
capacities. this sort can be quite advantageous, even if one is not fully op-
timizing, but rather just choosing between independent trans-
In Fig. 3, we show an example of calculated mutual infoimission and beamforming. We note that employing independent
mation as a function of the transmit antenna cross correlatifgansmission does not require channel covariance knowledge at
x = (51— s2)/2. (Antenna elements that are either very closelhe transmitter. Indeed, in absence of transmission covariance
spaced or are receiving incoming waves from only a very narraowledge (open loop), independent transmission is the optimal
range of angles might be expected to have a large cross cosigategy. Thus, particularly at low signal strength, feeding back
lation.) Here, we have shown curves for three types of trange channel covarianc&) can result in substantial gains over
mission covariance: beamforming:(= 2 andg: = 0), in- open loop (up to factors of two or more at low enough signal
dependent transmission; (= ¢ = 1), and optimal transmis- strength or high antenna cross correlation) as it allows one to
sion covariance (optimizegh andg» subjecttog; + g2 = 2). use beamforming when the there is high antenna cross correla-
Fig. 3 corresponds tog = 3 receive antennasi{ = 2) witha tion.
signal-to-noise parameter pf="SNR/transmit antenna* 1. In Figs. 4 and 5, we focus on the transmission correlation
We have shown both the ergodic (mean) capacity (solid) and thét maximizes the ergodic capacity. In both figures, we plot the
50% outage (median) capacity (dotted). The fact that the mediggtimal ¢, (fraction of power to the nonbeamforming mode),
and the mean are so similar indicates that the PDFs are roughlyereq, = 1 corresponds to independent transmission and
symmetric. Itis interesting to note that the optimized capacityigs = 0 corresponds to beamforming. As can be seen quite
nonmonotonic as a function of antenna cross correlation. Thigarly from these figures, adding additional receive antennas
is clearly because at high cross-correlation beamforming is very, > 2) is quite similar to increasing the overall signal-to-
effective, at low cross correlation, transmission of multiple datfise, as one might expect. Note in particular the similarities
streams is very effective, but for intermediate cross correlationgmtween the curves in Fig. 3 withg = 2 receive antennas with
both schemes are less effective. signal-to-noise parametgr= 1, 2, 3, 4 to the curves in Fig. 3
It is clear from this figure that using beamforming at lowor p = 1 withny = 2, 3, 4, 5 receive antennas. In both of these
antenna cross correlation or using independent transmissiofigires, it is clear that high antenna cross correlation (s; —
high antenna cross correlation are both extremely inefficient.)/2 and low effective SNR (low or n ) favors beamforming.
Note that as one might expect, at higher antenna cross-coitais trend makes sense, as high antenna cross correlation makes
lation, beamforming is favored and becomes optimal at a crasansmission of independent data streams difficult.(Indeed, if
correlation of roughly 0.78 for this particular case. Furthermorthe cross correlation were unity, then it would be impossible to
we see that using the optimal transmission covariance allowansmit two independent data streams.) At such high antenna
more capacity than either beamforming or independent tramsess correlations, only at very high signal strengths does one
mission for intermediate cross correlations. However, it is alsgant to “pour water” into the second, much weaker, eigen-an-
clear that switching from beamforming to independent trantenna. Conversely, at low antenna cross correlation and high
mission at an appropriate antenna cross correlation can cosignal strength, one would like to make use of both transmis-
reasonably close to (within 5% of) the full capacity. This turnsion modes to get the full MIMO capacity enhancement so that

Optimized Transmission
AT — e Covariance

,,,,,,,,,,,,,,,

22F

Beamforming
21

Independent
Transmission

Nats per Second per Hertz

L L L | . . L | .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 4. Optimal power to nonbeamforming mode with two transmit
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Fig. 6. Optimal power to nonbeamforming mode with two transmit

antennas and r receive antennas, as a function of the antenna cross-correlatamennas and receive antennas, as a function of the antenna cross-correlation
x = (s; — $2)/2 of the transmit antennas. Here, we optimjzeto maximize « = (s1 — $3)/2 of the transmit antennas. Here, the optimizationis to
the ergodic average. In this figure, we fix the signal-to-noise paramet@aximize the 10% outage capacity. In this figure, we fix the signal-to-noise
“SNR/transmit antenna2 p = 1. Here,q. = 0 corresponds to beamforming, parameter “SNR/transmit antenn&” p = 1. Here,q» = 0 corresponds to
andg, = 1 corresponds to power being equally distributed between each of theamforming, and;. = 1 corresponds to power being equally distributed

two transmission eigenmodes. With increasing receive diversity, beamformipetween each of the two transmission eigenmodes.
becomes optimal at much higher antenna cross correlation.
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Fig. 7. Optimal power to nonbeamforming mode with two transmit

Fig. 5. Optimal power to nonbeamforming mode with two transmit antennasand two receive antennas, as a function of the antenna cross-correlation
antennas and two receive antennas, as a function of the antenna cross-correlatiar(s1 —s2)/2 of the transmit antennas. Here, the optimization is to maximize
x = (s1 — s2)/2 of the transmit antennas. Here, the optimization;ofis  the 10% outage capacity. In this figure, the various curves correspond to
to maximize the ergodic capacity. In this figure, we fix the various curves @fferent signal-to-noise parameters “SNR/transmit antenna’p = 0.1,
correspond to different signal-to-noise parameters “SNR/transmit antenfs®. 1, 2, 3, 4, and 10. Againg, = 0 corresponds to beamforming and
=p=0.1,05,1,2,3,4,and 10. Agaig, = 0 corresponds to beamforming, ¢2 = 1 corresponds to power being equally distributed between each of
andg. = 1 corresponds to power being equally distributed between ealite two transmission eigenmodes. With increasing receive signal-to-noise,
of the two transmission eigenmodes. With increasing receive signal-to-noiggéamforming becomes optimal at higher antenna cross correlation.
beamforming becomes optimal only at a much higher antenna cross correlation.

for low receive antenna number—due to the relatively wider dis-
independent transmission is greatly favored. These trends @ifeution of mutual informations—the optimizations yield sub-
similar to those previously obtained in the MISO case [6].  stantially different results.

In Figs. 6 and 7, we focus on the transmission correlation thatWe note in passing that in all of the curves plotted in Figs. 6
maximizes the 10% outage capacity. These plots are analogand 7, the beamforming condition (20) above does indeed pre-
to Figs. 4 and 5 only, and it is the 10% outage we are maxiisely define the optimality boundary [i.e., in these cases (20) is
mizing rather than the ergodic (mean) capacity. For high receibeth necessary and sufficient].
antenna number, it is clear that the optimization of 10% outageOne interesting feature that appears in Fig. 6 is the nonmono-
is quite similar to optimizing the ergodic capacity. This is a raonicity as a function of.z. (Similar nonmonotonicity is ob-
flection of the fact that the PDF becomes very peaked. Howevserved in Fig. 2 at low signal strength.) We understand this as
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follows. With low numbers of receive antennasy(= 1), the We write the mutual information ag = logdet(1 +
system is highly susceptible to fades, so beamforming is @GPGT), whereQ is a fixed 2x 2 matrix (representing the
tremely disfavored. This is more true for the case of outage @variance of transmission), aids a fixedn by n matrix (rep-
pacity than for ergodic capacity since the PDF is very broad, arekenting the covariance of the noises at the different receivers).
the fades can make the 10% outage very low. As we increase i€ then rewrite this in terms & asI = log det(1+ szDzT)

number of antennas, the susceptibility to these fades drops, &ih Q = vVE=QVE andP = vVZPVE. We thus have
beamforming is more favored. Further, averaging over the re-

ceivers makes the PDF more narrow, and optimizing the outage PDRI) = <5 (I — log det (1 + QZf’ZT))> (25)
becomes the same as optimizing the ergodic capacity. Then, we o

have a similar trend as with the ergodic case where beamforming = / du(Z)é (I — log det (1 + QZPZT)) (26)
becomes less favored again as we go to higher numbers of re-

ceivers. In essence, the nonmonotonicity stems from change in =e! /du(Z)(S (eI —det (1 + QZf’ZT)) . (27)
the breadth of the PDF which is crucial for determining outage .

capacities but is irrelevant for ergodic capacities. It is convenient to rewrite the & 2 determinant in terms of its

four elements as

IV. SUMMARY oot oot ot

. _ det (1 ZPZ ) = (1 ZPZ ) (1 ZPZ )
In this paper, we have shown how to analytically calculatee +Q ) +Q 11 +Q 22
outages and ergodic averages of the mutual information of
TIMO systems (two transmitting andg receiving antennas) as
a function of the transmission covarian@e thus enabling us S— oot )
to determine whichQ maximizes the mutual information. We (QZPZ 12— QZPZ 21)
have considered cases where the channel is described generally (28)

as beingNV(0,¥ ® 1), i.e., having mean 0 and covariance ) o )
3 with respect to the transmitter and trivial correlations at'® Subscripts here indicate an element of the 2 matrix.

the receiver. This case represents realistic situations whéfef 11 and 22 terms on the first line are real. The first term in
only partial channel information is fed back to the transmitteP@réntheses on the second line is real, whereas the second term
While the channel itself may change quickly, the covariand@ Parentheses is imaginary. We can then write

may change much more slowly, thus allowing adaptation of I

the transmitter to the slowly varying properties of the channdiPF(/) =e /dﬂ(z) /d$1d$2d$3

L L 2
+ (QZPZT12+QZPZT21)

N

Using these TIMO results, we have also derived conditions for o 1
the optimality of beamforming applicable to MIMO systems 0 (eI - (1 + QZPZT)H w1t (=5 + 33%))
with covariance feedback with arbitrary numbers of transmit- o
ters and receivers. -0 (:L‘1 - (1 + QZPZT) )
22
. - _(O7P7T N7ZP 7T
APPENDIX A 6 (12 (QZPZ )12 + (QZPZ )21)
DETAILS OF CALCULATIONS 8 (x3 — (sz)ZT)lz ny (QZ?ZT>21) . (29)
For a TIMO system with two transmitters andeceivers, the o .
ensemble of 2 n channel matrice§: is defined by To see that this is the same as (27), one can perform the integral
overzy, x2, andxs explicitly to leave only the first delta func-
(GiaG5) = EapSi (22) tion remaining. Inside that delta function, one would then have

the determinant written in the form of (28).

with 3 representing the correlations at the tranmitting antennag”sing the Fourier representation of the delta function) =
and= representing the correlations at the receiving antennas/ ke /(27) yields (30) and (31), shown at the bottom of the
is perhaps simplest conceptually to wriie = VXZE with  Next page, wherd1 is the matrix

Z and i.i.d. matrix (i.e.{Z;aZ}5) = 6apdi;) such that (22) is ikey  ige — gs

satisfied. The expectation of an arbitrary oper&taran then be = ( i + g iq ) . (32)
written explicitly as

We now aim to integrate ow. It is well-known that Gaussian

(0) = /dp,(Z)O (23) integrals of this sort can always be done trivially. In our case,
. we have
. . . . 2 n
where the integration measure is defined by /du(Z)e_Tr[MQZf’ZT] _ H H 1 /dReZm
2 n =1 a=1 ™
1
/du(Z) =111 ;/dReZm dimZ;e~ TEZZ' (24) ,/d|mZme—Tr[zz*+Msz>z*]
=1 a=1

~ ~1—1
which correctly define€ as an i.i.d. matrix. = det [1 ®1+MQ® P} (33)
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where the outer produck is defined as follows: Since We then notice that, andgs only ever occur in the combination
MQ is a 2-D matrix (with indicesi,; = 1,2) andP is q3 + ¢3. Thus, we defing = ¢3 + ¢2 so we have (dropping the
an n-dimensional matrix (with indicesy,5 = 1,...n), index 1 from the remaining andq for notational simplicity)
then MQ ® P is a Z-dimensional matrix with indices n i Qo [
(i,@) = (L,1),...,(L,n),(2.1),...(2,n). The elements of PDF(T) — ¢! [(am)n 11 < /_ /dx/_q/ dy
MQ ® P are given byMQ ® P|(ia) ;5 = (MQ);;Pas. w1 | 2SS 2wy
Thus, we can integrate o to obtain (34), shown at the exp [ik (¢! — ) +ig(z — 1) — %
bottom of the page. It is trivial to integrate ottt andz 3, shown TR [emar £ k) (s +i0) + 5] (38)
in (35), at the bottom of the page. Here, we have also used the ) m
fact thatdet[A] det[B] = det[AB] to move around factors of W& néxtaim to integrate oyt We note that all of the poles are
Q andP in rewriting the determinant. in the upper half plane. Thus, the integration restricts 1.
Let us define the eigenvaluesBf ! to bee,,, which all must Very ge_nerally, we can perform this cont_our integral to o_btam
be non-negative (these are also the eigenvalued dP—1). (assuming all of the eigenvalueg to be different for now) in
Let us also work in a basis whe€gis diagonal with (again non- (39), shown at th_e bottom of the ne>§t page. _Notg thata s_|m|larly
negative) eigenvalues anda, (these are also the eigenvalue§eneral expression for the cumulative distribution function can
of 2-1Q~1). We can then can write the determinants as be found at this point by analytically integrating this with re-
spect to/. Another thing to note about this expression is that
(although it is not obvious) it must be symmetric under inter-

det [Q—l P 1+ Mo 1} change ofi; andas. In general, the integral ovgrcan be per-
" formed analytically. For example, for the general case &f22
— H [(emm + ikzy) transmission, we obtain
m=1 dk [ ik (el —
PDKI) =e! (a1a26162)2 /— / dxexp [L (e :1:)]
(emas +iq) + (6 + q%)} J 2wy k(er—e2)ar
a .
) (36) [ | (22) oo + i)
A—1 o P-1] _ n 2 1€1a
det [Q QP } =(a1a2) Hl €y (37) . (1 _ Z 1>] (o 62)} (40)

dk dq: dgz dgs
1 L
PDF(I) =e /du(Z) / 2ﬂ_/d:171d:172d:v3/ 5r 9m O

- exp Lk <@I - (1 + QZf)ZT) z + i (23 + wg)) +iq (‘Tl - (1 + (QZIN)ZT) 22))

11

+ig (z2 - (QZPZT) + (Qzﬁz*)ﬂ) +igs (xg _ (sz'zf)12 +i (QZPZT)H)} (30)

12

dk dgy dgs d .
:el/du(Z)/—/dxldedxg/ﬂﬂ 43 ,-TrMQzPz)
2T 2n 2w 2w

1

- exp {zk (ef — 1+ 1 (z% + z%)) +iq1 (1 — 1) + igoxa + Z'q31173:| (32)

dk dqi dqz dg3
_ I hnidd kSt i o
PDF(I) =e / o ./dxldedeg. 5 37 9

_exp [zk (eI -z + i (3:% + x%)) +iqr (1 — 1) +igoxa + iqug]

SANEE (34)
det [1®1+MQ®P]
PDH) =4me” det [Q oF }/ 21 | dml, 2w 2w 2w
_exp [ik (! —21) +iqu (z1— 1) — £ (63 + ¢3)] (35)

ik det [Q—l ®P-1+Mg 1}
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where f(z) = exp(z)Ei(—z), and(e; < e€2) represents the We work in a basis wher& is diagonal with eigenvalues
firstterm in brackets witla; ande, interchanged. Unfortunately, s; > s2 > --- > s,, without loss of generality. We construct
this expression is not easily simplified further. For this reasothe matrixXQ and make a unitary transformation such that we
we limit our attention to the case where there are trivial correwite it as¥Q = UTAU with U an appropriate diagonalizing
lations at the receiver end; in other words, we consider the casgtary matrix andA the diagonal matrix of eigenvalugs. By
whereP (and, henceZP) is proportional to the unit matrix. In choosindU appropriately, we can arrange such that the elements
this case, all of the’s are the same (it is then convenient to abef A are ordered a3; > A2 > --- A,,.. We now construct a
sorb one factor of into eacha;). The contour integral ovey new matrixQ’ = Z~'A. (If = has zero eigenvalues, we define
then isolates a singleth-order pole yielding (41), shown at thethe corresponding elements @f to be also zero.) The matrix
bottom of the page. The integration oygis now trivially done Q' is explicitly constructed such that the eigenvaluex 6§’ are
to yield (8). exactly the same as the eigenvalueX@. Thus, transmission
To obtain the ergodic average capacity, one starts with tivth covarianceQ’ has precisely the same capacity as trans-
form of the PDF in (8) and integrate explicitly as prescribed imission with covarianc€). However, we can also show (see

(4) to yield the Lemma below) that T®’] < Tr[Q]. This inequality means
that the power transmitted witQ’ is lower than that transmitted
(a1a2)" [ dk [ z—1\""" with Q. Thus, we can bring the power up to the original strength
(1) = (n—1)! / %/1 dx ( - ) by constructingQ = Q’(Tr[Q]/Tr[Q’]), effectively increasing
Ei(ik) exp [—ikz — (z — 1)as] the signal strength paramegerThis new matrixQ is thus diag-

(42)  onal, has the same trace@sand, since we have now increased
the power, must have more capacity tH@nThus, we conclude

. . N . . .. that the optimalQ is always diagonal.
with Ei exponential integral function which we then rewrite Lemma: TrQ] < Tr[Q] or equivalently TEE-1A] <

using the identity T=-1UTAU].
Consider two sets of numbes;?l, ... s;; andAq, ... A\,

(43) Construct a sum of productqg.;l)\, such that each number is
used in exactly one product. As shown by Jafar [9], the per-
pgutation which minimizes the sum is such that the largest
IS paired with the smallest, the second largest! is paired
with the second smallest, and so forth, Thus, of all possible
pairings of the eigenvaluegl and);, the one constructed by

APPENDIX B Tr[x~!A] yields the minimal value in its sum. In other words,
OPTIMAL Q IS DIAGONAL if we permute the order of the eigenvaluesXfor A so that

We show that that th€) that maximizes the capacity (eitherthey are not in increasing or(_jer, we wil ob_tain_ a larger trage.
outage or ergodic) is diagonal. We will need to use the fact th\él[e can ls\}Iate_ :]h'i mathemat|chally 'ﬁy ::on3|der|ng p(_eLmutatlon
the capacity (outage or ergodic) is only a function of the eigematnces with the propertyt at all elements are e|t. er zero
values ofpQ3 and that the capacity is a monotonic increasin r one and that there is exactly olne nonzero ?Iement in any row
function of the signal-to-noise parameteie will proceed by r arr:y column,. and we .;ZV\GA[/E A]hg I~ MA] forany
considering an arbitrar@ with off-diagonal components angSuch permutation matri¥1. We now have
explicitly constructing a diagonal with greater or equal ca- Tr[=1UTAU] = Z 57U A (44)
pacity (bothQ’s must satisfy the trace condition[Q] = nr).

( +i0+) [k — )" [k — iay]

e Y

Ei(ik) = ik ° )
i(ik) =e '/0 dyik—y

Thek contour is closed in the lower half plane and the result
simplified to give (10).

]

n . [© < oxp ik (el —z) — 2
PDF(I) =¢ [(alaz)" 11 efn] /%/1 dx/o dy ;;r[[j ((emal —sz‘z];]

m=

1
exp [(95 -1 (—Ep@ - wfﬁ)}

XY , (39)
p Hz;ep (61@2 + m — €pa2 + Epalq{i-ik.r)
PDHI) =e’ (alaQ)n/%/ dx/ dy
™ J1 0
(x—1)"Texp |ik (el —2) =2 4+ (z—-1)(-a -
' [ ( ) - ( 27 aitik )} (41)

(n — D)k [ay + ikz]"



SIMON AND MOUSTAKAS: OPTIMIZING MIMO ANTENNA SYSTEMS WITH CHANNEL COVARIANCE FEEDBACK 417

We now claim (see below for the proof) that we can make the[4] S. A. Jafar and A. Goldsmith, “On optimality of beamforming for mul-
following decomposition: tiple antenna systems,” iRroc. |IEEE Int. Symp. Information Thegry
Washington, DC, 2001, p. 321.
5 [5] A. Narula et al, “Efficient use of side information in multiple-an-
|Uij1” = Z OékMi,; (45) tenna data transmission over fading channdBEE J. Select. Areas
A Commun,.vol. 16, pp. 1423-1436, Oct. 1998.

[6] S.H. Simon and A. L. Moustakas, “Optimizing multitransmitter single

K . . receiver antenna systems with partial channel knowledg&E Trans.

where eachM*™ is a permutation matrix, each, > 0 and Inform. Theory submitted for publication.

Zk ap = 1. Thus, we have [7] E. Telatar, “Capacity of multi-antenna Gaussian channélsy’ Trans.
Telecommun. Related Techpebl. 10, no. 6, pp. 585-596, Nov. 1995.

[8] G. J. Foschini and M. J. Gans, “On limits of wireless communications
in a fading environment when using multiple antennaSifeless Pers.
Commun,.vol. 6, pp. 311-335, 1988.

[9] S. A. Jafar and A. Goldsmith, “Beamforming capacity and SNR max-
imization for muliple antenna systems with covariance feedback,” in
Proc. Vehicular Technology Conf. (VTGRhodes, Greece, 2001, pp.
43-47.

; 10] A. L. Moustakaset al., “Wideband characteristics of the urban PCS
proving the Lemma. . . . 1ol channel,” presented at the Int. Symp. 3G Infrastructure Service, Athens,
Proof of Claim: We will explicitly construct the desired Greece, July 2001.
decomposition. (Note that the decomposition is not unique if11] “3GPP Tech. Spec. “Physical Layer Procedures (FDD)",”, Release 5,
general.) For simplicity of notation, writd/?, = |U;;]2. Al 3GPP 1525214 V5.3.0, Dec. 2001.

. . . . : [12] S. H. Simon, A. L. Moustakas, and A. M. Sengupt¢iMO Capacity
elements oN? are non-negative definite. Sint&is unitary, we

Tr [S7MUTAU] =) o, Tr [£7'M*A]
k

> oy Tr [B7MA] =Tr [Z71A] (46)
k

Through Channel With Correlated Interference and Noise: (Not So)
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