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Optimizing Multiple-Input Single-Output (MISO)

Communication Systems With General Gaussian

Channels: Nontrivial Covariance and Nonzero Mean

Aris L. Moustakas, Member, IEEE, and Steven H. Simon

Abstract—In this correspondence, we consider a narrow-band
point-to-point communication system with many (input) transmitters

and a single (output) receiver (i.e., a multiple-input single output (MISO)
system). We assume the receiver has perfect knowledge of the channel

but the transmitter only knows the channel distribution. We focus on two
canonical classes of Gaussian channel models: a) the channel has zero

mean with a fixed covariance matrix and b) the channel has nonzero mean
with covariance matrix proportional to the identity. In both cases, we are
able to derive simple analytic expressions for the ergodic average and

the cumulative distribution function (cdf) of the mutual information for
arbitrary input (transmission) signal covariance. With minimal numerical

effort, we then determine the ergodic and outage capacities and the
corresponding capacity-achieving input signal covariances. Interestingly,

we find that the optimal signal covariances for the ergodic and outage
cases have very different behavior. In particular, under certain conditions,

the outage capacity optimal covariance is a discontinuous function of the
parameters describing the channel (such as strength of the correlations or
the nonzero mean of the channel).

Index Terms—Multiple antennas, side information, outage capacity,
transmit diversity.

I. INTRODUCTION

Multiple-antenna arrays are known to perform better than their

single-antenna counterparts, because they can more effectively counter

the effects of multipath fading and interference. However, the en-

hanced performance depends on the amount of channel information at

the transmitter and on whether the transmitter is able to take advantage

of this information. For example, it is well known that in a spatially

uncorrelated Rayleigh-fading environment, for a multiple-antenna

transmitter with perfect channel knowledge and a single-antenna

receiver (multiple-input single-output (MISO)), the gain in throughput

due to the optimization of transmission is roughly log
2
(n), where

n is the number of transmitter antennas. The knowledge of the

channel allows the transmitter to transmit with a signal covariance

that maximizes the signal-to-noise ratio (SNR) at the receiver, thus

increasing the mutual information.

In addition to the above so-called closed-loop case with instanta-

neous channel knowledge at the transmitter, the transmitter may have

only statistical channel information, in particular, it may know the dis-

tribution of the channel. In this case, extra throughput is gained by the

transmitter adapting the signal covariance to the full distribution of the

channel. For example, the transmitter may know the long-term cor-

relations between the transmitting antennas (the channel covariance),

which could be modeled as a zero-mean Gaussian channel with non-

trivial covariance. Alternatively, it may have knowledge of the mean

channel, which could be modeled by a Gaussian channel with a nonzero

mean and covariance proportional to the identity matrix. The idea of
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maximizing the mutual information based on statistical information of

the channel at the transmitter was proposed in the more general mul-

tiple-input multiple-output (MIMO) context by Moustakas et al. [2]

and Sengupta and Mitra [3] and also by Visotsky [4], Jafar [5], and

Narula [6] for the MISO case.

We would like to focus on how the mutual information changes as

we change the input signal covariance (i.e., adapt the transmitter) so

as to maximize the throughput. Of course, the mutual information of

a random channel instantiation is also a random quantity. One can

consider several measures of the typical mutual information for an

ensemble of channels. One useful measure is the average mutual in-

formation (or “ergodic capacity” [1]). Alternatively, one can use the

“x% outage mutual information” which is defined to be the minimum

amount of mutual information occurring in all but x% of the instanti-

ations of the channel [7]. For example, if we measure the mutual in-

formation of the channel many times—in many instantiations of the

random channel—we would find that a mutual information greater than

the 5% outage mutual information would occur 95% of the time. Typi-

cally, system design aims to optimize either the ergodic average or the

outage mutual information for some given outage probability. In this

correspondence, we will aim to determine the input signal covariances

at the transmitter that optimizes each of these quantities. In order to

perform such an optimization, one needs to be able to calculate the er-

godic or outage mutual information as a function of the input signal

covariance.

The approach we adopt in this paper for MISO systems is to analyt-

ically (or mostly analytically) calculate the ergodic or the outage mu-

tual information as a function of the input signal covariance. One can

then simply optimize with respect to this covariance. Although this ap-

proach cannot be easily applied for general statistics of channel instan-

tiations, we show that, for a Gaussian channel with a nonzero mean

and a covariance matrix proportional to the identity, the problem of

calculating the ergodic or outage mutual information as a function of

the input signal covariance reduces to the evaluation of a single inte-

gral of known functions. Furthermore, for a Gaussian channel having a

known covariance matrix and zero average channel (a case of obvious

interest), the problem for both ergodic and outage capacities can be fur-

ther reduced to a simple analytic function. Optimization is then quite

straightforward. Note that several of the analytic results we present in

this correspondence have also been derived by other authors [4], [5],

[12], [13]. We will mention these results briefly to make comparison

with new cases that have not been previously studied analytically. We

note that recently we generalized the methods described here to calcu-

late the outage capacity for the two transmit antenna MISO case with

2-bits feedback information [21]. We also note that in the limit of large

numbers of antennas, certain calculations (such as average mutual in-

formation or optimizing the covariance of transmissions) simplify sub-

stantially [2], [3]. The techniques used in such calculations are quite

different from those used here and we defer a discussion of these sim-

plifications to another paper [8].

A. Outline

After some general definitions (Sections I-B and I-C), we analyze the

two canonical scenarios when dealing with partial channel information:

In Section II, we consider the case of a Gaussian channel with zero

mean and a given covariance matrix and transmission with arbitrary

covariance. The ergodic and outage mutual informations are derived

analytically and optimized. In Section III, a nonzero mean Gaussian

channel with trivial covariance will be assumed, and similar calcula-

tions are performed. (The most general case of nonzero mean Gaussian

channel with nontrivial covariance is also discussed in Appendix I.)

0018-9448/03$17.00 © 2003 IEEE
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B. Definition of Channel

In the narrow-band MISO problem—n transmitters and a single re-

ceiver—the channel is defined by

y =
p
p

n

i=1

gixi + � =
p
pgggTxxx+ � (1)

where y is the complex received signal, xxx is the complex transmitted

signal vector, with the ith element xi being the transmitted signal from

antenna i, ggg is the complex channel vector, and � is the complex noise at

the receiver. Here, p is a normalization constant signifying roughly the

received SNR of the channel. In this correspondence, capital boldface

quantities will denote n�n matrices, while lower case boldface letters

will represent n-dimensional column vectors, and superscripts y and T
will denote the Hermitian conjugate and transpose, respectively.

The channel statistics are given by the conditional probability

P (ggg; yjxxx) = P (ggg)P (yjggg; xxx)
where the equality holds due to the independence of y and ggg. These

distributions are assumed to be known at the transmitter. P (yjggg; xxx)
describes the distribution of the noise �, which is assumed to be

zero-mean Gaussian with unit variance Ef���g = 1, where Ef�g
denotes the expectation value (setting the noise power to unity defines

our unit of power). The transmitted signal xxx is taken to be a Gaussian

vector with covariance matrix given by Efxxxxxxyg = QQQ with QQQ a

nonnegative definite Hermitian matrix. xxx has been normalized so that

the constraint of the average total transmitted power can be expressed

as TrfQQQg = n.

The channel ggg is defined to be CN (ggg
0
; ~���), i.e., a complex Gaussian

vector channel with mean ggg
0

and covariance ��� (with ��� a Hermitian

nonnegative definite matrix), normalized so that Trf���g = n. The

norm of ggg
0

is given by

 = gggy
0
ggg
0
: (2)

For the case of ggg
0

= 0 and QQQ = IIIn, p is precisely the SNR per

transmitting antenna. Similarly, if transmissions are uncorrelated (QQQ =
IIIn again), the SNR from the constant part of the channel is given by

p. Finally, we note that we will also frequently use the notation that

ai are the eigenvalues of (pQQQ���)�1. Similarly, qi are the eigenvalues

of QQQ and si are the eigenvalues of ���.

C. Definitions of Quantities to Calculate

For a given instantiation of ggg, if the receiver knows the channel [1]

(which in practice is achieved by sending pilots), the mutual informa-

tion I(xxx; yjg = ggg), which is equal to I((xxx; ggg); y) since I(xxx; ggg) = 0,

is given by

I(xxx; yjg = ggg) = log(1 + gggypQQQggg): (3)

Here the notation g = ggg implies that the channel is fixed at the value ggg.

Throughout this correspondence, we will measure information in nats

where 1 nat is equal to e bits (e = 2:718 � � �).
One quantity of interest is the so-called ergodic average, i.e., the

mean, of the mutual information I . We write

hIi = hlog(1 + gggypQQQggg)i (4)

where the brackets h�i represent an ensemble average over realizations

of ggg.

Another quantity of interest is the complementary cumulative distri-

bution function (ccdf)

ccdf(I) = h�[I � log(1 + gggypQQQggg)]i (5)

where �(x) is the step function (�(x) = 1 for x > 0 and is 0
otherwise). We also define the cumulative distribution function (cdf)

cdf(I) = 1� ccdf(I). Note that the ergodic average as well as the cdf

and ccdf are implicit functions of QQQ, p, ggg
0
, and ���. We will not usually

make all of these dependencies explicit.

It is convenient to define an inverse function of this cdf which we

will call the outage mutual information OUT . More specifically, for a

fixed QQQ and ���, we define OUT (Pout) such that

Iout = OUT (Pout) (6)

when

Pout = cdf(Iout) = 1� ccdf(Iout): (7)

Since the cdf is monotonic, the inversion is unique. The meaning of

Iout = OUT (Pout) is that there is a probability Pout that in any in-

stantiation of ggg from the ensemble, we will obtain a mutual information

I less than Iout. This is the usual definition of outage as we have al-

ready described it above.

The ccdf (and cdf) as well as the outage OUT have an important

“scaling” property. To see this, we note that, since exponentiation is

monotonic, we can rewrite (5) as

ccdf(I) = h�[z � gggyQQQggg]i (8)

where

z =
eI � 1

p
: (9)

Thus, the ccdf is only a function of the combined quantity z and not of

p and I separately. This can be seen directly from (3). Thus, for a given

QQQ and ���, a single calculation of the ccdf applies for all power levels

p. Since the outage mutual information can be found by inverting the

calculated ccdf, we can use this scaling property to then write

Iout = log [1 + pZ(Pout; QQQ; ���; ggg
0
)] (10)

where the function Z = (eI � 1)=p depends only on the target

outage probability Pout, as well as on QQQ, ���, and ggg
0
, but does not

depend on the power level p. This implies that for a given channel

ensemble (defined by ��� and ggg
0
), the optimal transmission covari-

ance QQQ for a given outage probability Pout (i.e., that maximizes

Z(Pout; QQQ; ���; ggg
0
)) is independent of the power p. We note that

this simple scaling property does not hold for the mean mutual

information. It is amusing that this scaling may make the outage

mutual information (which may be more technologically relevant) an

easier quantity to work with than the mean mutual information (which

is usually considered to be simpler).

To reiterate, the purpose of this correspondence, whether we are con-

cerned with ergodic or outage mutual information, is to ask how the

transmitter (assumed to know P (ggg) and P (yjggg; xxx)) should choose the

transmission covariance QQQ so as to maximize the mutual information.

II. ZERO-MEAN CHANNEL WITH NONTRIVIAL COVARIANCE

We start by analyzing the case where the channel ggg has zero mean

ggg
0
= 0 and arbitrary covariance ���. In other words, the channel is

CN (0; ���). This situation has been often used as a model of wireless

systems where the channel is constantly changing, but correlations in

the channel are only slowly varying. For example, one could think of a

block-fading channel where the covariance��� is fed back at each block.
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The mean mutual information hIi is derived in Appendix I-A. With

ai being the eigenvalues of (pQQQ���)�1, and assuming all the eigenvalues

are different, we have

hIi =

n

i=1

ai

n

j=1

m(aj)

aj
k 6=j

(ak � aj)
(11)

where

m(a) = �eaEi(�a) = ea�(0; a) (12)

with Ei the exponential integral and

�(0; x) = �Ei(�x) =
1

x

dy
exp(�y)

y

the zeroth incomplete gamma function. This result has been derived

independently in [12].

Similarly, in Appendix I-A, we derive the ccdf

ccdf(I) =

n

i=1

ai

n

j=1

g(aj ; I)

aj
m6=j

(am � aj)
(13)

where

g(a; I) = exp(�a(eI � 1)) (14)

which has been derived independently in [13]. Note that, since each ai
is proportional to 1=p, the ccdf does indeed have the scaling property

mentioned above that it is only a function of the parameter z in (9).

This can be seen by noting that each ai / 1=p. In the next sections, it

will be convenient to think of (13) and (7) in terms of z, QQQ, ���, i.e., as

Pout = cdf(zout; QQQ���) = 1� ccdf(zout; QQQ���) (15)

where 0 < Pout < 1 is the outage probability (that gggyQQQggg is less than

zout).
We note that both (11) and (13) are continuous and finite when any

two (or more) a’s become equal to each other (see also the comment

on this in Appendix I-A).

A. Optimization Over QQQ

To reach the full information capacity of the communication link, the

transmitter has to optimize the transmitting signal covariance matrix

QQQ. The transmitter may either choose to maximize the average mutual

information hIi, yielding the ergodic capacity [1], or to maximize the

outage mutual information Iout = log(1 + pzout) for a fixed outage

probability Pout. As we shall see, the resulting capacities and optimal

QQQ matrices in these two cases will be quite different.

The optimization problem of QQQ for the ergodic capacity has been

analyzed in the past by Visotsky [4] in the context of the MISO system.

In addition, we are also interested in outage capacities, which in many

cases are more useful (see [9], [10]), and turn out to be simpler than the

equations for the ergodic capacity due to the above mentioned scaling

law.

In either case (outage capacity or ergodic capacity), it is sufficient

to optimize over the eigenvalues of QQQ in the basis of ��� (i.e., QQQ and ���

should be simultaneously diagonalizable). The proof of this statement

is given by Visotsky [4] and Jafar [11] for the ergodic capacity case and

has been generalized by the current authors [14] to apply to the case of

outage capacity. This simplification is crucial as it allows us to write

ai = 1=(qisip) (with qi and si the eigenvalues of QQQ and ���, respec-

tively). Since we have derived analytic expressions for both the ergodic

information and outage mutual information, in terms of the ai’s, maxi-

mization of the capacity reduces to an n-parameter maximization over

the qi’s (subject to the trace constraint onQQQ, which makes it ann�1-di-

mensional problem) which can now be done with minimal numerical

effort[17].

B. Examples for Zero-Mean Channels

In this subsection, we analyze (11) and (13) and their optimal QQQ’s

in greater detail. We assume (without loss of generality) that the eigen-

values of ��� and QQQ are ordered such that s1 � s2 � � � � and q1 �
q2 � � � �, respectively. We define beamforming to be the transmission

of all power through the maximum eigenvalue (s1) and corresponding

eigenvector of ��� such that q1 = n and all other qi’s are zero. A ques-

tion that we will keep in mind in the following is, if ��� has more than

one nonzero eigenvalue, when is beamforming optimal?

1) Two Transmitting Antennas: We begin by looking at the case of

two transmitting antennas and a single receiver antenna. We consider a

model ��� given by

��� =
1 x

x� 1
: (16)

The form of ��� in (16) implies that the two transmitting antennas are

equivalent. We call the parameter x the “antenna cross correlation”

(since x represents hg�1g2i) and, without loss of generality, we take x
to be real and positive. Clearly, when x = 0, the antennas are com-

pletely independent (uncorrelated), and when x = 1 the antennas are

fully correlated. We can thus express x in terms of the eigenvalues of

��� as

x =
s1 � s2

2
(17)

and since Trf���g = s1 + s2(= 2) is fixed, varying x from 0 to 1
gives us all of the possible values of s1 and s2 for a two-antenna MISO

system.

In Fig. 1, we plot the optimal q2 for the two-antenna case as a func-

tion of the antenna cross correlation x (Note that q1 = 2 � q2 due to

the power constraint). We note that for the simple case of two antennas,

the optimization of the capacity can be done partially analytically by

setting q1 = 2� q2 and differentiating our analytic expressions for the

ergodic capacity (11) and the outage (7) and (13).

The solid lines in Fig. 1 are plots optimizing the outage mutual

information for various outages while the dotted lines optimize the

ergodic mutual information for various values of the power level p
(thus, giving the outage capacities and ergodic capacities, respec-

tively). Recall that when q2 goes to zero (for high antenna cross

correlations), beamforming is optimal. At low cross correlations, q2
approaches unity, which means that it is optimal to distribute the

power evenly between the two transmission eigenmodes (which we

call “independent transmission”). In both the outage and ergodic cases,

we see a transition from independent transmission to beamforming as

the antenna cross correlation is increased. However, the quantitative

details of this crossover differ substantially in the two cases.

Looking at the outage curves (solid) we see that more independent

transmission (q2 closer to 1) becomes favored as the outage probability

is reduced. Similarly, for lower outage probabilities, the crossover to

beamforming occurs at higher antenna cross correlations. This is a re-

flection of the fact that beamforming is more susceptible to fading since

it uses only one mode. Analogously, for the ergodic case (dashed) we

see that the transition to beamforming occurs at lower antenna cross

correlation at lower power levels. This is simply the well-known fact

that beamforming is favored at low power.

We also note that in the outage curves (solid) there is a discontinuity

in the optimal q2 as a function of antenna cross correlations where q2
makes a jump from a finite value to zero (beamforming). Further we

note that the discontinuity is substantial at high outage. This interesting

property—a jump to beamforming—will be discussed in detail below

in Section II-C.

In Fig. 2, we show relative outage mutual informations for optimized

transmission, beamforming, and independent transmission as a func-
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Fig. 1. Optimal power to nonbeamforming mode q for the two transmit antenna case, as a function of the antenna cross correlation x = (s � s )=2 for a
Gaussian zero mean channel with nontrivial covariance (specified by x). Here q = 0 corresponds to beamforming and q = 1 corresponds to power being
equally distributed between each of the two transmission eigenmodes. The dashed curves maximize the ergodic (mean) capacity for various values of the parameter
p which is the signal-to-noise level per antenna here. The solid curves maximize the outage capacity for various different outage probabilities P . Note that the
solid curves jump discontinuously to zero, which can be seen most clearly for the P = 50% case. (See Section II-C.)

tion of antenna cross correlation and outage. Here we have plotted ra-

tios of z parameters, where z = (eI � 1)=p. (Note that the factors of p
cancel in ratios of z’s.) At small Iout (effectively low SNR), the ratio

of z parameters is equal to the ratio of the outage capacities (z1=z2 �
I1=I2). At high Iout (effectively high SNR), the log of the z ratio be-

comes the difference in information capacities (log(z1=z2) � I1�I2).
From Fig. 2 we see that for high antenna cross correlation, beam-

forming becomes optimal, i.e., zoptimal=zbeam = 1 whereas at low

antenna cross correlation, independent transmission becomes optimal,

zoptimal=zindep ! 1. We see that incorrectly choosing to use beam-

forming at low antenna cross correlations can lower the outage mutual

information by a very large factor (roughly a factor of 2:5 or 3:5 for

10% and 5% outage, respectively, at low SNR). Similarly, using inde-

pendent transmission at high antenna cross correlation can carry a large

penalty (a factor of 2 at low SNR). However, by switching between

beamforming and independent transmission modes at an appropriate

point (the point where zbeam = zindep), one can stay very close to

the optimal outage capacity. As can be seen from Fig. 2, only a small

amount of additional outage capacity can be obtained by always using

the optimal transmission covariance (optimal q2).

2) Four Transmitting Antennas: In both the ergodic and outage

case, the analytic form of the mutual information in (11) and (13)

reduces the optimization over qj to a straightforward exercise. As a

slightly more complicated case compared to the two-antenna cases

discussed above, Fig. 3 shows the outage and ergodic capacities for

a 4 � 1 MISO system, as a function of angle spread � (in radians)

at the transmitter. The transmitting antenna array is a uniform linear

array with elements separated by �=2. The correlation matrix ��� is

determined by the formula

�ij = exp �
(� (i� j)�)2

2
(18)

which is a simple approximation for a planar, Gaussian-distributed ray

model with the main path of departure from the array being at broadside

[15]. The capacities were calculated by numerically optimizing I in

(11) and (13) with respect to q1; q2; q3; and q4 subject to the power

constraint

TrfQQQg = q1 + q2 + q3 + q4 = n = 4:

We see that the 50% outage capacity is very close to the ergodic

capacity, reflecting the fact that the pdf is roughly symmetric around

its average. Also, for low outages, one can obtain a substantial gain by

using the optimal transmission covariance rather than beamforming

or independent transmission. As in the above two-antenna case, the

crossover between independent transmission and beamforming is

very dependent on the outage probability. More importantly, if, for

example, one is technologically interested in optimizing 5% outage,

this is clearly quite different from optimizing the ergodic average

(which is similar to 50% outage).

Optimizing a function (outage mutual information, for example) in a

space of n�1 dimensions becomes a bit difficult numerically for larger

n. One might think, therefore, that performing these calculations and

finding the optimal transmission correlations (optimal q’s) in real time

for a system might be prohibitive. A common technological solution



2774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

Fig. 2. Comparison of outage mutual information for optimized transmission, beamforming, and independent transmission as a function of antenna cross
correlation x = (s � s )=2 for different outage probabilities P for a Gaussian zero mean channel with nontrivial covariance (specified by x). Here we
have plotted ratios of z parameters (z = (e � 1)=p. Note that the factors of p cancel in the z ratios). At small I (effectively low SNR), the ratio of z
parameters is equal to the ratio of the outage capacities. In this case, we interpret the graph as showing I for optimal transmission divided by I for
beamforming or independent transmission. At high I (effectively high SNR), the log of the z ratio becomes the difference in mutual informations. Thus, we
see that for all antenna cross correlations and all outages, either beamforming is very close to optimal or independent transmission is very close to optimal. A
small amount of additional capacity can be obtained by using fully optimized transmission covariance. For example, from the figure we see that for 5% outage
and cross correlation x � 0:88 only about 5% additional outage capacity (at low SNR) can be obtained by using optimized transmission correlations rather
than beamforming or independent transmission.

to this problem would be to implement a lookup table which, given

measured values of si (eigenvalues of ���) would produce the optimal

values of q’s. However, as n gets large, even a lookup table might be

very hard to implement since it would require entries in a high-dimen-

sional space. Even for n = 4, such a table may be a bit unwieldy.

Instead, we propose that a system could be built to operate in several

canonical transmission schemes such as beamforming (q1 = n and

qi = 0 for i > 1) or independent transmission (all qi = 1) as well as a

few intermediate transmission schemes. An example of a intermediate

scheme is shown in Fig. 3. In the figure, we have considered an inter-

mediate case (the dot-dashed curve) where only two modes are used

(q1 = q2 = 2 and q3 = q4 = 0). This particular intermediate scheme

operates close to optimally where beamforming and independent trans-

mission both fall short of the optimal capacity by about 20%. Since our

analytic expressions for the mutual information (outage or ergodic) are

so simple, it would be quite easy for a system to perform calculations

in real time to determine which of a number of predetermined schemes

will be best for a given antenna cross-correlation matrix.

C. Beamforming Optimality Criterion and the Transition to

Beamforming

Several authors [4], [5], [14], [16] have previously posed the question

of when beamforming is optimal. In these works, the focus has been on

optimizing the ergodic mutual information. Again, we write the eigen-

values of QQQ as qi and the eigenvalues of ��� as si. As noted above, we

also work in a basis where both QQQ and ��� are diagonal. Without loss

of generality, we use a basis such that s1 � s2 � s3 � � � � sn. The

beamforming mode is such that q1 = n and all other qi’s are zero.

We note that since s2 is the second largest eigenvalue (the second

best mode of transmission), in order to find the optimality condition

for beamforming we need only find the point where q2 first becomes

nonzero. For the beamforming solution to be optimal for the ergodic

capacity hIi, we must have hIi decrease as q1 is reduced and any other

qi is increased so as to preserve the constraint
i
qi = n. Thus, the

condition for beamforming is

dhIi

dqk q =n; q =0; j�2; k�2

�
@hIi

@qk
�

@hIi

@q1 q =n; q =0; j�2; k�2

� 0: (19)

This condition has previously been derived by other authors [4], [5].

It is, in fact, easy to show that since s2 > s3 > � � �, if this condition

holds for k = 2, then it holds for k > 2. (In other words, if it is

not advantageous to move some power from the strongest mode s1 to

the next strongest mode s2, then it is also not advantageous to move

power to any of the weaker modes.) In fact, since hIi as a function of
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Fig. 3. Mutual information as a function of angle spread at the transmitter for a uniformly spaced four-antenna transmit array for a zero-mean Gaussian channel
with covariance specified by the angle spread. (The antenna correlation matrix is given by (18).) The solid curves correspond to optimal transmission, the dotted
curves correspond to beamforming (q = 4; q = q = q = 0), and the dashed curves correspond to independent transmission (q = q = q = q ). The
dot-dashed curve (shown only for 5% outage) is an intermediate case using two modes only (q = q = 2; q = q = 0). The power level is p = 10 =
SNR/antenna. We have shown here curves corresponding to the ergodic capacity as well as several outage capacities. We note that the 50% (median) outage
capacity is very close to the ergodic capacity, reflecting the fact that the probability density function (pdf) is roughly symmetric around its average. For low outage
probabilities, one can obtain a substantial gain (roughly 20% near an angle spread of 10 ) by using the optimal transmission rather than beamforming or independent
transmission. However, the intermediate case of using only two modes is almost optimal in this range where both beamforming and independent transmission are
poor.

q2 is convex (d2hIi=dq22 < 0) over [0; 1] subject to q1 + q2 = n and

qj = 0 for j > 2 (as shown by Jafar in [5]) then (19) for k = 2 is, in

fact, a necessary and sufficient condition for beamforming to optimize

the ergodic mutual information hIi.
Since we have an analytic expression (11) for hIi, the relevant

derivatives can be taken analytically to yield an analytic condition

for beamforming optimality for the ergodic capacity in agreement

with the prior result in [5] and the more general results by the current

authors in [14], [16].

The question of when beamforming is optimal for maximizing the

outage mutual information is more difficult to answer. Here, since the

ccdf in (13) depends on Iout only through z, as discussed above, the

results are independent of the signal-to-noise parameter p. However,

determining the optimal QQQ is now more complicated because Iout is

generally not a convex function of q2.

We would like to maximize z in (13) by varying over the qi’s subject

to the constraint
i
qi = n. (Again, we take QQQ and ��� to be simulta-

neously diagonal). If dz=dq2 > 0 for q2 = 0, clearly q2 = 0 is not

optimal. Naively, when dz=dq2 � 0 at q2 = 0 one would assume that

q2 = 0 would be the optimal solution. However, this is only true if

d2z=dq2
2 < 0 for all q2 in [0; 1], which in this case is not true. In fact,

using our analytic form for the ccdf (13) it is straightforward to show,

at least for the case of two transmitting antennas, that at q2 = 0, the

opposite is always true d2z=dq22 > 0. This implies that the transition to

beamforming always occurs via a finite jump of q2 when dz=dq2 < 0.

In Fig. 4, we show an example of this nonmonotonicity explicitly

and show how beamforming becomes optimal in a discontinuous way.

The optimal q2 jumps discontinuously from close to 0:6 for x < 0:225
to 0 for x > 0:225. However, we also note that this figure shows that

the size of the nonmonotonicity (differences of mutual informations) is

rather small, and becomes even smaller at low outages.

III. NONZERO-MEAN CHANNEL WITH COVARIANCE ��� = IIIn

In this section, we consider the case where the channel ggg has a

nonzero mean ggg
0

and covariance equal to the identity. In other words,

we take the ensemble of ggg to be given by CN (ggg
0
; IIIn). More generally,

one might consider a case where the channel has a nonzero mean and a

nontrivial covariance (i.e., an CN (ggg
0
; ���) channel). This more general

case is discussed in Appendix I. In the present section, however, we

restrict our attention to ��� = IIIn.

It has been shown in [4] that the optimal QQQ that maximizes the er-

godic mutual information for fixed ggg
0

is given by

Qij = q0
g0ig

�
0j

gggy
0
ggg
0

+ q �ij �
g0ig

�
0j

gggy
0
ggg
0

(20)

where

q0 = n� (n� 1)q (21)
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Fig. 4. 50% outage mutual information versus power q to the orthogonal mode for a zero-mean Gaussian channel with different antenna cross correlations
x = (s �s )=2 with p = SNR/antenna = 10. We see that the mutual information is a nonmonotonic function of q and the optimal value of q jumps (at roughly
the dotted line) from a finite value to zero. For x > 0:225 beamforming q = 0 is optimal. However, for x < 0:225, the optimal value of q is greater than 0:6.

and q0 � q. In Appendix II, we show that this form is also optimal for

maximizing any outage capacity. The first term of (20) is the projection

of QQQ in the direction of ggg
0
, while the second is the projection onto the

basis perpendicular to ggg
0
.

With the QQQ of (20), and using the expression (64) for the ergodic

average of the mutual information derived in Appendix I, with��� = IIIn
(as explained in Appendix I-C1) we obtain

hIi =
1

0

dy exp � y

p

y
1�

exp � q y

1+q y

(1 + q0y)(1 + qy)n�1
(22)

with p being proportional to the signal-to-noise per antenna for the

fluctuating part of the signal and  = ggg
y
0ggg0 is the mean channel signal

strength (see Section I-B).

Similarly, for the above form of QQQ, (46) derived in Appendix I-B

gives the ccdf of the mutual information

ccdf(I) = 1� e
� z

q0

1

0

dte
�

I0 2
zt

q0

� 1�
� n;

z(1�t)
q

(n� 1)!
(23)

where

�(n; x) =
1

x

x
n�1

e
�x

is the incomplete � function, and as above z = e �1
p

.

Equations (22) and (23) constitute the main results of this section.

Maximizing hIi in (22) to produce the optimal q as a function of  and

p will give the ergodic capacity. Similarly, using (23) (and (7)) to max-

imize the outage mutual information over q will produce the outage ca-

pacity. In either case, the optimization procedure involves maximizing

an integral over one parameter.

In Fig. 5, we show the optimal power to the orthogonal (nonbeam-

forming) direction (q) as a function of the constant part of the channel

 = ggg
y
0ggg0. As might be expected, beamforming (q = 0) becomes

optimal for large  since in that case the transmitter can take better

advantage of ggg0. Conversely, when  = 0, independent transmission

(q = 1) becomes optimal. As might be expected, beamforming is also

favored at lower power levels and higher outages.

The solid lines are again optimization of outage mutual information

for various values of the outage probability Pout and the dashed curves

are optimization of the ergodic mutual information at various levels

of the power parameter p, yielding the outage and ergodic capacities,

respectively. It is clear once again that maximization of ergodic mutual

information is very different from maximization of any outage mutual

information. Finally, we note that, analogous to the cases examined

above, for the outage capacity, the transition to beamforming can occur

via a jump—as is clear for thePout = 50% curve. Later, we will discuss

this jump further.

A. Beamforming Criterion and Transition to Beamforming

Next we analyze the optimization over QQQ. To be clear, we note that

we are optimizing a capacity with fixed ggg0. (In a real system, ggg0 might

change from time to time, and to evaluate the long-term capacity of
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Fig. 5. Optimal power allocation for a nonzero-mean Gaussian channel and white covariance ��� = III . Here, q represents power to the “orthogonal modes,”
such that q = 0 is beamforming and q = 1 is independent transmission from all antennas. We have plotted the optimal q as a function of the channel magnitude
 = ggg ggg , where ggg is the mean channel. Solid lines are the optimal q for maximizing outage mutual information (for various outage probabilities), whereas dashed
lines are the optimal q for maximizing ergodic mutual information (at various power levels p). As one might expect, as the mean channel  gets larger, beamforming
becomes increasingly optimal. The crossover to beamforming occurs more quickly for smaller p and higher outage probability. Note that for P = 50%, q drops
to zero discontinuously, signifying a nonmonotonic outage mutual information as a function of q. For smaller P < 0:226 and larger  ( > 1:670), the
discontinuity disappears.

an actual system one would typically want to average over all of the

instantiations of ggg
0

that might occur in an ensemble of ggg
0
’s).

Since the ergodic mutual information is convex [5], analogous to

(19) above, the beamforming condition is that at q = 0

dhIi
dq

q=0

=
@hIi
@q

� 1

n� 1

@hIi
@q0 q=0; q =n

� 0: (24)

Taking the derivative in (22) yields

1

0

dt
exp � t

np
exp � t

1+t

(1 + t)3
(t (t+ 1)� ) � 0: (25)

This condition, for optimizing the ergodic capacity, agrees with that

derived more generally in [16].

Once again, the outage capacity will prove more difficult to analyze.

As previously discussed in Section II-C, the outage capacity as a func-

tion of q is not necessarily monotonic. We demonstrate this for the case

of a nonzero-mean channel by analyzing the behavior of z(q; ; Pout)
close to q = 0. The first derivative of z with respect to q at q = 0 is

dz

dq
q=0

= (n� 1) 1� z

n
(26)

where z is the solution of (23) at q = 0 which simplifies to

Pout = e�
z

n

1

0

dte� I0 2
zt

n
: (27)

Thus, setting z = n along with solving (27) at z(q = 0; ; Pout) = n
establishes the existence of an extremum (equivalent to (19)). However,

here, we need to check convexity. The second derivative at q = 0 is

d2z

dq2
q=0

=
n� 1

zI0 2 z

n

� I0 2 z=n
z

n
� z

n
I1 2

z

n

� 1 + 2 (n� 1) 1� z

n

2

(28)

where In(x) is the nth-order modified Bessel function. For q = 0 to be

a local maximum we need to have at q = 0, z = n and d2z=dq2 < 0.

This is only true for I0(2
p
) <

p
I1(2

p
), i.e., for  > 1:670.

Which corresponds to

Pout < Pcrit = 0:226 (29)

in the sense that z(0;  > 1:67; Pout) = n in (27) has solutionPout <
0:226. By numerically analyzing (23) we find that for Pout < 0:226
the optimal q() decreases continuously to zero, and indeed in this re-

gion, (27) evaluated at z = n gives the proper beamforming optimality

condition. The continuous transition to beamforming is seen in Fig. 5

for 10% and 5% outage probabilities.

In contrast, for Pout > Pcrit, the optimal q jumps discontinuously

to zero. This can be seen from the fact that for  < 1:670 and z(q =
0; ; Pout) = n, the second derivative of z is positive, i.e., d2z=dq2 >
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0 when dz=dq = 0 at q = 0. Thus, the optimal q jumps from a finite

value q > 0 to q = 0 at some  and z > n for which dz=dq < 0 at

q = 0. This is clearly seen in Fig. 5 for Pout = 50%.

IV. SUMMARY

In this correspondence, we have shown how to analytically (or

mostly analytically) calculate the outage mutual information and the

ergodic average mutual information of MISO systems as a function of

the transmission covariance QQQ, thus enabling us to determine which QQQ

maximizes the mutual information. We have considered cases where

the channel is described as being CN (0; ���) or being CN (ggg0; IIIn),
i.e., having mean zero and covariance ��� or having mean ggg0 and

white covariance. (The more general case of CN (ggg0; ���) is discussed

in Appendix I.) These cases represent realistic situations where the

transmitter has only statistical channel information. While the channel

itself may change rapidly, these statistical quantities (covariance or

mean channel) may change much more slowly, thus, we think about

adaptation of the transmitter to the slowly varying properties of the

channel.

An important issue we have not discussed is coding for MISO trans-

mission. For any case where beamforming is used, the problem reduces

to that of simple 1� 1 transmission. For cases of 2� 1 transmission,

or any case where only two eigenmodes are used, one may exploit a

structure introduced by Alamouti [18], which consists of transmission

blocks of two time slots. It has been shown that this transmission struc-

ture can, in principle, attain the full capacity of a 2 � 1 channel. This

statement remains true even when the channel has nontrivial correla-

tions. For cases when one wants to transmit n different modes with

n > 2, simple transmission structures have not yet been devised that at-

tain full capacity. However, several structures have been proposed that

come close to the full capacity. For example, for 4� 1 transmission, a

simple scheme with a block of length 4 in time has been discussed in

[10], and has been simulated for independent and identically distributed

(i.i.d.) channels. We believe this structure should also be effective for

correlated channels. Other generalizations of these structures (so-called

LD codes) could similarly be considered [19]. In general, however, the

question of coding for n � 1 MISO systems remains open.

APPENDIX I

CALCULATIONAL DETAILS FOR GENERAL CASE: N (ggg0; ���)

Here we look at the general case where the channel has nonzero mean

ggg0 and arbitrary covariance��� (i.e., the channel is CN (ggg0; ���)). We will

aim to first calculate the pdf which is defined as

pdf(I) =
d cdf (I)

dI
= h�[I � log(1 + gggypQQQggg)]i (30)

where �(�) is the Dirac delta function. In terms of this quantity, we have

ccdf(I) =
1

I

dI 0 pdf(I 0) (31)

hIi =
1

0

dI I pdf(I): (32)

It is convenient to separate out the constant piece of ggg and write

ggg = ggg0 + zzz such that I = log(1 + (gggy0 + zzz)pQQQ(ggg0 + zzz)) where

ggg0 is a constant and zzz is a Gaussian random vector with zero mean and

covariance ���, i.e., zzz = N (0; ���).
The average of any quantity O over the ensemble of zzz is given by [8]

hOi = d�(zzz; zzzy)e�zz
z ��� zzzO (33)

where the integration measure is defined by

d�(zzz; zzzy) = det����1
n

i=1

1

�
dRe zi d Im zi: (34)

Thus, we can write

pdf(I) = d�(zzz; zzzy)e�zz
z ��� zzz

� �[I � log(1 + [gggy0 + zzzy]pQQQ[ggg0 + zzz])] (35)

= d�(zzz; zzzy)e�zz
z ��� zzzeI

� �(eI � 1� [gggy0 + zzzy]pQQQ[ggg0 + zzz]): (36)

The delta function is now written as a Fourier transform (using �(x) =
1
2�

dkeikx) to yield

pdf(I) = d�(zzz; zzzy)e�zz
z ��� zzz

� eI
dk

2�
eik(e �1�[ggg +zzz ]pQQQ[ggg +zzz])

(37)

= eI
dk

2�
eik(e �1)�ikggg pQQQggg d�(zzz; zzzy)

� e�zzz [��� +ikpQQQ]zzz�zzz ikpQQQggg �ggg ikpQQQzzz: (38)

We next aim to do the integral over zzz. These types of Gaussian integrals

can be performed by using the general rule [8]

n

i=1

dRexi dImxi e�xx
x MMMxxx+nnn xxx+xxx nnn =

�ne�nnn MMM nnn

detMMM
:

(39)

Thus, we have

pdf(I)

= eI
dk

2�

eik(e �1)�ikggg pQQQggg �ggg kpQQQ[��� +ikpQQQ] kpQQQggg

det[IIIn + ikpQQQ���]
: (40)

The terms containing ggg0 in the exponent can be rewritten as

�gggy0���
�1ggg0 + gggy0QQQ

1=2AAA[ikIII +AAA]�1AAAQQQ1=2ggg0 (41)

where AAA = (QQQ1=2���QQQ1=2p)�1. Making an eigenvector expansion

Ajk =

n

i=1

aiv
i�
j v

i
k (42)

where ai and vvvi are the eigenvalues and the respective normalized

eigenvectors ofAAA (note that ai are also the eigenvalues of (pQQQ���)�1 as

defined above), the second term in (41) can be written as

gggy0QQQ
1=2AAA[ikIII +AAA]�1AAAQQQ1=2ggg0

=

n

i=1

(gggy0QQQ
1=2vvviai)(ik+ ai)

�1(aivvv
�
iQQQ

1=2ggg0) (43)

where we have used the fact that eigenvectors form a complete set, i.e.,

i v
i
jv

i�
k = �jk . Thus, we can rewrite

pdf(I) = eI�gg
g ��� ggg dk

2�

eik(e �1)

j

(1 + ik=aj)
exp

i

bi
1 + ik=ai

(44)

where

bi = paijggg
y
0QQQ

1=2vvvij2: (45)

Note that using (42) we can show i bi = gggy0���
�1ggg0, which we will

need below.
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To obtain the cdf of I , we integrate over I (as shown in (31)) to yield

ccdf(I) =
dk

2�

eik(e �1)

0+ � ik

e�ggg ���ggg

j

(1 + ik=aj)
exp

i

bi
1 + ik=ai

:

(46)

Integrals of the type shown in (46) and (44) can be manipulated conve-

niently by using transformations like the following:

Integral =
dk

2�

eikx+B=(a+ik)

a+ ik

=
1

�
dy dy�

dk

2�
eikx�jyj (a+ik)+

p
B(y+y )

(47)

where dy dy� means that y is integrated over the complex plane. We

then define a radial variable z = jyj2 and angular variable � and rewrite

the integral over the plane as

Integral =
1

2�
d�

1

0

dz
dk

2�
eik(x�z)�az+2

p
Bz cos(�)

(48)

=
1

2�

1

0

dz d��(x� z)e�az+2
p
Bz cos(�)

(49)

= e�axI0(2
p
Bx) (50)

with I0 the modified Bessel function. To handle more complicated in-

tegrals such as

dk

2�

eikx+B =(a +ik)+B =(a +ik)

(a1 + ik)(a2 + ik)
(51)

one would introduces two complex variables y1 and y2. The integral

over k then gives �(x � z1 � z2) and the angular integrals can still

be performed. We can apply this approach to (46) for arbitrary QQQ and

��� by using n + 1 different y’s to take care of all n + 1 factors in the

denominator, resulting in the useful form

cdf(I) = e�ggg ���ggg
n

j=0

1

0

dzj

� � eI � 1�
n

j=1

zj

n

j=1

aje
�z a I0(2 zjajbj): (52)

A. cdf and hIi for Zero-Mean Channel CN (0; ���)

In the case where ggg0 = 0 expressions (44) and (46) simplify to

pdf(I) = eI
n

i=1

(�iai) dk

2�

eik(e �1)
n

i=1

(k � iai)
(53)

ccdf(I) =

n

i=1

(�iai) dk

2�

eik(e �1)

i(k � i0�)
n

i=1

(k � iai)
: (54)

Since the ai are all nonnegative and real, we can close the integration

contour in the upper half plane [20]. (In the case where one or more

ai are precisely zero, a limit should be taken where they approach zero

from the positive side.) In addition, we see from (53) and (54) that in

the limit of a particular ai going to infinity ai !1, that term cancels,

and the product is over the remaining n� 1 degrees of freedom. In the

case where all of the ai’s are different, this immediately yields

pdf(I) =

n

i=1

ai

n

j=1

f(aj ; I)

aj
m 6=j

(am � aj)
(55)

where

f(a; I) = a exp I � a(eI � 1) (56)

as well as (13). If the ai’s are not all different, a limit can be taken

of the same expression as the appropriate ai’s approach each other.

More simply, perhaps, one can perform the above contour integral with

appropriate multiple poles [20]. To obtain the ergodic capacity, one

directly integrates the pdf in (32) using

a
1

0

dI I eI�a(e �1) = eaEi(�a) (57)

and we immediately obtain (11).

B. cdf for Nonzero-Mean Channel: CN (ggg0; III)

For the case considered in Section III, we use ��� = III and QQQ of

the form (20). From this form we see that q0 is an eigenvalue of QQQ

corresponding to the eigenvector ggg0=jggg0j, and q is an eigenvalue of QQQ

with a multiplicity of n � 1. Thus, we write ai = 1=(qp) for i =
1; . . . ; n � 1 and an = 1=(q0p). Similarly, we have bi = 0 for i =
2; . . . ; n�1 and bn = 1. Using (52), noting that I0(0) = 1, we obtain

(see also (68) and related comments)

cdf(I) = ane
�ggg ggg

e �1

0

dzn

� e�z =(q p)I0 2
zn
q0p

~C(eI � 1� zn) (58)

where

~C(x) =

n�1

j=0

1

0

dzj (qp)�n+1� x�
n�1

j=0

zj e
� z

(59)

=(qp)�n+1
1

0

dz0
1

0

dwwn�1

(n� 1)!
�(x� z0 � w)e�w=(qp)

(60)

where we have made the substitution w = n�1
i=1 zi. Thus, we obtain

~C(x) = (qp)�n+1
x

0

dwwn�1

(n� 1)!
e�w=(qp)

= qp 1� 1

(n� 1)!
� n;

x

qp
: (61)

Substitution into (58) yields (23).

C. Ergodic Average hIi for General Case: CN (ggg0; ���)

A useful general expression for hIi can be derived using the identity

log(x) =
1

0

dy

y
[e�y � e�xy] (62)

to express the log in the definition of I = log(1 + gggypQQQggg). Applying

(33) for the case G = CN (ggg0; ���) we get

hIi = d�(zzz; zzzy)e�zzz ��� zzz
1

0

� dy e
�y

y
1� exp �y[gggy0 + zzzy]pQQQ[ggg0 + zzz] : (63)

Integrating out the zzz variables (see (39)) we get

hIi =
1

0

dye�y

y

� 1�
exp �gggy0����1=2 ��� QQQp��� y

1+��� QQQp��� y
����1=2ggg0

det[1 + ���1=2QQQp���1=2y]
: (64)

1) Ergodic Average hIi for White Covariance: CN (ggg0; III): For

the case considered in Section III, we use ��� = III and QQQ of the form

(20). Again, this gives us q0 as an eigenvalue of QQQ, and q as an eigen-

value of QQQ with a multiplicity of n�1. Thus, the determinant in (64) is
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(1 + q0py)(1 + qpy)n�1. Furthermore, only the eigenvector corre-

sponding to q0 contributes in the exponent, giving�q0py=(1+q0py).
Plugging these in to (64) and rescaling y!y=p gives (22).

APPENDIX II

OPTIMAL FORM OF QQQ WHEN GGG = CN (ggg
0
; IIIn)

In the case where ��� = IIIn it has been shown in [4] that to optimize

the ergodic capacity, one must choose aQQQ of the form of (20). (Indeed,

this can be seen relatively simply by analyzing the form of (64)). In this

appendix, we prove that to optimize a given outage capacity, one must

also choose QQQ of this form.

First we note that since cdf(I) is a monotonically increasing

function, and since the outage is the inverse function of cdf (see (6)

and (7)) finding the QQQ that maximizes OUT (Pout) is equivalent to

finding the QQQ that minimizes cdf(I). Fixing the eigenvalues ai of

(pQQQ)�1, we examine the cdf in the form of (52). As mentioned above
n

j=1
bj = gggy

0
ggg
0

is fixed, however, the individual bjs can be varied by

making a unitary rotation of QQQ. Thus, we need to ask how to distribute

the “weight” of the bj ’s so as to minimize the cdf. We claim all of

the weight must be concentrated in a single bj corresponding to the

smallest eigenvalue aj .

To prove this claim, we consider two eigenvalues a1 < a2 and

imagine varying b1 and b2 subject to the constraint b1 + b2 = b. We

write the cdf in the form of (52). Focusing on the z0; z1; and z2 inte-

grals (which we choose to do first), we write these integrals

Int =
1

0

dz0 dz1 dz2�(C � z0 � z1 � z2)

� e�a z �a z I0(2
p
z1a1b1 )I0(2

p
z2a2b2 )

=
C

0

dz2
C�z

0

dz1e
�a z �a z

� I0(2
p
z1a1b1)I0(2

p
z2a2b2 ) (65)

where C = eI �1� n

j=3
zj . Now, since I0 is a monotonic function,

and z2 > z1 and a2 > a1, we have

Int>
C

0

dz2
C�z

0

dz1e
�a z �a z I0(2

p
z1a1b1 )I0(2

p
z1a1b2 )

(66)

>
C

0

dz2
C�z

0

dz1e
�a z �a z I0(2 z1a1(b1 + b2) ): (67)

The final step follows from the fact that

I0(
p
x)I0(

p
y) > I0(

p
x+ y)

with x; y > 0 (which can be established by noting that log I0(
p
x) is

a convex function). The last line here (67) is exactly what we would

get if we had put all of the weight (b = b1 + b2) in the direction

corresponding to a1, thus proving our claim.

We now rewrite the cdf using the fact that only a single bj is nonzero

(we will call this one bn) separating out this integral

cdf(I) = ane
�ggg ggg

e �1

0

dzn

� e�z a I0(2
p
znanbn ) ~C(eI � 1� zn) (68)

where

~C(x) =

n�1

j=0

1

0

dzj �(x�
n�1

j=0

zj)

n�1

j=1

aje
�z a : (69)

Comparing to (52), we see that ~C is nothing but the cdf for an n �
1-dimensional system with ggg

0
= 0, i.e., with all b’s set to zero (and

with an effective mutual information ~I given by ~I = log
2
(1+x)). We

know that for such a system (with ��� = IIIn�1) the cdf is minimized

(outage maximized) for QQQ being proportional to the identity matrix.

Thus, the remaining n� 1 eigenvalues of QQQ must all be equal to each

other. Thus, we conclude that the optimalQQQ must have one eigenvector

pointing in the direction ggg
0

corresponding to the largest eigenvalue of

QQQ and all other eigenvalues are equal to each other. This immediately

implies that QQQ must have the form of (20).
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