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SUMMARY

As the usage of wireless devices continues to grow rapidly in popularity, wireless net-

works that were once designed to support a few laptops must now host a much wider

range of equipments, including smart phones, tablets, and wearable devices, that often run

bandwidth-hungry applications. Improvements in wireless local access network (WLAN)

technology are expected to help accommodate the huge traffic demands. In particular,

advanced multicell Multiple-Input Multiple-Output (MIMO) techniques, involving the co-

operation of APs and multiuser MIMO processing techniques, can be used to satisfy the

increasing demands from users in high-density environments.

The objective of this thesis is to address the fundamental problems for multiuser MIMO

with AP cooperation in dense wireless network settings. First, for a very common multiuser

MIMO linear precoding technique, block diagonalization, a novel pairing-and-binary-tree

based user selection algorithm is proposed. The algorithm achieves high sum-rate perfor-

mance with low complexity and good scalability, and has the ability to balance the aggre-

gate performance and computational cost. Second, without the zero-forcing constraint on

the multiuser MIMO transmission, a general weighted sum rate maximization problem is

formulated for coordinated APs. A scalable algorithm that performs a combined optimiza-

tion procedure is proposed to determine the user selection and MIMO weights. Third, we

study the fair and high-throughput scheduling problem with multiuser MIMO transmission

by formally specifying an optimization problem that captures all aspects of the problem set-

tings, including the MIMO weights, practical power constraint, fairness and user selection.

Two algorithms are proposed to solve the problem using either alternating optimization or

a two-stage procedure. Fourth, with the coexistence of both stationary and mobile users,

different scheduling strategies are suggested for different user types. An overall scheduling

framework using mobility hints is proposed to reduce the protocol overhead and sustain

good performance for all users. The approach exhibits noteworthy performance gain, espe-

xiv



cially for scenarios with limited mobility. Moreover, we also discuss how to integrate the

proposed solutions for cooperative APs with 802.11 protocols. The provided theoretical

analysis and simulation results in this thesis lay out the foundation for the realization of the

clustered WLAN networks with AP cooperation.

xv



CHAPTER 1

INTRODUCTION

Over the last decade, wireless data traffic has experienced a dramatic growth driven by

the ever-increasing number of wireless devices and applications. Although advanced wire-

less local access network (WLAN) techniques and the dense deployment of access points

(APs) are expected to increase the network capacity to accommodate huge traffic demands,

the chaotic unplanned IEEE 802.11 WLAN deployment with many nearby APs sharing

the limited spectrum leads to a high-level of co-channel interference, especially in dense

deployments, which significantly hinders the overall performance improvement. To break

the performance bottleneck within the unlicensed band, coordination of communications

across multiple APs together with advanced MIMO processing techniques is anticipated to

provide considerable performance improvements [1, 2, 3, 4, 5, 6].

1.1 Motivation and Research Objectives

The wireless access performance issues in unplanned WLANs span numerous deployment

scenarios, as shown in Figure 1.1. For instance, large-scale enterprise wireless networks

are becoming overwhelmed by high traffic demands in dense areas, which covers most

office-type environments. However, simply deploying more APs might even reduce the per

client performance, due to the exacerbated interference and protocol inefficiencies. Similar

dilemma can occur in auditoriums-style rooms, such as lecture halls and large conference

rooms, where there are generally many users sharing the limited bandwidth during peak

hours. Even home users are beginning to experience deficient wireless performance, as

they sign up for ultra-high-speed services for the wireless devices. With the development

of the smart-home devices, sharing an AP among 5-10 wireless devices is present in many

homes today. With the rapidly growing demands for data services over wireless networks,
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Figure 1.1: Dense wireless network deployment scenarios.

service providers are increasingly faced with the challenge of how to improve the spectral

efficiency.

The multiple-input-multiple-output (MIMO) technique has drawn great attention as a

method to boost the spectral efficiency without the need of additional bandwidth [7, 8].

MIMO systems exploit spatial degrees of freedom to support simultaneous multiple data

streams, by equipping the both ends of a link with multiple antennas. Recent research on

MIMO communication has shift the paradigm from point-to-point MIMO to multiuser con-

texts [9, 10, 11]. However, the spatial multiplexing gain bringing in by multiuser MIMO

does not scale well to the multicell WLANs with distributed transmitters due to limited

number of orthogonal channels and the inevitable inter-cell interference. A potential ap-

proach to break the wireless performance bottleneck in multicell WLANs is the devel-

opment of advanced multicell MIMO techniques involving the cooperation of APs and

coordination of communications across multiple devices. In our target scenarios, such as

2



most of the enterprise networks, the adjacent APs generally share one network gateway

with one Internet connection. Therefore, inside an enterprise network, multiple APs can

be clustered and cooperate to control the lower-layer parameters and to optimize the over-

all performance and fairness. The solutions can also be applied to other dense wireless

deployments such as the wireless network in large office/apartment buildings and other

commercial spaces. The clustered structure enables concurrent transmission from multiple

distributed APs, and thus eliminates inter-cell interference. Combining this approach with

the orthogonal channel deployment, the wireless performance are expected to exhibit good

scalability for small-to-meduim size multicell WLANs.

On the way to pave for the realization of the clustered WLANs, there still exist a num-

ber of critical research challenges to be addressed even in the most ideal small-to-medium-

scale environments. One of the main challenges is the physical-layer solutions to the tar-

geted multi-AP co-channel environment. With the cooperation across multiple distributed

APs, more users can be supported simultaneously by employing multiuser MIMO com-

munication techniques. The key to improve the performance is to achieve a combination

of spatial multiplexing and interference suppression. However, the practical constraints

in AP-coordinated environments, such as channel estimation overhead, various channel

variability, channel state information (CSI) accuracy and per-node power constraint, poses

difficulties on solving the problem. With many users sharing the resources within a cluster,

another key problem to solve is how to effectively use those resources to obtain high aggre-

gate performance while also achieving fairness among the many competing users. Different

from scheduling with single user transmission, scheduling with multiuser MIMO links de-

pends on both the user combinations and their MIMO weights. Developing a schedule that

integrates with the proposed physical-layer solution is a challenging task. Moreover, the

fairness objectives and the aforementioned practical constraints will further complicate the

design of the scheduling scheme.

Our focus is on optimizing the performance of dense wireless networks with a cluster

3



of cooperative APs when employing multiuser MIMO communication. The objective of

this thesis is to address the challenges therein and establish the foundations of the clustered

WLANs with AP cooperation.

1.2 Contributions

The primary contributions of this thesis are:

• The first contribution (Chapter 3) is that we propose an efficient and scalable user se-

lection algorithm for the frequently-used block diagonalization precoding technique.

With the fitness metric evaluated for each pair of users, a binary tree is constructed to

store multiple candidate user groups. The best user group is then selected from these

candidates. PBUS can achieve both good sum-rate performance and low computa-

tional complexity, and also has the flexibility to trade off sum-rate performance and

computational complexity.

• The second contribution (Chapter 4) is that we propose a combined optimization pro-

cedure that performs both user selection and MIMO weight calculation and scales

well as the number of users increases. User selection eliminates some undesirable

users, while MIMO weight calculation determines the precoders and combiners for

all active nodes. A new performance metric, which takes into account available

power, channel quality and orthogonality, and user weights, is used to perform an

initial phase of user selection. A WSR maximization algorithm is then executed to

optimize MIMO weights of selected users and further refine the user selection.

• The third contribution (Chapter 5) is that we address the fair scheduling problem with

MIMO links to maximize the aggregate throughput subject to a fairness constraint

that is general enough to capture many different fairness objectives. We formally

specify a nonconvex optimization problem that captures all aspects of the problem

setting and we propose two algorithms to approximate its solution. The first algo-

4



rithm jointly optimizes selection of user sets, MIMO precoders, and assignment of

user sets to time slots, so that it guarantees perfect fairness and produces at least a

local optimum for aggregate throughput. The second algorithm separately optimizes

firstly user sets and MIMO precoders and secondly assignment of user sets to time

slots. It has lower computational complexity and allows throughput and fairness to

be traded off easily for situations where maximizing throughput is critical and ap-

proximate fairness is acceptable.

• The fourth contribution (Chapter 6) is that we propose a mobility-aware scheduling

approach to accommodate both static and mobile users. It aims to alleviate the pro-

tocol overhead and provide satisfactory performance of both stationary and mobile

users. The algorithm differentiates static and mobile users, separates them into differ-

ent time slots and adaptively determines their transmission time fractions to balance

fairness. Moreover, different scheduling strategies are applied for the two groups

according to the user profile.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief introduction

of basic MIMO concepts and techniques, and discuss the idea of clustered WLANs for

dense wireless networks. Then, in Chapter 3, a novel pairing-and-binary-tree-based user

selection algorithm to address the user selection issue for multi-user MIMO in dense envi-

ronments is proposed for block diagonalization precoding technique. Moreover, in Chapter

4 the problem of weighted sum rate maximization with cooperative APs is addressed via a

combined optimization procedure that scales well as the number of users increases. In ad-

dition, two scheduling algorithms are proposed to achieve both high throughput and target

fairness in Chapter 5. In Chapter 6, a mobility-aware scheduling algorithm is developed to

alleviate the protocol overhead and sustain high performance of both stationary and mobile

users. Finally, in Chapter 7, our conclusions and suggestions for future work are provided.
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CHAPTER 2

BACKGROUND AND NETWORK MODEL

Multiple-input multiple-output (MIMO) communication technologies provide promising

improvements of wireless link performance, and has been integrated into the core of several

wireless standards, such as LTE-A systems [12, 13] and wireless LANs [14, 15]. With mul-

tiple transmit and receive antennas, a MIMO system takes advantage of the spatial diversity

from spatially separated antennas in a rich multipath scattering environment, promises sub-

stantial increase in channel capacity [16, 17].

In this chapter, we will first review the basic concepts of MIMO systems, ranging from

point-to-point MIMO to multiuser MIMO. Then, we will focus on the dense wireless net-

work and discuss how it benefits from the advanced MIMO techniques. The network model

and optimization problems therein will be discussed.

Channel H

TX RX

Data

Steam

Data

Steam

h1,1

h2,1

h1,2
hNr,1

h2,2

h1,Nt
h2,Nt

hNr,Nt

hNr,2

Figure 2.1: System block diagram for a point-to-point MIMO link.
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2.1 Point-to-point MIMO

MIMO techniques were first investigated in point-to-point transmission, which transmit

multiple streams between a transmitting-receiving nodes pair. In such a traditional single-

user view of MIMO systems

2.1.1 Fundamentals of MIMO systems

Figure 2.1 illustrates a basic point-to-point MIMO system. In general, the impulse response

of a time-variant MIMO channel is represented by [18]

H(t; τ) =












h11(t; τ) h12(t; τ) · · · h1Nt(t; τ)

h21(t; τ) h22(t; τ) · · · h2Nt(t; τ)

...
...

. . .
...

hNr1(t; τ) hNr2(t; τ) · · · hNrNt(t; τ)












(2.1)

where t and τ are the time and the propagation delay and hi,j(t; τ) denotes the impulse

response between the jth transmit antenna and the ith receive antenna.

Let sj(t) be the signal or symbol transmitted from the jth transmit antenna and vec-

tor s(t) = {s1(t), . . . , sNt(t)}T with covariance matrix Σ = E[s(t)s(t)†]. Denote the

received signal at the ith receive antenna by yi(t) and the vector of received signal by

y(t) = {y1(t), . . . , yNr(t)}, which is given by [19]

y(t) =

∫

H(t; τ)s(t− τ)dτ + n(t) ,

where n(t) is an Nr × 1 additive white Gaussian noise vector.

If the channel is time-invariant, the dependence of the MIMO channel on time van-

ishes and we can drop the t in H(t; τ) (i.e., H(t; τ) = H(τ)). The frequency-domain
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representation H(f) ∈ C
Nr×Nt is then given by

H(f) =

∫

H(τ)e−j2πfτdτ .

For the rest of the dissertation, we address the channel, without loss of generality, in its

frequency domain. The frequency response channel matrix H(f) can be further simplified

as H for a flat-fading or narrowband channel. Thus, the MIMO channel matrix, denoted

by H ∈ C
Nr×Nt , is given by

H =












h11 h12 · · · h1Nt

h21 h22 · · · h2Nt
...

...
. . .

...

hNr1 hNr2 · · · hNrNt












(2.2)

where the entry hi,j represents the frequency response (i.e., attenuation and phase shift)

from the jth transmit antenna to the ith receive antenna.

2.1.2 MIMO channel modeling

Various forms of MIMO channels have been investigated during the past decade. In gen-

eral, most MIMO channel models can be categorized into physical model or analytical

model [20]. The physical models build the MIMO channel through the physical parame-

ters, such as the angle of arrival (AoA), angle of departure (AoD) and time of arrival, etc. It

describes the characteristics of the MIMO propagation channel as well as the surrounding

scattering environments via deterministic and/or stochastic parameterization. For exam-

ple, deterministic models using either ray-tracing techniques or/and stored measurements

to characterize the physical propagation parameters [21]. In the stochastic channel mod-

els, the impulse response physical parameters applied to specific or random transmitter,

receiver and scatter geometries are modeled in a stochastic manner, such as the extensions

8



of Saleh-Valenzuela model [22, 23] and WINNER channel model [24].

In contrast to the physical models, analytical channel models characterize the MIMO

channel in a analytical way by absorbing the individual impulse responses into a MIMO

channel matrix, such as the well-kown i.i.d. model, Kronecker model [25, 26] and We-

ichselberger model [27]. In particular, a simple but very common MIMO channel model

is the i.i.d. Rayleigh fading model, where the entries of the channel matrix H are inde-

pendent, identically distributed and circular symmetric complex Gaussian. The physical

basis of the i.i.d. Rayleigh fading model relies on richly scattered environment with a sig-

nificant number of multipaths with equal energy spread. The antenna elements should be

either critically or sparsely spaced to ensure the independence of the entries, i.e., at least

half-wavelength spacing [28]. We can simply model the i.i.d. Rayleigh fading model as [7]

hi,j =
√

γ/2(X1 + iX2),

where X1 and X2 are the i.i.d. Gaussian random variables with a zero mean and unit

variance and γ is the SNR of the MIMO link, i.e., E[|hi,j|2] = γ. We will use Rayleigh

fading model quite often in our simulation of the proposed algorithms. The basic method is

to assume a quasi-static flat-fading Rayleigh channel model where the channel is assumed

to be stationary for the duration of a burst, but random between bursts.

2.1.3 Channel capacity

MIMO technology has been shown to improve the capacity of the communication link with-

out the need to increase the transmission power. The large spectral efficiency associated

with MIMO channels is based on the premise that a rich scattering environment provides

independent transmission paths from each transmit antenna to each receive antenna. With

a total transmit power constraint Pt, the point-to-point MIMO channel capacity is given
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by [8, 29]

C(H ,Σ) = max
Tr(Σ)≤Pt

log2
∣
∣I +HΣH†/σ2

∣
∣ .

If there is no CSI available at the transmitter side, the power is equally split among Nt

transmit antennas, and the instantaneous channel capacity is given by

CnoCSIT
SISO = log2

∣
∣
∣
∣
I +

Pt
Ntσ2

HH†

∣
∣
∣
∣
.

The point-to-point MIMO channel capacity can be maximized if the perfect CSI is avail-

able at the transmitter side. The optimal capacity is obtained by decomposing the MIMO

channel into several parallel SISO channels without interfering with each other and sharing

the total transmit power, using singular value decomposition (SVD). Let r = rank(H) and

the compact SVD of channel matrix H is given by

H = AΛB† ,

where Λ ∈ C
d×d is a diagonal matrix containing the r singular values. The A ∈ C

Nr×d and

B ∈ C
Nt×d are the left and right singular matrix corresponding to the r singular values. The

power is then allocated in an optimal way, which is known as waterfilling. Equivalently,

the optimal capacity can be written as

CCSIT
SISO =

r∑

i=1

log2(1 + piλ
2
i /σ

2) ,

where λi is the ith singular value of H . The waterfilling solution for power allocation is

given by

pi = (µ− σ2/λ2i )+

where (x)+ = max(x, 0). µ can be obtained through a bisection search process, which

satisfies
∑r

i=1 pi = Pt. The covariance matrix Σ = Adiag[p1, . . . , pr]A
†.
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2.2 Multiuser MIMO

The attractive spatial multiplexing gain promised by point-to-point MIMO, also known as

SU-MIMO, requires a rich multipath propagation environment and sophisticated receivers

with multiple antennas. Unlike in the single-user setting, with multiuser MIMO techniques,

(a) SU-user MIMO

SS1

SS2

SS3

SS4

SS1 - 4

SS1

SS2

SS3

SS4

SS1 - 2

SS3

SS4

(b) MU-user MIMO

Figure 2.2: SU-MIMO v.s. multiuser MIMO.

the spatial multiplexing of data streams intended for different users can be transmitted

simultaneously while users are equipped with single antenna receivers, as shown in Figure

2.2. Therefore, multiuser MIMO communications enable the capacity gains of MIMO

while maintaining a low cost for user terminals.

The most substantial cost for a multiuser MIMO system is CSI required at the transmit-

ter side in order to properly serve the spatially multiplexed users. CSI at transmitter side,

while not essential in SU-MIMO communication channels, is of critical importance to most
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downlink multiuser MIMO precoding techniques. Another challenge involved in multiuser

MIMO design lies in the complexity of the scheduling procedure associated with the se-

lection of a combination of users that will be served simultaneously. Optimal scheduling

involves exhaustive search whose complexity is exponential in the group size and depends

on the choice of precoding, decoding, and CSI feedback technique.

2.2.1 System model

In the downlink illustrated in Figure 2.3, assume there areNt transmit antennas andK users

each equipped with Nr,k receive antennas. Let sk ∈ C
Nt×1 be the signal vector transmitted

Precoding
K users

Data

d1

dK

  

   
User 1

User 2

User K 

User

Selection

H1

HK

Figure 2.3: System block diagram for a multiuser MIMO system.

for the kth user from the Nt transmit antennas and Hk ∈ C
Nt×Nr,k be the channel matrix

between Nt transmit antennas and Nr,k receive antennas of the kth user. The user selection

module is required to select a subset of users that can be supported simultaneously, while

the precoding calculation module determines the precoding matrices for the active users.

These two modules can be implemented either jointly or separately. The received signal at

12



the kth receiver can be written as

yk = Hksk +
K∑

j 6=k,j=1

Hksj

︸ ︷︷ ︸

inter−user interference

+nk .

where nk ∈ C is the vector white Gaussian noise. The covariance matrix of transmit signal

sk is Σk = E[sks
†
k]. With a transmit power constraint Pt, it implies

K∑

k=1

Tr(Σk) ≤ Pt.

2.2.2 Capacity region

An achievable region for the MIMO broadcasting channel (BC) was first derived in [30]

and extended to a more general multiuser MIMO case in [31]. As shown in [32] that the

capacity region of a MIMO BC is equal to the dirty paper coding (DPC) rate region. If the

user are encoded by the order of (π(1), π(2), . . . , π(K)), then the DPC rate of user π(i)

can be computed as

CDPCπ(i) = log

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

I +Hπ(i)

(

∑

j≥i

Σπ(j)

)

H
†
π(i)

I +Hπ(i)

(

∑

j>i

Σπ(j)

)

H
†
π(i)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, . . . , K (2.3)

The DPC rate region, which is the same as the BC capacity region, with a given permutation

(π(1), π(2), . . . , π(K)) is given by

CDPC =
⋃

K
∑

k=1

Σk≤Pt

CDPCπ(i) (Σπi)

where the expression should in turn be optimized over each possible user ordering. Based

on the duality of the MAC and DPC capacity region, the BC capacity region can be calcu-

lated through the union of regions of the dual MAC with uplink power allocation meeting

the sum power constraint [33].
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However, the DPC is difficult to implement in practice due to the complicated encod-

ing and decoding schemes coupled with user ordering. An alternative and more practical

technique for multiuser MIMO transmission is known as linear precoding.

2.2.3 Multiuser transmission via linear processing

Linear processing techniques are of interest because of their simplicity. The multiple users

are assigned with different precoding matrices at the transmitter side. The precoders are

designed jointly based on CSI of all the users to achieve a certain design objective. Typical

design criteria include, interference minimization, error probability, sum-rate, signal-to-

interference-plus-noise (SINR), etc.

Consider the vector of data signal for the kth user given by xk ∈ C
dk×1 with dk data

streams. With linear precoding, the data signal of the kth user is mapped to the Nt transmit

antenna using a linear precoding matrix Vk ∈ C
Nt×dk , that is, sk = Vkxk. The achievable

rate of the kth user is given by

Rk = log2

∣
∣
∣I + R̃−1

k HkVkV
†
k H

†
k

∣
∣
∣ ,

where

R̃k =
K∑

i=1,i 6=k

HkViV
†
i H

†
k + σ2

kI

is the interference-plus-noise covariance matrix at the kth user’s receiver. The received

signal yk is then equalized by the linear combiner Uk ∈ C
Nr,k×dk so that the estimated

signal at the kth user’s receiver is given by x̂k = U
†
kyk.

Zero-forcing (ZF)

One of the simplest linear precoding technique is known as zero-forcing (ZF), which can

eliminate the inter-user interference [34]. The ZF precoder was first derived for mul-

tiuser MIMO transmission with single antenna at each receiver. For this special case,
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the channel vector between the Nt transmit antenna and single receive antenna is denoted

by hk ∈ C
1×Nt for the kth user. Let the precoder for the kth user be vk ∈ C

Nt×1 and

V = {v1, . . . ,vK}. The ZF precoder is given by

V = H†(HH†)−1D

where H =
[
hT1 ,h

T
2 , . . . ,h

T
K

]T
and D is a diagonal matrix which adjusts the transmit

power so that Tr(V V †) ≤ Pt. By using ZF precoding, each stream can only be heard by

its intended receiver, and the interference are nulled out at other unintended receivers. Due

to the property of channel inversion, at most Nt users can be served simultaneously using

ZF precoding scheme.

The idea of ZF method can be extended to the multiuser MIMO systems for terminals

with multiple receive antennas, which is called block diagonalization (BD) [35]. With BD,

each user’s precoding matrix is restricted to lie in the null space of other cocurrent users’

channels. Therefore, the inter-user interference can be eliminated as HiVk = 0, for i 6= k.

Let H̃k =
[
HT

1 , . . . ,H
T
k−1,H

T
k+1, . . . ,H

T
K

]T
. The precoder matrix of the kth user should

lie in the null space of H̃k. The rank condition rank(HkVk) ≥ 1 should be satisfied. For

example, with the assumption that each element in Hk is generated by an i.i.d. complex

Gaussian distribution and user utilized all its receiver antennas, the maximum number of

simultaneous users is ⌈Nt/Nr⌉ for Nr, k = Nr, ∀k.

For ZF methods, finding optimal concurrent user group, however, is computationally

prohibitive, especially for a large user population. Different suboptimal user selection al-

gorithms are proposed for ZF methods [34, 36, 37, 38, 39], achieving certain tradeoffs

between the aggregate performance and complexity.
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Minimum mean-square-error (MMSE)

Different from ZF methods, which completely nullify the interference and could cause

an elevated noise level, the minimum mean-square-error (MMSE) criterion balances the

effects of noise enhancement and interference suppression [40]. For multiuser MIMO,

the MMSE criterion minimizes the expected sum of the norms between each x̃k and xk,

yielding the problem for designing the precoders Vk’s and combiners Uk’s

min
{Vk,Uk}

K
k=1

K∑

k=1

Tr
(
E
[
(x̃k − xk)(x̃k − xk)

†
])

s.t.
K∑

k=1

Tr(VkV
†
k ) ≤ Pt .

(2.4)

Due to the inherent interdependence between the precoders and combiners, the closed-form

solution for the global optimal Vk’s and Uk’s are unknown. The alternating MMSE solution

can be obtained via Karush-Kuhn-Tucker (KKT) conditions. With given Vk’s, the MMSE

combiner is given by

UMMSE
k =

(

R̃k +HkVkV
†
k H

†
k

)−1

HkVk.

With given Uk’s, the MMSE precoder is given by

V MMSE
k =

(

µI +
K∑

k=1

H
†
kUkU

†
kHk

)−1

H
†
kUk.

where µ is the Lagrangian multiplier chosen to meet the total power constraint on the

precoder. It can be optimized via a simple bisection search process.
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SINR Maximization

For sum-rate maximization, a desirable metric would directly account for the postprocess-

ing SINR at each receiver. The SINR of the ith stream for the kth user is

γk,i =
u

†
k,iHkvk,iv

†
k,iH

†
kuk,i

u
†
k,iσ

2
kuk,i +

K∑

l=1

u
†
k,iHkVlV

†
l H

†
kuk,i − u

†
k,iHkvk,iv

†
k,iH

†
kuk,i

,

where uk,i and vk,i are the ith column of Uk and Vk.

However, the total SINR for multiple terminals with multiple antennas is not strictly de-

fined in the literature. Different global SINR metrics are constructed and used for multiuser

MIMO optimization. For example, in [41], the MIMO precoder and combiner are jointly

optimized to maximize the minimum SINR. In [42], the SINR metric is defined as the sum

signal power across all receivers divided by the sum interference power, incorporating the

interstream interference. While most prior work with max-SINR criterion has focused on

computing the precoder and combiner, a priori specification of the active receivers, as well

as the active streams for each receiver is required.

2.3 Dense Wireless Network with Single-hop MIMO

The increasing use of advanced wireless devices is driving the demand for higher wireless

data rates and is causing significant stress to existing wireless networks. While the per-

formance of individual wireless devices can be improved due to the adoption of advanced

physical layer and signal processing techniques, most wireless networks in the unlicensed

band are experiencing difficulties to achieved the anticipated overall performance. A ma-

jor challenge is the high-level co-channel interference caused by the proliferation of both

devices and access points (APs) in a limited-spectrum environment, which has led to poor

per-user bandwidth.

Traditional techniques, such as assigning orthogonal channels to different APs and as-
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signing non-overlapping time slots to different users for 802.11-based WLANs, at best

equally divide the limited bandwidth among users. Moreover, since there are typically 3

orthogonal channels available in the unlicensed band, the practice of spatial reuse can only

promise the performance increase that scale almost linearly to a factor of 3. The co-channel

interference introduced by any additional AP will limit the performance increase, or even

reduce the overall performance, as shown in Figure 2.4.

High

Low

Channel 1

Channel 2

Channel 3

Figure 2.4: An example of wireless LAN deployment.

The concept of network MIMO, which is a form of cooperative MIMO or distributed

MIMO, has attracted significant research interest because of its ability to dramatically in-

crease the throughput of wireless networks [43, 44, 45, 46]. This approach is particularly

suited for dense enterprise networks with clusters of closely deployed APs [47]. A com-

mon scenario is that APs share a network gateway with one Internet connection. In this

scenario, multiple APs can be clustered and cooperate to control the lower-layer parame-

ters and to optimize the overall performance and fairness, by connecting via low-latency

links to a shared controller. The feasibility of synchronizing multiple cooperative APs

has been demonstrated in existing work [47, 48]. To reap the benefits of this approach,

advanced multiuser MIMO techniques, which can perform a combination of spatial mul-

tiplexing and interference suppression, need to be investigated. In this thesis, we target

dense enterprise wireless networks where there are multiple APs and a large number of

users within a small geographical area. These dense network scenarios are among the most

challenging for satisfying user demands.
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2.3.1 Access point cooperation

In general, two levels of downlink cooperation have been discussed in the literature, primar-

ily for cellular networks [43, 49]. One possibility is that the cooperative transmitters obtain

CSI of both direct and interfering links. This information allows the APs to coordinate their

signaling strategies, such as precoder design and power allocation, to effectively suppress

interference across different users. We refer to this approach as interference coordination

(IC). If the cooperative transmitters are tied together via high-speed links, as the case in

most enterprise wireless network deployments, they can share not only the CSI, but also

the data signals intended for the users, which enables a more powerful form of cooperation.

In this case, multiple APs can jointly craft their downlink signals to cooperatively serve the

users and the interference can be used to enhance performance, not degrade it. We refer to

this approach as cooperative processing or full cooperation. With the dramatic improve-

ment of the wired speeds to the last hop, the low-latency backhaul connection facilitates

the realization of the full cooperation among a small number of APs, which promises better

overall performance.

Considering the practical constraints such as complexity of coordination, backhaul lim-

itations, and computational overhead, the practical way to realize network MIMO in dense

environments is to group a small number of nearby APs into a cluster as shown in Figure

5.1. Thus, we divide a large enterprise wireless network into clusters, where the APs within

the same cluster can cooperate with each other. 1 This clustered structure can be extended

to large enterprise wireless networks by forming multiple clusters, where the APs within

the same cluster can cooperate with each other. Determining AP clusters is beyond the

scope of this dissertation. Actually, many environment provides a natural way of clustering

APs or any reasonable clustering algorithm can provide the type structure we envision.

Throughout this dissertation, we consider a scenario in which single-hop wireless net-

1Our techniques can be applied independently across as many orthogonal channels as are available in a

given wireless deployment.
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Figure 2.5: Traditional multi-cell WLAN (left) and clustered WLAN (right).

works are densely deployed over a region, where the areas served by different APs can

overlap. These APs can form a number of clusters, and APs within each cluster serve the

users via cooperative processing. We assume that there is a single entity for each cluster,

which has access to CSI and the data signals intended for all users and that computes the

overall schedule and the precoding and combining weights for all APs and users active

within each slot. This entity could be a network controller connected to all APs within a

cluster. We assume predetermined AP clusters and user association and are particularly

interested in optimizing the performance within a single cluster.

2.3.2 Linear precoder and combiner design

We consider a MIMO network with M cooperative access points (APs), where the mth

AP is equipped with Nt,m antennas. We assume that there are K users with Nr,k anten-

nas for the kth user. Let Nt =
∑M

m=1Nt,m and Nr =
∑K

k=1Nr,k be the total numbers of

antennas at the AP and receiver side, respectively. The matrix of complex channel gains be-

tween the cooperative APs and the antennas of the kth user is denoted by Hk ∈ C
Nr,k×Nt .

The data vector x =
[
xT1 , . . . , x

T
K

]T
is jointly precoded by the M APs using the linear

precoding matrix V = [V1, . . . ,VK ]. xk ∈ C
Nr,k×1 is the transmit signal vector for re-

ceiver k, and xk is assumed to be independently encoded Gaussian codebook symbols

with E[xkx
†
k] = I, where (·)† is the conjugate transpose of (·). It is assumed that the

kth user has Nr,k parallel data streams, although some of the streams can have a rate of
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zero. Vk =
[
V T
k,1, . . . ,V

T
k,M

]T ∈ C
Nt×Nr,k , where Vk,m is the partition of Vk applied at the

mth AP to precode the signals of user k.

The received vector at user k is given by

yk = HkVkxk +
K∑

l=1,l 6=k

HkVlxl + nk , (2.5)

where nk is the vector of Gaussian noise at the kth user with covariance matrix Rnk . The

corresponding covariance matrix of the received interference plus noise is given by

Rk̄ =
K∑

l=1,l 6=k

HkVlV
†
lH

†
k + Rnk . (2.6)

The instantaneous data rate in bits/s/Hz of the kth receiver before receive filtering is given

by

Rk = log2

∣
∣
∣I + R−1

k̄
(HkVkV

†
kH

†
k)
∣
∣
∣ . (2.7)

Assume the received vector yk is equalized using the linear combiner Uk ∈ C
Nr,k×Nr,k .

The received signal of the kth receiver is given by x̂k = U
†
kyk, which results in the MSE

covariance matrix of the kth user as

Ek = E

[

(U †
kyk − xk)(U

†
kyk − xk)

†
]

(2.8)

and its postprocessing data rate as

R̂k = log
∣
∣
∣I + (U†

kR−1
k̄

Uk)(U
†
kHkVkV

†
kH

†
kUk)

∣
∣
∣ . (2.9)

We aim to design the linear precoder and combiner that performs a combination of inter-

ference suppression and spatial multiplexing with the measured CSI. We particularly focus

on developing low-complexity and scalable linear processing strategies, which can work

well for the dense environment settings with large user populations. Practical constraints
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will be taken into account, such as the per-node power constraint, overhead for channel

estimation and various levels of CSI accuracy. To facilitate the analysis in the following

chapters, we will introduce the per-node power constraint in this section. Assume the max-

imum transmit power of themth AP is Pm. Since the transmit antennas are from distributed

APs, the precoder V needs to satisfy a set of per-AP power constraints expressed as,

Tr(ΓmV V †) ≤ Pm,m = 1, . . . ,M , (2.10)

or equivalently,
K∑

k=1

Tr(ΓmVkV
†
k ) ≤ Pm,m = 1, . . . ,M , (2.11)

where a diagonal matrix Γm ∈ R
Nt×Nt is introduced for the mth AP, in order to select the

partition of precoding matrix V applied at AP m. Thus, Γm contains ones on the diagonal

elements corresponding to the antennas of AP m and zeros elsewhere, i.e.,

Γm = diag







0, . . . , 0
︸ ︷︷ ︸
m−1
∑

m=1

Nt,m

, 1, . . . , 1
︸ ︷︷ ︸

Nt,m

, 0, . . . , 0
︸ ︷︷ ︸

M
∑

m=m+1

Nt,m







.

Note that in the special case of M = 1, the per-AP constraint reduces to the conventional

sum power constraint. Later, in Chapter 3 and Chapter 4, different linear precoding algo-

rithms will be discussed under the per-AP power constraint.

2.3.3 MIMO link scheduling

The physical-layer solution using linear precoder and combiner performs both spatial mul-

tiplexing and interference suppression, which is primarily focuses on optimizing the per-

formance at a given moment of time. However, in our target dense environments, there

are many users sharing the resources within a cluster. Scheduling to achieve both high-

throughput and fairness can be a challenging problem. The reason is that the per-user
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performance with multiuser MIMO transmission differs from one user group to another,

and this difference is highly coupled with the physical-layer solution. Determining the

active user group for a time slot requires the knowledge of the performance of these mul-

tiuser MIMO links, which requires the intensive computation of the precoder and combiner.

Besides, the fairness consideration will further complicate the design of the scheduling al-

gorithm.

In this dissertation, we aim to build a fair and high-throughput schedule for a cluster

of M cooperative APs and K users. The network central controller collects the physical

layer information from distributed APs and generate a explicit communication schedule.

The objective for the scheduling algorithm is to schedule a highly-optimized set of com-

munications for each time slot, which achieves high aggregate performance and satisfies

certain fairness criteria. We will investigate different scheduling algorithms that can work

with the physical-layer algorithm in Chapter 5. Moreover, scheduling strategies that can

accommodate both static and mobile users will be discussed in Chapter 6.

2.3.4 Integration with 802.11 protocol

To realize the clustered WLANs with AP cooperation we envisioned, we need to revisit and

tailor the 802.11 protocols for distributed APs. In particular, the 802.11ac, a faster and more

scalable version of 802.11n, is a significant landmark for WLANs, as it pushes towards

higher rate limits by enabling downlink multiuser MIMO transmission. In this section,

we will discuss some modifications to 802.11 protocols for the realization of downlink

multiuser MIMO communication with cooperative APs.

Client association

In conventional WLANs, APs advertise their presence by broadcasting beacon frames.

Prior to association, clients gather information about the APs by scanning the channels

one by one either through passive scanning or active scanning. When a client use passive
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scanning, it moves into each channel and listens the beacons on the channel. With active

scanning, the client station sends out probe request frames on each channel. APs respond to

these requests with probe response frames, which are similar to beacon frames. If a client

station receives beacons or probe responses from multiple APs, the default 802.11 rule use

received signal strength indicator (RSSI) as the association metric, namely, connecting the

client to the AP with the strongest RSS.

In our target network with AP cooperation, a client is actually associated to a cluster,

instead of a specific AP as in conventional WLANs. This can be achieved with a modifica-

tion of the conventional Client-to-AP association method. Upon determining the associated

clients for each AP, the central controller of the corresponding cluster gathers the informa-

tion from the cooperative APs and assign the cluster-based IDs to the associated clients,

which are then shared by the cooperative APs. Alternatively, the cluster identity can be

included in the beacon or probe response frame, i.e., each cluster has its own unique clus-

ter ID. When a client receives beacons or probe responses from multiple APs, it evaluates

the effective RSS from each cluster if these APs have different cluster IDs. The effective

RSS can be obtained by maximal ratio combining of the beacons or probe response signals

from APs with the same cluster ID. The cluster-based ids are given to each client upon

association.

CSI feedback mechanism

Since the multiuser MIMO performance is very sensitive to the interference, downlink

multiuser MIMO works well with the explicit beamforming feedback in 802.11ac. Here,

to enable the configuration of distributed APs, we consider a modification of the explicit

feedback mechanism specified in 802.11ac. In 802.11ac, before a multiuser MIMO trans-

mission, an AP initiates channel sounding by transmitting a VHT null data packet (NDP)

announcement, which specifies the set of users that are going to be polled for CSI feedback.

After the NDP announcement, the AP transmits an NDP, which is used by the receivers for
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channel estimation.
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Figure 2.6: CSI feedback mechanism for AP cooperation

With AP cooperation, each receiver needs to estimate the composed channel from all

APs. This can be done by modifying the single AP mechanism from 802.11ac, as shown

in Figure 2.6. The CU synchronizes the cooperative APs within the same cluster. The APs

transmit the cooperative NDP announcement (C-NDPA) and NDP sequentially in a pre-

determined order to enable the receivers to measure the wireless channels. The C-NDPA

frame identifies the AP cooperation mode, transmitter addresses and intended recipients’

address. The C-NDPA can be reduce to the conventional NDPA in 802.11 if there is only

one AP to transmit. Upon transmission of the NDP for channel estimation, an AP will

send the AP-poll to notify the next AP for C-NDPA and NDP transmission. Each client

estimates the channel between itself and each AP, i.e. the channel matrix between the mth

AP and kth client denoted by Hk,m ∈ C
Nr×Nt,m . After receiving the last NDP, the kth client

concatenates its channel matrix from M cooperative APs as

Hk = [Hk,1,Hk,2, . . . ,Hk,M ].

For CSI feedback, a master AP is assigned to poll the receives one by one by sending a

STA-poll, e.g., AP 1 is selected as the master AP in Figure 2.6. The first user will send

25



back its compressed CSI report immediately after receiving the end of AP-poll, while other

users will send their CSI after receiving the corresponding STA-poll.

The CSI feedback is always sent at the lowest modulation rate for reliability. To al-

leviate the feedback overhead, we use a compressed beamforming report as specified in

802.11ac for each polled user. It uses a quantized representation of the estimated channel,

based on the SVD of the channel. Let Hk be the channel matrix of kth user, which can be

represented via compact SVD Hk = AkSkB
†
k, where Sk ∈ C

Nr×Nr is the diagonal matrix

containing the singular values in a decreasing order. Ak ∈ C
Nr×Nr and Bk ∈ C

Nt×Nr are

the left and right singular matrix, respectively.

The explicit feedback in 802.11ac requires the right singular matrix to be decomposed,

quantized and then fed back to the AP for transmit beamforming. Bk is a semi-unitary

matrix with B
†
kBk = I and B

†
k forms an orthonormal row basis of the channel matrix

Hk,n. Based on 802.11ac, the right singular matrix Bk can be decomposed using the

Givens decomposition:

Bk =

{
Nr∏

i=1

(

Di
k

Nt∏

j=i+1

G
i,j
k

)}

ĨΦ
†
k , (2.12)

where Ĩ is a matrix containing the first Nr columns of an Nt × Nt unitary matrix. Di
k =

diag
(
1i−1, e

jφi,i , . . . , ejφNt−1,i , 1
)

and G
i,j
k is the Givens rotation matrix

G
j,i
k =















Ii−1

cosψi,j sinψi,j

Ij−i−1

− sinψi,j cosψi,j

INt−j















where Φk is a diagonal matrix, which can be absorbed into Sk. For example, 802.11ac will
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quantize and feedback the angles φi,j and ψi,j using a uniform quantizer [50] as follows,

ψ =
kπ

2bψ + 1
+

π

2bψ + 2
, k = 0, 1, . . . , 2bψ − 1 ,

φ =
kπ

2bφ + 1
+

π

2bφ + 2
, k = 0, 1, . . . , 2bφ − 1 ,

where bψ and bφ are the number of bits used to quantize ψ and φ. Two different feedback

types are specified for multiuser MIMO transmission. Type I uses 5 bits for ψ and 7 bits for

φ, while type II uses 7 bits for ψ and 9 bits for φ. The SNR value represented by the singular

value is quantized using 8 bits for each data stream. The details can be found in [50]. For

example, there are 13 pairs of angles for a 8× 2 matrix Bk, which requires 156 bits using

type I codebook and 208 bits using type II codebook. Obviously, higher quantization bits

leads to better approximation of Bk at the price of larger feedback overhead.

Multiuser MIMO transmission

Multiuser MIMO technique in 802.11ac is also referred to as spatial diversity multiple

access (SDMA). The reported CSI allows the AP to calculate the multiuser MIMO user

group and the corresponding precoding matrices. However, this calculation is not specified

in the standard. Later in this dissertation, we will investigate different algorithms to de-

termine the user group and MIMO weights specification. To initiate the multiuser MIMO

transmission, it clearly requires knowing which clients are served simultaneously, which is

calculated by the central controller after collecting the up-to-date CSI. When the precoders

and combiners are jointly calculated by the central controller, the head AP in the cluster

needs to broadcast the IDs of the active clients in the cluster and their combining matrices,

before transmitting the data packets with the aid of other cooperative APs. If the combiner

is determined at the receiver of each active client based on its precoder and channel matrix,

the head AP can broadcast the precoders to the client for combiner calculation.

With a certain user group for multiuser MIMO transmission, the APs need to deter-
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mine the data rate that best matches the channel quality, which is still an open problem for

802.11ac. Many wireless protocols, including 802.11, supports multiple bit-rates, achieved

by different modulation and coding schemes (MCSs). For instance, IEEE 802.11ac sup-

ports 10 different modulation and coding scheme options, which are shown in Table I. The

corresponding bit-rates can be found in [50] with up to 8 spatial streams.

Table 2.1: Modulation and code rate in IEEE 802.11ac

MCS Index Modulation Code Rate

0 BPSK 1/2

1 QPSK 1/2

2 QPSK 3/4

3 16-QAM 2/3

4 16-QAM 3/4

5 64-QAM 2/3

6 64-QAM 3/4

7 64-QAM 5/6

8 256-QAM 3/4

9 256-QAM 5/6

Similar to 802.11ac, we assume multiple streams use the same MCS for a certain client.

Obviously, the MCS selection procedure is required to determines the highest possible data

rates for clients. Various rate selection algorithms are proposed in existing work, which

have been shown to work well for the legacy 802.11a/b/g networks and can be adjusted

for MIMO settings [51, 52, 53, 54]. For example, the Minstrel RA algorithm is a general

purpose strategy proposed for 802.11 networks, as part of the MadWifi driver, that rapidly

became widely accepted [54]. To facilitate the analysis in this dissertation, we simply

follow the rationale of Minstrel by tracking the previous statistics periodically and main-

taining the packet error rate for each bit-rate. The objective of rate selection is to determine

the bit-rate that maximizes the MAC layer throughput which is calculated as bit-rate∗(1-

PER), where PER is the packet error rate at a given bit-rate. For a client with multiple data

streams, we obtain the packet reception rate (i.e., 1-PER) by multiplying the probabilities

that each stream of the packet is decoded successfully and independently.
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Multiple access techniques

Carrier sense multiple access with collision avoidance (CSMA/CA) is a random multiple

access scheme used by the 802.11 standard. Prior to transmitting, a node first listens to the

shared channel. If another node was heard or detected, the node will wait for a random

period of time before listening again. Otherwise, the channel is identified as idle, and the

node acquires the channel and transmits its packets. The random waiting time consists of

a fixed duration of waiting time and a random contention window (CW), which is used to

resolve the potential contention among nodes that trying to access the channel.

Although this distributed MAC protocol has the advantages from the perspective of

complexity, scalability and robustness, high contention level can significantly lower its

efficiency, which is a common phenomenon in dense environments [55]. In fact, centralized

MAC protocols are more suitable for the high-density wireless networks, which is more

controllable and enables the cooperation among distributed nodes. The communication

schedule proposed in this dissertation can be carried out using a time division multiple

access (TDMA) MAC. With TDMA, transmission time is divided into a number of time

slots, which generally have the same duration. It is a reservation-based and contention-

free multiple access scheme, which assigns the communication links into different time

slots [56]. We can aggregate as many packets as can fit within a time slot with fixed duration

and have each receiver simultaneously acknowledge these packets within one time slot.

When operating in infrastructure mode, the 802.11 standard also defines a point coor-

dination function (PCF), which resides in an AP to coordinate the communication and can

operate on top of distributed contention function (which employs CSMA/CA). The basic

functionality of PCF is to let the AP acquire the channel for a fixed period of time and poll

the transmission of its clients without contention. Therefore, the PCF allows the imple-

mentation of scheduled communications by polling the communication of each multiuser

MIMO group. Alternatively, the target communication schedule determined by the cen-

tral entity might also be implemented in a purely distributed fashion as described in [57],
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which achieves the “scheduled WiFi” using the distributed contention mechanism in the

802.11 distributed contention function. The approach in [57] was originally proposed for

single-input-single-output transmission and more work is needed to incorporate MIMO

techniques into the approach.

2.4 Chapter Summary

In this chapter, we first reviewed the basic concepts and principles for MIMO communica-

tions. To be specific, we elaborated the MIMO physical layer model and analyzed the ca-

pacity region for both point-to-point MIMO and multiuser MIMO. We have also introduced

the linear processing for multiuser MIMO transmission to achieve a combination of inter-

ference suppression and spatial multiplexing. With the aid of advanced MIMO technique,

we then further proposed an AP cooperation approach to alleviate the high-interference

problem encountered in dense wireless networks. We explored the open problems that

need to be solved for optimizing the performance in coordinated-AP environments. Fi-

nally, we discussed details of integrating the proposed schemes for AP cooperation with

the 802.11 protocols.
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CHAPTER 3

EFFICIENT USER SELECTION FOR BLOCK DIAGONALIZATION

3.1 Introduction

Block Diagonalization is a low-complexity linear MIMO precoding technique, which elim-

inates inter-user interference by designing the precoder of each user to lie in the null space

of the remaining users’ channel matrices [35, 58]. However, the number of simultaneous

users that can be handled with BD precoding is limited by the number of transmit antennas.

When the number of users is larger than can be supported by the transmit antennas, the APs

should determine a subset of users to optimize a desired utility function. This process is

called user selection.

Since a brute-force search over all possible user combinations is prohibitive due to

the high computational complexity with a large user population, greedy user selection

algorithms have been investigated for BD precoding in [59, 60, 61, 39]. These greedy

approaches incrementally select one user in each iteration [59, 60, 61, 39]. A capacity-

based algorithm of this type, referred as the c-algorithm, is proposed in [59]. While the

c-algorithm’s aggregate performance is good, it requires numerous singular value decom-

position (SVD) operations and a water-filling power allocation process in each iteration,

and these calculations are quite time consuming. Alternative algorithms introduced in [59,

60] utilize the c-algorithm in the finalization step to refine the user selection, but this still

generates a very high computational overhead, especially for networks with a large number

of users. Low-complexity algorithms proposed in [61, 39] reduce the computational cost

but achieve lower aggregate performance.

In this chapter, we propose a Pairing-and-Binary-tree-based User Selection (PBUS)

algorithm for a multi-user MIMO network with BD precoding. The PBUS algorithm has
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three phases: 1) a pairwise fitness evaluation to determine the fitness of different pairs

of users, 2) a binary tree-based grouping to generate a varying number of user groups as

candidates for selection, and 3) final user selection and its sum-rate maximization through

the optimal power allocation with per-AP power constraint.

The PBUS algorithm has several advantages as compared to existing approaches. First,

it can work well with the explicit CSI feedback mechanism as discussed in Section 2.3.4.

Second, the number of candidate user groups can be easily adjusted through a parame-

ter of the algorithm. This permits a trade-off between computational time and aggregate

performance, i.e. as more candidate groups are considered, the aggregate performance

is increased but the computation time is also increased, and vice versa as the number of

candidate groups is decreased. This trade-off combined with the lower complexity oper-

ations performed by our algorithm provide significantly enhanced aggregate performance

and running time, as compared to existing approaches. For example, with about 60 users,

we can achieve the same aggregate performance as the algorithm of [59] with about 1/5 the

running time. Alternatively, with the same running time as the algorithm of [61], we can

get about 15% higher sum rate performance. It is also noteworthy that the running time of

our proposed PBUS varies in a narrow range when the number of candidate group changes.

A final advantage of the PBUS algorithm is that it can efficiently update the user selec-

tion when most of the channels remain the same and only a few users experience channel

changes. This reduces the running time of the algorithm even further under this condition.

3.2 System Model

5.1 We consider a MIMO network with M APs cooperatively serving K users denoted by

K = {1, 2, . . . , K}. For convenience, we assume each of the M APs is equipped with Nt

antennas and each of the K users has Nr antennas. The matrix of complex channel gains

between the cooperative APs and the antennas of the kth user is denoted by Hk ∈ C
Nr×MNt .

The data vector x =
[
xT1 , . . . , x

T
K

]T
with xk ∈ C

Nr×1 is jointly precoded by the M APs
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using the precoding matrix V = [V1, . . . ,VK ]. Vk ∈ C
MNt×Nr is the partition of V applied

at the cooperative APs to precode the signals of the kth user. xk ∈ C
Nr is the transmit

signal vector for receiver k. It is assumed that the kth user has Nr parallel data streams,

although some of the streams can have a rate of zero.

The received signal of the kth user is given by

yk = HkVkxk +
K∑

j=1,j 6=k

HkVjxj + nk , (3.1)

where nk is the additive white Gaussian noise vector for the kth user with variance E(nkn
†
k) =

σ2
kI . (·)† is the conjugate transpose of (·). With the explicit CSI feedback mechanism

discussed in Section 2.3.4, each user will sent the quantized right singular matrix and sin-

gular values of Hk to the AP side, which are denoted by Bk ∈ C
MNt×Nr and Sk =

diag{s1, . . . , sNr}, respectively. Let B̃k and S̃k be the quantized Bk and Sk available at

the AP side.

In this work, BD precoders are utilized at the AP side, which is a suboptimal solution to

fully eliminate the inter-user interference. The key idea of BD is to precode the kth user’s

signal using Vk such that HjVk = 0 for j 6= k. In other words, the precoder Vk should

be in the null space of other concurrent users’ channel matrices. Due to the rank constraint

of BD precoder, the maximum number of users can be served simultaneously is bounded

by ⌈MNt/Nr⌉ [59]. When the number of users is larger than the maximum supportive

number, a user select procedure is required to determine a subset of users that maximizes

the sum-rate performance.

Let G = {π1, . . . , πK0
} be a subset of users with K0 ≤ ⌈MNt/Nr⌉. The BD precoders

of the selected users are derived as follows. Let

B̄πk =
[

B̃π1 , . . . , B̃πk−1
, B̃πk+1

, . . . , B̃πK0

]

,

and the precoder Vπk lies in the null space of B̄†
πk

. To obtain the null space of B̄†
πk

, we use
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QR decomposition,

B̄πk =
[
W (1)

πk
W (0)

πk

]






Rπk

0(MNt−n)×n




 , (3.2)

where n = (K0 − 1)Nr and Rπk ∈ C
n×n is an upper triangular matrix, W

(1)
πk ∈ C

MNt×n

forms an orthonormal basis for the column space of B̄πk and W
(0)
πk ∈ C

MNt×(MNt−n) forms

the null space of B̄†
πk

. Thus, the columns of Vπk can be chosen as the linear combination

of those in W
(0)
πk . For example, we can simply choose Vπk = W

(0)
πk .

3.3 PBUS User Selection

The aggregate performance of the MU-MIMO system is largely dependent on the selection

of simultaneous users. Unlike the conventional algorithms [59, 60, 61, 39], our proposed

algorithm generates a small set of good candidate groups based on an efficient binary-

tree-based procedure. The best user group is then selected out of these candidates. More

importantly, our algorithm can adjust the number of candidate groups to balance between

the computational cost and throughput performance, according to the computation effort

and channel dynamics. In addition, when only some users experience channel changes, our

proposed algorithm reuses good combinations and only needs to re-evaluate the combina-

tions including the users whose channels changed. In this section, we elaborate the details

of the proposed pairing-and-binary-tree-based user selection algorithm (PBUS).

3.3.1 PBUS overview

PBUS inherits the low-complexity characteristic from conventional greedy algorithms, and

it can also achieve complexity reduction for update when the network is partially changed.

In addition, unlike the conventional greedy algorithms that sequentially build a single can-

didate group, our algorithm expands multiple promising candidate groups in parallel and
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then selects the best group from these candidates. It therefore has a lower probability than

the greedy algorithms of missing a high-performing user group.

At a high level, PBUS works as follows:

1. Pairing: First of all, the pairwise evaluation mechanism is carried out to evaluate the

fitness of each pair of users. For example, there are 6 pairs if 4 users (i.e., U1, U2, U3

and U4) exist in the network, including {U1, U2}, {U1, U3}, {U1, U4}, {U2, U3},

{U2, U4} and {U3, U4}. Due to the zero-interference constraint of BD precoding,

the multi-user diversity gain is mainly from the fact that, for a sufficient number

of users, we can find a user group whose channels are nearly orthogonal to each

other. Therefore, the fitness metric is designed to reflect the orthogonality between

the channels of two users.

2. Grouping: Then, a binary tree is created to store 2L−1 candidate user groups and the

level of the tree is K0, where K0 is the number of maximum supportable users. The
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Figure 3.1: Binary tree-based user grouping with S = 2L−1 and 1 ≤ L ≤ K0.

user with the highest interference-free data rate is selected as the root of the tree at

level 1. As shown in Figure 3.1, when the level of the tree is smaller than L, two

users will be selected as the children of each node at that level based on the grouping

preference. When the level of the tree reaches L, one user will be added as the child
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of each node in the subsequent levels. The grouping preference is calculated based

on the pre-calculated pairing fitness metrics. As a result, there are 2L−1 leaves in the

binary tree and each candidate user group is formed by collecting the users along the

path from one leaf to the root. The parameter L can be tuned within the range of

[1, K0] to control the total number of candidate user groups.

3. Refining: Finally, the best user group is selected out of the 2L−1 candidate user

groups generated in Step 2) based on the estimated sum rate. The maximum sum rate

of the finally selected user set is determined via optimal power allocation.

4. Reduction in update: To reduce the time complexity in update, PBUS caches the

pre-generated pairwise fitness metrics and candidate user groups stored in the binary

tree. It can reuse the pre-calculated information for static users while performing

efficient update to accommodate users whose channels have changed.

The details of each step in PBUS are elaborated next.

3.3.2 Pairwise evaluation mechanism

In the first step, we propose a novel pairwise evaluation mechanism to determine the fitness

of each pair of users. The fitness metric is proposed as

FMk,j =

[

γ

(

S̃kB̃kNj

σk||Nj||F

)

, γ

(

S̃jB̃jNk

σj||Nk||F

)]T

, (3.3)

where Nk = I − B̃kB̃
†
k forms the null space of B̃

†
k. We define γ(X) = log(1 + p‖X‖2F )

with p =
∑M

m=1 Pm/K0/Nr. When grouping the kth user and the jth user together, the

channel matrix of one user should be projected into the null space of the other’s channel

matrix, in order to satisfy the zero-interference constraint. For a pair of users k and j,

the first entry evaluates the total power gain from the eigenmodes of a null-space projected

channel matrix of user k, and similar metric for user j is given in the second entry of the fit-
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ness metric FMk,j . The fitness metric implicitly reflects channel orthogonality between the

two users, and how much mutual interference each user generates in the other’s subspace.

Based on the symmetry of the pairwise fitness metric, we have FMj,k = flip(FMk,j),

where flip([a, b]T ) = [b, a]T .

3.3.3 Binary tree-based user grouping

In the grouping step, we expect to inherit the low-complexity property of conventional

greedy algorithms while reducing the possibility of dropping good combinations during

the iterations. Therefore, we introduce the binary tree-based user grouping method.

The procedure of grouping users is summarized in Table 3.1. The parameter L is pre-

determined within the range of [1, K0], and is used to control the total number of generated

user groups. The user with the highest interference-free data rate is picked as the root of the

tree denoted by u11. The root node is at the level of 1 as an initial user group G1,1 = {u11}.

We then introduce the grouping preference metric of adding user k into the previously

selected user group Gs as

GM(k,Gs) =
∑

i∈Gs






1/|Gs|

1






T

FMk,i , (3.4)

where |Gs| represents the total number of users in set Gs. The grouping preference metric

GM(·) coarsely evaluate the sum-rate performance by considering pairwise channel or-

thogonality. According to the grouping preference metric, two best users with the highest

GM(k,G1,1) are selected at level 2 as the children of the root user, which produces the

intermediate user groups G2,1 = {u21, u11} and G2,2 = {u22, u11}. Here, for the jth node

at the ith level, we define the intermediate user group Gi,j as the set containing the selected

users along the path from the jth node at the ith level to the root.

Repeat the process for each node at the following levels by finding two children for each

node based on the grouping preference metric until the tree grows to level L. Specifically, if
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Table 3.1: Binary Tree-based User Grouping Procedure

input: K0, 1 ≤ L ≤ K0, K = {1, . . . , K},
FMk,j for k, j = 1, . . . , K, k 6= j

output: T , GK0,j for j = 1, . . . , 2L−1

1: Find user u11 with highest interference-free data rate

2: T1 ← {u11}, G1,1 ← {u11}
3: for i from 2 to L do

4: for j from 1 to 2i−2 do

5: u∗2j−1,i = argmax
k∈K\Gi−1,j

GM(Gi−1,j, k)

6: u∗2j,i = argmax
k∈K\{Gi−1,j∪u∗2j−1,i}

GM(Gi−1,j, k)

7: Gi,2j−1 = Gi−1,j ∪ u∗2j−1,i

8: Gi,2j = Gi−1,j ∪ u∗2j,i
9: endfor

10: Ti ← {u∗j,i|j = 1, . . . , 2i−1}
11: endfor

12: for i from L+ 1 to K0 do

13: for j from 1 to 2L−1 do

14: u∗j,i = argmaxk∈K\Gi−1,j
GM(Gi−1,j, k)

15: Gi,j = Gi−1,j ∪ u∗j,i
16: endfor

17: Ti ← {u∗j,i|j = 1, . . . , 2L−1}
18: endfor

i < L, for each intermediate user group Gi,j , it will generate two intermediate user groups

Gi+1,2j−1 and Gi+1,2j at level i + 1 by choosing u(i+1)(2j−1) and u(i+1)(2j) as the children

of node ui,j , as shown in line 3-11 in Table 3.1. When the level of the tree reaches L,

conventional incremental selection will be performed for each intermediate user set GL,j
until the maximum number of simultaneously supportable users is reached in each user

group. In other words, only the best user will be selected as the child of each node at the

levels higher than L until the level of the tree reaches K0, as shown in line 12-18 in Table

3.1. Finally, the constructed binary tree will store at most 2L−1 distinct candidate user

groups.

The adjustable parameter L in the grouping stage determines the number of generated

candidate user groups. When L = 1, the proposed grouping approach degenerates into the
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conventional incremental user selection procedure, which simply selects one user at each

time and produces one user group. When L = K0, the tree structure in Figure 3.1 becomes

a full binary tree, producing 2K0−1 possible user groups with more computational cost.

Since more candidate user groups have higher possibility to find a better combination with

higher sum rate, the parameter L controls fundamental tradeoffs between the aggregate

performance and complexity. For example, large L is preferred when the network is static

or slowly time-varying, which allows more computation time to obtain higher throughput.

However, when the network is highly dynamic, smaller L is a better choice to speed up

the user selection procedure. Although we do not report the detailed results herein, we

also evaluated the performance of different non-binary-tree-based grouping schemes and

found that they exhibit similar performance to the binary-tree-based scheme, as long as the

numbers of finally generated candidate groups are the same.

3.3.4 Refining user selection

After the grouping procedure, there are at most 2L−1 candidate user groups, each of which

includes the users selected along one user at the Kth
0 level to the root, as shown in Fig-

ure 3.1. The achievable sum rate of the jth user group Gj can be estimated as follows by

assuming equal power allocation,

R̃(Gj) =
∑

i∈Gj

log
∣
∣
∣I + S̃2

i B̃iṼi,jṼ
†
i,jB̃

†
i /σ

2
i

∣
∣
∣ , (3.5)

where the subscriptK0 for GK0,j is omitted and Ṽi,j is the BD precoder for the ith user in the

group Gj , which satisfies the per-AP power constraint. For example, with equal power allo-

cation, we have Ṽi,j = Vi,jPi,j , where Pi,j = Diag(α1, . . . , α1
︸ ︷︷ ︸

Nt

, α2, . . . , α2
︸ ︷︷ ︸

Nt

, . . . , αM , . . . , αM
︸ ︷︷ ︸

Nt

),

such that Tr(ΓmVi,jPi,jP
†
i,jV

†
i,j) = Pm/K0. The diagonal matrix Γm ∈ R

MNt×MNt is in-

troduced for each AP to select the partition of Ṽi,j applied at the mth AP and Pm is the

maximum transmit power of the mth AP. Thus, Γm contains ones on the diagonal elements
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corresponding to the antennas of the mth AP and zeros elsewhere. Vi,j can be obtained

based on Section 5.1.

Thus the best user group with highest estimated data rate is selected, that is,

G∗ = argmaxGlR̃(Gl) .

The achievable sum-rate of the finally selected user group can be maximized via optimal

power allocation, which will be discussed in Section 3.4.

3.3.5 Fast update

Since the sum-rate performance of a user group changes with the variation in channels, the

user group needs to be updated accordingly. It is, however, very inefficient to completely

re-perform the selection algorithm when only a few users experience channel variations.

Therefore, the proposed PBUS algorithm can reuse the partial information calculated in

the pairwise evaluation step to reduce the complexity in the first stage, i.e., the previously

calculated pairwise fitness metric does not need to be updated if the channels of the two

users are unchanged.

Besides, a small parameter L can be used for the grouping stage to accommodate users

with channel changes, since we can reuse these previously generated user groups without

mobile users as much as possible. This can speed up the grouping procedure with limited

mobility while guaranteeing the aggregate performance.

3.3.6 Achieving fairness

For the targeted dense environment, there are typically a large number of users, only some

of which are selected by our algorithm for a given communication round. This raises

the question of overall fairness, i.e. how do we guarantee that users not selected in a

particular round will eventually be served by the network? Although we do not evaluate
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it herein, our PBUS scheme can easily work with a scheduling algorithm such as the one

in [62] to accommodate various fairness criteria. The algorithm of [62] operates by initially

choosing a set of candidate high-performing user groups that cover all users. This set is

then input into a scheduling algorithm that assigns the different groups to slots in an overall

transmission schedule to achieve maximum performance while meeting specified fairness

criteria. To generate candidate user groups, we can perform the PBUS algorithm multiple

times starting with different root users, in order to find multiple high-performance candidate

user groups. These candidate groups can then be fed into the scheduling algorithm, to meet

the performance-maximizing fairness objective.

3.4 Sum Rate Maximization with Per-AP Power Constraint

For the finally selected user group G = {π1, . . . , πK0
}, we denote BD precoder for the user

πk as Vπk . Let V̄πk = S̃πkB̃πkVπk . The achievable sum rate with optimal power allocation

is given by,

RBD(G) = max






G⊂K,Qπk
�0

∑

πk∈G

Tr(ΓmVπkQπk
V

†
πk

)≤Pm







∑

πk∈G

log
∣
∣I + V̄πkQπkV̄

†
πk
/σ2

πk

∣
∣ ,

(3.6)

where E(xi,jx
†
i,j) = Qi,j is its transmit covariance matrix. The problem (3.6) reduces

to a conventional sum-rate maximization problem with sum power constraint when Γm

becomes an identity matrix with M = 1.

The optimal solution Qπk’s to the right-hand side of (3.6) for user set G can be solved

via Lagrange duality method. The Lagrange function of the right-hand side of (3.6) is given

by

L({Qπk}πk∈G,µ) = −
∑

πk∈G

log

∣
∣
∣
∣
I +

V̄πkQπkV̄
†
πk

σ2
πk

∣
∣
∣
∣

+
M∑

m=1

µm(
∑

πk∈G

Tr(ΓmVπkQπkV
†
πk
)− Pm) ,

(3.7)

where µ = [µ1, . . . , µM ] with µm ≥ 0 is the Lagrange multipliers and the dual problem is
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given by

max
µ≥0

q(µ) = min
{Qπk

�0}πk∈G

L({Qπk}πk∈G,µ) (3.8)

Since the right-hand side of (3.6) is convex and satisfies the Slater’s condition, the

duality gap between the optimal objective of (3.6) and that of the dual problem (5.8) is

zero. The Lagrange multipliers in the dual problem can be solved iteratively, where in each

iteration the optimal Qπk’s are solved with a given set of µ, and the Lagrange multipliers

can be updated using subgradient-based method.

To solve the optimal Qπk’s for a fixed set of µm’s, the problem (5.8) can be further

decomposed into K0 independent subproblems,

min
Qπk

�0
− log

∣
∣
∣
∣
∣
I +

V̄πkÃ
−1/2
πk Q̃πkÃ

−1/2
πk V̄ †

πk

σ2
πk

∣
∣
∣
∣
∣
+ Tr(Q̃πk)

where

Ãπk = V †
πk
(
M∑

m=1

µmΓm)Vπk ,

Q̃πk = Ã
1/2
πk QπkÃ

1/2
πk .

The optimal solution Q̃πk can be obtained via SVD of V̄πkÃ
−1/2
πk as follows,

V̄πkÃ
−1/2
πk

= F̃πkΘπkG̃
†
πk
, (3.9)

where Θπk = diag(θπk,1, . . . , θπk,Nr) containing the singular values of V̄πkÃ
−1/2
πk ordered

in decreasing order. The optimal Q̃πk is given by the water-filling solution,

Q̃∗
πk

= G̃πkΛπkG̃
†
πk
,

where Λπk = diag(λπk,1, . . . , λπk,Nr) and λπk,i = max
(
1− 1/θ2πk,i, 0

)
. Then, we have

Q∗
πk

= Ã−1/2
πk

Q̃∗
πk
Ã−1/2
πk

. (3.10)
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Although the user grouping stage selects K0 users, which attempts to serve as many

users as possible, the optimal power allocation algorithm may allocate zero power to some

users if it is necessary to maximize the sum rate. In this case, the users with zero-power

are actually harmful to the sum-rate performance, because these redundant users reduce the

size of the null space for other users. Thus, as a final step, we remove the users with zero

power from the user group, and the sum-rate is updated accordingly based on (3.7)-(4.15).

3.5 Simulation Results

In this section, simulation experiments are conducted to evaluate the performance of our

proposed PBUS scheme. We consider that 4 APs are located in a line with an interval of

30 meters. There are K/4 users uniformly distributed around each AP within a radius of

Y meters, as shown in Figure 3.2. We set each AP to have 4 antenna elements and each

30 m 30 m 30 m

Y Y Y Y

Figure 3.2: Network topology with 4 cooperative APs.

user to have 2 antenna elements. The quasi-static Rayleigh flat-fading channel model with

a path-loss exponent of 3 and the noise power of -85 dBm is assumed. The transmit power

of each AP is set to 23 dBm.
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The sum-rate performance and computational complexity of the proposed PBUS algo-

rithm are evaluated and compared with those of the following algorithms:

• Iterative power allocation for DPC with sum power constraint [63], which provides

the upper bound of the sum-rate performance.

• Capacity-based user selection for BD (c-algorithm) [59], which is claimed to achieve

the sum-rate close to that of the exhaustive search method.

• Frobenius norm-based user selection for BD (n-algorithm) proposed in [59].

• Upperbound-based user selection algorithm (u-algorithm) proposed in [61].

The greedy algorithms in [59] and [61] were originally proposed for the downlink trans-

mission with single transmitter, which are extended to the targeted scenario with multiple

cooperative APs in the simulation. The product square row norms-based algorithm [60] has

been shown to exhibit similar sum-rate performance to the n-algorithm so we do not include

it in our comparison. In addition, both algorithms rely on the c-algorithm to refine the user

selection, which dominates the computational overhead. Therefore, the computation time

required by [60] is also very similar to the n-algorithm.

3.5.1 Sum-rate performance

In Figure 3.3, the achieved sum rate is illustrated as a function of the total number of users

in the network at radius Y = 30 meters. There are 4 cooperative APs and thus the number

of simultaneous users is limited by K0 = 8. The sum-rate performance of the proposed

PBUS with different values of L (i.e., L = 4 and L = 8) is evaluated. The sum rate

achieved by DPC with sum power constraint [63] is deemed as the upper bound. The c-

algorithm performs closer to DPC as the number of users increases. For the proposed PBUS

scheme, larger L contributes to higher sum-rate performance due to the lower possibility

of dropping good user combinations. PBUS with L = 8 achieves 6% higher sum-rate than
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Figure 3.3: Sum-rate as a function of number of users at Y = 30.

n-algorithm. As the number of users grows, the sum-rate performance of PBUS with L = 8

gets closer to that of the c-algorithm. The sum rate achieved by the u-algorithm is much

lower than that of other algorithms, especially for a large user population.

In Figure 3.4, the achieved sum rate is shown as a function of the radius Y with 60 users.

Smaller Y indicates higher average SNR at the receivers, which achieves higher sum rate.

In the low average SNR region, different greedy algorithms perform similarly to each other.

However, for higher average SNR region, our proposed algorithm with L = 8 performs

closer to the upper bound, achieving about 10% higher sum rate than the n-algorithm. As

discussed in [59], the Frobenius norm is a reliable metric to reflect the channel quality in

the low SNR region, but it is not suitable for high SNR region. Finally, we note that the

u-algorithm produces significantly lower sum rate than all other methods.

3.5.2 Time complexity

We also evaluate the time complexity of our proposed algorithm and compare it to the c-

algorithm, n-algorithm and u-algorithm. The algorithms are implemented in MATLAB and
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Figure 3.4: Sum-rate as a function of the radius Y with K = 60.

run on an i7-2700K Intel CPU rated at 3.5 GHz. The running time is counted by in-built

tic-toc function in Matlab. In Figure 3.5, the running time for single-round selection is

plotted as a function of the number of users with 4 cooperative APs. In particular, there is

no pre-calculated information available for our proposed PBUS. As shown in Figure 3.5, c-

algorithm consumes the highest running time among all algorithms. It requires tens of sec-

onds for single-round selection even with a moderate number of users, which is too costly

for practical systems. Although the running time of our proposed PBUS method increases

with the size of the user population, it is still much lower than that of the n-algorithm even

with up to 100 users and L = 8, which runs in about 1/3 of the time of n-algorithm. This

is because n-algorithm uses the high-complexity c-algorithm in its finalization step, while

our proposed algorithm simply performs the optimal power allocation to finalize the active

user set. Moreover, the running time varies in a narrow range when L changes, although

the number of generated candidate groups varies dramatically. For example, by increas-

ing the value of L from 4 to 8, at most 120 additional candidate groups will be generated

during the grouping stage, which only consumes 20% more running time. Although the

u-algorithm runs the fastest, it lacks the ability to exploit the achievable sum rate as shown
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Figure 3.5: Running time as a function of number of users

in Figure 3.3. In addition, for a small to moderate number of users, our proposed algorithm

can achieve higher sum-rate with even lower complexity as compared to the u-algorithm.
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Figure 3.6: Running time as a function of the number of APs with 15 users for each AP

Moreover, we evaluate the running time of the proposed algorithm with different num-

bers of APs in Figure 3.6. The number of cooperative APs varies from 2 to 6 with 15

users around each AP. The computational complexity of c-algorithm increases from tens

47



of seconds to one hundred seconds as the number of APs grows from 2 to 6 as the cost

of high sum-rate performance, while the proposed PBUS dramatically lowers the running

time. Although the computational time of PBUS increases as more simultaneous users

can be supported, the parameter L can be tuned to accommodate different requirements of

computational efficiency without significantly sacrificing the sum-rate performance. For

example, for 6 APs with 90 users, reducing the value of L from 12 to 8 can save 3/4 run-

ning time with only 7% loss of sum rate. With a small L, the proposed PBUS achieves

similar sum-rate performance as n-algorithm, but consumes much less running time than

n-algorithm. If the network is static, we can increase the value of L to obtain higher sum

rate than n-algorithm. The computation time of PBUS is actually very similar to the u-

algorithm for 20-30 users, while the u-algorithm is the fastest for large numbers of users.

However, the sum-rate performance of the u-algorithm is substantially lower than that of

the other algorithms.
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Figure 3.7: Update time as a function of mobile user percentage

Finally, we investigate the update efficiency of the algorithms when only some users

experience channel changes. We assume there are 4 cooperative APs and 100 users, and
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some of the users are mobile. For conventional algorithms, the update procedure is exactly

the same as a single-round selection by completely re-computing the selection metric and

constructing the selected user group, such as c-algorithm, n-algorithm and u-algorithm. As

discussed in Section 3.3.5, our proposed PBUS can reuse the calculated pairwise fitness

metric and the constructed binary tree for static users as much as possible. In Figure 3.7,

the running time for update is plotted as a function of the mobile user percentage, which

varies from 10% to 50%. The update time for n-algorithm and u-algorithm is unaffected as

the mobile user percentage changes, because they lack the ability to reduce computational

complexity even if only a few channels change. For our proposed PBUS, the update time

can be reduced via the partial reuse of the pre-calculated information of static users, which

is especially visible when the mobile user percentage is small. For example, with 10% mo-

bile users, PBUS can update the user selection in 1/2 of the time as compared to Figure 3.5

even with a maximum value of L = 8, which is 25% lower than u-algorithm.

3.6 Chapter Summary

In this chapter, a novel user selection scheme, referred to as PBUS, for block diagonaliza-

tion (BD) in dense wireless networks with AP cooperation was presented. Different from

conventional greedy algorithms, the proposed method can store multiple high-performance

user groups in a binary tree based on the pairwise evaluation mechanism. It reduces the

probability of missing good user groups while also having lower computational time com-

pared to conventional methods. The proposed method is also shown to allow tradeoffs be-

tween sum-rate performance and computational complexity for a moderate to large number

of users.
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CHAPTER 4

COMBINED USER SELECTION AND MIMO WEIGHT CALCULATION

4.1 Introduction

In this chapter, we focus on optimizing the performance of a single cluster with coopera-

tive APs under the dense wireless network settings. The performance of AP cooperation

largely relies on the MIMO precoder and combiner design. Although the BD precoding

with efficient user selection scheme has low complexity to achieve the multiuser MIMO

communication, it does not fully exploit the potential performance gain promised by AP

cooperation and therefore we consider more advanced processing techniques in this chap-

ter. However, jointly optimizing the user selection and, precoding and combining weights

is complicated by their inherent interdependence. In the limited mobility scenarios con-

sidered herein, most users are stationary for some period of time, which means channel

conditions are only slowly time-varying. This allows more computationally expensive al-

gorithms to be used in optimizing the signaling strategies of APs. The specific problem

we consider is to maximize the downlink weighted sum rate (WSR) of a dense wireless

network with cooperative processing and a per-AP power constraint. We also assume that

the number of users is large, as the case of heavily-used dense wireless network deploy-

ments. As the number of users increases, the computation time for WSR maximization

can quickly become impractical, even when channels are only slowly time-varying. Thus,

we also develop a novel method that performs user selection as a pre-processing step to

eliminate some users from consideration by the WSR maximization algorithm.

Different methods have been investigated in the literature for multicell networks, e.g. [64,

65, 59, 66, 67]. In [64], by exploiting the D.C. (difference of convex functions) structure of

the sum-rate function, the convex-concave procedure is performed to find a local optimal
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solution. This algorithm requires solving a max-det problem in each iteration, where the

semi-definite programming algorithm is used. In [65], an enhanced block diagonalization

(BD) precoding method is proposed to improve the sum rate performance. However, user

selection is not considered and so the algorithm cannot handle a large number of users.

In [68], the weighted sum rate (WSR) problem is address by the interference pricing based

method. By maximizing the utility function of each user defined by the data rate and the

interference cost, the algorithm reaches a stationary point of the WSR maximization prob-

lem. However, the algorithm allows one user to update its beamformer at one time, which

may lead to excessive overhead of price exchange. In [59], two greedy user selection algo-

rithms are proposed for BD precoding. However, the performance suffers due to the greedy

user selection, which might not produce the best set of users to consider. In [66], two dif-

ferent approaches are considered to optimize the sum-rate performance, where dirty paper

precoding (DPC) is assumed within each cell. When dropping the DPC constraint, the sec-

ond approach becomes equivalent to the solution in [67]. Unfortunately, the computational

complexity increases rapidly with the number of users for all methods proposed in [66, 67]

making them unsuitable for the problem considered herein. To our knowledge, ours is the

first scalable approach that considers a true sum rate maximization problem, i.e. it does not

constrain solutions to use zero forcing, block diagonalization, or other approaches where

performance is secondary to interference nullification.

To address the WSR maximization problem with cooperative APs, we propose a com-

bined user selection and MIMO weights optimization approach, which determines the ac-

tive user set and the MIMO precoders and combiners. Our approach has a very low com-

putational complexity, even for a large number of users. A novel user selection algorithm

that incorporates multiple decision factors is run as a pre-processing step to eliminate some

users from consideration. Then, a modified WSR maximization algorithm optimizes the

MIMO precoders and combiners. This modified WSR maximization algorithm can further

eliminate users by allocating them zero power and it also determines the number of streams
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for each active user. Simulation results demonstrate that, with 48 users and 3 APs, our ap-

proach increases aggregate performance by 25% compared to the best existing algorithm

while running in 1/3 of the time.

4.2 System Model and Problem Description

We consider a MIMO network with M cooperative access points (APs), where the mth AP

is equipped with Nt,m antennas. We assume that there are K users with Nr,k antennas for

the kth user. Let Nt =
∑M

m=1Nt,m and Nr =
∑K

k=1Nr,k be the total numbers of antennas

at the AP and receiver side, respectively. The matrix of complex channel gains between

the cooperative APs and the antennas of the kth user is denoted by Hk ∈ C
Nr,k×Nt . The

data vector x =
[
xT1 , . . . , x

T
K

]T
is jointly precoded by the M APs using the precoding

matrix V = [V1, . . . ,VK ]. xk ∈ C
Nr,k is the transmit signal vector for receiver k, and xk

is assumed to be independently encoded Gaussian codebook symbols with E[xkx
†
k] = I,

where (·)† is the conjugate transpose of (·). It is assumed that the kth user has Nr,k parallel

data streams, although some of the streams can have a rate of zero. Vk ∈ C
Nt×Nr,k is

the partition of V applied at the APs to precode the signals of user k. Assume the linear

combiner Uk ∈ C
Nr,k×Nr,k is used at the kth receiver.

The received vector of user k is given by

x̂k = U
†
kHkVkxk +U

†
k

K∑

l=1,l 6=k

HkVlxl +U
†
knk

= U
†
kAkSkB

†
kVkxk +U

†
k

K∑

l=1,l 6=k

AkSkB
†
kVlxl +U

†
knk

= Ũ
†
kH̃kVkxk + Ũ

†
kH̃k

K∑

l=1,l 6=k

Vlxl + Ũ
†
kA

†
knk ,

(4.1)

where nk is the vector of Gaussian noise at the kth user with covariance matrix σkI ∈

C
Nr,k×1. Recall the SVD of Hk, which yields Hk = AkSkB

†
k, where the quantized singu-

lar values in diagonal matrix Sk ∈ C
Nr,k×Nr,k and the right singular matrix Bk ∈ C

Nt×Nr,k

are set back to the AP side based on the CSI feedback mechanism. We have Ũk = A
†
kUk
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and H̃k = SkB
†
k. With limited CSI feedback, Ũk can be deemed as a whole for optimizing

the combiner. The quantized Sk and Bk are denoted by Ŝk and B̂k, which are available at

the AP side. We have Ĥk = ŜkB̂
†
k.

The mean-square-error (MSE) covariance matrix of the kth user evaluated at the AP

side is given by

Ek = E
[
(x̂k − xk)(x̂k − xk)

†
]

= Ũ
†
kĤkVkV

†
k Ĥ

†
kŨk + Ũ

†
kR̃k̄Ũk − Ũ

†
kĤkVk − V

†
k Ĥ

†
kŨk + I

(4.2)

where R̃k̄ =
K∑

l=1,l 6=k

ĤkVlV
†
l Ĥ

†
k + σ2

kI . The data rate of the kth user can be rewritten as

R̂k = log
∣
∣
∣I + (Ũ †

kR̃k̄Ũk)
−1(Ũ †

kĤkV kV
†
k Ĥ

†
kŨk)

∣
∣
∣ . (4.3)

Most systems simply sum throughput over all users with equal weighting, but this can

result in favoring high-rate connections with good channel qualities at the expense of lower-

rate clients, which may be undesirable, especially when quality of service (QoS) is consid-

ered as a performance metric.

Our goal is to maximize the weighted downlink sum-rate, which is useful for prioritiz-

ing different users and covers different practical applications. For instance, when identical

weights are applied for all receivers, the problem becomes sum-rate maximization cor-

responding to a best effort service. Weighted sum rate maximization can also form the

basis for higher-level scheduling algorithms that generate fair schedules with high through-

put [69]. Since, in our problem setting, the transmitters are distinct APs that are at different

physical locations, the transmit power of each AP should be bounded, which translates into

a per-AP power constraint in the WSR maximization problem. This problem can be written
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as

max{Vk}k∈U

{Ũk}k∈U

∑

k∈U

ωkR̂k

s.t.
∑

k∈U

Tr(ΓmVkV
†
k) ≤ Pm,m = 1, . . . ,M ,

(4.4)

where the user set is denoted by U = {1, . . . , K} and a diagonal matrix Γm ∈ R
Nt×Nt is

introduced for each AP, in order to select the partition of precoding matrix V applied at AP

m. Thus, Γm contains ones on the diagonal elements corresponding to the antennas of AP

m and zeros elsewhere. ωk is the weight for the kth user and Pm is the maximum transmit

power of AP m. Note that, instead of optimizing the combiner Uk’s, we can optimize the

Ũk’s with the limited CSI feedback. To facilitate the following analysis, the variable Ũk is

called composed combiner.

4.3 Combined User Selection and MIMO Weights Calculation

In our targeted high-density environment, the number of users is relatively large, meaning

that only a subset of users can be served simultaneously in one time slot. The algorithm pro-

posed in [70] for interfering MIMO channels, which can jointly optimize the user selection

(i.e., allocating zero power to deactivate users) and MIMO weights, could be extended to

solve the formulated WSR maximization problem with the added per-AP power constraint.

However, the computational complexity of this modified algorithm increases rapidly as the

number of users increases. Other algorithms address the problem by completely separating

the user selection and precoder design [59, 60]. In those greedy incremental user selection

algorithms, however, a previously selected user might become redundant when new users

are added and this limits the performance of the final solution.

To overcome the problems in existing work, we propose a combined user selection

and MIMO weights optimization algorithm. First, a fast pre-user selection procedure is

performed to approximate a “good” subset of users by selecting K0 users out of K users

based on the performance metric, i.e. maximizing the potential WSR. Then, the MIMO
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1. Let Ur = {1, . . . , K} and Us = ∅
k∗ = argmaxk∈Urwk log

∣
∣I + pH̄kH̄

H
k

∣
∣

2. Update Us = {k∗} and Ur = Ur − {k∗}
3. If (|Us| < K0)

4. Calculate the priority metric f(Ĥk,Hsel) for ∀k ∈ Ur using (4.5).

5. k∗ = argmaxk∈Ur f(Ĥk,Hsel)

6. Quit if f(Ĥk∗ ,Hsel) < 0; Else go to step 2

7. Else Quit

Figure 4.1: Pre-user selection pseudocode

precoders and combiners of the selected users are optimized, where the proposed algorithm

can further refine the user selection and stream allocation by removing redundant users and

deactivating streams with zero power, if necessary to improve the final WSR.

4.3.1 Pre-user selection

The objective of the user selection procedure is to selectK0 < K users, that will potentially

contribute to high-WSR performance. With a targeted K0, it is costly to enumerate and

evaluate
(
K
K0

)
possible user groups. In this section, we propose an incremental selection

algorithm to determine a high-performance user group.

In dense wireless networks, the inter-user interference is generally substantial. To im-

prove the WSR performance, important factors should be taken into account for user se-

lection procedure: (1) mutual orthogonality of selected users’ channels, (2) the channel

quality of selected users, (3) the user weights w′
ks and (4) the available power. Our pro-

posed efficient user selection algorithm that incorporates all of these factors is shown in

Figure 4.1.

The algorithm starts by selecting the user with highest interference-free weighted data

rate. Equal power allocation is assumed during pre-user selection stage. With the CSI at

transmitter side, let Qk be the row basis of Ĥk. The selected user set is denoted by Us and

the remaining user set is denoted by Ur. The number of users in Us is given by |Us|. The
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priority metric is defined as follows:

f(Ĥk,Hsel) = wk log2(1 +
p

|Us|+ 1
||He,k||2F )

+
∑

i∈Us

wi log2(1 +
p

|Us|+ 1
||H̄iH

⊥
e,k||2F )

−
∑

i∈Us

wi log2(1 +
Pt

Nr|Us|
||H̄i||2F ),

(4.5)

where Hsel =
[

Ĥi

]

i∈Us
, He,k = Ĥk × null(Hsel) and H⊥

e,k = I −QkQ
†
k. || · ||F denotes

the Frobenius norm. In addition, p =
∑M

m=1 Pm/Nr/σ
2. The first term in (4.5) evaluates

the WSR contribution of user k when its precoder lies in the null space of the selected

users’ channel matrices. In the second term, the channels of previously selected users are

projected to the null space of user k’s equivalent channel. The selection priority metric

implicitly reflects how much WSRM performance gain is contributed by user k. Then, the

user with highest priority metric will be selected in each round. However, the maximum

value of the priority metric could be less than 0, indicating that adding a new user may even

hurt the overall performance. In this case, the user selection will terminate before K0 users

are selected.

Note that the parameter K0 in the user selection algorithm can be tuned to achieve dif-

ferent tradeoffs between the aggregate performance and computational complexity. Smaller

K0 will eliminate more users at this stage and the achievable WSR will degrade as the price

of lower computational complexity for MIMO weights computation. With largerK0, fewer

users will be excluded by the user selection procedure and the loss of WSR performance

will be smaller.

4.3.2 MIMO precoder and combiner calculation

Once the pre-user selection is complete, the precoders and combiners of selected users

are determined by solving the WSR maximization problem for the remaining users. The

targeted WSR maximization problem in (4.4) needs to be modified by replacing the user

56



set U with Us. However, the WSR maximization problem is a non-convex problem, which

is difficult to solve based on the Karush-Kuhn-Tucker (KKT) conditions for the formulated

problem.

Therefore, we consider a more tractable approach to solve the problem. Consider the

weighted MSE minimization problem as follows,

min{Vk}k∈Us

{Ũk}k∈Us

∑

k∈Us

Tr(WkEk)

s.t.
∑

k∈Us

Tr(ΓmVkV
†
k) ≤ Pm,m = 1, . . . ,M.

(4.6)

Based on [67], it can be proved that the gradient of WSR maximization with respect to Vk

and the gradient of weighted sum MSE minimization with respect to Vk are identical if

Ũk = (ĤkVkV
†
k Ĥ

†
k + R̃k̄)

−1ĤkVk (4.7)

and the MSE weights satisfy

Wk = ωk(I + T
†
kV

†
k Ĥ

†
kR̃

−1

k̄ ĤkVkTk), (4.8)

where Tk is an arbitrary unitary matrix. The R̃k̄ is updated by letting Vi = 0 for i /∈ Us.

Besides, Ũk in MMSEWeights achieves the optimal data rate with a given Vk.

Based on the equivalence relation between WSR maximization and weighted sum MSE

minimization, an iterative algorithm can be derived to find a local WSR-optimum, as

summarized in Figure 4.2. The algorithm alternatively updates the precoders Vk’s, MSE

weights Wk’s and composed combiner Ũk’s, which solves a weighted sum MSE minimiza-

tion problem in each iteration. As analyzed in [67], the algorithm will converge to a local

WSR-optimum.

While the weighted sum MSE minimization problem can be solved by extending the

algorithms in [67] and [71] to the formulated problem with per-AP power constraint, the
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1. Initialization: Vk = V0
k for all k ∈ Us;

2. Repeat

3. Compute Ũk using (4.7) for all k ∈ Us for given Vk’s;

4. Compute Wk using (4.8) for given Vk’s and Ũk’s;

5. Update Vk’s by solving problem (4.6);

6. until

∣
∣
∣
∣

∑

k∈Us

ωkR̂
(n)
k −

∑

k∈Us

ωkR̂
(n−1)
k

∣
∣
∣
∣
≤ ǫ.

Figure 4.2: Alternating optimization for WSR maximization

solutions provided by these iterative algorithms lack the ability to quickly deactivate links.

Specifically, the solutions in [67] and [71] cannot decouple the precoder of the kth user

and its combiner, which can only gradually reduce the power allocated to some links as the

algorithm iterates, eventually deactivating links but only after a sufficiently large number

of iterations.

In order to further refine the selected users and determine the active streams of each user

efficiently, we propose a different algorithm to solve the weighted sum MSE minimization

problem. First, the Lagrangian of the weighted sum MSE minimization problem is given

by

L =
∑

k∈Us

Tr(WkEk) +
M∑

m=1

µm(Tr(ΓmVV†)− Pm), (4.9)

where µm ≥ 0 for m = 1, . . . ,M are the Lagrange multipliers. The dual problem is given

by

max
µ

q(µ) s.t.µm ≥ 0, form = 1, . . . ,M, (4.10)

where µ = (µ1, . . . , µM)T and q(µ) = min
V

L(V ,µ) is the Lagrangian dual function.

The dual problem can be solved iteratively, where in each iteration the precoder matrix V

can be solved by using the KKT conditions for a fixed set of Lagrange multipliers, and the

master problem is solved to find the Lagrange multipliers.

Based on the KKT conditions, the gradient of L with respect to V
†
k should be zero,
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which yields the following equation

Ĥ
†
kŨkWk = Ĥ

†
kŨkWkŨ

†
kĤkVk+

∑

l∈Us,l 6=k

Ĥ
†
l ŨlWlŨ

†
l ĤlVk +

M∑

m=1

µmΓmVk.
(4.11)

The above equation can only provide the precoder Vk as a function of its combiner Uk. To

overcome this problem, we solve the precoder using (4.11) and (4.7). Let us first perform

the following compact singular value decomposition (SVD), we introduce another set of

equations by rewriting (4.7) into

ĤkVk = ĤkVkV
†
k ĤkŨk + R̃k̄Ũk. (4.12)

To solve the precoder in (4.11), let us first perform the following compact SVD,

R̃
−1/2

k̄
ĤkΠ

−1/2

k̄
= FkDkG

†
k, (4.13)

where

Πk̄ =
∑

l=∈Us,l 6=k

Ĥ
†
l ŨlWlŨ

†
l Ĥl +

M∑

m=1

µmΓm; (4.14)

and Dk ∈ R
Nr,k×Nr,k is a diagonal matrix containing the singular values of R̃

−1/2

k̄
ĤkΠ

−1/2

k̄

ordered in decreasing order; Fk ∈ C
Nr,k×Nr,k and Gk ∈ C

Nt×Nr,k are the corresponding

left and right singular vectors of R̃
−1/2

k̄
ĤkΠ

−1/2

k̄
.

Based on [72] and [70], for given µm’s, the precoding matrix for receiver k that solves

(4.11) and (4.12) is given by

Vk = Π
−1/2

k̄
GkΨk, (4.15)

Ũk = R̃
−1/2

k̄
FkΦk, (4.16)
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Theorem 1. The matrices Ψk and Φk is given by

Ψk =
(

W
1/2
k D−1

k −D−2
k

)1/2

+
,

Φk = W
−1/2
k Ψk ,

(4.17)

where (·)+ is the matrix (·) with the negative elements replaced with zeros. Here, the (·)+
operation in component Ψk can potentially turn off some streams by allocating zero power.

Proof. Premultiplying (4.11) and (4.12) with V
†
k and Ũ

†
k , respectively, and using the ex-

pressions in (4.15), (4.16) and (4.13), we obtain the following equations,

Ψ
†
kDkΦkWk = Ψ

†
kDkΦkWkΦ

†
kDkΨk +Ψ

†
kΨk, (4.18)

Φ
†
kDkΨk = Φ

†
kDkΨkΨ

†
kDkΦk +Φ

†
kΦk. (4.19)

Let

Θ1 = Ψ
†
kDkΦk

Θ2 = Ψ
†
kΨk

Θ3 = Φ
†
kΦk.

(4.20)

Based on the fact that Θ1, Θ2 and Θ3 are real-valued diagonal matrices [72], we have

Θ1Wk = Θ1WkΘ1 +Θ2

Θ1 = Θ
2
1 +Θ3

Θ
2
1 = Θ2D

2
kΘ3.

(4.21)

Solving the equations above, we obtain

Θ1 = (I −D−1
k W

−1/2
k )+. (4.22)
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Then Θ2 and Θ3 can be solved by substituting (4.22) to (4.21), which will give the results

in (4.17).

Note that if the precoder is given by (4.15), the Ũk’s in (4.16) is equivalent to the com-

posed combiner given in (4.7). Different from the solution in [67] and [71], the power

allocated to each stream for the kth user given by (4.15) is determined by the received in-

terference plus noise, the interference to other receivers, and the available power. It implies

that the decision on whether to activate or deactivate the streams is based on the current

state of the network, instead of on whether the stream was active or inactive previously.

To find the Lagrange multiplier µm, the ellipsoid method or sub-gradient method can be

used. The solution given by the proposed WSR maximization algorithm can set the active

streams with a small number of iterations. Therefore, it can quickly remove redundant

users with inactive precoders and eliminate their effects on other users.

4.3.3 Joint algorithm for WSR maximization

Due to the properties of the proposed WSR maximization algorithm, it can also be imple-

mented without the pre-user selection procedure. In this case, the user selection is jointly

determined with the MIMO weights, where a user is active when its precoder is active with

non-zero power.

Especially when the number of users is relatively small, the proposed WSR maximiza-

tion algorithm can be performed to solve (4.4) directly, which will not generate much higher

computational complexity than the combined algorithm.

4.4 Algorithm Implementation

Prior to the calculation of precoders, the central controller needs to collect the up-to-dated

CSI from the cooperative APs. With the compressed CSI feedback mechanism discussed

in Section 2.3.4, the precoding matrices Vk’s and the composed combiner Ũk’s are jointly
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optimized by the central controller as discussed in Chapter 4.3.2. The combiner for the kth

receiver is given by Uk = AkŨk.

Theorem 2. The solution to Ũk given by (4.7) is equivalent to the MMSE receiver with

perfect CSI, while ignoring the quantization error.

Proof. Since we have Ũk = A
†
kU and AkA

†
k = I , we can rewrite it into

Uk = AkŨk

= Ak(ĤkVkV
†
k Ĥ

†
k + R̃k̄)

−1ĤkVk

=
(

Ak(ĤkVkV
†
k Ĥ

†
k + R̃k̄)A

†
k

)−1

AkĤkVk

=
(

HkVkV
†
k H

†
k +Rk̄

)−1

HkVk ,

(4.23)

if there is no quantization error, that is, Ĥ = H̄ . Rk̄ =
K∑

l=1,l 6=k

HkVlV
†
l H

†
k + σ2

kI is the

covariance matrix of the interference plus noise. Therefore, the solution to Ũk obtained

from the proposed WSRM algorithm is equivalent to the MMSE receiver.

The simplest way to implement the optimized MMSE combiner is to select a head

AP and let it broadcast the Ũk’s and the corresponding client IDs to the receivers before

data transmission. The receivers can extract its combiner from Ũk as Uk = AkŨk. The

overhead caused by distributing the calculated Ũk’s depends on the matrix compression

method. For example, assuming the compressed Given’s rotation method as used for CSI

compression, the broadcasting overhead is jointly determined by the number of active users,

the number of receive antennas and the quantization bits.

Alternatively, to avoid the quantization error of the combiner, the MMSE combiner can

be calculated at the receiver side. Recall that the MMSE combiner is given by (4.23), which

can be rewritten into

Uk =
(

HkVkV
†
k H

†
k +Rk̄

)−1

HkVk

= J−1
k HkVk ,
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where Jk is the covariance matrix of the total received signal at the kth receiver. Therefore,

the receiver can calculate its own MMSE combiner if the effective channel HkVk is known.

This can be achieved by a second-stage channel sounding procedure with calculated pre-

coders at the AP side.

Specifically, after finishing the joint optimization of Vk’s and Ũk’s, the central con-

troller initiates the second-stage channel sounding and enables the receivers to estimate its

effective channel HkVk, which can be probed by precoding the known data sequences and

sending the precoded sequences from the cooperative APs.

4.5 Simulation Results

In this section, simulation results that evaluate the performance of our proposed scheme

are reported. For all simulations, we assume a quasi-static Rayleigh flat-fading channel,

which is considered constant for the duration of a burst that appears randomly in time. The

path-loss exponent is set to 3 and the noise power is -80 dBm. We consider that the APs

are located in a line with an interval of X meters. The maximum transmit power for each

AP is set to 23dBm. We uniformly distribute km users around the mth AP within a radius

of Y meters. The total number of users is given by
∑M

m=1 km = K. Unless otherwise

specified, we consider 3 APs, each with four antennas, and two antennas for each user. The

user weights are randomly generated within the range of [0, 1].

4.5.1 Impact of compressed CSI feedback

First, we investigate the achievable WSR of the proposed algorithm with different CSI

quantization bits. As we mentioned in Chapter 2.3.4, there are typically two types of quan-

tization for the right singular value of the channel matrix. Type I uses 12 bits for each pair

of angles (7 bits for φ and 5 bits for ψ) and Type II uses 16 bits for each pair of angles (9 bits

for φ and 7 bits for ψ). The quantization bits determines the accuracy of the CSI available at

the AP side and, thus, affect the performance of the optimized precoders. In Figure 4.3, the
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Figure 4.3: Achievable WSR as a function of the number of transmit antennas with different

CSI accuracy.

achievable WSR is evaluated for different types of CSI feedback. The number of transmit

antennas for each AP varies from 2 to 8, which leads to different dimensions of the channel

matrix. The perfect CSI feedback achieves the highest WSR performance, which, however,

is impractical. Another observation is that channel matrix with larger dimension is more

sensitive to the CSI accuracy. As shown in Figure 4.3, the WSR performance loss gets

larger for both type I and type II CSI feedback as the number of transmit antenna increases.

More quantization bits used by type II CSI feedback contribute to about 30% higher WSR

than type I CSI feedback, at the price of larger feedback overhead. Overall, the type II

CSI feedback can achieve more than 90% WSR of the perfect CSI feedback, with up to 8

transmit antennas per AP.

4.5.2 WSR and computational complexity performance

Then, we study the WSR performance with our proposed algorithms. Both the proposed

combined algorithm with orthogonality-based user selection and the joint algorithm with-

out user selection are evaluated. We also compare our approaches to the WMMSE method [67],

DPC [73], and the BD algorithm [59]. Since there is no existing work on the DPC with

per-AP power constraint, we use the DPC algorithm with sum power constraint to serve as

the upper bound of the actual DPC. Since most of the algorithms for comparison require
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the perfect knowlege of CSI at the transmitter side, we ignore the quantization error of the

CSI feedback for the WSR evaluation in this section.

Figure 4.4 shows the WSR and computation time of different algorithms as a function

of the number of users with X = 30 m and Y = 50 m. The upper bound is provided by

the DPC scheme with sum power constraint. The c-algorithm for BD precoding scheme

in [59] is extended to the WSR maximization problem. Comparing the combined algo-

rithm with pre-user selection with K0 = 8 to the joint algorithm, the performance loss

due to the pre-user selection is less than 5%, while the computation time is significantly

reduced and becomes almost independent of the number of users. Our proposed algorithm

with pre-user selection achieves about 25% higher WSR than WMMSE and 40% higher

than BD precoding scheme. Moreover, the c-algorithm-based BD precoding requires the

highest computation time of all approaches, taking more time than even our proposed WSR

maximization algorithm without user selection.

Figure 4.5 shows the WSR as a function of the circle radius Y . The number of users is

30 and the inter-AP spacing is 30 m. Smaller radius suggests that the users are more densely

distributed around each AP, indicating high average received SNR. Thus, the WSR achieved

by these algorithms increases as the radius decreases. The gap between the upper bound

(DPC) and our proposed algorithm is less than 10%, and is caused by both the nonlinear

precoding technique and the relaxed power constraint. WMMSE performs worse at low

SNR values than with high SNR, while both of our proposed algorithms achieve about 25%

higher WSR than that of WMMSE. When the radius is small enough, the BD algorithm

performs close to our proposed algorithms, outperforming the WMMSE algorithm.

To demonstrate the performance gain from full cooperation, the WSRs at different lev-

els of cooperation are illustrated in Figure 4.6 with Y = 50. Besides the considered full

cooperation, we evaluate three other cases, namely interference coordination (IC), non-

cooperation across APs, and orthogonal channels for APs. The WSR is plotted as a func-

tion of the AP separation in Figure 4.6, while the circle radius Y is fixed to 50 m. The
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Figure 4.4: WSR and running time as a function of the number of users.

Figure 4.5: Achieved WSR as a function of the radius of user distribution.
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aggregate performance of different levels of cooperation will converge to the same point

with a sufficiently large X . More closely distributed APs result in higher WSR for the

full cooperation case, while producing lower WSR for IC and non-cooperative cases. This

is because decreasing the AP separation increases the interference, which negatively im-

pacts the IC and non-cooperation solutions, while these interfering channels are turned into

useful channels with full cooperation.
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Figure 4.6: Achieved WSR of different multiuser MIMO networks.

We also evaluate the WSR as a function of the number of APs in Figure 4.7, where

the number of users is fixed to 20. All APs and receivers are randomly located within a

circle of radius 100 m. We also include the performance with non-overlapping time slot

assignment for APs, so that only one AP can serve all users at a given time slot. As more

APs are deployed in the area, more power is provided to improve the average received

SINR, which leads to higher WSR for both full cooperation and IC, while assigning non-

overlapping time slots to APs will not change the WSR. Note that, as the interference

gets more severe, the performance gap between full cooperation and IC becomes greater

because of full cooperation’s ability to utilize the interfering channels across different APs.

The results also show that wireless performance with full cooperation scales linearly with

the number of APs increasing from 2 to 10.
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Figure 4.7: Achieved WSR as a function of the number of APs.

4.5.3 Convergence properties

We also investigate the convergence performance by comparing our proposed WSR max-

imization algorithm with the WMMSE algorithm in [67]. We set the same starting point

for both algorithms and two random trials of experiments are performed for K = 8 and

K = 18. Figure 4.8 shows the WSR as a function of the number of iterations. Although

the convergence speed varies for different channel realizations, the results indicate that

our proposed approach converges much faster than the WMMSE method with respect to

the number of iterations. This occurs because the WMMSE method gradually reduces the

power of some streams, requiring many iterations to deactivate streams, while our algo-

rithm is able to completely deactivate some poor links in a single iteration. To validate the

property of our proposed algorithm of deactivating streams efficiently, the number of ac-

tive streams is plotted as a function of the number of iterations in Figure 4.8. Streams with

non-zero power are deemed as active streams. For different number of users, our proposed

WSRM algorithm quickly reduces the number of active streams to the supportable number

and becomes stable in less than 10 iterations, while the WMMSE needs more than 1000

iterations to completely deactivate the unnecessary streams. These results validate that the

proposed WSR maximization algorithm can eliminate redundant users and determine the

active streams efficiently.
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Figure 4.8: Convergence rate of the iterative WSRM algorithm

4.6 Chapter Summary

An approach to maximize performance in dense wireless networks with AP cooperation

was presented and evaluated in this Chapter. The proposed algorithm is designed to maxi-

mize the weighted sum rate (WSR) with per-AP power constraint. The proposed approach

was shown to outperform previous approaches to the problem while having significantly

lower running time for a moderate to large number of users.
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CHAPTER 5

HIGH THROUGHPUT AND FAIR SCHEDULING FOR MULTI-AP MULTIUSER

MIMO

5.1 Introduction

In dense wireless networks, there are many users that cannot be accommodated in a single

time slots. Therefore, we must extend the proposed solution in the previous chapter to

multiple slots and consider how to satisfy the demands over all users. In this chapter, we

study the fair scheduling problem for dense wireless networks with AP cooperation and

MIMO links. We mainly focus on indoor wireless communications, where most users are

expected to be stationary for significant periods of time with intermittent shorter periods

of mobility. This scenario is consistent with most enterprise environments. Since there are

many users sharing the limited resources of the wireless network, MIMO link scheduling

arises as a key problem, i.e. determining how to activate MIMO links for a given scheduling

period to meet the desired organizational requirements.

Prior work has considered the fairness issue either with multi-user MIMO with a single

AP [38, 37], or with multiple APs but a single user per AP [74, 75, 48]. The works of [38,

37] primarily consider the problem of user selection to maximize sum rate but [38] enforces

a minimal fairness constraint by alternating users selected as the first user for a transmission

slot while [37] states that their selection metric can be adapted to incorporate fairness but

does not evaluate that aspect in detail. Both [74] and [75] consider how to associate users

to APs to achieve fairness objectives. In [74], the association is done assuming that APs

operate on different channels so interference between users is not a consideration while [75]

accounts for interference in its evaluation. Finally, [48] shows how interference introduced

by scheduling multiple users concurrently across APs distorts fairness and it proposes a
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scheduling algorithm that achieves fairness comparable to the interference-free case. None

of the above-cited works consider a scenario with both multi-user MIMO and multiple APs,

as we address in this chapter.

Different from the single-user MIMO links, scheduling simultaneous transmission from

APs to multiple users requires suppression of inter-user interference. For MIMO interfer-

ence channels, interference alignment (IA) schemes are presented in [76, 77, 78, 42]. A

capacity-optimal achievable IA scheme is proposed in [76] in a high SNR regime. How-

ever, IA is known to be a suboptimal strategy at lower SNRs [77, 78]. Three generations of

IA are proposed in [42], including minimum interference leakage, joint mean square error

minimization (MMSE) and maximum SNR algorithm. However, all of these works require

a priori specification of which transmitters should transmit as well as how many streams

each transmitter should transmit.

In general, throughput and fairness are two fundamental objectives in wireless net-

works that cannot be maximized simultaneously. This motivates the investigation of in-

herent tradeoffs between the two objectives, where a common approach is to maximize

performance subject to some fairness constraints. We adopt the widely-used notion of

time-based fairness [79][80][69], which avoids the performance anomaly associated with

rate-based fairness in multi-rate wireless networks [81]. The basic idea is to allocate equal

time to each user and the bandwidth of each user is then dependent on the number of users

and its own data rate [79].

The specific problem we consider herein is scheduling users to achieve high aggregate

performance while maintaining fairness and operating across a small group of APs that are

assigned to the same spectrum frequency and employing multi-user MIMO. Our contribu-

tions are as follows:

1. we provide the first mathematical formulation of a maximum sum rate scheduling

problem with fairness constraints in the multi-AP MIMO setting,

2. although the formulated optimization problem is too complex to solve directly, we
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develop a series of transformations that lead to the first approximation algorithm for

this type of problem that jointly optimizes selection of user sets, MIMO precoders

and assignment of user sets to time slots,

3. we also develop a novel and more efficient two-stage heuristic algorithm that sepa-

rately optimizes selection of user sets with MIMO precoders and assignment of those

sets to time slots,

4. we demonstrate that, for a given (but possibly non-optimal) set of user combina-

tions, our two-stage heuristic produces a near-optimal schedule in terms of sum rate

performance while achieving the fairness constraint, and

5. we provide detailed simulation results, which show that:

• our joint optimization algorithm produces significantly higher sum rate than all

existing approaches, handles at least 50 users across 2–6 APs, and achieves very

close to perfect fairness, and

• our two-stage heuristic algorithm has significantly lower running time than ex-

isting heuristic algorithms while achieving nearly the same sum rate and near-

perfect fairness.

5.2 System Model and Problem Description

We consider a scenario in which a small number of APs forms a cluster and can cooperate

with each other to serve the users. We expect that most users are stationary for significant

periods of time with intermittent shorter periods of mobility. This is a common scenario

for most enterprise WLAN settings, which typically covers office-type environments. The

durations of stationary periods are expected to be on the same order as the scheduling

period, which is tens of seconds or less for the scenario considered herein. We focus

primarily on optimizing downlink transmissions since in typical indoor environments 80%
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or more of the traffic is on the downlink. Scheduling downlink or uplink traffic only within

single time slot helps reduce channel estimation overhead as shown in [69]. We include

scenarios with both downlink and uplink traffic in our simulation results to evaluate the

impact of our optimizations on overall network performance.

We assume that there is a single entity for one cluster, which has access to CSI and the

data signals intended for all users and that computes the overall schedule and the precoding

and combining weights for all users active within each slot, as shown in Figure 5.1. This

entity, also referred as central controller, is connected to the APs within the cluster via

high-speed wired links.
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Figure 5.1: An example of the clustered overlapping APs.

Assume there are M cooperative access points (APs) in one cluster, where the mth AP

is equipped with Nt,m antennas. We assume that there are K users with Nr,k antennas for

the kth user. The user set is denoted by K = {1, . . . , K}. Let Nt =
∑M

m=1Nt,m and

Nr =
∑K

k=1Nr,k be the total numbers of antennas at the AP and receiver side, respectively.

The matrix of complex channel gains between the cooperative APs and the antennas of

the kth user is denoted by Hk ∈ C
Nr,k×Nt , which is assumed to be time-invariant within

a scheduling period. We assume that one scheduling period contains T time slots, each

of which has the same duration. The data vector x(t) =
[
x1(t)

T , . . . , xK(t)
T
]T

is jointly
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precoded by the M APs using the precoding matrix V(t) = [V1(t), . . . ,VK(t)] for time

slot t. xk(t) ∈ C
Nr,k is the transmit signal vector for receiver k, and xk(t) is assumed to

be independently encoded Gaussian codebook symbols with E[xk(t)xk(t)
†] = I, where (·)†

is the conjugate transpose of (·). It is assumed that the kth user has Nr,k data streams,

although some of the streams can have a rate of zero. Vk(t) ∈ C
Nt×Nr,k is the partition of

V(t) applied at the APs to precode the signals of user k.

Moreover, we assume the modified explicit CSI feedback mechanism as discussed in

Section 2.3.4. At the beginning of each scheduling period, the central controller initiates

the channel sounding process and then the users send the compressed CSI to the AP side.

For a certain scheduling period, with the SVD of the channel matrix Hk = AkSkB
†
k, the

quantized Sk and Bk are fed back to the APs, denoted by Ŝk and B̂k. Details can be found

in Section 2.3.4.

The received vector at user k for time slot t is given by

yk(t) = HkVk(t)xk(t) +
K∑

l=1,l 6=k

HkVl(t)xl(t) + nk , (5.1)

where nk is the vector of Gaussian noise at the kth user with covariance matrix σ2
kI .

The achievable data rate of the kth user over time slot t can be evaluated by the central

controller as

R̂k(t) = log2

∣
∣
∣
∣
I +

(

Ũk(t)
†R̂k̄(t)Ũk(t)

)−1

Ũ
†
k(t)ĤkVk(t)Vk(t)

†Ĥ
†
kŨk(t)

∣
∣
∣
∣
, (5.2)

where

R̂k̄(t) =
K∑

l=1,l 6=k

ĤkVl(t)Vl(t)
†Ĥ

†
k + σ2

kI , (5.3)

and Ĥk = ŜkB̂
†
k. Since the central controller lacks the full knowledge of the channel

matrix, the combiner and the left singular matrix are considered as a whole, namely, Ũk =

A
†
kUk. Uk ∈ C

Nr,k×Nr,k is the combiner applied at the kth receiver. Instead of optimizing
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Uk(t), the central controller optimizes Ũk(t).

We aim to develop a fair and high-throughput schedule over T time slots, where the

channels are assumed to be stationary during one scheduling period. Let b = {b1, . . . , bK},

where the kth element of b stands for the target bandwidth fraction of the kth user and

∑K
k=1 bk = 1. Different fairness objectives can be achieved through different choices of

b. The scheduling problem is formulated to maximize the throughput for one scheduling

period, while guaranteeing the fairness objective among users. Formally, the problem can

be stated as:

max
{Vk(t),Ũk(t)}k∈K

t∈T

1

T

T∑

t=1

K∑

k=1

R̂k(t)

s.t. Tr(Γm
K∑

k=1

Vk(t)Vk(t)
†) ≤ Pm,m = 1, . . . ,M, t = 1, . . . , T

T∑

t=1

R̂k(t) = bk
T∑

t=1

K∑

k=1

R̂k(t), ∀k ∈ K

(5.4)

where Pm is the maximum transmit power of the mth AP and Tr(·) denotes the trace of

a matrix (·). A diagonal matrix Γm ∈ R
Nt×Nt is introduced for each AP, in order to

select the partition of precoding matrix V applied at the mth AP. Thus, Γm has ones on

the diagonal elements corresponding to the antennas of the mth AP, and zeros in other

positions. The fairness constraints require that the achieved throughput of each user should

be proportional to its target bandwidth fraction. For example, rate-based fairness can be

achieved by assigning bk = 1/K, ∀k, which aims to achieve same throughput for all users.

The formulated problem is non-convex w.r.t. Vk(t), due to the non-convexity of the

function Rk(t). It can be proved that the formulated problem has at least one feasible

solution when T ≥ K, which can be found by activating one user for each time slot and

setting the users’ data rates so that they meet their target bandwidth fractions with respect

to the sum rate over all users. The solution to problem (5.4) will force some users to have

Rk(t) = 0 by allocating zero power to these users in a certain time slot, if it is necessary to
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maximize the throughput. Thus, we do not explicitly label which users are active in each

time slot but this is implicit in the optimized rates that are produced by our algorithms.

To our knowledge, this is the first complete mathematical formulation of a cross-layer

optimization problem with fairness constraints for multi-AP MIMO networks.

5.3 Multiuser MIMO Fair Scheduling with Joint Optimization

In this section, we propose an alternating algorithm to solve the formulated problem, which

jointly determines the active user subset for each time slot and the MIMO weights of all

active users. In order to make the problem tractable, we propose several transformations to

Problem (5.4) that facilitate its solution.

The fairness constraints dictate that
∑T

t=1Rk(t) = bk
∑K

k=1

∑T
t=1RK(t), ∀k. Since

optimizing with inequality constraints is easier than with equality constraints such as these,

we relax the problem in the following manner. We introduce an auxiliary variable c, which

satisfies c ≤
K∑

k=1

T∑

t=1

Rk(t). Then, the equality constraints can be converted into a set of

inequality constraints, i.e., bkc ≤
∑T

t=1Rk(t), ∀k. Thus, the optimization problem (5.4)

can be reformulated as,

max
c,{Vk(t),Ũk(t)}k∈K

t∈T

c

s.t. Tr(Γm
K∑

k=1

Vk(t)Vk(t)
†) ≤ Pm, ∀m = 1, . . . ,M, t = 1, . . . , T

T∑

t=1

Rk(t) ≥ bkc, ∀k ∈ K ,

(5.5)

By driving c toward c =
K∑

k=1

T∑

t=1

Rk(t), a solution to Problem (5.5) will also solve Problem

(5.4). Note also that the constraint c ≤
K∑

k=1

T∑

t=1

Rk(t) is implicitly satisfied when the K

constraints
T∑

t=1

Rk(t) ≥ bkc, ∀k ∈ K are met, since we have
K∑

k=1

bk = 1. Therefore, we can

omit the constraint c ≤
K∑

k=1

T∑

t=1

Rk(t) in Problem (5.5).
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Table 5.1: Alternating optimization of multiuser scheduling

1. Initialize I = 0 and Vk(t) ∀k ∈ K, ∀t ∈ T such that

Tr(Γm
∑K

k=1 Vk(t)Vk(t)
†) ≤ Pm, ∀m, ∀t ∈ T

2. while I ≤ Imax
3. I ← I + 1

4. for t from 1 to T

5. update Vk(t) and Ũk(t) and c for k ∈ K by solving problem (5.6)

6. Qiut if |
T∑

t=1

K∑

k=1

RI
k(t)−

T∑

t=1

K∑

k=1

RI−1
k (t)| ≤ ε

The solution to problem (5.5) involves 2K × T variables, i.e., the precoder Vk(t) and

Ũk(t) for each user in each time slot. Since we assume a dense network setting, the number

of users K can be quite large. T will also have to be fairly large in order to have enough

time slots to accommodate all of the users and meet the fairness constraints. The number

of variables will therefore make the solution of Problem (5.5) quite complex. To reduce

the number of variables, Problem (5.5) can be further decomposed into T subproblems

and solved by alternating optimization. For a given time slot t, the tth subproblem can be

formulated as follows:

max
c,{Vk(t),Ũk(t)}k∈K

c

s.t. Tr(Γm
K∑

k=1

Vk(t)Vk(t)
†) ≤ Pm,m = 1, . . . ,M

Rk(t) ≥ bkc−
T∑

s=1,s 6=t

Rk(s), ∀k ∈ K

(5.6)

The T subproblems can be solved iteratively to find a suboptimal solution to the prob-

lem (5.5).

The iterative algorithm is summarized in Table 5.1. In each iteration, it solves the prob-

lem (5.6) for each time slot sequentially. Since the problem (5.5) is non-convex, a global

optimum cannot be found using alternating optimization. However, since alternating opti-

mization provides monotonously non-decreasing solutions c to Problem (5.5) and variable

c is upper bounded, the alternating optimization solution will converge to a local optimum
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of problem (5.5). The convergence of the alternating algorithm is proved as follows.

Let

{Vk(1)(I), Ũk(1)
(I), . . . ,Vk(T )

(I), Ũk(T )
(I)}k∈K

be the optimized precoders and combiners after the Ith iteration, which corresponds to

{R̂k(1)
(I), . . . , R̂k(T )

(I)}k∈K and c(I). During the I + 1th iteration, we will solve the T

subproblems sequentially to update the precoders and combiners. The solution to each

subproblem is to maximize the objective c. The solution to the tth subproblem serves the

starting point of the t+ 1th subproblem. Therefore, we have

cI+1
(

{Vk(1)(I+1), Ũk(1)
(I+1), . . . ,Vk(T )

(I+1), Ũk(T )
(I+1)}k∈K

)

≥ cI+1
(

{Vk(1)(I+1), Ũk(1)
(I+1), . . . ,Vk(T − 1)(I+1), Ũk(T − 1)(I+1),Vk(T )

(I), Ũk(T )
(I)}k∈K

)

≥ · · · ≥ cI+1
(

{Vk(1)(I+1), Ũk(1)
(I+1), . . . ,Vk(t)

(I), Ũk(t)
(I), . . . ,Vk(T )

(I), Ũk(T )
(I)}k∈K

)

≥ · · · ≥ cI
(

{Vk(1)(I), Ũk(1)
(I), . . . ,Vk(T )

(I), Ũk(T )
(I)}k∈K

)

.

Thus, the alternating maximization process leads to monotonous increase of the objective

c. With the fact of the variable c representing the total throughput over T time slots is upper

bounded by the transmit power contraints, we can conclude that the alternating algorithm

converges to a local maximum.

Lemma 1. If we have a locally optimal solution

X =
(

{Vk(1), Ũk(1)}k∈K, · · · , {Vk(T ), Ũk(T )}k∈K
)

to problem (5.5), it is also locally optimal for problem (5.4).

Proof. Let f(c,X,λ) be the Lagrangian of problem (5.5) and h(X,λ) be the Lagrangian
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of problem (5.4), where λ is the vector of Lagrange multipliers. We have

f(c,X,λ) = −c+
M∑

m=1

λm(Tr

(

Γm
K∑

k=1

Vk(t)Vk(t)
†)− Pm

)

+
K∑

k=1

λM+k

(

bkc−
T∑

t=1

Rk(t)

)

and

h(X,λ) = −
T∑

t=1

K∑

k=1

R̂k(t) +
M∑

m=1

λm(Tr

(

Γm
K∑

k=1

Vk(t)Vk(t)
†)− Pm

)

+
K∑

k=1

λM+k

(

bk
T∑

t=1

K∑

k=1

R̂k(t)−
T∑

t=1

Rk(t)

)

If

X =
(

{Vk(1), Ũk(1)}k∈K, · · · , {Vk(T ), Ũk(T )}k∈K
)

is a optimal point of problem (5.5), i.e., ∇cf = 0, ∇Xf = 0 and ∇λf = 0, we will have

∇Xh = 0 and ∇λh = 0. Thus, it is also a optimal point for problem (5.4).

Based on Lemma 1, we can further conclude that the alternating optimization also

approaches a local optimum of problem (5.4).

To solve each of the T subproblems, we utilize the Lagrangian dual method. The dual

function of (5.6) is given by

g(λ(t)) = min
Tr(ΓmV (t)V (t)†)≤Pm

L(c, {Vk, Ũk}k∈K,λ(t)) , (5.7)

where the Lagrangian of (5.6) is

L(c, {Vk(t)}k∈K,λ(t)) =
(

K∑

k=1

bkλk − 1

)

c

−
K∑

k=1

λk(t)R̂k(t)−
K∑

k=1

λk(t)
T∑

s=1,s 6=t

R̂k(s) ,

and λ(t) = {λ1(t), . . . , λK(t)}with λk(t) ≥ 0, ∀k ∈ K are the Lagrange multipliers. Since

a linear function is bounded below only when it is identically zero, it is straightforward to
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prove that g(λ(t)) = −∞ except when
K∑

k=1

bkλk(t)− 1 = 0.

The dual problem is then given by

max
λ(t)

{

min
Tr(ΓmV (t)V (t)†)≤Pm

−
K∑

k=1

λk(t)R̂k(t)

}

s.t.
K∑

k=1

bkλk(t) = 1, λk(t) ≥ 0, ∀k ∈ K.
(5.8)

The dual problem can be solved iteratively: the precoders and combiners (Vk(t)’s and

Ũk(t)’s) are updated by solving a minimization problem in each iteration and the Lagrange

multipliers (λk’s) can be updated via the subgradient-based method. The Lagrange multi-

pliers for the ith iteration are given by

λ
(i)
k (t) = max

(

λ
(i−1)
k (t) + αi

(

cbk −
T∑

t=1

Rk(t)

)

, 0

)

(5.9)

where αi is the step size for the ith iteration. To meet the equality constraint of λ, the

multipliers need to be further normalized as λk = λk/
∑K

k=1 bkλk.

To solve for the Vk(t)’s and Ũk(t)’s with given Lagrange multipliers, the minimization

problem in (5.8) can be rewritten as a WSRM problem under per-AP power constraint,

max
{Vk(t),Ũk(t)}k∈K

K∑

k=1

λkR̂k(t)

Tr(ΓmV (t)V (t)†) ≤ Pm .

(5.10)

Note that the solution to problem (5.8) has been discussed in Section 4.3.2. The iterative

algorithm described in Table 4.2 can be used to jointly solve the precoders and combiners

in problem (5.8) for a certain time slot t.
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5.4 Multiuser MIMO Fair Scheduling via a Two-stage Approach

The alternating optimization method proposed in Section 5.3 determines the active user set

for each time slot by jointly optimizing the precoders and stream allocation of each user

over T time slots. The active user set and the corresponding data rates are the solution to

a WSRM problem. Based on this observation, we propose a lower-complexity heuristic

approach to approximate the solution given by the alternating optimization algorithm.

Since the channels in our target scenarios are assumed to be fixed during T time slots,

we can assign an optimized set of communications for each time slot to obtain high aggre-

gate performance, while achieving fairness among the competing users. Our basic idea is

to decompose the scheduling problem into two stages. First, the scheduler generates a set

of diverse and high-performance communication sets by solving a set of WSRM problems,

after collecting the CSI from all APs. Next, the scheduler computes a communication

schedule that specifies the number of time slots allocated for each communication set in

order to achieve a given fairness objective.

5.4.1 Communication sets generation

In this section, we present an efficient approach to generate multiple diverse and high-

performance communication sets iteratively. In each iteration, one communication set is

generated through a 2-step procedure. First, a WSRM problem is solved to determine

the active user set and calculate the MIMO weights of the active users, which can also

determine the stream allocation for each user. Second, in preparation for the next iteration,

the user weights are updated according to the previously generated communication sets and

the target bandwidth fraction of each user. Repeat the 2-step procedure n times will produce

n MU-MIMO communication sets. This approach can ensure user diversity across the

communication sets and balance the probability of activating different users over a number

of communication sets. After a specified number of communication sets are generated in

81



this iterative manner, a final group of single-user communication sets is added to ensure

that there is a solution that satisfies the fairness constraints.

Solving weighted sum rate maximization problem

For the nth iteration, let Vk,n and Ũk,n be the MIMO precoder and composed combiner for

the kth user, and wk,n be the user weights for the kth user. we solve a WSRM problem to

determine the active users, as well as their MIMO weights. Recall that the general form of

a WSRM problem with per-AP power constraint is given as follows:

max
{Vk,n,Ũk,n}k∈K

K∑

k=1

wk,nR̂k,n

s.t.
K∑

k=1

Tr(ΓmVk,nV
†
k,n) ≤ Pm, ∀m ,

(5.11)

where R̂k,n is the data rate of the kth user in the nth communication set.

With given user weights, the algorithm for solving problem (5.11) has been proposed

in Section 4.3. The proposed combined user selection and MIMO weights calculation

approach in Section 4.3 can solve the problem with a very low computational complexity

and maintain good scalability for large number of users. The solution to problem (5.11)

determines the precoders and combiners for each users with a certain specification of user

weights. A user is activated if it has non-zero data rate.

Adjusting the link weights

To ensure a good representation of a large number of users, multiple communication sets

are generated by solving a set of WSRM problems with adjusted user weights. Let R̂k be a

1×N vector that contains the data rates of the kth user, i.e. R̂k,n denotes the data rate of the

kth user in the nth communication set. When generating the (n + 1)th communication set

after the first n sets have already been generated, the basic idea is to assign larger weights to

users that are more below their desired bandwidth proportions when considering the first n
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sets. A user k that is at or above its desired bandwidth proportion is assigned weightwk = 0

and is therefore excluded from the current round of communication set calculation. This

approach yields satisfying results in balancing high-performance communication sets and

incorporating user diversity into the chosen high-performing sets. Mathematically, there

are various ways to achieve the aforementioned weight adjustment idea. A general form is

wk,n+1







≥ wj,n+1 if 0 ≤ uk,n/bk ≤ uj,n/bj ≤ 1

= 0 if uk,n/bk ≥ 1
(5.12)

where uk,n is the bandwidth proportion of the kth user from previously computed n com-

munication sets, given by

uk,n =
n∑

i=1

R̂k,i/

K∑

k=1

n∑

i=1

R̂k,i .

In order to maximize the throughput over one scheduling period, we aim to maximize

the sum rate performance of each time slot with different active user subsets. Therefore, in

this paper, we update the user weights for the n+ 1th iteration as follows:

wk,n+1 = max(1− uk,n/bk, 0). (5.13)

As a result, the users that have already achieved their target bandwidth fractions are ex-

cluded from the current round of calculation.

Single-user MIMO communication sets

After the first two steps are iterated a specified number of times, generating N communica-

tion sets, a final post-processing step is performed. In this step, we compute communication

sets with a single active user per set. In this case, the active user achieves its interference-

free data rate and is jointly served by the cooperative APs. The interference-free data rate
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of the single user is given by

r̂k = max
{Tr(ΓmVkV

†
k
)≤Pm}

log2

∣
∣
∣I + R̂−1

nk
ĤkVkV

†
k Ĥ

†
k

∣
∣
∣ . (5.14)

Let Qk = VkV
†
k be the transmit covariance matrix. Since the problem (5.14) is convex

over Qk, its optimal solution can be obtained through standard techniques. Therefore, in

the N + kth communication set, the kth user has the data rate of R̂k,N+k = r̂k, while all

other users have zero data rate as R̂i,N+k = 0, ∀i 6= k.

5.4.2 Scheduler calculation

After generating Ntot = N + K communication sets as discussed in Section 5.4.1, our

focus is on developing a schedule to achieve both high aggregate performance and the target

fairness. Let R̂n = {R̂1,n, R̂2,n, . . . , R̂K,n} be the data rates of the nth communication set,

where R̂k,n is the data rate of the kth user in the nth communication set. If R̂k,n = 0,

it indicates that the kth user is inactive in the nth communication set. Recall the original

formulation of the scheduling problem in (5.4). The per-AP power constraints are already

met during the communication sets generation stage. With the calculated data rates of each

communication set, the problem reduces to the assignment of communication sets for T

time slots that maximize the throughput while meeting the fairness constraints.

To reformulate the scheduling problem with a given set of communication sets, we

introduce a set of binary variables ρn,t ∈ {0, 1}, which represents whether the nth commu-

nication set is assigned to the tth time slot. ρn,t = 1 indicates that the nth communication

set will communicate in the tth time slot. Then we have,

R̂k(t) =
Ntot∑

n=1

T∑

t=1

ρn,tR̂k,n.
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Therefore, the scheduling problem (5.4) can be rewritten into

maxρn,t
K∑

k=1

Ntot∑

n=1

T∑

t=1

ρn,tR̂k,n

s.t.
Ntot∑

n=1

T∑

t=1

ρn,tR̂k,n = bk
K∑

k=1

Ntot∑

n=1

T∑

t=1

ρn,tR̂k,n, ∀k ∈ K
Ntot∑

n=1

ρn,t = 1, t = 1, . . . , T

ρn,t ∈ {0, 1}, ∀k ∈ K, t = 1, . . . , K .

(5.15)

Problem (5.15) forms a binary integer programming problem with Ntot × T variables. To

reduce the size of the optimization problem, the problem can be further simplified by set-

ting xn =
T∑

t=1

ρn,t, n = 1, . . . , Ntot, which represents the number of time slots scheduled

for the nth communication sets. We can then convert Problem (5.15) into the following

formulation

maxxn
K∑

k=1

Ntot∑

n=1

R̂k,nxn

s.t. C1 :
Ntot∑

n=1

R̂k,nxn = bk
K∑

k=1

Ntot∑

n=1

R̂k,nxn, ∀k ∈ K

C2 :
Ntot∑

n=1

xn = T

C3 : xn ∈ Z, n = 1, . . . , Ntot .

(5.16)

The number of variables are reduced to Ntot, which is much smaller than that in Problem

(5.15).

Note that the fairness constraint C1 contains K equality constraints. However, the

perfect fairness imposed by C1 lacks the flexibility to accommodate different scenarios.

Therefore, we introduce the notion of ǫ-approximate fairness and relax the C1 into a set of

inequality constraints

C3 : d(1− ǫ)bk ≤
Ntot∑

n=1

R̂k,nxn ≤ d(1 + ǫ)bk, k = 1, . . . , K. (5.17)

85



where d =
K∑

k=1

Ntot∑

n=1

R̂k,nxn. By replacing C1 in (5.16). with C3, a new scheduling problem

with a variable fairness objective is formulated. Note that ǫ is the fairness factor, which

controls the achieved fairness among users. For example, if ǫ = 0, C3 becomes the same

as C1, which leads to perfect fairness. When ǫ becomes sufficiently large, the scheduling

problem corresponds to a throughput maximization problem with no fairness constraint.

A general way to solve the formulated integer linear programming (ILP) problem (5.16)

is to solve its LP relaxation and then round the entries of the solution. The LP relaxation

of (5.16) with ǫ-approximate fairness is given by

max
x

K∑

k=1

Ntot∑

n=1

R̂k,nxn

s.t. d(1− ǫ)bj ≤
Ntot∑

n=1

R̂k,nxn ≤ d(1− ǫ)bj

xn ≥ 0, n = 1, . . . , Ntot

∑Ntot
n=1 xn ≤ T.

(5.18)

Note that the relaxed LP problem (5.18) provides an upper bound on sum rate for any

feasible solution to the ILP problem (5.16). Since the problem (5.18) is a standard LP

problem, it can be addressed by well-known techniques such as the interior-point method.

The relaxed LP has at least one feasible solution, due to the inclusion of the single-user

communication sets.

To solve the formulated scheduling problem, we introduce a simple interior-point method,

called the barrier method [82]. First, we define a logarithmic barrier function φ(x)

φ(x) = −
Ntot∑

n=1

log(xn)− log(T −
Ntot∑

n=1

xn)

−
K∑

k=1

log

(

d(1 + ǫ)bk −
Ntot∑

n=1

R̂k,nxn

)

−
K∑

k=1

log

(
Ntot∑

n=1

R̂k,nxn − d(1− ǫ)bk
)

(5.19)
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Table 5.2: Computing the Schedule for Given Communication Sets

Input: data rates in Ntot candidate communication sets {R̂k,n}∀k,∀n,

desired bandwidth proportion b = {b1, . . . , bK}
Output: optimized schedule s∗ = {s∗1, . . . , s∗N}
1. Initialization: Given feasible x = x0, t := t0 > 0, µ > 0, ε.
2. Repeat

3. Compute the optimal solution x∗(t) to (5.20) starting at x.
4. Update x := x∗(t).
5. Quit if (2K +N + 1)/t ≤ εb.
6. Update t := µt.
7. s∗ = round(x).

Next, we define an unconstrained minimization problem with parameter t,

min
x
ft(x) = −t

K∑

j=1

Ntot∑

i=1

rj,ixi + φ(x) (5.20)

The optimal solution to problem (5.20) is an approximation of the optimal solution to prob-

lem (5.18), where t > 0 is a parameter that sets the accuracy of the approximation. As t

increases, the approximation becomes more accurate. The outline of barrier method is

summarized in Table 5.2. To solve the unconstrained minimization problem (5.20) in each

iteration, Newton’s method is used to compute the optimal solution. With a given t, the

Newton step ∆xt at x is given by

∇2ft(x)∆xt = −∇ft(x) . (5.21)

Where∇2ft(x) and∇ft(x) are the Hessian and the gradient of ft(x), respectively. Gener-

ally, the inverse of an Ntot × Ntot matrix ∇2ft(x) requires O(N3
tot) arithmetic operations,

which can be reduced to O(NtotK
2) using the fast barrier method proposed in [83], since

K is typically much smaller than Ntot.

Once we have the optimal solution to the LP problem, we perform the following round-

ing procedure. First, sort the resi = x∗i −⌊x∗i ⌋ in descending order. Then, the solution x∗i ’s

of the first I user sets with the higher resi value will be rounded to ⌈x∗i ⌉, while the remain-
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ing x∗i ’s will be rounded to ⌊x∗i ⌋, where I = T −
K∑

i=1

⌊x∗i ⌋. The rounded solution determines

the number of time slots assigned to each communication set. Although the fairness con-

straint C3 might be violated after the rounding procedure, it will be demonstrated in the

simulations that any deviation from the targeted fairness is quite small.

5.5 Algorithm Implementation and Complexity Analysis

In this section, we discuss the implementation of the two proposed algorithms and analyze

their complexity. To facilitate the discussion, we make the assumption that the cooperative

APs within a single cluster are tied via high-speed links to a central processor, which is

responsible for calculating the communication schedule.

5.5.1 Algorithm implementation

First, the central processor requests the CSI from the cooperative APs in one cluster. During

this step, each AP takes a turn to send sounding packets and collect CSI from each user.

Then the central processor computes the communication schedule for the following T time

slots and the corresponding MIMO weights for each communication sets. For the two

scheduling algorithms proposed in this paper, different operations can be implemented to

improve the algorithm efficiency.

For the joint scheduling algorithm proposed in Section 5.3, the optimization of T sub-

problems iteratively requires significant computation effort. Since T is often chosen to be

a large value, typically much larger than K, for stationary or limited mobility environment,

the computational overhead of the joint algorithm can be significantly reduced via time-slot

aggregation. Specifically, a number of adjacent time slots can be aggregated and deemed

as a “virtual time window”. The communication schedules for the time slots within one

“virtual time window” are the same, i.e., the same user set is activated and these users are

assigned with fixed MIMO weights during one “virtual time window”. Based on this idea,

if the T time slots are aggregated into Tw “virtual time windows”, only Tw subproblems
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instead of T need to be solved in each iteration.

The computational overhead of the heuristic algorithm proposed in Section 5.4 is mainly

from the generation ofNtot communication sets, which involves intensive calculation of the

corresponding MIMO weights for each communication set. The algorithm efficiency can

be improved through parallel processing, i.e., distributing the workload to P parallel work-

ing processes. The main process first distributes the collected CSI to all helper processes.

Each process then runs the communication sets generation algorithm in Section 5.4.1 to

produce Np communication sets. The generated PNp communication sets and the MIMO

weights are then passed to the main process. Finally, the link scheduling algorithm is

performed by the main process to determine the number of time slots allocated to each

communication set. Since the user weights need to be updated iteratively based on the

previously calculated communication sets as discussed in Section 5.4.1, the performance

of the parallel processing highly depends on the approach of local weights update for each

process. The basic idea is to assign different initial user weights for each process and fol-

low the user weights update approach proposed in Section 5.4.1 locally over each process.

For example, the main process can start with identical user weights of wk = 1, ∀k. Helper

processes can employ a simple randomized method to initialize the binary user weights

(i.e., wk = {0, 1}). The basic idea is that the users with larger target bandwidth fractions

have higher probability to be activated during the initialization stage.

5.5.2 Complexity analysis

In this section, we perform complexity analyses for the two proposed scheduling algo-

rithms. The proposed algorithm using alternating optimization in Section 5.3 solves T

subproblems in each main iteration. In terms of complexity per subproblem per iteration, it

employs Lagrangian dual method to iteratively solve a WSRM problem and update the La-

grange multipliers using subgradient method. The number of iterations of the dual method

is dominated byO(1/ǫ2s), where ǫs is the accuracy of the subgradient method. Therefore, in

89



each iteration of alternating optimization, it solves O(T/ǫ2s) WSRM problems for K users

in (5.10).

The two-stage algorithm proposed in Section 5.4 involves communication sets gener-

ation and scheduler optimization. Generating N communication sets involves executing

pre-user selection N times and solving N WSRM problems in (5.11) for K0 users using

the algorithm proposed in Chapter 4. The complexity of pre-user selection is dominated by

O(KK0). For the scheduler optimization stage, the barrier method takes O(
√
m log m

t0εb
)

iterations, where m = 2K + N + 1. For each iteration, computing Newton step requires

the inverse of a (K +N)× (K +N) matrix with O((K +N)K2) arithmetic operations.

Both of the proposed algorithms involve solving a set of WSRM problems, which re-

quires the computationally expensive iterative algorithm of Table 3.1. The per-iteration

complexity of updating the precoders and combiners is dominated by O(U2) for U users.

Therefore, the complexity of solving WSRM for the two-stage method is significantly

lower since it has K0 ≪ K users, due to its pre-user selection.

In summary, the joint algorithm provides better aggregate performance with higher

complexity. The two-stage algorithm has lower complexity, since N is generally on the

same order as K. Moreover, unlike the joint algorithm, the complexity of the two-stage

algorithm is independent of the number of times slots in one scheduling period.

5.6 Simulation Results

In this section, we report on simulation experiments to evaluate the performance of our

proposed scheduling algorithms from Section 5.3 and Section 5.4 under time-based fairness

(TF) criteria, which we denote by Joint TF and TwoStage TF in this section. The optimal

solution to the LP relaxation problem is referred to as TwoStage RelaxedTF, which serves

as an upper bound of the TwoStage TF solution with a given set of communication sets.

For comparison, we also consider the following algorithms:

• TwoStage NUS TF: This algorithm is developed in our preliminary research [84]
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and is similar to the proposed TwoStage TF. However, TwoStage NUS TF works

without pre-user selection during communication set generation. TwoStage NUS TF

also uses the notion of ǫ-approximate fairness.

• IC TF: This algorithm solves the MIMO link scheduling problem with IC across

multiple APs [69]. However, the data for a single user is transmitted solely by one

AP. IC TF is designed to achieve time fairness among users and, like TwoStage TF,

it uses a two-stage approach that first generates a set of communication sets and

then chooses a schedule using the generated sets. In our simulations, the AP-user

association for IC TF is determined by the SNR at the user device, i.e., a user is

served by the AP that provides the highest SNR.

• TDMA: This is a basic time-fair TDMA scheduling algorithm, where the links are

scheduled sequentially in a round robin manner. Since in each time slot, there is only

one user scheduled and served by all APs, it can achieve the interference-free data

rates using the SVD MIMO weights. Moreover, TDMA allocates the bandwidth with

perfect fairness in a time-based sense.

• MaxRateMinFair: This algorithm uses the generated communication sets of TwoStage TF

and optimizes the scheduler to maximize the throughput but with only minimal fair-

ness. Minimal fairness is defined as having at least one time slot allocated to each

user.

5.6.1 Simulation setup

Settings for the simulation experiments are as follows. There are M APs and K users

uniformly distributed in a circular region with a radius of 50 meters. We set each AP to

have 4 antenna elements and each user to have 2 antenna elements. To compute the SNR

and SINR values, we use a quasi-static Rayleigh flat-fading channel model with a path-loss

exponent of 3 and the noise power of -85 dBm. The transmit power of each AP is 23 dBm.
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The number of time slots within one scheduling period is denoted by T . Unless otherwise

specified, we consider the downlink transmission with 3 cooperative APs, fairness factor

ǫ = 0.05 for TwoStage TF and TwoStage NUS TF, the number of communication sets

generated for TwoStage TF and TwoStage NUS TF is N = 1.5K, and T = 100. All

presented results are averaged over 1000 random deployments. To evaluate fairness, we

use the fairness index proposed in [80],

FI(u, b) = exp

(

−
K∑

k=1

|ln(uk/bk)| /K
)

, (5.22)

where uk is the fraction of bandwidth allocated to the kth user. The fairness index given by

(6.8) takes values in [0, 1], with 1 representing perfect fairness among users.

Different choices of parameter b achieve different fairness objectives, which can rep-

resent various QoS requirements. In our evaluations, we use the notion of time-based

fairness since it has been shown to be particularly well-suited for multi-rate wireless net-

works. In [80], the idea of time-based fairness is extended to take interference into account.

Specifically, each user is allocated an equal number of interference-free time slots, where

its bandwidth then depends on the number of users and its own channel quality. Different

from the standard notion of time-based fairness in wireless networks, this fairness notion

eliminates interference-induced distortions on data rates introduced by the scheduling al-

gorithm. The target bandwidth fraction is defined as bk = r̂k/
∑K

k=1 r̂k, ∀k, where ρk is the

interference-free data rate as discussed in Section 5.4.1. Once the precoders and combiners

are calculated, instead of using the data rates given by the Shannons capacity formulas, the

data rates are determined via the rate selection procedure discussed in Section 2.3.4.

5.6.2 Convergence properties

We first investigate the convergence properties of the alternating optimization method Joint TF.

As the algorithm iterates, it tries to improve the sum rate while approximating the desired
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Figure 5.2: Sum-rate and fairness vs. number of iterations for alternating optimization

method.

fairness requirement.

To demonstrate the convergence of the algorithm, both sum rate and fairness are plotted

as a function of the number of iterations with T = 50 in Figure 5.2. Three random trials of

experiments are performed for K = 10. For all cases, the algorithm converges extremely

quickly, reaching close to the final sum rate value after only 1 or 2 iterations. The small

fluctuations within a narrow range after 2 iterations find the best operating point between

sum-rate maximization and desired fairness.

5.6.3 Performance with downlink traffic only

In this section, we mainly focus on the downlink transmission and evaluate the sum-rate

and fairness performance of the proposed algorithms.

Sum-rate and fairness versus number of users

Figure 5.3 shows the achieved sum-rate and fairness of different algorithms as a func-

tion of the number of users. Note that the number of supportable users can be multi-

plied by the number of available orthogonal channels. Overall, Joint TF performs the
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best as it achieves very close to perfect fairness for all numbers of users and its perfor-

mance improves steadily as the number of users increases. For 50 users, the sum rate

of Joint TF is within 10% of the greedy algorithm, which achieves a fairness value of

only around 0.45 at that point. TwoStage TF also achieves good fairness for all numbers

of users. However, its sum rate performance gap compared to Joint TF increases with

the number of users, because the heuristic algorithm cannot fully explore the good user

combinations when the number of users is large. Note, however, that the upper bound

TwoStage RelaxedTF is well approximated by TwoStage TF, indicating that our pro-

posed heuristic algorithm achieves a near-optimal solution for the chosen communication

sets. Moreover, the sum-rate loss due to the pre-user selection can be estimated by compar-
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Figure 5.3: Sum-rate and fairness vs. number of users.

ing TwoStage TF with TwoStage NUS TF. Although there is about a 5% sum-rate loss,
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we will see in Section 5.6-E that the pre-user selection in TwoStage TF greatly improves

the algorithm efficiency. Finally, we can see the advantage of full AP cooperation com-

pared to only interference coordination in the significant sum-rate gap between IC TF and

the algorithms proposed herein.

Sum-rate and fairness versus number of APs

The sum-rate and fairness achieved by different algorithms is illustrated as a function of

the number of cooperative APs in Figure 5.4, where the number of users is fixed to 30.

Note that all algorithms make use of more APs to improve sum-rate, albeit to varying
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Figure 5.4: Sum-rate and fairness vs. number of APs

degrees. The algorithms that perform joint data transmission to all users have a sum rate

that increases linearly with the number of APs. IC TF performs interference coordination

among APs but does not do joint data processing and its sum rate increases at a much lower
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rate. This shows very clearly the potential performance advantages associated with joint

data transmission. For example, with 6 cooperative APs, the Joint TF and TwoStage TF

achieve more than 2 times the sum-rate of IC TF. Here, the joint optimization of user

selection and scheduling done by Joint TF consistently produces about 10% higher sum-

rate than when separating those concerns, e.g. with TwoStage TF. While one might think

that TDMA performance would not not increase with the number of APs since it schedules

only one user per time slot, it does experience some rate increase due to increased total

transmit power with more APs. The fairness values of the different algorithms are fairly

similar to those seen as a function of the number of users.
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Figure 5.5: Sum-rate and fairness vs. number of communication sets.
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Sum-rate and fairness versus number of communication sets

The performance of the proposed TwoStage TF algorithm, as well as the other two-stage

algorithms, depends on how many communication sets are generated during the first stage.

As the number of communication sets increases, the scheduling algorithm can better ex-

ploit the potential performance of multiuser MIMO, albeit with increased running time to

generate the sets. In Figure 5.5, the sum-rate is plotted as a function of the number of gen-

erated communication sets, which varies from 0.4K to 2K, where K = 30. With a larger

number of candidate communication sets, both TwoStage TF and TwoStage NUS TF

achieve sum rate performance close to that of the Joint TF. For example, with N = 2K,

TwoStage TF achieves more than 92% of the sum rate of Joint TF and TwoStage NUS TF

achieves more than 95% of the joint algorithm’s sum rate.

Sum-rate and fairness versus fairness factor

We also present the results obtained with K = 30 at different choices of fairness factor ǫ.

Figure 5.6 shows the sum rate and fairness index achieved by different algorithms, where

the fairness factor ǫ is varied from 0.1 to 0.5. Since only the proposed TwoStage TF

and the similar algorithm TwoStage NUS TF allow different tradeoffs between the aggre-

gate performance and fairness, the performance of other algorithms is not affected by the

fairness factor. The difference between TwoStage TF and TwoStage NUS TF caused by

pre-user selection is quite small. Figure 5.6 also illustrates how the two-stage algorithms

allow for a performance-fairness tradeoff. Based on Figure 5.6, this can be achieved by

choosing the best operating point (ǫ) along the performance and fairness curves for either

TwoStage NUS TF or TwoStage TF. One use of this is to essentially solve the inverse

optimization problem, namely to determine the best fairness possible for a given minimum

performance threshold. This can be done by setting ǫ to the smallest value that achieves

the required performance level, which can be found from the sum-rate curve of Figure 5.6.

The achieved fairness index can then be determined from the fairness curve. Any other op-
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erating point in between the solutions to these two problems can also be determined from

the plots.
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Figure 5.6: Sum-rate and fairness vs. fairness factor.

5.6.4 Performance with both downlink and uplink traffic

In this section, we evaluate the sum-rate and fairness performance of the proposed sched-

ulers, when both downlink and uplink traffic is considered. In this section, we assume 20%

traffic is on the uplink and K = 30. Since full cooperation among users is not possible,

we assume only interference coordination is used by all algorithms on the uplink (except

TDMA for which there is no interference).
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Sum-rate and fairness versus number of users

In Figure 5.7, sum-rate and fairness achieved by different algorithms are plotted as a func-

tion of number of users. Since both IC and full cooperation gain advantage from multi-user
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Figure 5.7: Sum-rate and fairness vs. number of users.

diversity, the overall sum-rate with both downlink and uplink traffic increases with the num-

ber of users. With 80% downlink traffic, the proposed schedulers with full cooperation still

exhibit significant advantage in terms of aggregate performance compared to IC TF. Since

the uplink IC TF also guarantees the target fairness, the achieved fairness of the proposed

schedulers and IC TF are always kept above 0.95. Thus, even though the proposed ap-

proaches target downlink transmissions, their benefits are still readily apparent when both

downlink and uplink transmissions are considered in the typical scenario where traffic is

heavier on the downlink.
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Sum-rate and fairness versus number of APs

Figure 5.8 compares the sum-rate and fairness performance of different schedulers with

different numbers of cooperative APs. We see that the sum-rates of the proposed schedulers
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Figure 5.8: Sum-rate and fairness vs. number of APs.

still increase rapidly as the number of APs increases from 2 to 6. Note, however, that

the increase is not quite linear due to the fact that the uplink transmissions cannot take

advantage of joint transmission and have to rely solely on interference coordination, which

does not scale linearly as was demonstrated in the previous section.

5.6.5 Running time evaluation

As mentioned earlier, our target environment is enterprise wireless networks where most

users tend to be working and interacting in offices, cubicles, laboratories, and conference

rooms. These environments are characterized by users that are stationary for periods of
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time with intermittent short mobility periods. Due to their mostly stationary nature, these

environments allow for a fairly complex scheduling algorithm to produce a schedule that

can be in use for a moderate period of time, e.g. several seconds possibly even up to

a few tens of seconds. The computational complexity of the scheduler is an important

issue since its computation time plus the use time of the schedule must fall within the

assumed stationary time of the network. In this subsection, we evaluate the execution times

of the best performing of the scheduling algorithms evaluated in prior subsections. The

algorithms are implemented in Matlab and run on an i7-2700K Intel CPU rated at 3.5 GHz

with 32 GB RAM.

Figure 5.9 shows the running times of various algorithms for a few choices of param-

eters , such as number of communication sets (N ), number of users (K) and schedule

length (T ), with a log scale on the y-axis. We consider Joint TF, TwoStage TF, and

TwoStage NUS TF, which were the top performers in terms of sum rate and fairness,

i.e., A = Joint TF with T/Tw = 1, B = Joint TF with T/Tw = 2, C = TwoStage TF

with P = 1, D = TwoStage TF with P = 4, E = TwoStage NUS TF with P = 1. For

Joint TF, we also consider the impact of aggregating multiple time slots together. Specifi-

cally, we evaluate the running time with unaggregated time slots and a version where each

two consecutive time slots are combined into one slot. For TwoStage TF, we also consider

the impact of parallel execution, which can help speed up the communication set generation

stage, which is the dominant factor in the running time.

First, we evaluate the running time with different numbers of communication sets, i.e.,

N = 30, 45, 60, for K = 30. Although more communication sets provides higher sum-rate

performance for two-stage approaches, including TwoStage TF and TwoStage NUS TF,

as indicated in Figure 5.5, generating N = 60 communication sets approximately doubles

the running time compared to N = 30. From the figure, we see that the running time

is reduced substantially when pre-user selection is employed. The basic TwoStage TF,

which employs pre-user selection, has running times from about 2.5 to 6 seconds, which is
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Figure 5.9: Running time of different algorithms.

more than 5 times faster than TwoStage NUS TF. For environments that need even shorter

execution times, TwoStage TF can be sped up further with parallel calculation of commu-

nication sets. Using four processors, TwoStage TF only needs 1 to 2 seconds and is about

4 times faster than TwoStage TF. While the complexity of the joint algorithm is indepen-

dent of N , it is significantly affected by K and T . From Figure 5.9 with different choices

of K and T , we see that the running time for the unmodified Joint TF ranges from 10

seconds to almost 50 seconds, which is clearly at the high end of what might be practical

even in low-mobility environments. As is expected, aggregating pairs of time slots into a

single slot (B bars in Figure 5.9) cuts these times in half, which brings the execution time

down to more acceptable levels, particularly if the number of users is not too large. Inter-

estingly, the two-stage approach without pre-user selection (TwoStage NUS TF) has an

execution time that is on the same order of magnitude as Joint TF (slightly less than the

unmodified Joint TF for most cases but slightly higher than the aggregated Joint TF). We

also note that our proposed two-stage method can work with other heuristic algorithms to
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generate candidate communication sets, which might be able to further lower the compu-

tational cost. Finding heuristic communication set generation techniques that have lower

complexity without sacrificing too much performance is left as a topic for future research.
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Figure 5.10: CDF of the running time for K = 30, T = 100.

It is also important to understand the trade-offs between sum rate performance and run-

ning time for the different algorithms under consideration. Figure 5.10 shows the perfor-

mance impact of time-slot aggregation for Joint TF and parallel execution for TwoStage TF.

Sum rate for the time-aggregated Joint TF is only about 4% lower than without aggrega-

tion, while execution time is halved. The impact of parallelization for TwoStage TF is

higher: sum rate is reduced by about 10% while running time is almost 4 times shorter, as

compared to the sequential version.

The sum-rate loss caused by parallel processing in TwoStage TF is caused by the ran-

domized initialization of user weights for each parallel process. This loss can be partially

compensated for by generating more communication sets over each parallel process to

achieve a good tradeoff between the running time and sum-rate performance, as illustrated

in Table 5.3. For example, assigning the workload of generating 50 communication sets

to 2 parallel processes will introduce 4% sum-rate loss with about 1/2 the running time of
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P Ntot/P sum-rate [bits/s/Hz] running time [s]

1 50 28.6330 6.1537

2 25 27.5748 2.9723

2 30 28.5412 3.5088

4 12 25.8629 1.5175

4 15 27.2899 1.8399

4 20 28.6054 3.5437

Table 5.3: Sum-rate and running time performance for parallel processing.

the centralized processing. By increasing the workload of each process from 25 to 30, the

sum-rate achieved by parallel processing with P = 2 reaches 99.7% of the sequential ver-

sion while consuming less than 60% of the running time. Similar results can be observed

for the case of P = 4.

5.7 Chapter Summary

In this chapter, we studied the MIMO link scheduling problem for a cluster of coopera-

tive APs and a number of stationary users. We proposed alternative scheduling algorithms:

the alternating optimization method and the two-stage method. The alternating optimiza-

tion method jointly optimizes the MIMO weights and user selection for users over one

scheduling period. The two-stage algorithm works in two phases: first, high-performance

communication sets are generated via an iterative weighted sum-rate maximization proce-

dure, and then an integer programming problem is solved through relaxation and rounding

to produce a schedule that provides near-optimal performance for the chosen communi-

cation sets and given fairness constraint. Simulation results showed that the alternating

optimization algorithm produces significantly higher aggregate throughput than all known

approaches with a running time that is practical for scenarios with up to 50 users, while the

two-stage algorithm produces aggregate throughput that is very close to existing heuristics

while having significantly lower running time.
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CHAPTER 6

MOBILITY-AWARE MULTI-USER MIMO LINK SCHEDULING

6.1 Introduction

This chapter focuses on developing a centralized schedule that achieves both high through-

put and a target fairness criterion among users. Our previous research in chapter 5 that

considers a similar problem targets only static network scenarios. While indoor WLANs,

such as in office-type environments, are dominated by stationary clients, there is also lim-

ited mobility due to occasional device movements and environmental changes. Client mo-

bility poses a unique challenges for the design of wireless protocols. In static environ-

ments, the wireless channels remain stable and past information can be relied on to opti-

mize the performance. In contrast, the scheduler for mobile clients needs to accommodate

frequent changes of wireless channels. Improvements have been investigated and tested by

integrating the mobility-awareness into the design of client roaming, rate adaptation and

frame aggregation scheme in WLANs [85, 86, 87]. In fact, bringing mobility hints into

the scheduling algorithm can help sustain both good individual and overall performance.

Applying an unified scheduling scheme to both static and mobile users lacks the ability

to fully benifit from the throughput gain promised by multiuser MIMO techniques. Given

the mix of users with diverse channel and mobility characteristics in next generation en-

terprise networks, different scheduling strategies are preferable for improving the overall

performance.

In this chapter, we propose a mobility-aware multiuser MIMO link scheduling algo-

rithm that distinguishes stationary and mobile users based on their CSI and applies differ-

ent scheduling strategies within each user group. The central controller tracks the channel

conditions of clients over time and applies a novel CSI similarity metric based on sub-
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space collinearity to categorize users as either stationary or mobile. Our mobility-aware

scheduling algorithm then separates static and mobile users into different time slots, and

adaptively adjusts the number of time slots between the two categories to maintain fair-

ness for both stationary and mobile users. The stationary user schedule is calculated in a

highly optimized but fairly computationally expensive manner. However, since CSI does

not change frequently for these users, this highly optimized schedule can be used for a

significant number of scheduling periods. In contrast, the schedule for mobile users is

done for each time slot using fresh CSI but in a highly efficient, less optimized fashion.

The separation of users into two categories allows us to achieve the promise of expensive

but very-high-performing scheduling algorithms that have been presented in the literature

for stationary users, while still achieving reasonable performance for mobile users and en-

suring fairness both across the two user categories and for individual users. Simulation

results demonstrate that, when accounting for CSI feedback and scheduling overheads, our

proposed scheduling algorithm with mobility awareness maintains very good fairness and

provides substantial performance gains compared to conventional approaches that do not

separate mobile and stationary users.

6.2 System Model and Problem Description

We consider a scenario in which single-hop wireless networks are densely deployed over

a region, where the areas served by different access points (APs) can overlap. We focus

on indoor environments, where most devices are stationary for a moderate amount of time

between movements. When users’ devices are not stationary, they move at low speeds

(typically from walking with or rotating a hand-held device). This is a common scenario

for most enterprise WLAN settings, such as most office-type environments. We focus on

downlink transmissions since in typical indoor environments 80% or more of the traffic is

on the downlink. We do not mix downlink and uplink traffic in one slot, because scheduling

downlink or uplink traffic together helps reduce channel estimation overhead as shown
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in [69].

6.2.1 PHY-layer model

Assume there areM access points (APs) in one cluster, which cooperatively serveK users.

We denote the number of antenna elements on the mth AP by Nt,m and the number of

antenna elements on the kth user by Nr. The user set is denoted by K = {1, . . . , K}. Let

Nt =
∑M

m=1Nt,m be the total numbers of antennas at the AP side. The matrix of complex

channel gains between the cooperative APs and the antennas of the kth user is denoted by

Hk ∈ C
Nr×Nt . The data vector x =

[
xT1 , . . . , x

T
K

]T
is jointly precoded by the M APs

using the precoding matrix V = [V1, . . . ,VK ]. xk ∈ C
Nr is the transmit signal vector for

receiver k, and xk is assumed to be independently encoded Gaussian codebook symbols

with E[xkx
†
k] = I, where (·)† is the conjugate transpose of (·). It is assumed that the kth

user has Nr parallel data streams, although some of the streams can have a rate of zero.

Vk ∈ C
Nt×Nr is the partition of V applied at the APs to precode the signals of user k.

The received vector at user k for time slot t is given by

yk = HkVkxk +
K∑

l=1,l 6=k

HkVlxl + nk , (6.1)

where nk is the vector of Gaussian noise at the kth user with covariance matrix σ2
kI . As-

sume the received signal is equalized using the linear receive filter Uk ∈ C
Nr,k×Nr,k . The

received signal of the kth receiver is given by x̂k = U
†
kyk.

6.2.2 Time-variant MIMO channel model

To characterize the channels of mobile users, we follow the geometry-based stochastic

channel modelling approach used in the generic WINNER II channel model [24, 88]. The

physical parameters are determined in a stochastic manner based on the statistical distri-

butions extracted from measurements. It is applicable for wireless systems operating at
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2-6 GHz with up to 100 MHz bandwidth [88].

Path 1

Path N

Tx

Rx

Figure 6.1: The multi-ray MIMO propagation channel

The impulse response of the channel is

H(t, τ) =
N∑

n=1

Hn(t; τ) ,

where N is the number of dominant scattering clusters, each of which is constituted by a

number of rays, as shown in Figure 6.1. Assume there are Mn rays from the nth scattering

cluster. The channel from TX antenna element s to RX antenna element t for scattering

cluster n

Hu,s,n(t; τ) =
Mn∑

m=1

αn,mexp(j2πλ
−1
0 (−−→ϕm,n · −−→rrx,u))

×exp(j2πλ−1
0 (
−−→
φm,n · −−→rrx,u))

×exp(j2πυm,nt)δ(τ − τm,n)

where λ0 is the wavelength of carrier frequency and an,m is the complex gain of the nth

ray from the mth scattering cluster. −−→ϕn,m and
−−→
φn,m are the AoA and AoD unit vector re-

spectively. −−→rrx,u and−−→rtx,s are the location vectors of receive antenna element u and transmit

antenna element s. υn,m is the Doppler frequency component of the nth ray from the mth

scattering cluster.

For time-variant channels, the aforementioned small scale parameters, such as AOD,
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AOA and propagation delay, are time variance, i.e., function of t. To model these propa-

gation parameters that vary over time, time evolution with smooth transitions between two

quasi-stationary periods are discussed in [88].

6.2.3 MIMO link scheduling problem

In the targeted dense environment, there are many users competing for limited resources.

Therefore, MIMO link scheduling that can achieve high throughput while maintaining fair-

ness is an essential requirement.

Potential aggregate throughput

The achievable data rates of MU-MIMO users depend on the concurrent user group and

the corresponding MIMO weights (precoders and combiners). There are
Nt∑

i=1

(
K
i

)
possible

user groups, also referred as communication sets. Assume a certain communication set

Π = {π1, π2, . . . , πI} for concurrent transmission with I users. The data rate of user πk in

Π is given by

rπk = log2
∣
∣I + (U †

πk
RπkUπk)

−1U †
πk
HπkVπkV

†
πk
H†

πk
Uπk

∣
∣ . (6.2)

where Rπk is the corresponding covariance matrix of the received interference plus noise is

given by

Rπk =
∑

l∈Π,l 6=πk

HπkVlV
†
lH

†
πk

+ σ2
πk
I . (6.3)

As we assume the use of explicit CSI feedback, the central controller has the access to

the compressed feedback of channel matrix Hk, ∀k, which is given by Ĥk = ŜkB̂
†
k, where

Ŝk and B̂k are the quantized diagonal matrix containing non-zero singular values and the

right singular matrix of Hk. With the limited CSI feedback, the central controller lacks the

ability to calculate the combiner. Instead, as discussed in Chapter 4, it can compute the

composed combiner Ũk and estimate the user performance, where Ũk = A
†
kUk and Ak is
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the left singular matrix of Hk. With calculated precoders and combiners, the SINR of the

nth stream of the kth user in communication set Π is evaluated at the transmitter side is

γk,n =
ũ†
πk,n

Ĥπkvπk,nv
†
πk,n

Ĥ†
πk
ũπk,n

ũ
†
πk,n(σ

2
kI +

∑

(πk′ ,j) 6=(πk,n)

Ĥπkvπk′ ,jv
†
πk′ ,j

Ĥ
†
πk)ũπk,n

,

where ũk,n and vk,n are the nth column of Ũk and Vk. Then, the bit-rates can be determined

via the rate selection process discussed in Section 2.3.4.

Scheduling problem description

Our focus is on building a fair scheduler for a single cluster with M cooperative APs and

K users. Let T = {t1, . . . , tT} be the scheduling period composed of T time slots of equal

duration, Πj = {π1,j, . . . , πIj ,j} be the communication set scheduled in time slot tj with

Ij active users, and rj = [r1,j, . . . , rK,j]
T be the bit-rates of users in time slot tj , where

rk,j = 0 if k 6∈ Πj . For a scheduling period T , we need to schedule a communication

set for each time slot that maximizes the throughput while satisfying a fairness constraint.

Mathematically, it can be formulated as follows:

max{Πj}Tj=1

T∑

j=1

K∑

k=1

rk,j

s.t.
T∑

j=1

rk,j = bk
T∑

j=1

K∑

k=1

rk,j

(6.4)

The fairness constraints require that each user achieves a bandwidth that is proportional

to its target bandwidth share bk. For example, the target bandwidth vector b can represent

the QoS ratios of the competing users. In this paper, we are particularly interested in

achieving time-based fairness, which has been shown in [89] to substantially improve the

throughput compared to rate-based fairness in multi-rate WLANs. In [80], the idea of

time-based fairness is extended to interfering MIMO channels. Following the idea in [80],

the target bandwidth fraction of user k can be set to bk = ρk/
∑K

k=1 ρk, where ρk is the
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interference-free data rate of user k. These time-fair bk’s are used in the simulation results

of Section 6.4.

6.3 Fair MIMO Link Scheduling Algorithm Using Mobility Hints

Stationary users’ channels can be stable for hundreds of milliseconds or even longer. For

these users, the scheduler can rely on a CSI measurement to remain valid over multiple

communication slots. The mobile users, however, require more frequent CSI updates to

capture the channel variations. Therefore, it is inefficient to schedule the stationary and

mobile users together, especially for a large user population with only a few mobile users.

To resolve this problem, we incorporate mobility awareness into our proposed scheduling

algorithm. Since the mobility only affects the performance of mobile users and does not

affect stationary users during downlink transmission [84], it is possible to enhance the MU-

MIMO performance by separating the stationary and mobile users into different time slots.

6.3.1 High-level operation of proposed scheduling framework

The operational flow of the proposed scheduling framework is shown in Figure 6.2. The

CU tracks CSI over time and uses it to classify the users into stationary and mobile groups.

The number of time slots reserved for the two user groups in each scheduling period, de-

noted by Ts and Tm, are adaptively adjusted based on the fairness criterion and achieved

bandwidth (discussed in Section 6.3.2). The scheduler first calculates an overall schedule

for Ts time slots, including only stationary users. Upon completion of the stationary users’

transmission, the scheduler executes a per-slot scheduling strategy based on fresh CSI of

mobile users, measured for each slot. The detailed scheduling algorithm is elaborated in

Section 6.3.3.
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Figure 6.2: High-level flow chart of the mobility-aware scheduling framework

6.3.2 User mobility classification

To categorize stationary and mobile users, we track the CSI of each user across multiple

measurements and identify the channels of stationary users based on CSI similarity. We

propose to use subspace collinearity as a metric of CSI similarity. Subspace collinarity is

a criterion that reflects the similarity between two matrix subspaces. In general, given two

matrices M1 and M2, their subspace collinearity can be represented as

col(M1,M2) = 1− abs(tr(M1M
†
2 ))

||M1||F ||M2||F

The value of subspace collinearity varies from 0 to 1. A larger collinearity indicates a lower

similarity of the two matrix subspaces.

Let B̃k(t) and B̃k(t−∆t) be the feedback right singular value of the kth user’s channel

at time instants t and t − ∆t. The similarity between consecutive CSI values is estimated

by fs(k, t) = col
(

B̃k(t), B̃k(t−∆t)
)

. For each user, we maintain a moving average of
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the CSI similarity to track the channel variation as follows:

S(k, t) = (1− βk)S(k, t−∆t) + βkfs(k, t) .

If the value of S(k, t) for user k is smaller than a predefined threshold, user k is declared as

a stationary user. Therefore, the stationary and mobile user groups are updated accordingly

after each channel sounding stage.

Let Us and Um be the user sets containing stationary and mobile users, respectively. To

maintain the fairness between the two user groups, the schedule duration portions reserved

for stationary and mobile users should be proportional to their target bandwidth portions

by factoring in their achieved bandwidth, which is given by:

Ts
Tm

=

∑

i∈Us

biexp(1− ui/bi)
∑

i∈Um

biexp(1− ui/bi)
.

where Ts and Tm are the number of time slots to accommodate stationary and mobile users,

respectively, which are adjusted upon the completion of each entire round of communi-

cations based on the achieved bandwidth portion ui = R̄i/
K∑

i=1

R̄i with R̄i representing

the average achieved throughput of the ith user. Without loss of generality, we assume

T = Ts+Tm is the number of time slots within one entire scheduling period. The objective

of the adjustment is to roughly maintain a good fairness between stationary and mobile

users. The fairness among each specific user group will be guaranteed by the proposed

scheduler for each user group.

6.3.3 Calculating a schedule

For MU-MIMO transmission, the performance of the scheduler is largely dependent on

the choice of communication sets and their MIMO weights. For the targeted dense envi-

ronment, there are typically a large number of users and it is, therefore, computationally
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prohibitive to explore all possible user combinations.

To balance the aggregate performance and processing overhead, the proposed sched-

uler works differently for stationary and mobile users. For stationary users, the scheduler

calculates a number of high-performance communication sets and corresponding MIMO

weights intensively and combines them into a schedule that maximizes throughput and sat-

isfies the target fairness among stationary users. Compared to stationary users, mobile users

are much more sensitive to stale CSI. The scheduler for mobile users requires frequent CSI

update to accommodate channel variations. A general idea is to calculate a “good” commu-

nication set for each time slot with updated CSI and run a low-complexity MIMO weight

calculation algorithm.

Scheduling stationary users

Us is the stationary user set to be scheduled over a scheduling period Ts having Ts time

slots. The CSI values of the stationary users are updated and expected to be stable for

the period of Ts. After collecting the CSI for stationary users, the CU first generates a

number of high-performance communication sets and their corresponding MIMO weights

and then schedules the communication sets over the slots in Ts, as shown in Figure 6.2.

With stationary channels, the scheduler for stationary users can fully reap the benefits of

AP cooperation by performing a fairly expensive optimization procedure to produce the

schedule and MIMO weights.

The schedule for the static users can be calculated by the proposed approaches in chap-

ter 5. In particular, we use the two-stage method in Chapter 5 in the simulation, since it has

lower computational complexity for a medium to large size user population. To be specific,

we use an iterative algorithm to generate communication sets. In each iteration, we solve

a weighted sum rate maximization problem. Then, the user weights are updated accord-

ing to the previously generated communication sets. The user weight update procedure

is designed to aid the scheduler in achieving the target fairness criterion. With generated
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Figure 6.3: Flow of operations for AP cooperation with proposed scheduling framework

communication sets, the scheduler calculates the number of time slots assigned to each

communication set that achieves maximum throughput while guaranteeing the target fair-

ness among stationary users, as also proposed in [84].

Stationary users are less sensitive to processing overhead. If processing overhead be-

comes too high in certain scenarios, e.g. if the number of subcarrier groups is large, the CU

can use parallel processing to speed up schedule calculation. In Section 6.4, we demon-

strate that the computation time of the stationary scheduling procedure is small enough to

achieve large throughput gains in practical scenarios.

Scheduling mobile users

Unlike stationary users, mobile users require more frequent CSI feedback to accommo-

date the channel variations caused by environmental changes and/or user mobility. The

scheduling approach for stationary users is no longer suitable for mobile users, since the

performance of mobile users will degrade as the CSI becomes outdated. Thus, mobile users

cannot afford an intensive schedule calculation. Here, we need to develop a more efficient

scheduling approach to improve CSI timeliness and accuracy.

Recall that there are Tm time slots, also referred to as mobile slots, reserved for |Um|

mobile users as discussed in Section III-B. The objective of scheduling mobile users within

Tm mobile slots is to maximize their aggregate performance while meeting the fairness
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requirements. Let bmk = bk
∑

k∈Um
bk

be the normalized target bandwidth portion for mobile

user k. When scheduling mobile time slot t+1, we useRk,t, which is the achieved sum-rate

of user k during the first t slots. We have Rk,t = Rk,t−1 + rk,t. Let µk,t =
Rk,t

∑

k∈Um
Rk,t

be the

achieved bandwidth of mobile user k during the first t mobile slots with µk,0 = 1, ∀k ∈ Um
as the initial value. Since the CSI information for mobile users is updated for each time

slot, the scheduling problem can be solved for each time slot in sequence. Ultimately, we

aim to approach the fairness constraint in problem (6.4) for mobile users, which can be

rewritten as:

Rk,t = bmk
∑

k∈Um

Rk,t, ∀k ∈ Um (6.5)

Assuming the equality constraint is satisfied at time slot t, we have

Rk,t − rk,t = uk,t−1(Rk,t/b
m
k −

∑

k∈Um

rk,t)

=⇒ rk,t = (1− uk,t−1/b
m
k )Rk,t + uk

∑

k∈Um

rk,t

≥ (1− uk,t−1/b
m
k )Rk,t .

Thus, the sum rate maximization can be approached by solving a weighted sum rate maxi-

mization problem for each time slot, i.e., max
∑

k∈Um
wk,tRk,t, wherewk ∝ 1− uk,t−1/b

m
k .

sk indicates that larger weights are assigned to users that are below their target bandwidth

proportions when considering the previous t − 1 time slots. Therefore, we can update the

user weights as follows:

wk,t = max (1− uk,t−1/b
m
k , 0) . (6.6)

Thus, any user that is at or above its desired bandwidth proportion is assigned with zero

weight and is therefore excluded from the current round of transmission. To speed up

the processing overhead of mobile users, a simple and computationally efficient precoding

approach is utilized, namely, block diagonalization (BD). The optimization problem for
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time slot t can be formulated as:

max
∑

k∈Um

wk,t log2

∣
∣
∣I + R−1

k HkFkF
†
kH

†
k

∣
∣
∣

s.t.
∑

k∈Um

Tr(ΓmFkF
†
k ) ≤ Pm,m = 1, . . . ,M

HlFk = 0, l, k ∈ Um, l 6= k .

(6.7)

The diagonal matrix Γm ∈ R
Nt×Nt is introduced for each AP to select the partition of F k

applied at the mth AP and Pm is the maximum transmit power of the mth AP. Thus, Γm

contains ones on the diagonal elements corresponding to the antennas of the mth AP and

zeros elsewhere.

The maximum number of users in one slot is ⌈Nt/Nr⌉. To reduce computational over-

head, we select the ⌈Nt/Nr⌉ users with highest weights for each time slot. The BD pre-

coder can then be designed using QR decomposition with water-filling power loading, as

analyzed in Chapter 3.

6.4 Simulation Results

We conduct simulations of our proposed scheduling algorithm using the WINNER II chan-

nel model for indoor office environments [24]. We uniformly distribute M APs and K

users in a circular region with a radius of 50 meters. We set each AP to have 4 transmit

antennas and each client to have 2 receive antennas. The noise power is -85 dBm and the

transmit power of each AP is 23 dBm. Unless otherwise specified, we consider downlink

transmission with M = 3 cooperative APs.

For comparison, we also consider the following schedulers:

• Per-slot scheduler: This is a scheduling algorithm that generates a communication

set by solving a WSRM problem for each time slot. To meet the fairness requirement,

the user weights are updated using (6.6) after the transmission of each time slot.

The CSI values are assumed to be updated for each time slot τslot = 5 ms. The
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performance of the basic per-slot scheduler is computed without accounting for the

overhead of CSI feedback and processing overhead. This then forms an upper bound

on the performance of other schedulers since it optimizes for each time slot and incurs

zero overhead. The per-slot scheduler that accounts for CSI feedback and processing

overhead is also evaluated and that algorithm is denoted by Per-slot*.

• One-shot scheduler: This is a scheduling algorithm proposed in [84] for a com-

pletely static environment. In this paper, we implement this algorithm by treating

all users as if they were stationary. Therefore, the channel variation of mobile users

within one entire scheduling period will cause performance loss for this algorithm.

• Conventional TDMA: This is a basic time-fair TDMA scheduling algorithm, where

the MIMO links are scheduled sequentially in a round robin manner. In other words,

there is only one user scheduled in each time slot cooperatively served by M APs.

The SU-MIMO transmission within each time slot can achieve the interference-free

data rates using the optimal SVD MIMO weights.

To evaluate the achieved fairness, we use the fairness index proposed in [80],

FI(u, b) = exp

(

−
K∑

k=1

|ln(uk/bk)| /K
)

, (6.8)

where uk is the fraction of bandwidth allocated to the kth user. The fairness index given by

(6.8) takes values in [0, 1], with 1 representing perfect fairness among users.

6.4.1 Evaluation of CSI feedback overhead

We first evaluate the CSI feedback overhead of the proposed scheme by comparing with the

conventional scheme without user classification. The percentage of mobile users is denoted

by pm. Figure 6.4 shows the CSI collection time versus the number of clients within for a

period of 1 second. Without user classification, the CSI update period tfd is identical for
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Figure 6.4: CSI collection time versus the number of clients within T = 1 s.

all users. To guarantee the CSI accuracy of mobile users, the updated period is set to every

10 msec. In this case, the CSI collection time increases rapidly as the number of users

increases. For example, it takes more than 0.3 seconds for CSI feedback for 50 users or

more, which can overwhelm the data transmission time. The CSI feedback overhead will

further scale up with the increase of subcarriers/subbands. By taking advantage of user

classification, we can significantly lower the CSI update frequency for stationary users,

since their channels can be stable for up to several seconds. In Figure 6.4, the CSI update

period for stationary users is set to 1 second while for mobile users it remains at 10 msec. In

this case, we can largely reduce the CSI feedback overhead, while guaranteeing the same

CSI accuracy for the mobile users as the conventional scheme. Therefore, the mobility-

aware scheme is a promising approach in terms of reducing CSI feedback for the scenarios

with limited-mobility. For example, with 30% mobile users, the CSI collection requires

about 0.03 seconds within a period of 1 second for 60 users.

6.4.2 Evaluation of user classification

In Figure 6.5, the cumulative distributions of the CSI similarity for stationary and mobile

users are plotted using our subspace collinearity metric. The consecutive CSI samples are

collected every 1 second. Clearly, the subspace collinearity metric is a reliable indicator

to distinguish stationary and mobile users. For stationary users, the CSI similarity is very

close to zero, while the mobile users generate much higher CSI similarity values. Based on
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these results, we set the similarity threshold Thr = 0.05 so that any Thr > 0.05 causes a

user to be classified as mobile.

6.4.3 Evaluation of throughput and fairness

In Figure 6.6, we evaluate the throughput and fairness performances of the different schedul-

ing algorithms versus the mobile user percentage. The average speed of mobile users is set

to 1 m/s. The per-slot scheduler provides highest throughput and good fairness, because

it neglects the CSI feedback and processing overheads. However, in practice, the inten-

sive CSI feedback for the per-slot update would significantly reduce the data transmission

time and lower the achievable throughput. Moreover, the CSI delay caused by the per-slot

processing overhead for a large user population (e.g., K = 45) would also introduce large

fairness loss, especially for mobile users.

Both CSI feedback and processing overhead are accounted for with per-slot*, as well

as with our proposed mobility-aware scheduling algorithm. With user classification, we

are able to reduce the CSI overhead for stationary users, while reducing the processing

overhead for the mobile users. Besides, the adaptive adjustment of the time slot assign-

ment produces a good fairness among stationary and mobile users. Therefore, our pro-

posed scheduling scheme achieves 25%-35% higher throughput than that of per-slot*. The

one-shot scheduler cannot meet the fairness requirement because the CSI for mobile users

become outdated for data transmission. The conventional TDMA schedules a single user
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Figure 6.6: Throughout and fairness versus mobile user percentage for K = 45.

for each time slot and guarantees perfect fairness among all users but it fails to exploit the

multi-user MIMO gain promised by AP cooperation. Thus, it can only achieve about 60%

of the throughput of our proposed scheme.

In Figure 6.7, the achieved throughput and fairness performance is plotted as a function

of the number of users. The mobile user percentage is fixed to 20% for all cases. The

performance provided by per-slot scheduler without considering the CSI and processing

overhead is deemed as the upper bound. With the increase of user numbers, the achievable

throughput and fairness of per-slot* scheduler experience sharp decreases. By separating

stationary and mobile users and highly optimizing stationary users, we are able to im-

prove throughput and maintain good fairness. The performance of our algorithm actually

increases with a large number of users getting to within about 20% of the upper bound

throughput and achieving fairness of greater than 0.9.
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6.5 Chapter Summary

In this chapter, we presented a mobility-aware MIMO link scheduling scheme for a cluster

of cooperative APs within a dense wireless network. The proposed approach tracks the

user channel variation and separates stationary and mobile users into different time slots.

Based on the characteristics of stationary and mobile users, different scheduling strategies

are applied. On the one hand, for stationary users with slow-varying channels, we combine

a set of pre-calculated high-performance communication sets into a high-throughput and

fair schedule with sparse CSI update. On the other hand, the performance of mobile users

are improved by utilizing timely updated CSI to produce a good communication set in an

efficient way for each time slot. In the presence of limited mobility, our approach exhibits

strong performance gains compared to conventional approaches that do not separate mobile

and stationary users.
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CHAPTER 7

CONCLUSIONS

7.1 Conclusions

With rapid proliferation of both access point and wireless devices, the wireless performance

issues have been emerging for several years with respect to overall performance. However,

simplily adding more APs does not scale well with the network size due to the sharing of

limited unlicensed spectrum bands. AP cooperation together with advanced MIMO pro-

cessing techniques are deemed as the key to break the performance bottleneck of wireless

networks within unlicensed band. Different from traditional WLANs, a number of APs op-

erating on the same frequency spectrum forms a cluster and cooperatively serve the clients

by sharing the lower-layer parameters.

In this thesis, we aimed to establish the foundations for the realization of the WLANs

with clustered coordinated-APs as we envisioned to improve the both individual and overall

performance in dense environments. The contributions in each chapter are summarized as

follows:

• In chapter 3, we proposed a novel user selection algorithm for block diagonalization.

The proposed approach can store multiple high-performance user groups in a binary

tree, which reduces the probability of dropping good user groups compared to con-

ventional greedy methods. Moreover, our approach allows flexible adjustments of the

number of stored user groups, so that permits tradeoffs between the computational

cost and sum-rate performance. Additionally, our approach can further reduce the

complexity for partially varying environments by reusing the pre-calculated infor-

mation and performing fast update. The trade-off combined with the lower complex-

ity operations performed by our algorithm provide significantly enhanced aggregate
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performance and running time, as compared to existing approaches.

• In chapter 4, we proposed a combined user selection and MIMO weights optimiza-

tion approach for solving a general weighted sum rate maximization (WSRM) prob-

lem. An novel pre-processing step that incorporates multiple decision factors is first

developed to eliminate some undesired users and reduce the size of the input to the

WSRM problem. Then, a modified WSRM algorithm is performed to determine the

MIMO weights and further refine the user selection. The proposed approach was

shown to outperform previous approaches while having significantly lower running

time and better scalability for a moderate to large number of users.

• In chapter 5, we considered a specific problem for user scheduling to achieve high

aggregate performance while maintaining fairness, which can operate across a small

group of APs and employ multiuser MIMO. We first provide the mathematical for-

mulation of a maximum throughput scheduling problem with fairness constraints in

the multi-AP MIMO setting. We proposed alternative scheduling algorithms, that

are alternating optimization method and two-stage method, to tackle the formulated

problem. The alternating optimization method jointly optimizes the MIMO weights

and user selection over one entire scheduling period. The two-stage method sepa-

rates the optimization into two phases: (1) generating a number of high-performance

multiuser communication sets and (2) calculating an overall schedule to determine

the time slot assignment. The alternating optimization algorithm produces signifi-

cantly higher aggregate throughput with a running time that is practical for a small

user population, while the two-stage algorithm produces close aggregate throughput

while having significantly lower running time.

• In chapter 6, we proposed a mobility-aware MIMO link scheduling scheme for a

cluster of cooperative APs. The proposed scheme performs a user differentiation

procedure to separate stationary and mobile users into different time slots and ap-
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plies different scheduling strategies. For stationary users with static or slow-varying

channels, a set of pre-calculated high-performance communication sets are incorpo-

rated into a high-throughput and fair schedule with sparse CSI update. For mobile

users, the performance are improved by utilizing timely updated CSI to produce a

good communication set in an efficient way for each time slot. In the presence of

limited mobility, our approach outperforms conventional approaches without using

the mobilty hints, due to a better balance of protocol overhead and aggregate perfor-

mance.

The theoretical analysis and simulation results provided in this thesis lay out the foun-

dation for the realization of the high-performance WLAN networks with clustered cooper-

ative APs.

7.2 Future Work

Throughout this thesis, we focus on optimizing the performance of a single cluster with the

aid of cooperation between a small number of APs. While the single cluster with a limited

number of cooperative APs can be built on our prior research, there will be unaccounted-for

interference from neighboring clusters that can drive down the per-cluster performance. In

our future research, we will study the approaches that can scale our proposed per-cluster

solutions to operate across a large enterprise network. Simply applying the solutions be-

yond a small number of cooperative APs is challenging due to the overheads associated

with the channel measurements, CSI exchange and schedule computation. Therefore, we

will investigate hierarchical cooperation approaches that can scale our proposed solution to

a large number of APs.

Since the inter-cluster interference mainly affects the performance of edge nodes, which

are near the boundaries of two adjacent clusters, we aim to improve the performance of

these edge nodes and treat the interference to the far-away nodes as noise. We will in-

vestigate loose coordination schemes across neighboring clusters. First, we will study the
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uplink/downlink transmission alignment across neighboring clusters to avoid the strong

client-to-client interference between two nearby edge nodes. The basic idea is to ensure

the alignment of downlink transmissions of the interfering clusters. Second, to further im-

prove the performance of edge nodes, we will allow the exchange of the schedule between

neighboring clusters. These clusters can negotiate and adjust their schedule to avoid the

simultaneous transmission of highly interfering communication sets. Finally, we will in-

vestigate the methods for partial recomputation of the schedule by taking into account the

inter-cluster interference on edge nodes.

7.3 Publications

As part of the research conducted in this dissertation, we have written several documents

that are either published, submitted, or in progress as follows:

• M. Ge and D. M. Blough, “High Throughput and Fair Scheduling for Multi-AP Mul-

tiuser MIMO in Dense Wireless Networks,” submitted to IEEE Transactions on Net-

working, 2018.

• M. Ge and D. M. Blough, “Mobility-aware multi-user MIMO link scheduling for

AP cooperation,” accepted by IEEE International Conference on Communications

(ICC), 2018.

• M. Ge and D. M. Blough,“PBUS: Efficient User Selection for Block Diagonaliza-

tion in Dense Wireless Networks,” in Proceeding of IEEE Global Communications

Conference (Globecom), 2017.

• M. Ge and D. M. Blough, “High-Throughput and Fair Scheduling for Access Point

Cooperation in Dense Wireless Networks,” in Proceeding of IEEE Wireless Commu-

nications and Networking Conference (WCNC), 2017.

• M. Ge, J. R. Barry, and D. M. Blough, “Combined User Selection and MIMO Weight
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Calculation for AP Cooperation in Dense Wireless Networks,” in Proceeding of IEEE

Wireless Communications and Networking Conference (WCNC), 2017.
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