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ABSTRACT The customized bus (CB) transit is recognized as an effective transportationmode offeringmore

flexible and demand-responsive service than traditional bus transit with fixed route and schedule, especially

during the peak hours. The novelty of this study is the development of a mixed integer non-linear model

for optimizing multi-terminal CB service in an urban setting. According to the estimated spatiotemporal

passenger demand, the objective total cost, consisting of supplier’s and users’ costs, is minimized subject to

capacity and time window constraints. A mixed bus fleet with various bus sizes is employed to accommodate

passenger demand, which increases vehicle utilization and reduces supplier’s cost. The inconvenience of

passengers caused by early arrival at the destination is treated as penalty and considered in users’ cost. The

study optimization problem is combinatorial with many decision variables including trip assignment, bus

routing and associated timetables, and fleet size. A hybrid genetic algorithm (HGA) which integrates the

features of genetic algorithm (GA) and simulated annealing (SA) is developed to effectively search for the

optimal solution. A real-world CB network is employed to demonstrate the applicability of the developed

model and explore the relation between the model parameters and optimized results. It was found that the

total cost can be reduced by 16.5% after employing multiple terminals and a mixed bus fleet.

INDEX TERMS Customized bus, routing, scheduling, trip assignment, cost, demand-responsive transit,

genetic algorithm, simulated annealing.

I. INTRODUCTION

Rapid urbanization has led transportation demand drastically

increases, which deteriorates the service quality and effi-

ciency of transportation systems, especially during the peak

hours. Commuters are tired of lengthy travel time in crowded

vehicles. Transit agencies thus promote demand responsive

transit (DRT) as an alternative mode to elevate service qual-

ity by offering greater mobility and accessibility during the

peak hours. With the rapid development of mobility as a

service (MaaS) and personal mobile devices, an emerging

DRT service, called customized bus (CB), has been initi-

ated [1], [2].

The CB concept originates from car-sharing, subscription

bus, and dial-a-ride services, which could be generalized as

a dial-a-ride problem (DARP). Unlike traditional DARP a

door-to-door service primarily offered to elderly and dis-

abled people [3] with smaller vehicles, the CB service is

operated on a stop-to-stop basis to serve greater volume of

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen .

passengers with larger vehicles considering spatiotemporal

demand [4].

The process of acquiring the CB service begins by collect-

ing travel requests from passengers, in which the information

related to origination and destination (OD), desired arrival

time, and subscription duration must be given. The operators

then process the requests to develop a service plan (e.g.,

stop location, routing, and scheduling) which would yield the

objective (e.g., minimize the total cost in this study) subject

to a set of practical constraints. The generated bus routing and

scheduling information is then fed back to users for reserva-

tion. The service plan will be updated on a short-term basis

(e.g., one to few weeks) subject to the demand change [5].

It is worth noting that CB does not serve walk-in passengers

without reservation.

To optimize the study CB problem, a sound model with

an efficient solution algorithm is developed. Several practical

issues concerned by the CB suppliers but missed in previous

studies are addressed, which include:

(1) The desired arrival time at destination requested by

passengers is ensured, while the inconvenience caused
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by early arrival at the destination is treated as penalty

in user’s cost.

(2) Considering spatiotemporal passenger demand, a

mixed bus fleet with various sizes is employed to

increase the vehicle utilization and reduce supplier

cost.

(3) To reduce deadheading travel distance and associated

cost, the multi-terminal operation is introduced.

The remainder of this paper is organized as follows.

In Section II, an overview of related research in the existing

literature is summarized. Section III discusses the design pro-

cess for CB service and model assumptions of the problem.

The derivation of the objective function and the related con-

straints are also presented. The developed solution algorithm

is discussed in Section IV, and its effectiveness is assessed

in Section V. Section VI presents a case study, in which

the optimized solutions and results of sensitivity analysis are

discussed. Finally, the research findings are summarized and

future research is discussed in Section VII.

II. LITERATURE REVIEW

Most previous studies focused on the CB service considered

single terminal operation and the sizes of buses are identical.

Few of them jointly optimized trip assignment, bus route and

the associated timetable, mixed bus fleet for a multi-terminal

CB network. The findings in the literature review are dis-

cussed next.

A. TRANSIT NETWORK DESIGN (TND)

Transit network design (TND) problem can be formulated

as a mathematical model, so that bus routing and associated

attributes including frequencies, timetables and stop spacing

can be optimized. Chien and Spasovic [6] optimized stop

spacing, bus headway, and fare considering demand elasticity

for a grid transit network, which maximize supplier’s profit.

Baaj and Mahmassani [7] minimized total cost, which was

yielded by optimized bus routes and frequencies.

To yield greater benefit (e.g., reduced cost and increased

profit), Chien et al. [8] optimized the integration of service

patterns to elevate service quality and to stimulate demand.

Chien et al. [9] assessed conventional and subscription bus

systems considering stochastic demand and non-additive

value of time. Chien and Qin [10] optimized stop locations

which minimized total cost considering a realistic road net-

work and spatial demand. Chien [11] optimized bus size,

route and headway that minimized total cost for a feeder

service. DiJoseph and Chien [12] optimized stop locations,

headway and fare that maximized total profit for a feeder bus

service.

Ulusoy et al. [13], Ulusoy and Chien [14] optimized

bus service patterns and frequencies which minimized total

cost considering demand elasticity. Later, Qu et al. [15]

extended that work by considering time-dependent demand.

Chen et al. [16] jointly optimized the bus routes, frequencies,

locations of wireless power devices and battery capacity for

an electric feeder bus system, which minimized the total cost.

B. DEMAND-RESPONSIVE TRANSIT (DRT)

Demand-responsive transit (DRT) is a form of shared private

transport (or quasi-public) for groups travelling where buses

alter their routes based on particular demand rather than using

fixed routes or timetables. Navidi et al. [17] indicated that

DRT may improve the mobility and quality of service by

reducing the users perceived travel time. Wang et al. [18]

found that DRT meets the demand of niche markets (e.g.,

disabled, elderly and live in areas with low population den-

sity). Cordeau [19] optimized vehicle assignment and rout-

ing, which minimized the operation cost. Later, Parragh [20]

extended that work by considering heterogeneous vehicles

and demand.

Molenbruch et al. [21] analyzed operational effects of

service level variations for a dial-a-ride problem. It was found

that the tradeoffs between service quality and costs should

encourage service providers to make informed decisions

regarding potential changes in the service level they offer.

Shen et al. [22] optimized bus routing and scheduling that

minimized the total cost of a demand-responsive feeder tran-

sit. Beaudry et al. [23] optimized bus routing and scheduling

for a paratransit to serve patients with medical appointments

at hospitals, which minimized the cost of patients.

C. CUSTOMIZED BUS (CB) TRANSIT

Liu andCeder [24] presented a systematic and comprehensive

analysis on a CB system. Liu et al. [1] assessed the overall

performance metrics (e.g., travel costs, travel time, and fuel

consumption) of CB, private car (PC), and traditional public

transport (PT). It was found that CB is a more attractive

commuting alternative than PT and PC.

Wang et al. [2] found that CB is very attractive especially

to commuters traveling in the peak hours because of its

features in reducing travel time and coverage of spatiotem-

poral demand. It was also found that CB could serve as a

supplement mode in the areas with low PT coverage.

With a density-based clustering algorithm, Qiu et al. [25]

estimated the origin and destination demand for a CB net-

work. Ma et al. [26] optimized the CB route considering

operation cost and social benefit. Li et al. [27] optimized bus

routing which minimized the operating cost of CB service

providers. Cao and Wang [28] optimized trip assignment that

minimized total cost. Ma et al. [29] optimized locations of

stops, routes and timetables that minimized total cost includ-

ing operation, environmental and congestion cost.

Guo et al. [30] optimized stop locations, bus routes,

and trip assignment that minimized total cost, and then

extended that work by considering service time window [31].

Huang et al. [34] designed a two-phase model to optimize

trip assignment, routes, timetables, which maximized total

profit. Tong et al. [5] developed a commodity flow model

to optimize trip assignment and bus routing subject to spa-

tiotemporal window constraints, which maximized ridership.
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TABLE 1. Focused previous studies on the CB transit.

Lyu et al. [32] developed a framework called CB-Planner to

jointly optimize stop locations, bus routing and timetables,

and probabilistic mode choice, which maximized total profit.

Han et al. [33] presented an analytical model that minimized

total cost and demonstrated that a mixed-size of bus fleet is

cost-effective than a single-sized bus fleet. According to the

findings discussed above, Table 1 summarizes the features of

key studies focusing on the CB service.

D. SOLUTION ALGORITHM

Since the study CB optimization problem is combinatorial

that is non-deterministic polynomial-time hard (NP-hard)

[34]–[36], an efficient algorithm is desired to search for

the optimal solution. Genetic algorithm (GA) is a stochastic

search algorithm that finds the optimal solution space through

drawing on the natural laws (i.e. survival of the fittest) of

the biological world. GA does not require to calculate the

derivatives of the objective function, and its performance

in optimizing complex mathematical models (e.g. vehicle

routing problems [36]–[39]) is promising [8].

Many studies have employed GA to search for optimal

solution. Uchimura et al. [40] solved a routing problem for

an advanced public transit system. Shrivastava et al. [41] opti-

mized transit routes and frequencies. Bagloee and Ceder [42]

optimized transit routes and schedules. Zhang et al. [43]

developed a GA to solve a multi-trip DARP.

However, traditional GA suffers some issues while search-

ing for the solution (e.g., premature solution or local optimal

solution [44]). To cope with this problem, some studies inte-

grated GA with features of other algorithms to enhance the

performance. Masmoudi et al. [37] proposed a hybrid GA

with a local search strategy to solve a DARP. Chen et al. [16]

developed a nested genetic algorithm (NGA) for an electric

feeder bus system. Rekiek et al. [45] optimized bus routes for

serving disabled passengers with a group genetic algorithm

(GGA). Zhao and Zeng [44] developed an algorithm which

integrated GA and simulated annealing (SA), called GASA,
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FIGURE 1. Passenger travel time from pick-up stop i to drop-off stop j .

to optimize vehicle routing and headway for a large-scale

transit network. Song et al. [46] improved GASA and applied

that to minimize vehicle emission on arterial roads. The

results suggested that GASA has better efficiency and robust-

ness than GA.

III. METHODOLOGY

In this section, we formulate a model for optimizing the CB

service. The passengers are classified into groups based on

the OD information and desired arrival time. To optimize the

CB service, the decision variables include trip assignment,

routes, timetables, and fleet size. The objective is to minimize

total cost, consisting of the supplier and user costs, subject to

capacity and time window constraints.

A. PASSENGERS PARTITION

Assuming that the stop and terminal locations, passenger

OD demand, and available parking spaces at each terminal

are given. For each OD pair, we partition passengers into

groups based on desired arrival time at the destination stop.

Passengers with the same OD are grouped in a set, denoted as

Ch, where 1 ≤ h ≤ n, and n is the number of OD pairs. For

each Ch, passengers are arranged as an ascending order

according to the desired arrival time. They are partitioned

into α groups based on pre-specified time interval (e.g.

15 minutes). After looping for n sets, the total number of

groups m is equal to n multiplied by α.

Based on the earliest desired arrival time in each group,

a service time window (e.g., 15 minutes) on the drop-off stop

is constructed.

B. ASSUMPTIONS

As shown in Figure 1, the passenger travel time includes

wait time and in-vehicle time. The wait time is minor

and negligible as the real-time bus arrival information is

known via advanced traveler information systems. Therefore,

the travel time concerned here is in-vehicle time, which is

determined by the drop-off time minus the pick-up time. The

penalty incurred by early arrival passengers at destination is

determined by the elapse time from the drop-off time to the

desired arrival time, multiplied by the value of time.

To formulate the proposed model, some assumptions are

described as follows:

• The travel distance and associated travel time between

any pair of nodes are known, and the dwell time at stops

is fixed.

• A bus initially parks at a terminal and may return to a

different one after the journey. Parking fees at terminals

are considered in the supplier cost.

• The spatiotemporal passenger demand distribution is

fixed within the designated service period.

The model is defined on a complete graph G = (N , A).

N = N+ ∪ N− ∪ W is a set of nodes including stops and

terminals, where N+ is a set of pick-up stops; N− is a set

of drop-off stops; and W is a set of terminals. A is a set

of links that connect every two vertices in N . The notations

used to formulate the proposed model, including variables

and parameters, are defined and listed in Table 2.

C. OBJECTIVE FUNCTION

The objective total cost formulated as Eq. (1) is a mixed

integer non-linear programming model (MINLP), consisting

of supplier’s cost denoted as Z1 and user’s cost denoted as Z2.

Thus,

minZ = Z1 + Z2 (1)

VOLUME 8, 2020 156459



Q. Sun et al.: Optimizing Multi-Terminal CB Service With Mixed Fleet

TABLE 2. Notations.

Z1 consists of fixed and variable costs. The fixed cost is

the average fixed cost per bus denoted as fk multiplied by

the number of buses. The variable cost is average cost per

bus kilometer travel denoted as vk multiplied by the travel

distance. Thus,

Z1 =
∑

w∈W

∑

j∈N

∑

k∈K

fkxwjk +
∑

i∈N

∑

j∈N

∑

k∈K

vkdijxijk (2)

where xwjk and xijk are binary variables, which are equal to

1 if bus k travels from nodes w and i to j.

Z2 consists of travel time cost and early arrival penalty

incurred by passengers. The in-vehicle time from stop i to

stop j by bus k is Tjk less Tik . Thus, travel time cost is the

product of in-vehicle time and value of passengers’ time λv.

The early arrival time for passenger p at drop-off stop j by bus

k is Tpj less Tjk . Thus, early arrival penalty is the product of

(Tpj - Tjk ) and value of early arrival time denoted as λe. Thus,

Z2 = λv

∑

i∈N+

∑

j∈N−

∑

k∈K

nij(Tjk − Tik )yikyjk

+ λe

∑

p∈P

∑

j∈N−

∑

k∈K

(Tpj − Tjk )yjk (3)

where yik and yjk are binary variables, which are equal to 1 if

stops i and j are served by bus k .

To minimize the total cost, a set of practical con-

straints concerning trip assignment, bus capacity, routing and

timetabling are considered. Eq. (4) restricts that each stop

could be served by more than one bus, while Eqs. (5-6) state

that if a bus k is used, the bus starts and ends at one terminal

at most.

∑

k∈K

yik ≥ 1 ∀i ∈ N+ ∪ N− (4)

∑

w∈W

Swk ≤ 1 ∀k ∈ K (5)

∑

w∈W

Ewk ≤ 1∀k ∈ K (6)

Eqs. (7-8) restrict that each bus route starts and ends at

terminals. Eq. (9) ensures the continuity of a bus route.

∑

j∈N

xwjk = Swk ∀w ∈ W , k ∈ K (7)

∑

j∈N

xjwk = Ewk ∀w ∈ W , k ∈ K (8)

∑

j ∈ N
j 6= i

xijk =
∑

j ∈ N
j 6= i

xjik = yik ∀i ∈ N+ ∪ N−, k ∈ K (9)

The subtour elimination constraint is expressed by

Eq. (10), which ensures that every bus route must begin

and end at a terminal. uik and ujk are arbitrary non-negative

integers, which are employed to eliminate the subtour. Thus,

∑

k∈K

uik −
∑

k∈K

ujk + ns
∑

k∈K

xijk ≤ ns − 1

∀i, j ∈ N+ ∪ N−, i 6= j (10)

Eq. (11) indicates that there is no passenger in the bus when

it departs from and arrives at a terminal. Eq. (12) calculates

the load of bus k departing from stop j, which is denoted

as Ljk . As formulated as Eq. (13), Hjk is the number of

passengers boardings/alightings served by bus k at stop j,

which is positive if stop j is a pick-up stop; otherwise, it is

negative if stop j is a drop-off stop. Eq. (14) ensures that the

number of passengers in a bus is less than or equal to the

capacity.

Lwk = 0 ∀w ∈ W , k ∈ K (11)

Ljk ≥ (Lik + Hjk ) − Qk (1 − xijk )

∀i ∈ N , j ∈ N+ ∪ N−, k ∈ K (12)
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Hjk =















∑

i∈N−

njiyikyjk j ∈ N+, k ∈ K

(−1)
∑

i∈N+

nijyikyjk j ∈ N−, k ∈ K
(13)

0 ≤ Lik ≤ Qkyik ∀i ∈ N , k ∈ K (14)

The arrival time of bus k at node j denoted as Tjk can be

determined by Eq. (15). The service time window constraint

is formulated as Eq. (16), while Eq. (17) ensures that the pair

and precedence constraints sustain while searching for the

optimal solution.

Tjk ≥ Tik + ti + tij −M (1 − xijk )

∀i ∈ N , j ∈ N , k ∈ K (15)

ej ≤ Tjk ≤ lj ∀j ∈ N−, k ∈ K (16)

(Tjk − Tik )nijyikyjk ≥ 0 ∀i ∈ N+, j ∈ N−, k ∈ K (17)

Finally, Eqs. (18-21) define the domains of binary decision

variables.

yik = {0, 1} ∀i ∈ N+ ∪ N−, k ∈ K (18)

Ewk = {0, 1} ∀w ∈ W , k ∈ K (19)

Swk = {0, 1} ∀w ∈ W , k ∈ K (20)

xijk = {0, 1} ∀i ∈ N , j ∈ N , k ∈ K (21)

IV. SOLUTION ALGORITHM

The optimization of the proposed model discussed in

Section III is a combinatorial problem. The solution is dif-

ficult to be optimized using the exact algorithm, especial for

large-scale networks [31]. In order to efficiently search for the

solution, a hybrid genetic algorithm (HGA) that integrated the

features of GA and SA is proposed.

A. FITNESS FUNCTION

For maximization problems, the fitness function is same as

the objective function. However, for minimization problems,

the fitness function is the reciprocal of the objective function.

To ensure that the solutions always satisfy bus capacity and

time window constraints, a large penalty Zp is introduced.

Thus, the fitness function can be formulated as follows:

F=
1

Z + Zp

{

Zp = 0 if Z is feasible

Zp=penalty value if Z is not feasible
(22)

where F and Z are fitness value and objective value, respec-

tively. The minimum objective value (e.g., total cost) repre-

sented by the maximum fitness value would suggest the best

solution found by HGA.

B. CHROMOSOME ENCODING

Integer coding is used for encoding bus routes. The chromo-

some is encoded as an integer string, whose length depends on

fleet size and number of passenger groups. Each string con-

sists of several substrings, and each substring is a sequence of

genes representing stops of a bus route that begins and ends

at a terminal. The chromosome is randomly generated and an

example is shown in Figure 2 in which 5 passenger groups

FIGURE 2. Chromosome representation of HGA.

and 2 buses are presented, while 1, 2, 3, 4 and 5 represent

the pick-up stops, and 6, 7, 8, 9 and 10 represent the drop-off

stops, respectively. Note that the gene with 0 represents a bus

terminal.

C. GA OPERATION

There are three GA operators discussed next, including selec-

tion, crossover, and mutation.

Selection - The tournament selection [47] is applied here,

which randomly select a number of chromosomes from the

population and then choose the one yielding the best fitness

value. This process is repeated until the number of chromo-

somes required (e.g., population size) is reached.

FIGURE 3. Sample route crossover process.

Crossover - A random two-point crossover with a minor

alteration to respect the pair and precedence constraints is

applied, and the process is shown in Figure 3. In Phase

1, a gene in the chromosome is randomly selected (e.g.,

the fifth gene marked with an arrow). Then, the terminals

(represented by 0s) associated with a bus route, marked in

green, containing the gene are chosen as crossover points.

In Phase 2, the genes between two crossover points in parent

chromosomes 1 and 2 are swapped. And the remaining genes

are inherited in child chromosomes. In Phase 3, the replicated

genes in child chromosome 1 (i.e., 4 and 9 marked in orange)

are deleted, and the missing genes (i.e., 4 and 9 marked in

blue) are inserted in child chromosome 2.

Mutation - A random two-point mutation is applied and

show in Figure 4. The genes of two randomly selected pick-up

stops assigned to different bus routes in parent chromosome

(e.g., 4 and 3 marked in orange) are exchanged, as well as the

genes of corresponding drop-off stops (e.g., 9 and 8 marked
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FIGURE 4. Sample route mutation process.

in green). The rest of genes in the child chromosome are

inherited by the parent chromosome.

D. SA OPERATION

The purpose of SA operation in HGA is to prevent GA

trapped in a local optimum, which permits the GA process

accepting a slightly worse solution with a probability based

on the Metropolis criterion [46] as formulated in Eq. (23).

Pro =







1, Fnew ≥ Fold

exp(−
Fold − Fnew

γT
), otherwise

(23)

where Pro is the probability of accepting a new solution, and

Fnew and Fold represent the fitness values of the new and the

old solutions, respectively. The term γT is the temperature of

the current iteration where γ represents changing rate of tem-

perature, and T is the temperature of the previous iteration.

If Fnew ≥ Fold , the new solution is accepted; otherwise, it can

be accepted subject to a certain probability. The higher the

current temperature, the greater the probability is. However,

the temperature decreases at a rate γ , and the probability of

accepting a worse solution reduces.

The integration of the SA procedure into GA is discussed

next. First, for each solution (chromosome), two random

genes of the pick-up stops are chosen, and a new solution is

discovered by exchanging the two genes, as well as the genes

of the corresponding drop-off stops. Second, the fitness value

of the new solution is compared to the old one. The selection

of a solution is determined by Eq. (23).

A step-by-step procedure to search for the optimal solution

using the proposed HGA is shown in Figure 5 and discussed

below.

Step 1 - Parameter setting. Specify the parameters for GA

and SA, including initial temperature, the rate of temperature

change, population size, maximum iterations, and crossover

and mutation probability.

Step 2 - Initialization. Create the initial population as the

first generation.

Step 3 - Evaluation. Determine the origin and destination

terminals and bus type for each route and then calculate the

value of fitness function with Eq. (22).

Step 4 - SA Operation.Implement the SA process to gen-

erate a new population.

Step 5 - GA Operation. Implement the GA process to

reproduce new solutions.

Step 6 - Termination. Check if the specified termination

criteria (i.e., maximum number of iterations) is attained.

FIGURE 5. Proposed HGA framework.

If not, go to Step 4; otherwise, terminate the algorithm and

report the best solution.

V. ALGORITHM PERFORMANCE ANALYSIS

In this section, we assess the performance of HGA against

LINGO and GA using a set of CB networks with different

number of stops. The networks are classified into three scales:

small (e.g., 8 and 10 nodes), medium (e.g., 16, 24 and 32

nodes), and large (e.g., 40 and 48 nodes). The minimized

total cost with the optimized decision variables were found

by LINGO (Global optimal solver, 18.0 version) as well as

by GA and HGA (MATLAB R2018b on a laptop computer,

Intel Core i5, 8G, 1.8GHz).

A. PARAMETER SETTING

The HGA parameters consist of population size, maximum

number of iterations, crossover and mutation probability, ini-

tial annealing temperature and the rate of temperature change,

which are listed in Table 3. The parameter values were deter-

mined by the effectiveness to search the optimal solution and

stability of the yielded results in the simulation analysis.
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As shown in Table 3, population size and maximum num-

ber of iterations increase as the network size increases. In gen-

eral, GA needs more iteration to converge to an acceptable

result than HGA, and HGA requires less population size than

GA to yield the acceptable result. Crossover and mutation

probability are 0.9 and 0.1 respectively with both GA and

HGA. The initial annealing temperature and the rate of tem-

perature change with HGA are 1000 and 0.95, respectively.

TABLE 3. Parameter settings for HGA and GA.

B. RESULTS ANALYSIS

Ten simulation runs were executed for each experiment so

that the randomness of GA and HGA results may be assessed.

The result statistics are summarized in Table 4, while the

average computation times with LINGO, GA, and HGA are

illustrated in Figure 6. It is worth noting that the upper bound

of computation time is set as 10,800 seconds. Figure 6 sug-

gests that LINGO is able to optimize small-scale CB networks

(e.g., 8 and 10 nodes). As the number of nodes increases,

the computation time exponentially escalated and failed to

find the solution within the time limit. GA and HGA are

able to find solutions within the time limit, and HGA out-

performed GA in terms of shorter computation time as well

as less minimized total cost and randomness of the results.

As the number of nodes increases, the result randomness

increases (e.g., see SD) with GA and HGA. The differences

between the minimized costs denoted as ZG and ZH with GA

and HGA, respectively, against that with LINGO denoted as

ZL , are represented by ‘‘1GA’’ and ‘‘1HGA’’, formulated as

Eqs. (24) and (25). Thus,

1GA =
ZG − ZL

ZL
(24)

1HGA =
ZH − ZL

ZL
(25)

VI. CASE STUDY

To assess the effectiveness and applicability of the developed

model and algorithm, a real-world CB network in Xi’an

FIGURE 6. Average computation times with LINGO, GA, and HGA.

City is applied. The study network consists of 19 stops and

5 terminals as shown in Figure 7. The locations of pick-up and

drop-off stops cover large communities and three business

areas. Five major stations in Xi’an are chosen as the candidate

terminals. Table 5 lists a sample of 326 requests (from home

to work), which include the pick-up and drop-off stops and

the desired arrival time in the AM peak from 8:00 AM to

9:30 AM.

FIGURE 7. Spatial demand distribution of the study CB network.

The value of passengers’ time is 6 $/pass-hr, and the value

of early arrival time is 9 $/pass-hr. Bus types and associated

fixed and variable costs are listed in Table 6. The parameters

of GA and HGA have been determined earlier and listed

in Table 3.

A. RESULTS ANALYSIS

Based on the collected data of passenger reservation,

we found that the desired arrival time at destination varies

within the study period. Therefore, the time interval applied

for aggregating demandwill affect the supplier and user costs.
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TABLE 4. Statistical results from LINGO, GA, and HGA (10 runs).

TABLE 5. Sample passenger reservations.

TABLE 6. Bus types and associated cost.

As shown in Table 7, the optimal results with varying time

interval suggest that the demand estimated on a 10-min basis

would yield the least total cost. The optimal CB routes and

schedules are summarized in the Appendix.

It was indicated that as the time interval decreases, the sup-

plier cost increases, but the user cost reduces. The increase of

the supplier cost results from the increase of fleet size. The

decrease of users’ cost mainly results from reduced travel

time because the number of stops per route decreases. The

trade-off between the supplier and user costs can be observed

in Table 7.

TABLE 7. Optimized results for various time intervals (10 runs).

The total cost found by GA and HGA over iteration is

illustrated in Figure 8. The results suggest that HGA is more

efficient because the total cost found by HGA converges

significantly quicker than that with GA.

FIGURE 8. Total cost vs. number of iterations.

To demonstrate the effect of multi-terminal, mixed bus

fleet, and early arrival penalty to the minimized total cost,

ten simulation runs for each of five scenarios are summarized

in Table 8.

Scenario 1 - Single terminal and single bus size without

early arrival penalty.

Scenario 2 - Multi-terminal and single bus size without

early arrival penalty.

Scenario 3 - Single terminal and multi-bus-size without

early arrival penalty.

Scenario 4 - Multi-terminal and multi-bus-size without

early arrival penalty.

Scenario 5 - Multi-terminal and multi-bus-size with early

arrival penalty.

In Scenario 1, the minimized total cost is 4,210 $, consist-

ing of supplier cost of 2,335 $ and user cost of 1,875 $. The

average travel time and early arrival time per passenger are

45.8 min and 7.8 min, while the average travel and deadhead-

ing distances per bus are 28.9 and 8.1 km, respectively. The

optimal bus capacity is 15 seat/veh, and the fleet size is 28.

The suggested terminal location is node 20.

Under Scenario 2 with multiple terminals, the minimized

total cost can be reduced by 5.9% (from 4,210 $ to 3,961

$). The supplier cost significantly reduced by 13% (from

2,335 $ to 2,030 $), albeit the user cost slightly increased.

The supplier cost reduction mainly resulted from reduced
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TABLE 8. Optimized results for various scenarios.

variable cost since the average bus travel distance decreased

from 28.9 km to 24.8 km (14%), and the average deadheading

distance decreased from 8.1 km to 3.6 km (56%).

Under Scenario 3 with mixed bus fleet, the minimized total

cost can be reduced by 11.3% (from 4,210 $ to 3,734 $). The

supplier cost significantly reduced by 20.3% (from 2,335 $ to

1,861 $) while the user cost remained the same. The supplier

cost reduction was mainly from the reduced fleet size (from

28 buses to 22 buses).

Comparing the results between Scenario 4 and Scenario 2

(and 3), we found that the minimized total cost can be further

reduced by 11.2% (and 5.8%). The supplier cost significantly

reduced by 18.8% (and 11.4%), while the user cost slightly

reduced by 3.3% (and 0.3%). The results suggest that the

integration of mixed bus fleet and multi-terminal can further

decrease the total cost, mainly from supplier’s side.

Finally, comparing the results between Scenario 5 and

Scenario 4, we found that with early arrival penalty, the total

cost can be reduced by 1.1% (from 3,516 $ to 3,478 $). The

user cost reduced by 2.6% (from 1,868 $ to 1,820 $), while

the supplier cost slightly increased. The user cost reduced

mainly from the reduction in early arrival penalty (from 382

$ to 317 $). The supplier cost increased mainly caused by the

increase of fleet size (from 22 buses to 24 buses). It indicated

that the joint effect of multi-terminal, mixed bus fleet, and

early arrival penalty shall be jointly considered to yield the

least total cost. To summarize the results, the minimized total

costs under five scenarios are shown in Figure 9.

B. SENSITIVITY ANALYSIS

A sensitivity analysis based on the condition with Scenario

5 is performed to explore the relation between model parame-

ters and optimized results. Figure 10 suggests that as the value

of early arrival time λe increases, the supplier cost would

increase because more buses are needed to reduce passenger

travel time and early arrival time.

FIGURE 9. Minimized costs vs. various scenarios.

FIGURE 10. Minimized costs vs. value of early arrival time.

Figure 11 shows that λe significantly affects the fleet com-

position. As λe increases from 3 to 39 $/pass-hr, the number

of minibuses (10-seat) increases from 9 buses to 18 buses,

while the number of larger buses (15-seat and 20-seat)
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FIGURE 11. Fleet size vs. value of early arrival time.

decreases from 14 buses to 10 buses. The increase of fleet

size as discussed earlier would reduce passenger travel time

and early arrival time, while using more smaller vehicles may

reduce the supplier cost and increase vehicle utilization.

FIGURE 12. Minimized costs vs. multiplier of bus variable cost.

In addition, we alter the variable cost via a cost multiplier

shown in Figure 12 and investigate the variation in costs,

travel time and fleet size. The results indicate that as the

cost multiplier increases, the total cost increases. fleet size

is expected to decrease, and thus larger buses are preferable,

albeit the user cost would increase because of escalated travel

time and early arrival time.

Figure 13 shows that the cost multiplier would significantly

influence on the fleet composition. For example, as the mul-

tiplier increases from 0.2 to 2, the number of small buses

(10-seat and 15-seat) decreases from 27 buses to 14 buses,

while the number of larger vehicles (20-seat) increases from

2 buses to 8 buses. As discussed earlier, the decrease of fleet

size using larger vehicles would increase passenger travel

time and early arrival time.

Figure 14 suggests that as the value of passengers’ time

λv increases, the supplier cost would increase because more

buses are needed to reduce travel time and early arrival time.

FIGURE 13. Fleet size vs. multiplier of bus variable cost.

FIGURE 14. Minimized costs vs. value of passengers’ time.

FIGURE 15. Fleet size vs. value of passengers’ time.

Figure 15 shows that the increase of λv significantly affect

fleet composition. As λv increases from 2 to 30 $/pass-hr,

the number of minibuses (10-seat) increases from 10 buses

to 21 buses, while the number of larger vehicles (15-seat and

20-seat) decreases from 13 buses to 7 buses. The increase

of fleet size as discussed earlier would reduce passenger

travel time and early arrival time, while using smaller vehi-

cles would reduce the supplier cost and increase vehicle

utilization.
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TABLE 9. The optimal routes and schedules of the study CB network.

VII. CONCLUSION

Considering the spatiotemporal passenger demand, this study

developed a model to optimize the CB service, which min-

imized the total cost subject to capacity and time window

constraints. The decision variables included bus routing and

the associated timetables, and passenger trip assignment,

whilemulti-terminal, mixed bus fleet and early arrival penalty

were considered. A hybrid genetic algorithm (HGA) was

developed, which can effectively search for the acceptable

solution with minor randomness.

The optimal solution was found through optimizing a

real-world CB service in Xi’an China. A sensitivity analysis

was conducted, and the impacts of model parameters to the

optimized results were explored.

The results suggest that employing multiple terminals and

mixed bus fleet individually, the minimized total cost can be

reduced by 5.9% and 11.3%, respectively. However, employ-

ing multiple terminals with mixed bus fleet may reduce

the cost by 16.5%, and the major cost reduction is on the

supplier’s side. Moreover, as early arrival penalty is also

considered, the cost can be further reduced by 17.4%.

The results of sensitivity analysis suggest that as the value

of time (e.g. early arrival time and travel time) increases,

an increase in supplier cost resulting from the increased fleet

size shall be expected, and the early arrival time and average

travel timemay significantly decrease. As fleet size increases,

smaller buses are preferable to reduce cost and improve vehi-

cle utilization. On the other hand, as the bus operating cost

increases, fleet size decreases, and larger vehicle is prefer-

able. This situation would increase the user cost because of

increased travel time, resulting from increased route length

and number of stops per route.

As an immediate extension of this study, the developed

model may be enhanced by considering more realistic condi-

tions, such as stochastic travel time between stops, the impact

of demand elasticity to mode/route choice, and dynamic dis-

patching strategies. This extension would permit the model to

optimize CB operation and service planning subject to more

practical constraints.

APPENDIX

See Table 9.
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