
Machine Learning (2018) 107:1597–1620

https://doi.org/10.1007/s10994-018-5736-y

Optimizing non-decomposable measures with deep
networks

Amartya Sanyal1,2 · Pawan Kumar3 · Purushottam Kar3 · Sanjay Chawla4 ·

Fabrizio Sebastiani5

Received: 28 January 2018 / Accepted: 18 June 2018 / Published online: 2 July 2018

© The Author(s) 2018

Abstract

We present a class of algorithms capable of directly training deep neural networks with

respect to popular families of task-specific performance measures for binary classification

such as the F-measure, QMean and the Kullback–Leibler divergence that are structured and

non-decomposable. Our goal is to address tasks such as label-imbalanced learning and quan-

tification. Our techniques present a departure from standard deep learning techniques that

typically use squared or cross-entropy loss functions (that are decomposable) to train neu-

ral networks. We demonstrate that directly training with task-specific loss functions yields

faster and more stable convergence across problems and datasets. Our proposed algorithms

and implementations offer several advantages including (i) the use of fewer training samples

to achieve a desired level of convergence, (ii) a substantial reduction in training time, (iii) a

seamless integration of our implementation into existing symbolic gradient frameworks, and

(iv) assurance of convergence to first order stationary points. It is noteworthy that the algo-

rithms achieve this, especially point (iv), despite being asked to optimize complex objective

functions. We implement our techniques on a variety of deep architectures including multi-

layer perceptrons and recurrent neural networks and show that on a variety of benchmark and

real data sets, our algorithms outperform traditional approaches to training deep networks,

as well as popular techniques used to handle label imbalance.

Keywords Optimization · Deep learning · F-measure · Task-specific training

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmann..

B Amartya Sanyal

amartya18x@gmail.com

B Pawan Kumar

kpawan@cse.iitk.ac.in

B Purushottam Kar

purushot@cse.iitk.ac.in

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5736-y&domain=pdf
http://orcid.org/0000-0002-4190-0449
http://orcid.org/0000-0003-2096-5267

1598 Machine Learning (2018) 107:1597–1620

1 Introduction

As deep learning penetrates more and more application areas, there is a natural demand

to adapt deep learning techniques to area and task-specific requirements and constraints.

An immediate consequence of this is the expectation to perform well with respect to task-

specific performance measures. However, this can be challenging, as these performance

measures can be quite complex in their structure and be motivated by legacy, rather than

algorithmic convenience. Examples include the F-measure that is popular in retrieval tasks,

various ranking performance measures such as area-under-the-ROC-curve, and the Kullback–

Leibler divergence that is popular in class-ratio estimation problems.

Optimizing these performance measures across application areas has proved to be chal-

lenging even when learning linear models, as is evidenced by the recent surge in methods

for optimizing “non-decomposable” loss functions for learning linear models, as we review

in Sect. 2. The challenge becomes doubly hard when trying to do so while training neural

network architectures such as multi-layer perceptrons and convolutional or recurrent neural

networks.

The vast majority of contemporary training techniques for neural networks consist of

using simple per-sample loss functions such as least-squares loss or cross-entropy. While

their use has allowed research directions to focus more on developing more evolved network

architectures, as well as developing highly optimized implementations of training routines on

GPU architectures, we show that this is suboptimal and that a sound effort towards training

with task-specific loss functions pays off handsomely.

In particular, we will show how to train neural networks to directly optimize (smoothed

versions of) non-decomposable performance measures such as F-measure, Q-mean and

Kullback–Leibler divergence which are popularly used in binary classification with label

imbalance and quantification (or class ratio estimation) settings. The problem of quantifica-

tion expects accurate estimation of relative prevalence of class labels (e.g., fraction of positive

vs negative reviews for some product or some campaign) and is useful in social engineering

and epidemiology. We will apply our techniques to label imbalanced learning problems on

several benchmark datasets as well as a sentiment analysis challenge task on Twitter feeds.

We will find that in general, our proposed methods offer superior performance, while utilizing

fewer samples and training time.

2 Related work

The recent years have seen much interest, as well as progress, in training directly with task-

specific performance measures in the field of classification and ranking.

2.1 Works on non-decomposable measures with linear models

1. Koyejo et al. (2014) and Narasimhan et al. (2014) use plug-in classifiers for optimizing

non-decomposable performance measures for binary classification such as F-measure

and Q-mean. These methods first learn a class probability prediction model (typically

using logistic regression) and then finely tune a threshold to get a classifier.

2. Kar et al. (2013, 2016), Narasimhan and Agarwal (2013b) and Narasimhan et al.

(2015) use stochastic gradient descent-style algorithms for optimizing non-decomposable

performance measures for binary classification and quantification problems such as F-

measure, Q-mean, KL-divergence etc.

123

Machine Learning (2018) 107:1597–1620 1599

3. Kar et al. (2014, 2015) and Narasimhan and Agarwal (2013a, b) focus on optimizing

ranking loss functions such as (partial) area under the ROC curve (pAUC), and precision

at the top (prec@k).

However, all the above works focus only on training linear models. Although this allows

for simple algorithms and detailed analyses and theoretical guarantees, the approaches do not

directly extend to deep networks (we will discuss the challenges shortly). Algorithms for deep

learning which directly optimize non-decomposable performance measures are relatively less

explored.

This can be attributed to the use of back-propagation style algorithms for training neu-

ral networks which require calculating model gradients with respect to a batch of training

points. With decomposable loss functions, where it is possible to define the gradient of the

performance measure with respect to a single data point, this can be cheaply done – the batch

gradient is simply the mean of gradients with respect to individual data points in that batch.

However, the same becomes infeasible for non-decomposable performance measures (for

example, it is meaningless to talk about the F-measure of a classifier on a single data point).

2.2 Works on non-decomposable measures with deepmodels

We are aware of a few efforts at training deep networks with non-decomposable losses. Most

of these works focus on ranking tasks.

(1) Song et al. (2016) train neural networks for ranking tasks with mean average precision

(MAP) as the performance measure, by showing that for nicely behaved ranking loss

functions, the expected gradient of the loss function with respect to the network weights

can be expressed in terms of loss functions such as least squares loss.

(2) Eban et al. (2017) train neural networks for ranking objectives e.g. area under the

precision-recall curve and precision at a fixed recall rate.

(3) Schäfer and Hüllermeier (2018) train neural networks for label ranking tasks based on

the Plackett–Luce model where label features are available.

3 Our contributions

Our work advances the state of the art in training neural networks on a wide variety of

non-decomposable performance measures for classification and quantification tasks. This

complements existing works on ranking tasks.

(1) We show how to train neural networks directly using (smoothed versions of) performance

measures that are concave, pseudo-linear, or nested concave functions including F-

measure, Q-mean, KL-divergence and many others.

(2) We offer formal stabilization guarantees for all our algorithms, i.e., we guarantee that our

algorithms rapidly approach a stable point where the effective gradients of the algorithm

vanish.

(3) Our methods offer far superior performance than traditional cross-entropy based training

routines—on an F-measure maximization task on a benchmark dataset a9a, our method

achieves an F-measure of around 0.68 in less than 10 mini-batch iterations whereas it

takes traditional cross-entropy based training more than 80 iterations to reach similar

performance levels.

(4) Our methods also outperform popular techniques used to deal with label imbalance such

as cost-weighted classification, plug-in methods, and loss-augmented inference methods

123

1600 Machine Learning (2018) 107:1597–1620

using structural surrogates—on a min-TPR/TNR maximization task on a benchmark

dataset IJCNN, loss-augmented inference is only able to offer a performance level of

0.55 whereas our technique is able to reach performance over 0.95 in very few iterations.

(5) We apply our techniques to a Twitter sentiment analysis challenge task using an

end-to-end recurrent neural network with attention model and achieve near perfect quan-

tification scores using a substantially smaller number of training iterations as compared

to standard cross-entropy based training.

Our algorithms are readily adapted to neural architectures such as multi-layered percep-

trons and recurrent networks, as well as easily integrated into popular symbolic gradient

frameworks such as TensorFlow, PyTorch, and Theano.

3.1 Our contributions in the context of related work in deepmodels

(1) Song et al. (2016), Eban et al. (2017) and Schäfer and Hüllermeier (2018) are focused on

ranking measures whereas our work addresses binary classification and quantification

(class-ratio estimation) measures.

(2) Song et al. (2016) uses loss-augmented inference techniques (Joachims et al. 2009;

Tsochantaridis et al. 2005) which are very well established in machine learning. We

apply the same techniques to our performance measures (see the STRUCT-ANN

benchmark in our experiments) and show that our precise primal dual techniques far

outperform methods based on loss-augmented inference.

(3) Although Eban et al. (2017) does consider the F-measure which we also study, they

do not report any experimentation with F-measure. A possible reason for this might

be that their algorithm requires a constrained optimization problem to be solved that is

challenging over deep networks. Our methods generalize to a large number of widely

used measures, e.g., H-mean, G-mean, Jaccard coefficient, Q-measure, etc. which Eban

et al. (2017) do not claim to handle.

(4) Song et al. (2016), Eban et al. (2017) and Schäfer and Hüllermeier (2018) do not offer any

convergence guarantees for their proposed algorithms whereas we do offer stabilization

guarantees for our methods.

3.2 Our contributions in the context of related work in linear models

We note that our methods do adapt techniques that were earlier proposed for training linear

models, such as in Narasimhan et al. (2015). However, we stress that this adaptation is neither

trivial, nor immediate, and constitutes an independent contribution.

(1) Previous works, such as Narasimhan et al. (2015) only consider linear models which

lead to convex problems. A naïve and direct application of existing techniques to deep

networks yields poor experimental results. For example, we could only obtain good

accuracies on the challenging F-measure after we adapted existing methods to carefully

use pretraining techniques.

(2) Previous works consider only with convex surrogate functions since they desire the

overall training problem to remain convex. We found this to give poor results with deep

neural networks. We found much superior performance upon the use of (non-convex)

surrogates such as the sigmoidal.

(3) Despite working with non-linear models such as deep networks, and using non-convex

surrogates such as the sigmoid, we are still able to provide stabilization guarantees for

123

Machine Learning (2018) 107:1597–1620 1601

Table 1 List of performance measures Ψ (P, N). We use the shorthand notation P ≡ TPR, N ≡ TNR. p, n

denote the proportion of positives and negatives in the training dataset

Name Type Expression (P, N)

Min (Vincent 1994) Concave min{P, N }

Q-Mean (Kennedy et al. 2010) Concave 1 −
√

(1−P)2+(1−N)2

2

Fβ (Manning et al. 2008) Pseudo-linear
(1+β2)·P

β2+n/p+P−n/p·N
KLD (Barranquero et al. 2015) Nested concave See text

our algorithms. In fact, for F-measure and other pseudo-linear measures, our meth-

ods converge to a stationary point of the (smoothed) performance measure. Existing

theoretical analyses on linear methods rely on convexity and cannot give such results.

4 Problem setting

We will consider binary classification and quantification problems in this work. Let X ⊂ R
d

be the space of feature vectors and Y = {− 1,+ 1} be the label set. The training data set

S = (xi , yi)i=1,...,n shall be sampled i.i.d. from some fixed but unknown distribution D

over X × Y . The proportion of positives in the population and sample S will be denoted by

p = P
(x,y)∼D

[y = +1] and p̂S respectively.

In sharp contrast to most previous works on non-decomposable performance measures that

consider only linear models, we concentrate on non-linear models, especially those induced

by neural networks. Let us fix the neural architecture (layers, activations, connectivity) and

let W denote the space of all models (weights on the network edges). We will train a neural

model, whose edge weights are indexed by w ∈ W , to assign a score to every data point x ∈ X

(that can be converted into a binary label by thresholding, to class probability estimates by

applying a transfer function, etc). Linear models assign a score by simply computing 〈w, x〉.
We will use a more general notation f (x; w) (or equivalently fw(x) as a shorthand) to

denote the score given to the data point x by the neural model indexed by the weights w. The

function f can be seen as encoding all the neural connections and activations. We stress that

the function f is neither convex nor concave. This lack of structure in the scoring function

precludes a large body of work in linear multivariate optimization and quantification from

being applied to deep models.

Performance measures We consider performance measures that can be expressed in terms

of the true positive rate (TPR—fraction of positively labeled points correctly labeled as pos-

itive) and true negative rate (TNR—fraction of negatively labeled points correctly labeled

as negative) of the model. We will consider three general classes of performance measures

described below. In our experiments, we will present results on a selection of these perfor-

mance measures listed in Table 1. Below we recall the definitions of these families from Kar

et al. (2016) and Narasimhan et al. (2015).

Pseudo-linear performance measures These measures can be written as a ratio of two linear

functions of the TPR and TNR values, i.e. they have a fractional linear link function. More

specifically, given given coefficients a, b ∈ R
3,

P(a,b)(w) = a0 + a1 · TPR(w) + a2 · TNR(w)

b0 + b1 · TPR(w) + b2 · TNR(w)
.

123

1602 Machine Learning (2018) 107:1597–1620

The popularly used F-measure (Manning et al. 2008) is actually a pseudo-linear performance

measure in terms of the TPR, TNR values of a model although it is more commonly rep-

resented as the harmonic mean of precision and recall. Other members include the Jaccard

coefficient and the Gower–Legendre measure.

Concave performance measures These measures can be written as a concave function of

the TPR and TNR values:

PΨ (w) = Ψ (TPR(w), TNR(w))

for some concave link/wrapper function Ψ : R
2 → R. These measures are popular in cost-

sensitive classification in cases with severe label imbalance, for example detection theory

(Vincent 1994). A commonly used member of this family is the so-called Min-function

assigns the value min {TPR(w), TNR(w)} to a model w. Note that this compels the model

to pay equal attention to both classes. Other examples include the Q-mean and H-mean

measures.

Nested concave performance measures Recent works, e.g., Barranquero et al. (2015) and

Kar et al. (2016) in areas such as quantification and class ratio estimation, have brought

focus on performance measures that can be written as concave combinations of concave

performance measures. More formally, given three concave functions Ψ , ζ1, ζ2 : R
2 → R,

we define a performance measure

P(Ψ ,ζ1,ζ2)(w) = Ψ (ζ1(w), ζ2(w)),

where ζi (w) := ζi (TPR(w), TNR(w)), i = 1, 2. A popular measure for quantification tasks

is the KLD: Kullback–Leibler Divergence (Barranquero et al. 2015; Esuli and Sebastiani

2015; Gao and Sebastiani 2015; Kar et al. 2016) which can be shown to be a sum of concave

functions of the TPR and TNR. If p ∈ R
2 is the vector of true class priors for a binary

classification task and p̂ an estimate thereof, then

KLD(p, p̂) =
∑

y∈Y

p(y) log
p(y)

p̂(y)
(1)

KLD(p, p̂) = 0 indicates perfect quantification.

There are several other performance measures that our techniques can handle but which

we do not discuss here due to lack of space. These include measures for class-imbalanced

classification such as H-mean, G-mean, Jaccard coefficient (Narasimhan et al. 2015), as well

as quantification measures such as Q-measure, NSS and CQB (Kar et al. 2016).

Smoothing the performance measures Since TPR and TNR are count-based measures, they

are unsuitable for numerical optimization algorithms. Thus, it is very common in learning

and optimization literature to use surrogate reward/loss functions to stand in for them. Some

approaches (Narasimhan et al. 2015) use point/decomposable surrogates whereas others

(Narasimhan and Agarwal 2013a; Kar et al. 2015; Song et al. 2016) use non-decomposable

surrogates.

We will use point surrogate reward functions to replace TPR, TNR in our objectives. A

reward function r assigns a reward r(ŷ, y) when the true label is y ∈ Y but the prediction is

ŷ ∈ R. Given a reward function r : R×Y → R, a model w ∈ W , data point (x, y) ∈ X ×Y ,

and scoring function f , we will use

r+(w; x, y) = 1

p
· r(f (x; w), y) · I {y = 1}

r−(w; x, y) = 1

1 − p
· r(f (x; w), y) · I {y = −1} ,

123

Machine Learning (2018) 107:1597–1620 1603

to calculate rewards on positive and negative points (I {·} denotes the indicator function). For

purpose of training, we may replace p with p̂S i.e. the proportion of positives in the data

sample.1

We will use the shorthand P(w) = E
[
r+(w; x, y)

]
to denote population average of the

reward function and, given a sample of n data points S = (xi , yi)i=1,...,n , denote the sample

average as P̂S(w) = 1
n

∑n
i=1 r+(w; xi , yi) and similarly define N (w), N̂S(w). We will use

P̂S(w) and N̂S(w) in place of TPR and TNR respectively while executing our algorithms.

Unlike previous work (Kar et al. 2016; Narasimhan et al. 2015), we will not restrict

ourselves to concave surrogate reward functions. In particular we will utilize the sigmoidal

reward, which is widely used as an activation function in neural networks is non-concave:

rsigmoid(ŷ, y) = (1 + exp(−y · ŷ))−1. The reason for this is that the sigmoid resembles the

misclassification loss function that lead to TPR and TNR, much more than the hinge loss or

the logistic loss, and gave better performance. Many existing works preferred using losses

such as the hinge and the logistic loss merely due to their convexity.

5 Deep optimization algorithms

The task of training deep models directly for non-decomposable performance measures is

challenging due to several reasons: (1) these measures are non-decomposable and do not lend

themselves to straightforward training methods such as gradient descent or back-propagation,

(2) deep models do not offer the convenience of convexity, and (3) existing methods for

optimizing such measures, e.g., Kar et al. (2016) and Narasimhan et al. (2015) fail to apply

directly to deep models. We will see in Sect. 6 that a direct and naive application of traditional

techniques yields poor results.

We will show how to overcome these challenges to arrive at scalable methods for train-

ing deep networks directly on (smoothed) non-decomposable measures. Let the procedure

NN-init(din, dout, conf) initialize a neural network with din input nodes, dout output nodes,

and internal configuration (hidden layers, number of internal nodes, connectivity) specified

by conf. Please refer to Sect. 6 for details.

Intuition behind our Algorithms The basic intuition behind our algorithms is simple but

useful, and one that has been used by previous works (Kar et al. 2016; Narasimhan et al.

2015) as well. We realize that training any model with respect to decomposable performance

measures such as cross entropy or cost-weighted classification problems, is relatively simple,

and can be accomplished using classical back-propagation. Thus, we convert the task of

training with respect to a non-decomposable performance measure, say F-measure, into a

sequence of tasks of training with respect to cost-weighted classification problems, with the

costs being recalculated at each time step using methods specific to the performance measure

at hand.

5.1 DAME: a deep learning technique for pseudo-linear performancemeasures

We present DAME (Algorithm 1), an algorithm for training deep models on pseudo-linear

performance measures such as F-measure. We recall that although Eban et al. (2017) discuss

F-measure optimization on deep models, they do not implement their algorithm or report

1 Note that since E
[
r+(w; x, y)

]
= E [r(f (x; w), y)|y = 1], setting r0-1(ŷ, y) = I

{
y · ŷ > 0

}
i.e. classifi-

cation accuracy as the reward function yields E
[
r+(w; x, y)

]
= TPR(w).

123

1604 Machine Learning (2018) 107:1597–1620

experimental results with it, possibly since their method involves expensive constrained

optimization problems involving deep networks. It will be our objective to maximize the

following performance measure

P(a,b),S(w) = a0 + a1 · P̂S(w) + a2 · N̂S(w)

b0 + b1 · P̂S(w) + b2 · N̂S(w)
,

where P̂S(w), N̂S(w) are the smoothed sample versions of TPR, TNR. Define Pa,S(w) :=
a0 + a1 · P̂S(w) + a2 · N̂S(w) and Pb,S(w) := b0 + b1 · P̂S(w) + b2 · N̂S(w). Our discussion

will benefit from the notion of a valuation function from Narasimhan et al. (2015).

Definition 1 (Valuation function) Given coefficients a0, a1, a2, b0, b1, b2, and a level v > 0,

define the valuation of a model at level v on training set S as

VS(w, v) = Pa,S(w)−v · Pb,S(w) = (a0−vb0) + (a1−vb1) · P̂S(w) + (a2−vb2) · N̂S(w)

Intuition behind DAME Notice that a model w has good performance, i.e., P(a,b)(w) > v

for some v > 0 if and only if Pa(w) ≥ v ·Pb(w) (F-measure and other performance measures

always satisfy Pb(w) > 0). This is equivalent to (a0 − vb0) + (a1 − vb1) · P̂S(w) + (a2 −
vb2) · N̂S(w) ≥ 0 which is equivalent to VS(w, v) ≥ 0, i.e., the model has a non-negative

valuation at level v.

Thus, one way to maximize P(a,b) is to simply check for various values of v if there exists

any model w such that VS(w, v) ≥ 0 or not. The largest value v at which the answer is yes

has to be the maximum achievable level of performance with respect to P(a,b),S by the above

argument. The work of Koyejo et al. (2014) does something similar. However, this may be

very expensive since it is not clear which values v to query and how to find if the answer is

yes or no.

DAME takes this intuition and turns it into a scalable algorithm. At every time step, it

looks at the level vt = P(a,b),S(wt) since it is assured that at least one model, in particular

wt , does satisfy VS(w, v) ≥ 0. Then it queries if some other model w′ can beat wt in terms

of valuation at level vt . Note that the search for such as model w′ requires us to solve

w′ = arg max
w∈W

VS(w, vt) = arg max
w∈W

(a1 − vt b1) · P̂S(w) + (a2 − vt b2) · N̂S(w),

which is simply a cost-weighted classification problem with the weights (a1−vt b1) and (a2−
vt b2) on positives and negatives respectively. Having obtained an approximate maximizer

of the above problem, say wt+1, DAME resets the level to vt+1 = P(a,b),S(wt+1) and

challenges a model to maximize VS(w, vt+1). Note that the costs would have changed now

for this new challenge. However, this strategy, which was implemented by Narasimhan et al.

(2015), performs poorly on deep networks. The complex nature of pseudo-linear performance

measures, that are neither convex nor concave, seem to make it more challenging to train

deep models by solving the intermediate cost-weighted problems effectively.

To overcome this, DAME first performs a pretraining step where the entire network

is trained using cost-weighted classification losses using standard mini-batch SGD. Let

(w1, w2) denote a stacking of the neural networks described by the models w1 and w2. More

specifically w2 denotes a network with input dimensionality din and output dimensionality

dint whereas w1 denotes a network with input dimensionality dint and output dimensionality

dout.

In the pretraining step, both w1, w2 are trained on a cost weighted classification problem

where the cost on various classes is set naïvely to the inverse of their prevalence in the dataset,

i.e., the cost of positives is 1/ p̂S . After this, a fine-tuning step is performed where only the

123

Machine Learning (2018) 107:1597–1620 1605

Algorithm 1 DAME: A Deep Alternating Maximization mEthod

Require: Training dataset S = {(xi , yi)}n
i=1

, step lengths ηt , network configuration

{din, dint, dout, conf1, conf2}, batch size B, proportion of positives p̂S

1: w
−1,0
1 ← NN-init(dint, 1, conf1)

2: w−1
2 ← NN-init(din, dint, conf2)

3: (w
0,0
1 , w0

2) ← Pre-train on weighted cross-entropy on dataset S

4: Create new dataset S̃ = {(zi , yi)}n
i=1

where zi = f (xi , w0
2) ⊲ New features

5: for t = 1, 2, . . . , T do

6: St,0 ← SAMPLE mini-batch of B data points (z
t,0
i

, y
t,0
i

)

7: vt ← P(a,b),St,0
(w

t−1,0
1 , w0

2)

8: for t ′ = 1, 2, . . . , T ′ do

9: St,t ′ ← SAMPLE mini-batch of B data points (z
t,t ′
i

, y
t,t ′
i

)

10: w
t−1,t ′
1 ← w

t−1,t ′−1
1 + ηt · ∇

w
t−1,t ′−1
1

VSt,t ′ ((w
t−1,t ′−1
1 , w0

2), vt)

11: end for

12: w
t,0
1 ← w

t−1,T ′
1

13: end for

14: return (w
T ,0
1 , w0

2)

upper layers of the network, i.e., w1 are trained to optimize the F-measure. To save time

during the fine-tuning phase, instead of optimizing the intermediate cost-weighted classifi-

cation problems completely, DAME simply executes a few iterations of back-propagation

with respect to the cost-weighted problems. This two-stage procedure offers much more

performance than training with respect to valuation functions right from the start.

Assumptions for theoretical convergence results We are able to show a first order station-

arity guarantee for DAME under the following assumptions:

(1) The negated valuation functions are L-strongly smooth functions (see definition of a

strongly smooth function below) of the upper model w1. Since the sigmoidal reward

function is 1
2

-strongly smooth, this will be true for L that depends on the size of the

network.

(2) For some M ≥ m > 0, the performance measure satisfies Pa(w) ≤ M and Pb(w) ≥ m

for all w ∈ W . We note that these assumptions are standard (Kar et al. 2016; Narasimhan

et al. 2015) and readily satisfied by the F-measure, Jaccard coefficient, etc., for which

we have m, M = Θ(1) (see Narasimhan et al. 2015). We will denote κ = 1 + M/m.

(3) The norm of the gradient of the reward function with respect to any single data point is

bounded, i.e., max
{∥∥∇wr+(w, x, y)

∥∥
2
,
∥∥∇wr−(w; x, y)

∥∥
2

}
≤ r for any model w and

any data point (x, y). This can be easily ensured by controlling the weights of the network

and normalizing the data features x.

Definition 2 (Strongly-smooth function) We call a function f : R
d → R strongly smooth if

for all x, y ∈ R
d , we have

f (x) ≤ f (y) + 〈∇ f (y), x − y〉 + L

2
‖x − y‖2

2

Theorem 1 If executed with a uniform step length η < 2
Lκ

with a batch size B, DAME

discovers an ǫ+O

(
r

m
√

B

)
-stable model within O

(
1
ǫ2

)
inner iterations with high probability.

More specifically, within T ≤ κ2

m
2

η(2−Lκη)ǫ2 iterations, DAME identifies a model w
T ,0
1 such

123

1606 Machine Learning (2018) 107:1597–1620

that

∥∥∥∇wP(a,b)(w
T ,0
1)

∥∥∥
2

≤ ǫ + O

(
r

m
√

B

)
. If a mini-batch is not used and St,i = S̃ for

all time steps t, i , then we are (deterministically) assured of an ǫ-stable model, i.e., that∥∥∥∇wP(a,b)(w
T ,0
1)

∥∥∥
2

≤ ǫ instead.

We present the proof in Appendix A. Since the pre-training phase enjoys local convergence

guarantees by standard arguments, the argument is presented only for the fine-tuning phase

and the lower network is omitted in the analysis.

5.2 DUPLE: a deep learning technique for concave performancemeasures

We present DUPLE (Algorithm 2), a scalable stochastic mini-batch primal dual algorithm

for training deep models with concave performance measures. It will be our objective to

maximize the following performance measure

PΨ ,S(w) = Ψ (P̂S(w), N̂S(w)),

where P̂S(w), N̂S(w) are smoothed sample versions of TPR, TNR and Ψ : R
2 → R is a

concave link function. We shall find it convenient to define the (concave) Fenchel conjugate

of Ψ in order to present the intuition behind our algorithms. For any concave function

Ψ : R
2 → R and α, β ∈ R, define

Ψ ∗(α, β) = inf
u,v∈R

{αu + βv − Ψ (u, v)} . (2)

Intuition behind DUPLE The reason behind defining the Fenchel conjugate is that it can

be shown that for all concave, upper semi-continuous functions, by the Fenchel-Moreau

theorem, we have, for any u, v ∈ R,

Ψ (u, v) = inf
α,β∈R

{
αu + βv − Ψ ∗(α, β)

}
. (3)

This reformulation is advantageous since an application of Danskin’s theorem now allows

us to take (sub) gradients with respect to Ψ . More formally, Danskin’s theorem tells us that

if α̃, β̃ are the minimizer values in (3) at a point u0, v0, then ∇u,vΨ (u, v)|(u0,v0) ∋ (α̃, β̃).

This gives us a way to perform back-propagation-based training of neural networks with

respect to concave performance measures: at every time step we can consider the current

model wt , evaluate P̂S(wt), N̂S(wt) using a forward pass over the entire training set S, solve

the following problem

(α′, β ′) = arg inf
α,β∈R

{
αu + βv − Ψ ∗(α, β)

}
,

and then apply chain rule to obtain

∇wΨ (P̂S(w), N̂S(w))|wt = α′ · ∇w P̂S(w)wt + β ′ · ∇w N̂S(w)wt

= ∇w(α′ · P̂S(w)wt + β ′ · N̂S(w)wt)

Notice that this is identical to taking a gradient step with respect to a cost-weighted classifi-

cation problem with cost α′ on positives and cost β ′ on negatives. However, the process of

discovering the optimal “dual variables” (α′, β ′) this way is expensive since it requires a pass

over the entire dataset S. DUPLE offers a much faster way to discover dual variables that,

although not optimal w.r.t. wt , nevertheless promote progress. The advantage gained here is

that we can find these variables using a single mini-batch rather than going over the entire

dataset.

123

Machine Learning (2018) 107:1597–1620 1607

Algorithm 2 DUPLE: Dual UPdates for Learning dEep-models

Require: Primal step sizes ηt , network configuration {din, conf}, batch size b

1: w0 ← NN-init(din, 1, conf)

2:
{
α0, β0, r+, r−, n+, n−

}
← init()

3: for t = 1, 2, . . . , T do

4: St ← SAMPLE mini-batch of b data points
{
(xt

i
, yt

i
)
}

i=1,...,b

5: wt ← wt−1 + ηt · ∇wg(wt ; St , α
t−1, βt−1) ⊲ Primal Step

6: r+ ← r+ + 1
b

∑b
i=1 r+(wt ; xt

i
, yt

i
) ⊲ Tot. reward on +ves

7: r− ← r− + 1
b

∑b
i=1 r−(wt ; xt

i
, yt

i
) ⊲ Tot. reward on -ves

8: n+ ← n+ + 1
b

∑b
i=1 I

{
yt

i
= +1

}
⊲ Total # positives

9: n− ← n− + 1
b

∑b
i=1 I

{
yt

i
= −1

}
⊲ Total # negatives

10: (αt , βt) ← arg min
(α,β)

[
α

r+
n+

+ β
r−
n−

− Ψ ∗(α, β)

]
⊲ Dual Step

11: end for

12: return wT

The way DUPLE does this is by maintaining a proxy for the empirical reward val-

ues P̂S(wt), N̂S(wt) such that this proxy is very cheap to update. At every time step, we

have a model wt and a mini-batch St being used to train further. DUPLE stores the values

P̂St (w
t), N̂St (w

t) inside a running average. At any point, this running average is used as a

cheap proxy for P̂S(wt), N̂S(wt).

We note that DUPLE draws upon the SPADE algorithm proposed in Narasimhan et al.

(2015). However, its application to deep models requires non-trivial extensions.

(1) SPADE performs SGD steps with individual data points since gradient updates are rapid

with linear models. Doing so with neural models is expensive.

(2) The theoretical analysis of SPADE assumes that the scoring and reward functions being

used are concave functions of w. As noted in Sect. 4, for neural models, the scoring and

reward functions are both non-concave.

(3) Deep learning frameworks are highly optimized for gradient computations, assuming

that the objective function with respect to which gradients are computed, is static across

iterations (although this is not a drawback of some recent frameworks). SPADE, while

applying the chain rule, ends up considering a different cost-weighted objective at each

step.

DUPLE addresses the above issues and makes crucial design changes that make it highly

optimized for use with deep networks.

(1) DUPLE operates using cheap proxies that, at no point, require an pass over the entire

dataset, or gradient computations on individual data points. Gradient computation is

done only over mini batches which is a highly optimized operation in deep learning

frameworks given that the batch sizes are not too large. We found this to also improve

the stability properties of the algorithm.

(2) At every time step, DUPLE requests gradients with respect to a cost-weighted objective

function of the form g(w; S, α, β) = α · P̂S(w) + β · N̂S(w). We exploit symbolic

computation capabilities offered by frameworks such as Theano (Bergstra et al. 2010)

to allow the scalars α, β to be updated dynamically and train the network efficiently on

a different objective function at each time step.

(3) Our analysis for DUPLE makes absolutely no assumptions on the convexity/concavity

of the reward and scoring functions. It only requires both functions r+, r− to be differ-

123

1608 Machine Learning (2018) 107:1597–1620

entiable almost-everywhere. Thus, DUPLE only assumes the bare minimum to allow

itself to take gradients.

We show the following convergence guarantee for DUPLE (see Appendix B) assuming

that the negated surrogate reward function −r(f (x; w), y) is L ′-strongly smooth. This is

satisfied by the sigmoidal reward function for some L ′ that depends on the size of the network.

We nowhere assume the surrogate reward functions to be concave or convex. We will use

the shorthand ∇ t = ∇wg(wt ; St , α
t , β t) and F(wt ,αt) = g(wt ; St , α

t , β t). The following

result assures us that the DUPLE procedure will stabilize rapidly and not oscillate indefinitely.

Theorem 2 Consider a concave performance measure defined using a link function Ψ that

is concave and L ′-smooth. Then, if executed with a uniform step length satisfying η < 2
L ′ ,

then DUPLE ǫ-stabilizes within Õ

(
1
ǫ2

)
iterations. More specifically, within T iterations,

DUPLE identifies a model wt such that
∥∥∇ t

∥∥
2

≤ O

(√
L ′ log T

T

)
.

5.3 DENIM: deep learning with nested concave performancemeasures

We extend the DUPLE algorithm to performance measures that involve a nesting of concave

functions. To reiterate, the KLD performance measure which is used extensively for quantifi-

cation, falls in this category. These measures are challenging to optimize using DUPLE due

to their nested structure which prevents a closed form solution for the Fenchel conjugates.

Algorithm 3 DENIM: A DEep Nested prImal-dual Method

Require: Primal step sizes ηt , network configuration {din, conf}, batch size b

1: w0 ← NN-init(din, 1, conf)

2:
{

r0, q0, α0,β0, γ 0
}

← init()

3: for t = 1, 2, . . . , T do

4: St ← SAMPLE mini-batch of b data points
{
(xt

i
, yt

i
)
}

i=1,...,b

5: wt ← wt−1 + ηt · ∇wh(wt ; St , α
t , βt , γ t) ⊲ Primal Step

6: qt ← (t − 1) · qt−1 + (αt−1
1 , βt−1

1)
∑b

i=1 r+(wt ; xt
i
, yt

i
)

7: qt ← qt + (αt−1
2 , βt−1

2)
∑b

i=1 r−(wt ; xt
i
, yt

i
)

8: qt ← t−1
(
qt − (ζ∗

1 (αt), ζ∗
2 (βt))

)

9: rt ← t−1
(
(t − 1) · rt−1 +

∑b
i=1(r(wt ; xt

i
, yt

i
))
)

2

10: αt = arg min
α

{
α · rt − ζ∗

1 (α)
}

⊲ Inner Dual Step 1

11: βt = arg min
β

{
β · rt − ζ∗

2 (β)
}

⊲ Inner Dual Step 2

12: γ t = arg min
γ

{
γ · qt − Ψ ∗(γ)

}
⊲ Outer Dual Step

13: end for

14: return wT

To address this challenge, we present DENIM (Algorithm 3) that itself nests its updates

to mimic the nesting of the performance measures. DENIM follows a similar principle as

DUPLE and is based on the NEMSIS algorithm of Kar et al. (2016). However, the NEMSIS

1 r(wt ; xt
i
, yt

i
) = (r+(wt ; xt

i
, yt

i
), r−(wt ; xt

i
, yt

i
)).

123

Machine Learning (2018) 107:1597–1620 1609

Table 2 Statistics of datasets. Datasets are all binary and arranged in increasing order of the prevalence of

the rare class. The most imbalanced dataset is KDD08 with under 1% positives and over 99% negatives. The

most balanced is Cod-RNA with 33% positives and 64% negatives

Data set # Points (K) # Features Rare class (%) Source

KDDCup08 100 117 0.61 KDDCup08

PPI 240 85 1.19 Qi et al. (2006)

CoverType 580 54 1.63 UCI

Letter 20 16 3.92 UCI

IJCNN-1 140 22 9.57 UCI

Twitter 10 NA 22.6 SEMEVAL16

Adult (a9a) 50 123 23.93 UCI

Cod-RNA 490 8 33.30 UCI

algorithm faces the same drawbacks as the SPADE algorithm and is unsuitable for training

deep models. Due to the more complex nature of the performance measure, DENIM works

with a slightly different cost-weighted objective function at each time step.

h(w; S,α,β, γ) = (γ1α1 + γ2β1) · P̂S(w) + (γ1α2 + γ2β2) · N̂S(w)

However, similar to DUPLE, all these coefficients can be calculated using cheap to update

proxies. Note also that DENIM performs inner and outer dual updates that are themselves

nested. DENIM enjoys similar convergence results as DUPLE which we omit for lack of

space.

6 Experimental results

We performed extensive evaluation2 of DAME, DUPLE and DENIM on benchmark

and real-life challenge datasets and found it to outperform both traditional techniques for

training neural networks, as well as the more nuanced training techniques popularly used to

handle label imbalance and non-decomposable measures such as cost-weighted classification,

plug-in methods and loss-augmented inference. We note that loss-augmented inference has

been used in the past (Song et al. 2016) for ranking measures. We show that our methods

outperform loss-augmented inference as well.

We developed two variants of the DUPLE and DENIM algorithms in a manner similar

to Kar et al. (2016). DUPLE-NS refers to a variant of the DUPLE algorithm that uses count

based rewards instead of sigmoidal rewards. Recall that DUPLE collects the sigmoidal

rewards obtained by the algorithm on positive and negative points that are used to set the dual

variables. DUPLE-NS instead checks whether those data points were classified correctly or

not, i.e., it collects count rewards. However, while computing gradients, we revert back to

the use of the sigmoidal reward function. DENIMS-NS was constructed similarly.

Datasets We use the datasets listed in Table 2. Twitter refers to the dataset revealed as a part

of the SEMEVAL 2016 sentiment detection challenge (Esuli 2016).

Competing methods We implemented and adapted several benchmarks in an attempt to

critically assess the performance of our methods.

2 Code and datasets for our experiments are available at https://github.com/purushottamkar/DeepPerf.

123

https://github.com/purushottamkar/DeepPerf

1610 Machine Learning (2018) 107:1597–1620

(1) ANN 0-1 refers to a benchmark that trains a neural network using the cross-entropy loss

function in an attempt to minimize the misclassification rate.

(2) ANN-p refers to a benchmark that trains a neural network using a cost-weighted cross

entropy loss function in an attempt to minimize cost-weighted misclassification loss.

Each class is given a weight inversely proportional to its prevalence so as to give more

emphasis to the rare class.

(3) STRUCT-ANN refers to an implementation of loss-augmented inference and cutting

plane techniques that have been popularly used in the past to optimize arbitrary non-

decomposable performance measures. Please refer to Appendix C for the implementation

details of this method.

(4) ANN-PG refers to an implementation of the plug-in classification technique for F-

measure as suggested in Koyejo et al. (2014).

Network architecture All neural networks being compared in a given experiment were

given the same architecture. For experiments on concave and nested concave performance

measures, all methods were provided with a network with 2 hidden layers of size 150 and

100 respectively. The ReLU activation function was used for all internal nodes and the output

node used a sigmoidal activation. For experiments on psuedo-linear performance measures,

the network contained three hidden layers of size 60, 60, 80 with sigmoidal activation on all

nodes. The DAME method (Algorithm 1) used dint = 80.

Batch size The batch size was fixed to 256 for all algorithms except STRUCT-ANN which

was given a much larger batch size of 6000. This is because we found the method to do

better with larger batch sizes. However, this greatly slowed down gradient computations and

each iteration of STRUCT-ANN took much longer than each iteration of DAME. Increasing

batch sizes indefinitely is not an option since it rapidly increases memory requirements as

the number of temporary variables stored by popular implementations of back-propagation

increase linearly with batch size. If one tries to reduce the memory footprint by making mul-

tiple forward passes, then the methods usually slow down excessively on GPU architectures.

Even so we will see that our algorithms far outperform STRUCT-ANN. We note that even

the past work of Song et al. (2016) did have to resort to small batches to avoid memory issues.

Step length We used the Adam optimizer to tune the step lengths for all methods. The learning

rate hyper-parameter provided to the Adam method was tuned in the range {0.001, 0.01, 0.1}
on a held-out validation set. Other hyper-parameters of the Adam method were fixed to their

default values.

6.1 Experiments with pseudo-linear measures

Figure 1 below shows the performance of DAME on optimizing the F-measure. A naïve

training method with the misclassification loss ANN 0-1 yields extremely poor F-measure

performance. Moreover, plug-in methods such as those proposed in Koyejo et al. (2014) ANN-

PG also perform relatively poorly. DAME on the other hand is able to rapidly offer very good

F-measure scores after looking at a fraction of the total data. DAME also outperforms ANN

0-1 and ANN-p on all the datasets. We can also see that STRUCT-ANN offers consistently

poor performance. This is because the method keeps predicting almost all points as negative,

incurring a very low F-measure score. This may be partly due to using a smaller batch size.

However, as pointed out before, STRUCT-ANN was provided a much larger batch size than

other methods. Increasing the batch size much further adversely affected performance due

to excessive memory usage.

123

Machine Learning (2018) 107:1597–1620 1611

(a) (b) (c)

(d) (e) (f)

Fig. 1 Experiments on maximizing F-measure, a pseudo-linear performance measure. The Y-axis represents

test error and the X-axis represents training iterations. We paused the training after every few iterations and

recorded the test accuracy of the model at that snapshot. DAME outperforms all other benchmarks by a large

margin. STRUCT-ANN tends to classify most data points as negative and gets a poor F-measure score as a

result

6.2 Experiments on concavemeasures

Figure 2a–d on optimizing MinTPRTNR and Fig. 2e–h on optimizing QMean show that

DUPLE offers faster convergence in comparison to ANN 0-1 which has a very hard time

obtaining a non-trivial MinTPRTNR score. For the experiment on IJCNN1, we ran the exper-

iment for a longer time to allow ANN 0-1 and STRUCT-ANN to converge and we observe

that they are highly time intensive, when compared to DUPLE.

In the experiments with MinTPRTNR, both DUPLE and ANN-p perform comparably

though ANN-p gradually starts overfitting whereas DUPLE retains its performance. With

QMean, ANN-p starts overfitting on both PPI and KDD08 though DUPLE keeps performing

better. DUPLE-NS is slightly slower than ANN-p on IJCNN1. Our experiments show that

DUPLE and DUPLE-NS are more consistent and robust to overfitting across datasets than

ANN-p.

DUPLE and its variant DUPLE-NS outperform most competitors both in terms of speed

as well as accuracy though both DUPLE and DUPLE-NS perform comparably. It is also to be

noted that DUPLE not only takes fewer iterations than STRUCT-ANN, but each iteration of

DUPLE much faster than that of STRUCT-ANN since we gave STRUCT-ANN a batch size

of 6000 whereas DUPLE operated with batch sizes of 256, which is an order of magnitude

smaller. Thus, STRUCT-ANN is even slower in convergence than these figures indicate.

6.3 Experiments with nested performancemeasures

In Fig. 2i–l, we can see the results obtained by DENIM while optimizing the KLD per-

formance measure. It shows rapid convergence to near-perfect quantification scores. The

experiments also show that DENIM and DENIMS-NS require far fewer iterations than its

123

1612 Machine Learning (2018) 107:1597–1620

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 Experiments with MinTPRTNR (Fig. 2a–d) and QMean (Fig. 2e–h), two concave performance measures

and the KL divergence (Fig. 2i–l), a nested concave performance measure. The Y-axis denotes test error and the

X-axis denotes training iterations. We paused training after every few iterations and recorded the test accuracies

of the models presented by various methods at that time. DUPLE and ANN-p are the leading methods for

MinTPRTNR although DUPLE offers more stable performance e.g. on PPI. For the QMean performance

measure, DUPLE leads on PPI, KDD08 and A9A and offers more stable performance than ANN-p. DUPLE

and ANN-p are the leading methods for the KL divergence with ANN-p leading on the CovType dataset. On

most experiments, STRUCT-ANN continues to classify most data points as negative and gets a poor score

with respect to all performance measures as a result. On the PPI dataset with MinTPRTNR, STRUCT-ANN

does offer non-trivial predictions, however, its behavior is very erratic

competitor ANN 0-1 (whenever ANN 0-1 is successful at all). The STRUCT-ANN bench-

mark does not seem to appear in the graphs for this performance measure since it always

123

Machine Learning (2018) 107:1597–1620 1613

(a) (b)

Fig. 3 Results on the Twitter sentiment analysis task. a Convergence to optimal test KLD performance for

different RNN models. b Change in quantification performance with distribution drift

got a very large KL-divergence value by consistently predicting every data point as negative.

ANN-p achieves comparable performance to DENIM on most datasets and is the winner on

the CoverType dataset. However, we believe that with proper pretraining, we can get much

better performance for DENIM on this performance measure.

6.4 Case study: quantification for sentiment analysis

We report the results of experiments comparing the performance of the DENIM on a Twitter

sentiment detection challenge problem. The task in this challenge was to correctly ascertain

the fraction of tweets exhibiting various sentiments. The performance was measured using

the Kullback–Leibler divergence (1). We trained an end-to-end LSTM model trained using

DENIM. We also trained an attention-enabled network for the same task using DENIM. Our

models accepted raw text in the standard one-hot encoding format and performed task specific

optimization and generated task specific vocabulary embeddings. Our representations were

64-dimensional and learnt jointly with other network parameters.

Implementation details All our LSTM models used a single hidden layer with 64 hidden

nodes, which gave rise to 64-dimensional hidden state representations. For the LSTM model,

the final label was obtained by applying a linear model with a sigmoidal activation function.

For the attention models (referred to as AM), the decoder hidden states were set to be 64-

dimensional as well. The alignment model was set to be a feed-forward model with a softmax

layer. Step lengths were tuned using standard implementations of the Adam method. Training

was done by adapting the DENIM method.

DENIM is able to obtain near perfect quantification on both LSTM (KLD = 0.007) as

well as AM (KLD = 0.00002) models (see Fig. 3a). In contrast, the classical cross-entropy

method with attention model (AM-CE) is unable to obtain satisfactory performance. DENIM

converges to optimal test KLD performance in not only far lesser iterations, but also by using

far fewer data samples. Also note that the AM models trained with DENIM give KLD losses

that are much smaller than what they offer when trained with DENIM.

We also experimented with artificially changing the fraction of positive and negative

examples in order to see the performance of our model under distribution drift (see Fig. 3b).

The fraction of negatives and positives in the test set was distorted from their original values by

re-sampling. As the test distribution priors are distorted more and more, AM-CE (Attention

Model trained with Cross Entropy) performs extremely poorly. DENIM with LSTMs displays

some degree of robustness to drift but succumbs at extremely high level of drift. DENIM with

123

1614 Machine Learning (2018) 107:1597–1620

TGIF!! Make it a great day, Robbie!!

Monsanto’s Roundup not good for you

I may be in love with Snoop

anyone having problems with Windows 10? may be coincidental

but since i downloaded, my WiFi keeps dropping out.

@NariahCFC against barca pre season stand out player 1st half..

@alias8818 Hey there! We’re excited to have you as part of the

T-Mobile family!

listening to Fleetwood Mac and having my candles lit is the

perfect Sunday evening

Fig. 4 Figuring where the attention is. Highlighted words got high attention scores. A red (green) highlight

indicates that the tweet was tagged with a negative (positive) sentiment (Color figure online)

AM models on the other hand, remains extremely robust to even a high degree of distribution

drift, offering near-zero KLD error.

The benefits of the attention models employed by DENIM allow it to identify critical

words in a tweet that signal its polarity. The highlighted words (see Fig. 4) are those for

which DENIM assigned an attention score α ≈ 1.

7 Conclusion

Our work presents algorithms to train neural networks and other non-linear models in pursuit

of non-decomposable performance measures that are popularly used in label-imbalanced

training and quantification tasks. Our algorithms offer better performance while using fewer

iterations/samples, as compared to traditional cross-entropy based training as well as several

other benchmarks usually adopted while optimizing non-decomposable losses such as cost-

weighted classification or plug-in methods or loss-augmented inference. This leads to several

avenues of future work and improvements. We observed impressive performance boosts when

we employed pretraining with the DAME method and the same can be experimented with

other methods as well. It would be very interesting to investigate extensions of the DUPLE,

DENIM and DAME methods to more complex prediction tasks such as multi-class and multi-

label classification tasks. Obtaining a better theoretical understanding of how these methods

behave when operated with non-linear models (in particular neural networks) would also be

of interest.

Acknowledgements A.S. did this work while he was a student at IIT Kanpur and acknowledges support from

The Alan Turing Institute under the Turing Doctoral Studentship grant TU/C/000023. P. Kar is supported by

the Deep Singh and Daljeet Kaur Faculty Fellowship and the Research-I foundation at IIT Kanpur, and thanks

Microsoft Research India and Tower Research for research grants.

Appendix A: Proof of Theorem 1

To prove Theorem 1, we first show the following result. As mentioned before, we will omit

the lower layers from the analysis since they are not affected by the fine-tuning phase where

DAME is executed.

123

Machine Learning (2018) 107:1597–1620 1615

Lemma 1 If executed with a uniform step length satisfying η < 2
Lκ

with a batch size

of B, then within κ2

m
1

η

(
1− Lκη

2

)
ǫ2

iterations, DAME identifies a model w
t,0
1 such that

∥∥∥∇wV
S̃t (w

t,0
1 , vt−1)

∥∥∥
2

≤ ǫ + O

(
r√
B

)
with high probability. If a mini-batch is not used

and we have St,i = S̃ for all time steps t, i , then we are (deterministically) assured of model

such that

∥∥∥∇wV
S̃t (w

t,0
1 , vt−1)

∥∥∥
2

≤ ǫ.

Given this, Theorem 1 follows as shown below.

Proof (of Theorem 1) Since we have ∇wP(a,b)(w) = ∇wV (w,P(a,b))

Pb(w)
, and Pb(w) ≥ m, The-

orem 1 we have
∥∥∇wP(a,b)(w)

∥∥
2

≤ 1
m

∥∥∇wV (w, P(a,b))
∥∥

2
. Since Lemma 1 gives us

∥∥∇wV (w, P(a,b))
∥∥

2
≤ ǫ + O

(
r√
B

)
, we have

∥∥∇wP(a,b)(w)
∥∥

2
≤ ǫ

m
+ O

(
r

m
√

B

)
. Setting

ǫ′ = ǫ
m

gives us the desired result. ⊓⊔

Proof (of Lemma 1) It is easy to see that V (w1, v) is a Lκ-strongly smooth function of the

model parameter w1 for any realizable valuation i.e. v = P(a,b)(w) for some w ∈ W . Now,

the DAME algorithm makes the following model updates within the inner loop

w
t−1,t ′
1 = w

t−1,t ′−1
1 + η · g(t−1,t ′),

where g(t−1,t ′) = ∇
w

t−1,t ′−1
1

V (w
t−1,t ′−1
1 , vt) if not using a mini batch and g(t−1,t ′) is the

gradient calculated on the mini-batch if using one. Since the negated valuation function i.e.

−V is strongly smooth, we get

V (w
t−1,t ′
1 , vt) ≥ V (w

t−1,t ′−1
1 , vt) +

〈
g(t−1,t ′), w

t−1,t ′
1 − w

t−1,t ′−1
1

〉

− Lκ

2

∥∥∥w
t−1,t ′
1 − w

t−1,t ′−1
1

∥∥∥
2

2

= V (w
t−1,t ′−1
1 , vt) + η

(
1 − Lκη

2

)∥∥∥g(t−1,t ′)
∥∥∥

2

2

Now this shows that at each step where

∥∥∥g(t−1,t ′)
∥∥∥ > ǫ, the valuation of the model θ (t+1,i)

goes up by at least η

(
1 − Lκη

2

)
ǫ2. It is easy to see that if V (wt

1, v
t) ≥ c then P(wt

1) ≥
P(wt−1

1) + c
M

. Since the maximum value of the performance measure for any model is M
m

,

putting these results together tell us that DAME cannot execute more than M2

m
1

η
(

1− Lκη
2

)
ǫ2

inner iterations without encountering a model w
t,t ′
1 such that

∥∥∥g(t−1,t ′)
∥∥∥

2
≤ ǫ.

If not using a mini-batch, this already proves the theorem. Otherwise we have to do a

bit more work in applying a standard McDiarmid’s inequality to control the norm devi-

ation. Let S := St,i =
{
(x ji , y ji)

}
j=1,...,B

denote the mini-batch chosen and let gS

denote the gradient with respect to the valuation function obtained as a result. Also denote

∇ = ∇
w

t−1,t ′−1
1

V (w
t−1,t ′−1
1 , vt) for notational simplicity..

Notice that the mini-batches are chosen uniformly randomly (with replacement) and inde-

pendently of previous choices of mini-batches. This assures us that E
[
gS

]
= ∇ where

the expectation is over the choice of the mini-batch S. Let ZS := ‖gS − ∇‖2. Sup-

pose we had instead chosen a mini-batch which differs from S at just one data point i.e.

S′ = S\
{
(x jk , y jk)

}
∪
{
(x′

jk
, y′

jk
)

}
for some k ∈ [B].

123

1616 Machine Learning (2018) 107:1597–1620

Then, by triangle inequality, we have ZS − ZS′ ≤ ‖gS − gS′‖ ≤ r
B

since we have assumed

bounded gradients with respect to the reward functions. Similarly, we have ZS′ − ZS ≤ r
B

which gives us |ZS − ZS′ | ≤ r
B

which tells us that ZS is a r
B

-stable estimator. Moreover,

similarly and by applying Jensen’s inequality and exploiting the fact that the mini-batch is

chosen i.i.d., we see that E [ZS] ≤
√

E
[
Z2

S

]
≤ 2r√

B
. An application of the McDiarmid’s

inequality gives us, with probability at least 1 − δ,

∥∥∥g(t−1,t ′) − ∇(t−1,t ′)
∥∥∥

2
≤ 2r√

B
+ r

√
log 1

δ

B

Taking a union bound over all iterations and applying the triangle inequality finishes the

proof as

∥∥∥∇(t−1,t ′)
∥∥∥

2
≤
∥∥∥g(t−1,t ′)

∥∥∥
2
+
∥∥∥g(t−1,t ′) − ∇(t−1,t ′)

∥∥∥
2

≤ ǫ + O

(
r

√
log 1

δ

B

)
. ⊓⊔

Appendix B: Proof of Theorem 2

Theorem 3 Consider a concave performance measure defined using a link function Ψ that

is concave and whose negation is L ′-strongly smooth. Then, if executed with a uniform step

length satisfying η < 2
L ′ , then DUPLE ǫ-stabilizes within Õ

(
1
ǫ2

)
iterations. More specifi-

cally, within T iterations, DUPLE identifies a model wt such that
∥∥∇ t

∥∥
2

≤ O

(√
L ′ log T

T

)
.

Proof Recall that we also assume that the negated reward functions −r(f (x; w), y) are

L ′-strongly smooth functions of the model w (which the negated sigmoid does satisfy for

L ′ = O (1)). However we will not assume convexity or concavity of the loss function. We

will use the shorthands ∇ t = ∇wg(wt ; St , α
t , β t) and F(wt ,αt) = g(wt ; St , α

t , β t) where

αt = (αt , β t). Also recall that we have g(w; St , α, β) = α · P̂St (w) + β · N̂St (w) as the

cost-weighted objective function with respect to which gradients are taken. We note that we

are giving the proof for the case when mini-batches are taken and not assuming access to

full-batches.

DUPLE makes the following model update wt+1 = wt +η ·∇ t . Using the strong smooth-

ness of the reward functions, we get

F(wt+1,αt) ≥ F(wt ,αt) +
〈
∇ t , wt+1 − wt

〉
− L ′

2

∥∥wt+1 − wt
∥∥2

2
,

which, upon rearranging, give us
∥∥∇ t

∥∥2

2
≤ F(wt+1,αt)−F(wt ,αt)

η
(

1− ηL
2

) , which, upon summing up,

gives us

T∑

t=1

∥∥∇ t
∥∥2

2
≤ 1

η

(
1 − ηL ′

2

)
(

F(wT +1,αT) +
T∑

t=2

F(wt ,αt−1) − F(wt ,αt)

)
.

Now, we notice that since the (negated) reward functions are L ′-strongly smooth, so is the

entire (negated) performance measure PΨ ,S(w). However, this implies (using the self duality

of the L2 norm) that (see for example Kakade et al. 2012 Theorem 3) that the function

Ψ ∗(α, β) is 1
L ′ -strongly concave (in other words −Ψ ∗ is strongly convex) i.e. it satisfies

(denote α = (α, β))

123

Machine Learning (2018) 107:1597–1620 1617

Ψ ∗(α) ≤ Ψ ∗(α̃) +
〈
∇αΨ ∗(α̃),α − α̃

〉
− 1

2L ′ ‖α − α̃‖2
2

Thus, the functions F(w,α) are 1
L ′ strongly concave with respect to α. Now, notice that

DUPLE performs its dual step using an arg min operation on the accumulated rewards on

positive and negative points, with −Ψ ∗ acting as a regularizer. This is exactly a follow the

regularized leader step and we have shown above that −Ψ ∗ is strongly convex since Ψ ∗ is

strongly concave. Thus, by a standard forward regret-analysis (see for example (Kar et al.

2014) Theorem 1) of the dual updates on the strongly concave functions F(w,α), we get

T∑

t=2

F(wt ,αt−1) − F(wt ,αt) ≤ O
(
L ′ log T

)
.

Thus, we get
∑T

t=1

∥∥∇ t
∥∥2

2
≤ O

(
L ′ log T

η

(
1− ηL′

2

)

)
. This means within T iterations, we must come

across a point where we have
∥∥∇ t

∥∥2

2
≤ 1

T
O

(
L ′ log T

η
(

1− ηL′
2

)

)
which proves the result. ⊓⊔

Appendix C: Implementation details for the STRUCT-ANN benchmark

Our goal here is to give a brief overview of the techniques used to perform loss-augmented

inference to build the STRUCT-ANN benchmark. We refer the reader to Tsochantaridis

et al. (2005) and Joachims et al. (2009) for the motivation behind these techniques and more

details. For this discussion, we will work with a non-decomposable loss function Δ which

is a function of the TPR, TNR values of the classifier i.e. for a classifier h : X → {−1,+1}
we have Δ(h) = Δ(TPR(h), TNR(h)). In order to apply this to performance measures like

F-measure which are “reward” like and which we wish to maximize instead, simply take

Δ = −F-measure i.e. negate the performance measure to get something that looks like a loss

function.

Suppose we are trying to train a scoring function fw : X → R indexed by a param-

eter w using a training set or mini-batch of (xi , yi)i=1,...,n of n training points. Let

y = {y1, y2, . . . , yn} ∈ {−1,+1}n denote the training label vector. Then, for any other

label vector ŷ =
{

ŷ1, ŷ2, . . . , ŷn

}
∈ {−1,+1}n of the same dimension, we define

TPR(ŷ, y) := 1

n

n∑

i=1

I
{

ŷi = 1 ∧ yi = 1
}

TNR(ŷ, y) := 1

n

n∑

i=1

I
{

ŷi = −1 ∧ yi = −1
}
,

where I {·} denotes the indicator function which outputs 1 if the argument is true else 0. Then,

the structural surrogate for the performance measure Δ, which we denote by the notation Δ̂

is defined for any scoring function such as fw as follows

Δ̂(fw) = max
ŷ∈{−1,+1}n

{
Δ(TPR(ŷ, y), TNR(ŷ, y)) +

n∑

i=1

(ŷi − yi) · fw(xi)

}

By applying Danskin’s theorem, we can conclude that for a given parameter w, if ỹ is a

maximizer of the above expression i.e. if

123

1618 Machine Learning (2018) 107:1597–1620

ỹ = arg max
ŷ∈{−1,+1}n

{
Δ(TPR(ŷ, y), TNR(ŷ, y)) +

n∑

i=1

(ŷi − yi) · fw(xi)

}
,

then a subgradient to the function Δ̂(·) can be found at a parameter w0 as follows

∂Δ̂

∂w

∣∣∣∣∣
w=w0

∋
n∑

i=1

(ỹi − yi) · ∂ fw(xi)

∂w

∣∣∣∣
w=w0

= ∂

∂w

(
n∑

i=1

(ỹi − yi) · fw(xi)

)∣∣∣∣∣
w=w0

which tells us that we can perform (sub)gradient descent with respect to the loss function

Δ̂(·) using a “weighted” back-propagation step with weights equal to (ỹi − yi) once we have

identified ỹ.

Thus, in order to perform a single (sub)gradient descent step, we have to solve the following

problem

arg max
ŷ∈{−1,+1}n

{
Δ(TPR(ŷ, y), TNR(ŷ, y)) + 1

n

n∑

i=1

(ŷi − yi) · fw(xi)

}

To do this, first we need the values fw(xi) for all data points in the training set or mini-batch

which can be done using a single forward pass. From hereon it is easy to see that the above

optimization problem is equivalent to the following expressions

arg max
a,b

⎧
⎪⎨
⎪⎩

arg max
ŷ:TPR(ŷ,y)=a,
TNR(ŷ,y)=b

{
Δ(TPR(ŷ, y), TNR(ŷ, y)) + 1

n

n∑

i=1

ŷi · fw(xi)

}⎫⎪⎬
⎪⎭

arg max
a,b

⎧
⎪⎨
⎪⎩

arg max
ŷ:TPR(ŷ,y)=a,
TNR(ŷ,y)=b

{
Δ(a, b) + 1

n

n∑

i=1

ŷi · fw(xi)

}⎫⎪⎬
⎪⎭

arg max
a,b

⎧
⎪⎨
⎪⎩

Δ(a, b) + arg max
ŷ:TPR(ŷ,y)=a,
TNR(ŷ,y)=b

{
1

n

n∑

i=1

ŷi · fw(xi)

}⎫⎪⎬
⎪⎭

Note that the outer maximum over a, b need only be explored over discrete values of a and

b since the only valid values of a, b are
{
0, 1

n
, 2

n
, . . . , n−1

n
, 1
}

since they are supposed to

be valid TPR, TNR values. Now, a naive way to solve the above would take O
(
n2
)

time

where n is the training set size or mini-batch size, by cycling over all possible values of a, b.

However, for several performance measures Δ which includes all measures we have studied,

this optimization can be carried out in O (n log n) time. We refer the reader to Kar et al.

(2014) for details.

References

Barranquero, J., Díez, J., & del Coz, J. J. (2015). Quantification-oriented learning based on reliable classifiers.

Pattern Recognition, 48(2), 591–604.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., &

Bengio, Y. (2010). Theano: A CPU and GPU math compiler in Python. In Proceedings of the 9th Python

in science conference (SciPy 2010) (pp. 1–7). Austin, USA.

123

Machine Learning (2018) 107:1597–1620 1619

Eban, E., Schain, M., Mackey, A., Gordon, A., Saurous, R., & Elidan, G. (2017). Scalable Learning of non-

decomposable objectives. In Proceedings of the 20th international conference on artificial intelligence

and statistics (AISTATS).

Esuli, A. (2016). ISTI-CNR at SemEval-2016 Task 4: Quantification on an ordinal scale. In Proceedings of

the 10th international workshop on semantic evaluation (SemEval 2016). San Diego, US.

Esuli, A., & Sebastiani, F. (2015). Optimizing text quantifiers for multivariate loss functions. ACM Transactions

on Knowledge Discovery and Data 9(4), Article 27. https://doi.org/10.1145/2700406.

Gao, W., & Sebastiani, F. (2015). Tweet sentiment: From classification to quantification. In Proceedings of the

7th international conference on advances in social network analysis and mining (ASONAM 2015) (pp.

97–104). Paris, FR.

Joachims, T., Finley, T., & Yu, C. N. J. (2009). Cutting-plane training of structural SVMs. Machine Learning

Journal, 77(1), 27–59.

Kakade, S., Shalev-Shwartz, S., & Tewari, A. (2012). Regularization techniques for learning with matrices.

Journal of Machine Learning Research, 13, 1865–1890.

Kar, P., Li, S., Narasimhan, H., Chawla, S., & Sebastiani, F. (2016). Online optimization methods for the quan-

tification problem. In Proceedings of the 22nd ACM international conference on knowledge discovery

and data mining (SIGKDD 2016) (pp. 1625–1634). San Francisco, USA.

Kar, P., Narasimhan, H., & Jain, P. (2014). Online and stochastic gradient methods for non-decomposable

loss functions. In Proceedings of the 28th annual conference on neural information processing systems

(NIPS 2014) (pp. 694–702). Montreal, USA.

Kar, P., Narasimhan, H., & Jain, P. (2015). Surrogate functions for maximizing precision at the top. In Pro-

ceedings of the 32nd international conference on machine learning (ICML 2015) (pp. 189–198). Lille,

FR.

Kar, P., Sriperumbudur, B.K., Jain, P., & Karnick, H. (2013). On the generalization ability of online learning

algorithms for pairwise loss functions. In 30th international conference on machine learning (ICML).

Kennedy, K., Namee, B.M., & Delany, S.J. (2010). Learning without default: A study of one-class classification

and the low-default portfolio problem. In International conference on artificial intelligence and cognitive

science (ICAICS), Lecture notes in computer science (Vol. 6202, pp. 174–187).

Koyejo, O.O., Natarajan, N., Ravikumar, P.K., & Dhillon, I.S. (2014). Consistent binary classification with

generalized performance metrics. In Proceedings of the 28th annual conference on neural information

processing systems (NIPS 2014) (pp. 2744–2752). Montreal, CA.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cam-

bridge University Press.

Narasimhan, H., & Agarwal, S. (2013). A structural SVM based approach for optimizing partial AUC. In 30th

international conference on machine learning (ICML).

Narasimhan, H., & Agarwal, S. (2013). SVM
tight
pAUC: A new support vector method for optimizing partial AUC

based on a tight convex upper bound. In ACM SIGKDD conference on knowledge, discovery and data

mining (KDD).

Narasimhan, H., Kar, P., & Jain, P. (2015). Optimizing non-decomposable performance measures: A tale of

two classes. In Proceedings of the 32nd international conference on machine learning (ICML 2015) (pp.

199–208). Lille, FR.

Narasimhan, H., Vaish, R., & Agarwal, S. (2014). On the statistical consistency of plug-in classifiers for

non-decomposable performance measures. In 28th annual conference on neural information processing

systems (NIPS).

Qi, Y., Bar-Joseph, Z., & Klein-Seetharaman, J. (2006). Evaluation of different biological data and computa-

tional classification methods for use in protein interaction prediction. Proteins, 63, 490–500.

Schäfer, D., & Hüllermeier, E. (2018). Dyad ranking using Plackett–Luce models based on joint feature

representations. Machine Learning, 107(5), 903–941.

Song, Y., Schwing, A.G., Zemel, R.S., & Urtasun, R. (2016). Training deep neural networks via direct loss

minimization. In Proceedings of the 33rd international conference on machine learning (ICML).

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large Margin methods for structured and

interdependent output variables. Journal of Machine Learning, 6, 1453–1484.

Vincent, P. (1994). An introduction to signal detection and estimation. New York: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

https://doi.org/10.1145/2700406

1620 Machine Learning (2018) 107:1597–1620

Affiliations

Amartya Sanyal1,2 · Pawan Kumar3 · Purushottam Kar3 · Sanjay Chawla4 ·

Fabrizio Sebastiani5

Sanjay Chawla

schawla@qf.org.qa

Fabrizio Sebastiani

fabrizio.sebastiani@isti.cnr.it

1 The University of Oxford, Oxford, UK

2 The Alan Turing Institute, London, UK

3 Indian Institute of Technology Kanpur, Kanpur, India

4 Qatar Computing Research Institute, HBKU, Doha, Qatar

5 Istituto di Scienza e Tecnologia dell’Informazione, Pisa, Italy

123

http://orcid.org/0000-0002-4190-0449
http://orcid.org/0000-0003-2096-5267

	Optimizing non-decomposable measures with deep networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Works on non-decomposable measures with linear models
	2.2 Works on non-decomposable measures with deep models

	3 Our contributions
	3.1 Our contributions in the context of related work in deep models
	3.2 Our contributions in the context of related work in linear models

	4 Problem setting
	5 Deep optimization algorithms
	5.1 DAME: a deep learning technique for pseudo-linear performance measures
	5.2 DUPLE: a deep learning technique for concave performance measures
	5.3 DENIM: deep learning with nested concave performance measures

	6 Experimental results
	6.1 Experiments with pseudo-linear measures
	6.2 Experiments on concave measures
	6.3 Experiments with nested performance measures
	6.4 Case study: quantification for sentiment analysis

	7 Conclusion
	Acknowledgements
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Implementation details for the STRUCT-ANN benchmark
	References

