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Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion

systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory.

The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case

in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically

gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by

using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.
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I. INTRODUCTION

Synchronization of rhythmic systems is widely observed in

the real world, and it has been studied extensively in various

areas of science and engineering [1–7]. In biological systems,

synchronization often plays significant functional roles, such

as the generation of heartbeats, rhythmic gaits, and circadian

rhythms. In some engineering systems, synchronization is a

precondition for their functionality, where power grids provide

a well-known example.

Recently, synchronization between nonconventional self-

oscillatory systems has attracted considerable attention, e.g.,

dynamical systems with time-delayed feedback [8,9], spatially

extended reaction-diffusion systems [10–12], and fluid sys-

tems [13–15]. In analyzing the synchronization properties of

rhythmic systems described as weakly perturbed limit-cycle

oscillators, the phase reduction theory has been used as a

standard method for clarifying their mechanisms [1–6,16–18].

Recent developments in the phase reduction theory [8–10,13]

have shown that, even if the state space of the rhythmic system

is infinite-dimensional, it can still exhibit synchronization in a

similar way to low-dimensional oscillators as long as it exhibits

stable limit-cycle oscillation.

In this study, we consider synchronization of reaction-

diffusion systems exhibiting rhythmic spatiotemporal patterns.

Reaction-diffusion systems have played important roles in

modeling a variety of spatiotemporal patterns that arise

in chemical and biological systems [19–25]. Among them,

rhythmic spatiotemporal patterns such as oscillating spots,

target waves, and rotating spirals can be regarded as stable

limit-cycle oscillations of reaction-diffusion systems. Syn-

chronization between rhythmic spatiotemporal patterns has

been realized experimentally using coupled electrochemical
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systems exhibiting reaction waves of H2O2 reduction on Pt

ring electrodes, where two waves are coupled via the common

chemical solution [11], and coupled photosensitive Belousov-

Zhabotinsky systems exhibiting spiral patterns, where the two

patterns are coupled via video cameras and projectors [12] (see

also [19,26–30]). Synchronization of rhythmic fluid flows has

also been studied, and its possible importance with regard to

the global climate has been argued [14,15].

In our recent work [10], we generalized the conventional

phase reduction theory for finite-dimensional limit-cycle oscil-

lators to limit-cycle oscillations of reaction-diffusion systems

with infinite-dimensional state space. Using the theory, we

derived the phase sensitivity function, which characterizes the

linear phase response of the rhythmic pattern to weak perturba-

tions, and we analyzed mutual synchronization between a pair

of reaction-diffusion systems coupled by linear diffusive inter-

action. We also developed similar phase reduction theories for

the collective oscillations in globally coupled noisy oscillators

[31] and for oscillatory thermal convection in a Hele-Shaw cell

[13]. Moreover, we analyzed synchronization between nonin-

teracting convection cells exhibiting oscillatory thermal con-

vection caused by common noise, and we derived the optimal

input pattern for stable noise-induced synchronization [32].
In this study, we consider the case in which a pair

of reaction-diffusion systems, both of which are exhibiting
rhythmic spatiotemporal patterns, are mutually coupled via
weak symmetric interaction. In the case of the simplest
linear diffusive interaction, where every point of the system
is coupled to a corresponding point of the other system,
we have shown that the two systems can undergo mutual
synchronization [10]. However, the phase sensitivity function
of the rhythmic pattern is often strongly localized in space,
and introducing interaction at every point in the system
as in Ref. [10] would not be generally efficient. In this
study, we aim to clarify the theoretical limit of efficiency
in synchronizing rhythmic patterns via mutual coupling by
seeking optimal interaction schemes that realize stable in-
phase synchronization between two reaction-diffusion systems
in the framework of the phase reduction theory.
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Regarding the optimization of synchronization, optimal

input signals that efficiently entrain a limit-cycle oscillator de-

scribed by ordinary differential equations have been obtained

for various situations [33–42]. Also, in our preceding article,

we derived optimal cross-coupling matrices that maximize

the linear stability of the synchronized states in a pair

of diffusively coupled limit-cycle oscillators described by

ordinary differential equations [43]. In this paper, we further

generalize the analysis to a pair of coupled reaction-diffusion

systems exhibiting rhythmic patterns, and we try to derive

the optimal interaction function. We first restrict ourselves

to a practical situation in which the interaction between the

two systems is linear, and we derive the optimal filtering

function for stable synchronization. We then derive the optimal

nonlinear interaction function between the systems to clarify

the theoretical limit to the improvement of stability. The results

are illustrated by using rhythmic spatiotemporal patterns

in FitzHugh-Nagumo reaction-diffusion systems, that is, a

traveling pulse and an oscillating spot in one dimension, and

a rotating spiral in two dimensions.

II. THEORY

A. A pair of mutually coupled reaction-diffusion systems

We consider a pair of mutually coupled m-component

reaction-diffusion systems in d-dimensional space exhibiting

stable limit-cycle oscillations (see the figures for typical

rhythmic spatiotemporal patterns of the FitzHugh-Nagumo

reaction-diffusion systems), described by

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2

X1(r,t)

+ ǫ

∫

V

d r
′Â(r,r ′)X2(r

′,t),

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2

X2(r,t)

+ ǫ

∫

V

d r
′Â(r,r ′)X1(r

′,t), (1)

in some spatial domain V ⊂ R
d . Here, r ∈ R

d is the spatial

location, t ∈ R is the time, X1,2 : R
d × R → R

m are the

spatial patterns of the systems, i.e., the system states, F :

R
m × R

d → R
m represents the dynamics of the system,

D̂ ∈ R
m×m is a matrix of diffusion constants, and ∇2 is the

Laplacian operator. For simplicity, we consider two identical

systems whose dynamics are described by the same function

F and diffusion matrix D̂, and we also assume that they

are symmetrically coupled. The dynamics F can depend on

the location r , e.g., the excitability of the system can be

different from place to place. The last term on the right-hand

side of each equation represents mutual linear interaction

between the two systems, where each system is coupled

to the other system via an m × m matrix of spatial linear

filters Â(r,r ′) : R
d × R

d → R
m×m. The parameter ǫ � 0 is

the interaction intensity, which is assumed to be small.

As a benchmark, we also consider the following systems

with simple, direct mutual interaction:

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2

X1(r,t) + ǫX2(r,t),

(2)
∂

∂t
X2(r,t) = F(X2,r) + D̂∇2

X2(r,t) + ǫX1(r,t),

where every point in the system is directly coupled to the

corresponding point of the other system without filtering. The

definitions of the variables and parameters are the same as

in Eq. (1). Both interaction schemes, Eqs. (1) and (2), can

exhibit in-phase synchronization between the systems, and we

compare the stability of the synchronized states between them.

As another typical interaction scheme, we may also con-

sider diffusive interaction between the two reaction-diffusion

systems given by

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2

X1(r,t)

+ ǫ

∫

V

d r
′Â(r,r ′)[X2(r

′,t) − X1(r
′,t)],

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2

X2(r,t)

+ ǫ

∫

V

d r
′Â(r,r ′)[X1(r

′,t) − X2(r
′,t)]. (3)

It is clear that this interaction scheme also allows in-phase

synchronization. For sufficiently small ǫ, which is assumed

throughout this study, we can show that the stability of the

in-phase synchronized state with this diffusive interaction

scheme is approximately equal [up to O(ǫ)] to that for the

interaction scheme given by Eq. (1). Similarly, in our previous

paper [10], we analyzed the following simple case with direct

diffusive interaction, where every point in the system is

diffusively coupled to the corresponding point in the other

system as

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2

X1(r,t)

+ ǫ[X2(r,t) − X1(r,t)],

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2

X2(r,t)

+ ǫ[X1(r,t) − X2(r,t)], (4)

and we showed that the two systems undergo mutual synchro-

nization by using the phase reduction theory. Linear stability

of the in-phase synchronized state with this interaction scheme

is also approximately the same as that for Eq. (2) when ǫ is

sufficiently small.

In this study, we focus on the interaction schemes given

by Eqs. (1) and (2), and we analyze their synchronization

properties. We consider a general nonlocal interaction given

by Eq. (1), and we try to optimize the linear filter Â(r,r ′) so that

the two systems exhibit more stable in-phase synchronization

than the case with the simple interaction given by Eq. (2). In

the following, we refer to the interaction scheme in Eq. (1) as

nonlocal, while that in Eq. (2) is direct.

012224-2
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B. Phase reduction

In Ref. [10], we generalized the phase reduction theory

for finite-dimensional limit-cycle oscillators [2] to reaction-

diffusion systems exhibiting stable rhythmic patterns. Using

the theory, we can systematically approximate the dynamics

of two weakly coupled reaction-diffusion systems by simple

two-dimensional coupled phase equations, and we can analyze

their synchronization properties.

Suppose that a single reaction-diffusion system (without

interaction) exhibits a stable rhythmic pattern, that is, a stable

limit-cycle solution X0(r,t + T ) = X0(r,t) of period T and

frequency ω = 2π/T . We can introduce a phase variable θ ∈

[0,2π ] of the rhythmic pattern around the limit-cycle solution

in the state space of the system that always increases with

a constant frequency ω in the absence of perturbation (i.e.,

the asymptotic phase [1,2,5,6,16–18]), and we represent the

limit-cycle solution as a function of phase θ , rather than time

t , as X0(r,θ ) (0 � θ � 2π ).

In the phase reduction theory, the phase sensitivity function

Z(r,θ ) : R
d × [0,2π ] → R

m plays an important role, i.e., it

characterizes the linear phase response of the system to a

weak perturbation that is applied when the system state is at

X0(r,θ ). It is given by a 2π -periodic solution (an eigenfunction

associated with the zero eigenvalue) to the adjoint equation

∂

∂θ
Z(r,θ ) = −DF(X0(r,θ ),r)†Z(r,θ ) − D̂†∇2

Z(r,θ ) (5)

with appropriate boundary conditions, where DF is the Jacobi

matrix of F(X,r) at X = X0(r,θ ) and † denotes matrix

transpose, and it satisfies a normalization condition

∫

V

d r Z(r,θ ) · U(r,θ ) = 1 (6)

for 0 � θ � 2π . Here, we defined the tangent field U(r,θ )

of X0(r,θ ) along the limit-cycle solution as U(r,θ ) =

∂ X0(r,θ )/∂θ .

We consider weakly coupled reaction-diffusion systems

given by Eq. (1) or Eq. (2), and we assume that the rhythmic

patterns are only slightly perturbed and persist even when weak

mutual interaction between the two systems is introduced.

We can then approximately describe the system states using

only scalar phase variables θ1,2 ∈ [0,2π ] as X1,2(r,t) =

X0(r,θ1,2(t)), and we derive approximate phase equations for

θ1,2(t) from Eq. (1) or Eq. (2) as

θ̇1(t) = ω + ǫŴ(θ1 − θ2),
(7)

θ̇2(t) = ω + ǫŴ(θ2 − θ1),

where the overdot represents d/dt , and the 2π -periodic

function Ŵ(φ) : [0,2π ] → R is called the phase-coupling

function. In the case of the nonlocal interaction, Eq. (1), the

phase-coupling function is given by

Ŵ(φ) =
1

2π

∫ 2π

0

dψ

∫

V

d r

×

∫

V

d r
′
Z(r,ψ + φ) · Â(r,r ′)X0(r

′,ψ), (8)

and in the case of the direct interaction, Eq. (2), the phase-

coupling function is simply given by

Ŵ(φ) =
1

2π

∫ 2π

0

dψ

∫

V

d r Z(r,ψ + φ) · X0(r,ψ). (9)

Synchronization between the two systems can be analyzed

in the same way as for finite-dimensional coupled oscillators

[2]. From Eq. (7), we can derive the dynamics of the phase

difference φ = θ1 − θ2, which we restrict in the range [−π,π ],

as

φ̇(t) = ǫŴa(φ), (10)

where

Ŵa(φ) = Ŵ(φ) − Ŵ(−φ) (11)

is the antisymmetric part of the phase-coupling function

Ŵ(φ). Fixed points of this equation satisfying Ŵa(φ∗) = 0

correspond to the phase differences where the two systems

exhibit synchronization. The stability of a fixed point φ = φ∗

is characterized by the slope of Ŵa(φ∗).

Because the function Ŵa(φ) vanishes at φ = 0 and φ = ±π

by definition, Eq. (10) has fixed points at φ∗ = 0 and φ∗ = ±π .

We focus on the in-phase synchronized state, φ∗ = 0, whose

stability is characterized by

Ŵ′
a(0) =

d

dφ
Ŵa(φ)

∣

∣

∣

∣

φ=0

. (12)

In the case of the nonlocal interaction, Eq. (1), this value

depends on Â(r,r ′). For the direct interaction, Eq. (2), this

value can be explicitly calculated as

Ŵ′
a(0) = 2Ŵ′(0)

= 2 ·
1

2π

∫ 2π

0

dψ

∫

V

d r
∂ Z(r,ψ)

∂ψ
· X0(r,ψ)

= −2 ·
1

2π

∫ 2π

0

dψ

∫

V

d r Z(r,ψ) · U(r,ψ)

= −2, (13)

where we performed partial integration, used the 2π -

periodicity of Z and X0 to eliminate the surface terms, and

we used the normalization condition Eq. (6) for Z. In this

study, we try to make Ŵ′
a(0) as negative as possible in order to

improve the stability of the in-phase synchronization under a

constraint for the norm of Â(r,r ′).

C. Optimal linear filter for stable synchronization

Under the framework of the phase reduction approximation

for sufficiently small ǫ, we seek the optimal filter function

Â(r,r ′) that maximizes the linear stability −Ŵ′
a(0) of the in-

phase synchronized state. As a constraint, we fix the spatial

average of the Frobenius norm (or the Hilbert-Schmidt norm)
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of the linear filter A(r,r ′), i.e.,
∫

V

d r

∫

V

d r
′ ‖Â(r,r ′)‖2

F = P, (14)

where P > 0 is a constant and

‖Â(r,r ′)‖2
F =

m
∑

i=1

m
∑

j=1

Aij (r,r ′)2. (15)

Toward that end, we consider the action

S{Â,λ} = −Ŵ′
a(0)

− λ

⎛

⎝

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Aij (r,r ′)2 − P

⎞

⎠,

(16)

where λ is the Lagrange multiplier, and we find Â and λ, which

give the extremum of S.

From Eq. (8), the slope Ŵ′(φ) = dŴ(φ)/dφ of the phase-

coupling function is given by

Ŵ′(φ) =
1

2π

∫ 2π

0

dψ

∫

V

d r

×

∫

V

d r
′ ∂ Z(r,ψ + φ)

∂ψ
· Â(r,r ′)X0(r

′,ψ). (17)

Thus, the slope Ŵ′
a(0) of the antisymmetric part Ŵa(φ) =

Ŵ(φ) − Ŵ(−φ) at φ = 0 is calculated as

Ŵ′
a(0) = 2Ŵ′(0) = 2 ·

1

2π

∫ 2π

0

dψ

∫

V

d r

×

∫

V

d r
′ ∂ Z(r,ψ)

∂ψ
· Â(r,r ′)X0(r

′,ψ)

= −2 ·
1

2π

∫ 2π

0

dψ

∫

V

d r

×

∫

V

d r
′
Z(r,ψ) · Â(r,r ′)U(r

′,ψ). (18)

Denoting the vector components of Z, X0, and U = ∂ X0/∂ψ

as Z1, . . . ,Zm, X1, . . . ,Xm, and U1, . . . ,Um, respectively, and

the matrix components of Â as {Aij } (i,j = 1,2, . . . ,m), Ŵ′
a(0)

can be expressed as

Ŵ′
a(0) = −2 ·

1

2π

∫ 2π

0

dψ

∫

V

d r

×

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Zi(r,ψ)Aij (r,r ′)Uj (r
′,ψ)

= −2

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Aij (r,r ′)Wij (r,r ′). (19)

Here, we have defined a correlation matrix Ŵ (r,r ′) whose

components are given by

Wij (r,r ′) =
1

2π

∫ 2π

0

dψ Zi(r,ψ)Uj (r
′,ψ), (20)

which characterizes the spatial correlation between Z and U

averaged over one period of oscillation.

The action is now given by

S{Â,λ} = 2

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Aij (r,r ′)Wij (r,r ′)

− λ

⎛

⎝

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Aij (r,r ′)2 − P

⎞

⎠, (21)

and by taking variations with respect to Aij (r,r ′), we obtain

Wij (r,r ′) = λAij (r,r ′), (22)

so the optimal linear filter is given by

Â(r,r ′) =
1

λ
Ŵ (r,r ′). (23)

Differentiating S with respect to λ simply gives the constraint

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Aij (r,r ′)2 = P. (24)

This equation gives the Lagrange multiplier λ as

λ =

√

√

√

√

1

P

∫

V

d r

∫

V

d r ′

m
∑

i=1

m
∑

j=1

Wij (r,r ′)2, (25)

where we have chosen the plus sign so that S takes the

extremum [or Ŵ′(0) becomes negative] at the optimal Â. The

largest negative slope of Ŵ′
a(0) is given by

Ŵ′
a(0) = −

2

λ

∫

V

d r

∫

V

d r
′

m
∑

i=1

m
∑

j=1

Wij (r,r ′)2. (26)

This value gives the largest stability of the in-phase synchro-

nized state for the nonlocal interaction.

Note that spatial linear filtering of the field X by Â in

Eq. (1) is a fundamental method of image processing and can

be easily performed. It is also notable that the expression for the

correlation matrix, Eq. (20), consists of only two terms, U and

Z. These are the most fundamental quantities of limit-cycling

systems, that is, U is a tangent field to the limit-cycle orbit

and Z is a phase sensitivity function of a limit-cycle orbit,

which are adjoint to each other. These quantities always arise

in the phase reduction analysis of coupled oscillators, and the

expression of Eq. (20) is physically natural.

D. Optimal nonlinear interaction

Theoretically, we can consider a more general case in which

the two systems are coupled via a nonlinear functional as

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2

X1(r,t) + ǫ H{X2(·,t),r},

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2

X2(r,t) + ǫ H{X1(·,t),r},

(27)

where H : C × R
d → R

m (C represents the set of spatial

patterns) is a functional of the spatial pattern. The phase-

coupling function Ŵ(φ) : [0,2π ] → R in this case can be
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calculated as

Ŵ(φ) =
1

2π

∫ 2π

0

dψ

∫

V

d r Z(r,φ + ψ) · H(r,ψ), (28)

where H(r,ψ) = H{X0(·,ψ),r}. Note that we have replaced

the functional H{X0(·,ψ),r} of X0(r,ψ) by the function

H(r,ψ) of ψ here, because the function X0(r,ψ) is solely

determined by phase ψ in the framework of the phase

reduction. We refer to H(r,ψ) as the interaction function.

We try to make Ŵ′
a(0) as negative as possible under the

constraint

1

2π

∫ 2π

0

dψ

∫

V

d r ‖H(r,ψ)‖2 = Q, (29)

that is, we fix the squared mean of H over the space and all

possible combinations of the phase variables at some constant

Q > 0. This amounts to fixing the average “energy” of the

mutual interaction between the two systems. We consider the

following action functional of H and a Lagrange multiplier λ:

S{H,λ} = −Ŵ′
a(0)

− λ

(

1

2π

∫ 2π

0

dψ

∫

V

d r ‖H(r,ψ)‖2 − Q

)

, (30)

where Ŵ′
a(0) in the first term can be represented as

Ŵ′
a(0) = 2Ŵ′(0) = 2 ·

1

2π

∫ 2π

0

dψ

×

∫

V

d r

(

∂

∂ψ
Z(r,ψ)

)

· H(r,ψ). (31)

By taking variations of S{H,λ} with respect to H , we obtain

a Euler-Lagrange equation

−
∂

∂ψ
Z(r,ψ) − λH(r,ψ) = 0, (32)

which yields

H(r,ψ) = −
1

λ

∂

∂ψ
Z(r,ψ). (33)

The Lagrange multiplier λ is given by

λ =

√

1

Q

1

2π

∫ 2π

0

dψ

∫

V

d r

∥

∥

∥

∥

∂

∂ψ
Z(r,ψ)

∥

∥

∥

∥

2

. (34)

Note that the plus sign, which gives the extremum of S{H,λ},

has been chosen here. The largest negative slope of the

antisymmetric part of the phase-coupling function at φ = 0

is given by

Ŵ′
a(0) = −

2

λ

1

2π

∫ 2π

0

dψ

∫

V

d r

∥

∥

∥

∥

∂

∂ψ
Z(r,ψ)

∥

∥

∥

∥

2

, (35)

which yields the largest possible stability of the in-phase

synchronized state for the general nonlinear interaction of

Eq. (27).

Thus, H(r,ψ) ∝ −∂ Z(r,ψ)/∂ψ is the optimal interaction

function in the nonlinear case. That is, the optimal nonlinear

interaction between the two systems is realized by (i) measur-

ing the phase ψ of the other system, and (ii) driving the system

using the negative derivative of the phase sensitivity function

with respect to phase ψ . This result is consistent with that of

Zlotnik et al. [37] for the optimal periodic input signal that

maximizes the linear stability of the entrainment of ordinary

limit-cycle oscillators.

In practice, however, online continuous-time estimation of

the instantaneous phase value ψ from an observed rhythmic

pattern is generally not straightforward (note that we need to

estimate the correct asymptotic phase of a given pattern). For

low-dimensional oscillators, we could construct a mapping

from the oscillator states to phase values beforehand and use

it to estimate the instantaneous phase value of the observed

oscillator state in real time. However, construction of such

a mapping from high-dimensional data of spatial patterns to

phase values is generally a nontrivial, demanding task. Thus,

the optimal nonlinear interaction may not be easy to realize ex-

perimentally, in contrast to the nonlocal interaction, which can

easily be implemented once the optimal linear filter Â is given.

III. NUMERICAL SIMULATIONS

A. FitzHugh-Nagumo model

We now illustrate the theoretical results with numerical

examples. As the reaction-diffusion system, we use the

FitzHugh-Nagumo (FHN) system described by two field

variables, X = (Xu,Xv) = (u,v), which obey

∂

∂t
u(r,t) = u(u − α)(1 − u) − v + Du∇

2u,

(36)
∂

∂t
v(r,t) = τ−1(u − γ v) + Dv∇

2v.

This system can exhibit various rhythmic spatiotemporal

patterns, such as traveling pulses, oscillating spots, target

waves, and rotating spirals. Here, as typical examples, we

consider a traveling pulse (on a ring) and an oscillating

spot in one-dimensional systems, and a rotating spiral in

two-dimensional systems. The setup of simulations is basically

the same as in Ref. [10], but some of the parameter values and

system sizes are modified.

We compare the results for the nonlocal interaction [Eq. (1)

with the optimal linear filter Â], the direct interaction [Eq. (2)],

and the optimal nonlinear interaction [Eq. (27) with the optimal

function H]. To make a fair comparison between the different

interaction schemes, we fix the squared mean of the interaction

term over the spatial domain and over the phase to a constant,

i.e., we calculate the quantity

I =
1

2π

∫ 2π

0

dψ

∫

V

d r ‖X0(r,ψ)‖2 (37)

for the direct interaction and appropriately normalize the

nonlocal interaction,

G(r,θ ) =

∫

V

d r
′ Â(r,r ′)X0(r

′,θ )

=
1

λ

∫

V

d r
′ Ŵ (r,r ′)X0(r

′,θ ), (38)

and the nonlinear interaction,

H(r,θ ) = −
1

λ

∂

∂θ
Z(r,θ ), (39)
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FIG. 1. Traveling-pulse solution of the FHN model. Snapshots

of (a) X0(x,θ = 0) = (Xu,Xv), (b) U(x,θ = 0) = (Uu,Uv), and (c)

Z(x,θ = 0) = (Zu,Zv). Both u and v components are plotted in each

figure. Some of the curves are enlarged for visibility.

so that

1

2π

∫ 2π

0

dψ

∫

V

d r ‖G(r,ψ)‖2 = I (40)

and

1

2π

∫ 2π

0

dψ

∫

V

d r ‖H(r,ψ)‖2 = I (41)

are satisfied. That is, we fix the average “energy” of the

interaction functions between the two systems over one period

of oscillation.

For each pattern, the limit-cycle solution, phase sensitivity

function, and antisymmetric part of the phase-coupling func-

tions for the direct, optimal nonlocal, and optimal nonlinear

interactions are shown. Direct numerical simulations of the

synchronization process of the reaction-diffusion systems are

also shown for the direct and optimal nonlocal interactions (see

the Appendix for numerical computation of the optimal nonlo-

cal interaction). Optimal nonlinear interaction is not simulated

because it requires the instantaneous phase values of the spatial

patterns, thus it is not easy to realize. We use the synchroniza-

tion error, E =

√

∫

V
d r ‖X1(r,t) − X2(r,t)‖2, and the phase

difference, φ = θ1 − θ2, measured from the simulated patterns

to see the convergence of the systems to synchronization. Here,

the phase difference is measured stroboscopically by using the

threshold-crossing times of the patterns roughly at intervals of

the period of oscillation.

B. Traveling pulse

Figures 1–4 show the results for a traveling pulse in a

one-dimensional space 0 � x � L with periodic boundary

conditions. The parameters are α = 0.1, τ−1 = 0.002, γ =

2.5, Du = 1.0, and Dv = 0.1. The system size is L = 200

and discretized by using N = 200 grid points. The interaction

intensity between the systems is ǫ = 0.0001.
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FIG. 2. Optimized interaction functions for the traveling pulse.

(a) Optimal nonlocal interaction G(x,θ = 0) = (Gu,Gv) and (b)

optimal nonlinear interaction H(x,θ = 0) = (Hu,Hv). Both u and

v components are plotted. Results for the u components are enlarged

for clarity.

Figure 1 shows the traveling-pulse solution X0(x,θ ),

the tangent function U(x,θ ) = ∂ X0(x,θ )/∂θ , and the phase

sensitivity function Z(x,θ ). In each figure, both u and v com-

ponents of X0(x,θ = 0) = (Xu,Xv), U(x,θ = 0) = (Uu,Uv),

and Z(x,θ = 0) = (Zu,Zv) are plotted. Because the pulse

keeps a constant shape and simply travels to the right with

a constant velocity, all the functions simply translate to the

right with a constant velocity without changing their shapes.

The period of oscillation is T ≈ 395.7 and the frequency is

ω ≈ 0.015 88. From these data, the correlation matrix Ŵ (x,x ′)

is calculated.

Figure 2 shows the nonlocal interaction G(x,θ ) and the

nonlinear interaction H(x,θ ) at θ = 0. These optimal interac-

tion functions also translate to the right with the pulse without

changing their shapes. The nonlocal interaction function and
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-20
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(

)

direct
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nonlinear

FIG. 3. Antisymmetric part Ŵa(φ) of the phase-coupling func-

tions for the traveling pulse. Results for direct interaction, optimal

nonlocal interaction, and optimal nonlinear interaction are shown.
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FIG. 4. Synchronization dynamics between traveling pulses. Re-

sults for direct interaction and for optimal nonlocal interaction are

compared. (a) Evolution of synchronization error. (b) Evolution of

phase difference.

the nonlinear interaction function are different from each other.

However, they have one thing in common: both interaction

functions change their signs in front of the pulse. This is

actually essential for efficient control of the phase of the

pulse.

Figure 3 shows the antisymmetric part Ŵa(φ) of the phase-

coupling function for the direct, nonlocal optimal, and optimal

nonlinear interaction. Both nonlocal interaction and nonlinear

interaction yield much higher stability of the synchronized

state than the direct interaction. The nonlinear interaction gives

the highest linear stability, but the nonlocal interaction also

yields reasonably high stability. We can also observe that both

the nonlocal interaction and the nonlinear interaction uniquely

give the in-phase synchronized state as the globally stable

solution, while the direct interaction yields both in-phase and

anti-phase-synchronized solutions as stable solutions. Because

global stability of the solutions is not considered in the present

optimization, these results are coincidental.

Figure 4 shows the synchronization dynamics between the

two reaction-diffusion systems obtained by direct numerical

simulations for the direct and optimal nonlocal interactions.

The temporal evolution of the synchronization error and the

phase difference (measured stroboscopically at each period of
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FIG. 5. Oscillating-spot solution of the FHN model. Snapshots

of (a) X0(x,θ = 0) = (Xu,Xv), (b) U(x,θ = 0) = (Uu,Uv), and (c)

Z(x,θ = 0) = (Zu,Zv). Both u and v components are shown.

oscillation) are shown. We can clearly see that the optimal

nonlocal interaction yields much faster synchronization than

the direct coupling. When the phase difference is sufficiently

small, the exponential growth (or decay) rate of the phase

difference coincides with the slope Ŵ′
a(0).

C. Oscillating spot

Figures 5–10 show the results for the oscillating-spot solu-

tion in a one-dimensional space [0,L] with no-flux boundary

conditions. In this case, the parameter α(x) that controls the

excitability of the media is spatially modulated as α(x) =

α0 + (α1 − α0)(2x/L − 1)2 with α0 = −1.1 and α1 = −1.6,

so that the oscillating spot stays at the center of the system.

The other parameters are τ−1 = 0.028, γ = 2.0, Du = 1.0,

FIG. 6. Evolution of the limit-cycle solution X0(x,θ ) = (Xu,Xv)

and the phase sensitivity function Z(x,θ ) = (Zu,Zv) for one period

of oscillation, 0 � θ � 2π . (a) Xu, (b) Xv , (c) Zu, and (d) Zv .
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FIG. 7. Correlation matrix Ŵ (x,x ′) = (
Wuu Wuv

Wvu Wvv
). (a) Wuu, (b)

Wuv , (c) Wvu, and (d) Wvv .

and Dv = 2.5. The length of the system is L = 80, and it is

discretized by using N = 240 grid points. The intensity of

mutual interaction between the systems is ǫ = 0.000 01.

Figure 5 shows the oscillating-spot solution X0(x,θ ),

the tangent function U(x,θ ) = ∂ X0(x,θ )/∂θ , and the phase

sensitivity function Z(x,θ ), all at θ = 0. In each figure, both u

and v components of X0(x,θ = 0) = (Xu,Xv), U(x,θ = 0) =

(Uu,Uv), and Z(x,θ = 0) = (Zu,Zv) are plotted. The period

of oscillation is T ≈ 200.6 and the frequency is ω ≈ 0.0313.

Figure 6 shows the evolution of X0(x,θ ) and Z(x,θ ) in color

code for one period of oscillation, 0 � θ � 2π . The phase

sensitivity function is strongly localized near the interfaces of

the spot.

FIG. 8. Optimized interaction functions of the oscillating spot.

(a,b) Optimal nonlocal interaction G(x,θ ) = (Gu,Gv). (a) Gu and

(b) Gv . (c,d) Optimal nonlinear interaction H(x,θ ) = (Hu,Hv). (c)

Hu and (d) Hv . Evolution for one period of oscillation are shown

(0 � θ � 2π ). In each figure, the lines indicate the locations where

the interaction function vanishes and changes the sign.
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FIG. 9. Antisymmetric part Ŵa(φ) of the phase-coupling func-

tions for the oscillating spot. Results for direct interaction, optimal

nonlocal interaction, and optimal nonlinear interaction are shown.

Figure 7 shows all four components of the correlation

matrix Ŵ (x,x ′), and Fig. 8 shows the optimal nonlocal
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FIG. 10. Synchronization dynamics between oscillating spots.

Results for direct interaction and for optimal nonlocal interaction

are compared. (a) Evolution of synchronization error. (b) Evolution

of phase difference.
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FIG. 11. Spiral solution of the FHN model. (a,b) Snapshots of the

limit-cycle solution X0(x,y,θ = 0) = (Xu,Xv). (a) Xu and (b) Xv .

(c,d) Snapshots of the phase sensitivity functions Z(x,y,θ = 0) =

(Zu,Zv). (c) Zu and (d) Zv . All patterns constantly rotate around the

center of the system in the direction shown by the arrow.

interaction G(x,θ ) and the optimal nonlinear interaction

H(x,θ ) for one period of oscillation (0 � θ � 2π ). The results

for the nonlocal and nonlinear cases are different, but the

locations at which the interaction functions change their signs

are roughly similar in both cases and reflect the locations where

the phase sensitivity functions take large values.

Figure 9 shows the antisymmetric part Ŵa(φ) of the

phase-coupling function for the direct, optimal nonlocal, and

optimal nonlinear interaction. Both the nonlocal interaction

and the nonlinear interaction yield much higher stability

than the direct interaction. In this case, the optimal nonlocal

interaction yields somewhat lower stability than the optimal

nonlinear case. This discrepancy arises because, in addition

to the inevitable smoothness of the interaction function due

to filtering in the nonlocal case, the spatial linear filter Â

cannot shift the temporal phase of the interaction function

G from the phase of the oscillation of the spot, while the

phase of the optimal nonlinear interaction H is slightly shifted

from that of the spot. In this example, while in-phase and

anti-phase-synchronized solutions are both stable for the direct

interaction, both nonlocal interaction and nonlinear interaction

give the global stability of the in-phase synchronized solution

as in the previous case of traveling pulses. Figure 10 shows the

evolution of the synchronization error and the phase difference

between the systems for the direct and optimal nonlocal

interactions. The optimal nonlocal interaction yields much

faster convergence to the synchronized state.

D. Rotating spiral

This example is motivated by the experimental study by

Hildebrand et al. [12]. Figures 11–14 show the results for the

spiral in a two-dimensional square 0 � x,y � L with no-flux

boundary conditions. The parameter α(x) that controls the ex-

citability of the media is spatially modulated as α(x,y) = α0 +

(α1 − α0) exp(−r4/r4
0 ), r =

√

(x − L/2)2 + (y − L/2)2 with

α0 = 0.05 and α1 = 0.5, so that the spiral stays at the center of

the system. The other parameters are τ−1 = 0.005, γ = 2.5,

Du = 1.0, and Dv = 0.0. The size of the system is L × L =

80 × 80, and it is discretized by using N2 = 802 grid points.

The interaction intensity between the systems is ǫ = 0.000 01.

FIG. 12. Phase sensitivity function and optimized interaction functions near the spiral tip. (a,b) Snapshots of the phase sensitivity function

Z(x,y,θ = 0) = (Zu,Zv). (a) Zu and (b) Zv . (c,d) Snapshots of the optimal nonlocal interaction G(x,y,θ = 0) = (Gu,Gv). (c) Gu and (d) Gv .

(e,f) Snapshots of the optimal nonlinear interaction H(x,y,θ = 0) = (Hu,Hv). (e) Hu and (f) Hv .
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FIG. 13. Antisymmetric part Ŵa(φ) of the phase-coupling func-

tions for the spiral. Results for direct interaction, optimal nonlocal

interaction, and optimal nonlinear interaction are shown.

Figure 11 shows the spiral solution X0(x,y,θ ) and the

phase sensitivity function Z(x,y,θ ) at θ = 0. The spiral pattern

X0(x,y,θ ) keeps a constant shape and rotates around the center

with a constant frequency, and, accordingly, U(x,y,θ ) (not

shown) and Z(x,y,θ ) also rotate around the center. The period

of oscillation is T ≈ 179 and the frequency is ω ≈ 0.0351.

It can be seen that the phase sensitivity function Z(x,y,θ ) is

strongly localized near the spiral tip.

Figure 12 shows the phase sensitivity function Z(x,y,θ ),

the optimal nonlocal interaction function G(x,y,θ ), and the

optimal nonlinear interaction function H(x,y,θ ), enlarged

near the spiral tip at θ = 0. The patterns of G and H are

different, but they are similar in that both of them are localized

near the spiral tip and exhibit localized positive and negative

spots.

Figure 13 shows the antisymmetric part Ŵa(φ) of the

phase-coupling function for the direct, optimal nonlocal, and

optimal nonlinear interaction. Both the nonlocal interaction

and the nonlinear interaction give drastically higher stability

than the direct interaction. The optimal nonlinear interaction

yields the highest stability, but the optimal nonlocal interaction

also yields reasonably high stability. In this example, again,

the nonlocal interaction and the optimal nonlinear interaction

give the global stability of the in-phase synchronized solution,

while the direct interaction provides bistability of in-phase and

anti-phase-synchronized solutions.

Finally, Fig. 14 shows the evolution of the synchronization

error and the phase difference between the systems for the

direct and optimal nonlocal interactions. The optimal nonlocal

interaction yields much faster convergence to the synchronized

state.

E. On global stability of the in-phase synchronized state

In all the considered examples, the optimized interactions

yield the in-phase synchronized state as a globally stable fixed

point, even if the direct interaction gives bistability of the

in-phase and antiphase states (see Figs. 3, 9, and 13) [44].

Since the global stability of the in-phase synchronized state is

not imposed in the present optimization problem, these results
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FIG. 14. Synchronization dynamics between spirals. Results for

direct interaction and for optimal nonlocal interaction are compared.

(a) Evolution of synchronization error. (b) Evolution of phase

difference.

are coincidental, as stated before. In the present examples,

low-order Fourier components are dominant in the waveforms

of the oscillation and phase sensitivity function, and thus the

phase-coupling function Ŵ(φ) is also a long-wave smooth

function of the phase φ. By maximizing −Ŵ′
a(0), the first pair

of positive and negative lobes of Ŵa(φ) on both sides of the

φ = 0 axis is further enhanced, resulting in the global stability

of the in-phase synchronized state. In the case of the nonlocal

interaction, linear filtering of the field variable also contributes

to the smoothness of the phase-coupling function. In contrast,

in the case of the nonlinear interaction, there is no such

smoothing effect from the filtering, and the phase-coupling

function is less smooth than the nonlocal case, as we can

observe in Figs. 3 and 13.

IV. SUMMARY

We developed a method for optimizing the interaction

function between a pair of mutually interacting reaction-

diffusion systems exhibiting stable rhythmic patterns. We

first considered the case with nonlocal interaction, and we

derived the optimal filtering functions for two types of
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constraints. We then showed that the optimal nonlinear

interaction function is given by the negative of the derivative

of the phase sensitivity function in the general case. Using the

FitzHugh-Nagumo reaction-diffusion system, we illustrated

that the synchronization between the two systems becomes

much faster than it is when all field variables are directly

interacting with identical intensity. These results could be

tested experimentally, e.g., by using a pair of spiral patterns in

the spatially extended photosensitive Belousov-Zhabotinsky

reaction [12,28–30].
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APPENDIX

Each component of the optimal nonlocal interaction

G(r,t) =
1

λ

∫

V

d r
′Ŵ (r,r ′)X(r

′,t) (A1)

can be expressed as

Gi(r,t) =
1

λ

∫

V

d r
′

m
∑

j=1

Wij (r,r ′)Xj (r
′,t)

=
1

2πλ

∫ 2π

0

dψ

×

∫

V

d r
′

m
∑

j=1

Zi(r,ψ)Uj (r
′,ψ)Xj (r

′,t)

=
1

2πλ

∫ 2π

0

dψ Zi(r,ψ)X̄(ψ,t), (A2)

where

X̄(ψ,t) =

∫

V

d r
′

m
∑

j=1

Uj (r
′,ψ)Xj (r

′,t). (A3)

That is, the optimal nonlocal interaction can also be repre-

sented as

G(r,t) =
1

2πλ

∫ 2π

0

dψ Z(r,ψ)X̄(ψ,t), (A4)

and we use this expression in the numerical simulations. When

we discretize a d-dimensional spatial domain by using Nd

grid points and one period of oscillation by using M points,

the computational costs of Eqs. (A1) and (A4) are O(N2d )

and O(MNd ), respectively. Therefore, Eq. (A4) is much more

efficient than Eq. (A1) when the spatial dimension d of the

system is large.
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