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Abstract
Control allocation is commonly utilized in over-actuated me-
chanical systems in order to optimally generate a requested
generalized force using a redundant set of actuators. Using a
control-Lyapunov approach, we develop an optimizing con-
trol allocation algorithm in the form of a dynamic update law,
for a general class of nonlinear systems. The asymptotically
optimal control allocation in interaction with an exponen-
tially stable trajectory-tracking controller guarantees uniform
boundedness and uniform global exponential convergence.

1 Introduction
Consider the nonlinear system

ẋ = f(t, x, τ) (1)

τ = h(t, x, u) (2)

wheret ≥ 0 is time, x ∈ Rn is the state vector,u ∈ Rr

is the control input vector, andτ ∈ Rp is a vector of virtual
controls, typically moments and forces in mechanical sys-
tems. During control design, the virtual controlτ is treated
as an available input, although it can only be manipulated in-
directly via the inputu throughτ = h(t, x, u). Mapping the
requestedτ to an inputu is the control allocation task. As-
sume given a virtual controlτc, in terms of a state feedback
law

τc = k(t, x) (3)

that uniformly exponentially stabilizes the origin of the sys-
tem (1) with perfect control allocation, i.e.τ = τc. The state
x typically represents the tracking error relative to a time-
varying reference trajectory, possibly also including an expo-
nentially stable observer error. The basic control allocation
problem is then to solve the system of nonlinear algebraic
equations (2) with respect to the control vectoru subject to
τ = τc. Since we consider fully- or over-actuated problems
(p ≥ r), this does not in general define a uniqueu and one
usually introduces an instantaneous cost function,J(t, x, u).
The cost function may incorporate power consumption or
cost of raw materials, for example, and we assume actuator
limitations and operational constraints are embedded intoJ
as penalty or barrier functions. The control allocation prob-
lem is then formulated in terms of solving the following non-
linear static minimization problem:

min
u

J(t, x, u) subject to τc − h(t, x, u) = 0 (4)

Optimizing solutions have been derived for certain classes of
over-actuated systems, such as aircraft, marine vessels, and
machines [1, 2, 3, 4, 5, 6, 7]. They all treat the control allo-
cation problem as a static (or quasi-dynamic) problem that is
solved independently of the dynamic control problem, gen-
erally considering linear modelsτ = Gu, with G ∈ Rp×r.
The main advantage of this is modularity through its hierar-
chical structure. In the present paper we take a Lyapunov-
based design approach, and consider general nonlinear mod-
els. Essentially, we specify a control Lyapunov function and
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derive an exponentially convergent dynamic update law for
u (similar to a gradient/Newton-like optimization or adap-
tive control law [8]) such that the control allocation problem
is solved dynamically. The main contribution is a theoretical
result that shows that it is not necessary to solve the optimiza-
tion problem (4) exactly at each time instant (or sampling
instant in a discrete-time implementation). It is shown that
convergence and asymptotic optimality of the dynamic con-
trol allocation in combination with an exponentially stable
trajectory-tracking nonlinear controller guarantees uniform
boundedness and uniform global exponential convergence of
the system. This is related to the concept of asymptotic op-
timality [9, 10] and sub-optimal control [11]. One advan-
tage of this approach is computational efficiency, since the
optimizing control allocation algorithm is implemented ex-
plicitly as a dynamic nonlinear controller withr + p states
to update. Solving (4) explicitly at each sampling instant
requires a computationally more expensive numerical solu-
tion of a nonlinear program to guarantee optimality, [12],
although the present results indicate that the computational
complexity can be safety reduced by for example early ter-
mination of the iterative numerical optimization.

2 Lyapunov design
Assumption 1. The virtual controller (3) makes the origin
uniformly globally exponentially stable, i.e. there exists a
differentiable functionV0 : [0,∞) × Rn → R and positive
constantsc1, c2, c3 andc4 such that

c1||x||2 ≤ V0(t, x) ≤ c2||x||2 (5)

∂V0

∂t
(t, x) +

∂V T
0

∂x
(t, x)f(t, x, k(t, x)) ≤ −c3||x||2 (6)

∣∣∣∣
∣∣∣∣
∂V0

∂x
(t, x)

∣∣∣∣
∣∣∣∣ ≤ c4||x|| (7)

Assumption 2.There exists a constant% > 0 such that

∂h

∂u
(t, x, u)

∂hT

∂u
(t, x, u) ≥ %Ip (8)

Assumption 3. The functionf is differentiable and satis-
fies f(t, 0, 0) = 0. Moreover, it is globally Lipschitz, uni-
formly in t, i.e. there exist constantsLx andLτ such that
||f(t, x1, τ1)− f(t, x2, τ2)|| ≤ Lx||x1−x2||+Lτ ||τ1− τ2||
for all x1, x2 ∈ Rn, τ1, τ2 ∈ Rp andt ≥ 0. The function
h is twice differentiable and globally Lipschitz, uniformly in
t, with h(t, 0, 0) = 0 and Lipschitz constantLh in x and
u. Finally, we require thatk is differentiable and Lipschitz,
uniformly in t, with k(t, 0) = 0.
Assumption 4.The cost functionJ is twice differentiable.
The optimization problem (4) is reformulated by introducing
a vector of Lagrange multipliersλ ∈ Rp and the Lagrangian

`(u, λ, x, t) = J(t, x, u) + (τc − h(t, x, u))T λ (9)

Local minima of (4) satisfy the first order optimality condi-
tions for`, and we define the limiting optimal setE∗ accord-



ingly:

E∗ =
{
(x, u, λ) ∈ Rn+r+p

∣∣ x = 0,

lim
t→∞

∂`

∂u
(u, λ, x, t) = 0, lim

t→∞
∂`

∂λ
(u, λ, x, t) = 0

}

For simplicity, it is assumed that the limit exists. The fol-
lowing control Lyapunov function is designed to attract the
total state(x, u, λ) to E∗ (notice thatu and λ are yet un-
specified, but will be states in the dynamic control allocation
algorithm):

V (t, x, u, λ) = σV0(t, x) +
1
2

(
∂`T

∂u

∂`

∂u
+

∂`T

∂λ

∂`

∂λ

)
(10)

whereσ > 0 is a constant that will be specified later. The
arguments of̀ are implicit in (10) to simplify the notation.
The time-derivative ofV along trajectories of (1) satisfies

V̇ = σ
∂V0

∂t
(t, x)

+σ
∂V T

0

∂x
(t, x)f(t, x, k(t, x) + h(t, x, u)− k(t, x))

+
(

∂`T

∂u

∂2`

∂u2
+

∂`T

∂λ

∂2`

∂u∂λ

)
u̇

+
(

∂`T

∂u

∂2`

∂λ∂u

)
λ̇ +

(
∂`T

∂u

∂2`

∂x∂u
+

∂`T

∂λ

∂2`

∂x∂λ

)

·f(t, x, h(t, x, u)) +
∂`T

∂λ

∂2`

∂t∂λ
+

∂`T

∂u

∂2`

∂t∂u
(11)

where

∂`

∂u
(u, λ, x, t) =

∂J

∂u
(t, x, u)− ∂hT

∂u
(t, x, u)λ (12)

∂`

∂λ
(u, λ, x, t) = τc − h(t, x, u) (13)

Define for notational convenience

α =
∂2`

∂u2

∂`

∂u
− ∂hT

∂u

∂`

∂λ

β = −∂h

∂u

∂`

∂u

δ =
(

∂`T

∂u

∂2`

∂x∂u
− ∂`T

∂λ

∂h

∂x

)
f(t, x, h(t, x, u))

+
∂`T

∂λ

(
τ̇c − ∂h

∂t

)
+

∂`T

∂u

∂2`

∂t∂u

and observe that

∂2`

∂u∂λ
= −∂hT

∂u
,

∂2`

∂x∂λ
= −∂h

∂x
+

∂τc

∂x
,

∂2`

∂u2
=

∂2J

∂u2
−

p∑

i=1

λi
∂2hi

∂u2

Hence, the definitions ofα andβ can be written
(

α
β

)
= H

(
∂`
∂u
∂`
∂λ

)
, with H =

(
∂2`
∂u2 −∂hT

∂u

−∂h
∂u 0

)
(14)

Assumption 5.There exist constantsκ2 > κ1 > 0 such that
κ1Ir ≤ ∂2`

∂u2 ≤ κ2Ir.

Lemma 1 Suppose assumptions 2 – 5 hold. Thenα = 0 and
β = 0 is equivalent to∂`

∂u = 0 and ∂`
∂λ = 0.

Proof. Lemma 16.1 in [13] proves thatH is bounded away
from singularity due to Assumptions 2 and 5.¤
Eq. (11) can be rewritten in the compact form

V̇ = σ
∂V0

∂t
(t, x)

+σ
∂V T

0

∂x
(t, x)f(t, x, k(t, x) + h(t, x, u)− k(t, x))

+αT u̇ + βT λ̇ + δ (15)

The αT u̇ term in (15) is made negative definite by the first
term of the dynamic update law

u̇ = −Γα + ζ (16)

With Γ = ΓT > 0. Similarly, theβT λ̇ term in (15) is made
negative by the first term of the dynamic update law

λ̇ = −Wβ + φ (17)

with W = WT > 0. The last (indefinite) term in (15) is
cancelled if the vector signalsζ(t) ∈ Rr andφ(t) ∈ Rp can
be chosen such that the following scalar algebraic equation
holds:

αT ζ + βT φ + δ = 0 (18)

We will return to this issue shortly, and show that we can
always find signalsζ andφ such that this equation holds for
all t ≥ 0. Using theorem 2.4.7 in [14], we get from (15),
(16), and (17) with the algebraic constraint (18):

V̇ = σ

(
∂V0

∂t
(t, x) +

∂V T
0

∂x
(t, x)f(t, x, k(t, x))

)

−αT Γα− βT Wβ

+σ
∂V T

0

∂x
(t, x)R(t, x, u, τc)(h(t, x, u)− τc)(19)

with

R(t, x, u, τc) =
∫ 1

0

∂f

∂τ
(t, x, sτc + (1− s)h(t, x, u))ds

(20)

The following global convergence result shows that the last
(indefinite) term in (19) is dominated by the other (negative)
terms.

Proposition 1 Consider the system (1), (2), (3), (16) and
(17) with ζ(t) and φ(t) satisfying (18). If Assumptions 1
- 5 hold, then||x(t)||, ||τ(t)|| and ||τc(t)|| are uniformly
bounded, and(x(t), u(t), λ(t)) → E∗ as t → ∞ with ex-
ponential convergence rate, for any initial conditionsx(0) ∈
Rn, λ(0) ∈ Rp, andu(0) ∈ Rr.

Proof. First, we show thatV is radially unbounded. Consider
anyx0 ∈ Rn, and some optimalu0 ∈ Rr andλ0 ∈ Rp such



that (x0, u0, λ0) ∈ E∗. Using theorem 2.4.7 in [14] it is
straightforward to show that

∂`

∂u
=

∂2`

∂u2

∣∣∣∣
0

(u− u0)− ∂h

∂u

T
∣∣∣∣∣
0

(λ− λ0) (21)

∂`

∂λ
= − ∂h

∂u

∣∣∣∣
0

(u− u0) (22)

where ∂2`
∂u2

∣∣∣
0

=
∫ 1

0
∂2`
∂u2 (su0+(1−s)u, λ, x, t)ds and ∂h

∂u

∣∣
0

=
∫ 1

0
∂h
∂u (su0 + (1− s)u, λ, x, t)ds. Hence,

∂`T

∂u

∂`

∂u
+

∂`T

∂λ

∂`

∂λ
=

(
u− u0
λ− λ0

)T
(

∂2`
∂u2

∣∣∣
0

− ∂hT

∂u

∣∣∣
0

− ∂h
∂u

∣∣
0

0

)

·
(

∂2`
∂u2

∣∣∣
0

− ∂hT

∂u

∣∣∣
0

− ∂h
∂u

∣∣
0

0

) (
u− u0
λ− λ0

)

Using Assumptions 2 and 5 it follows immediately that there
exists a constantk0 > 0 such that

∂`T

∂u

∂`

∂u
+

∂`T

∂λ

∂`

∂λ
≥ k0

(||u− u0||2 + ||λ− λ0||2
)

(23)

Sincex0 is arbitrary we conclude from Assumption 1 that
V is radially unbounded in(u, λ, x). Next, from (19) and
Assumption 1 it follows that

V̇ ≤ −c3σ||x||2 − λmin(W )||α||2 − λmin(Γ)||β||2

+2σLτ

∣∣∣∣
∣∣∣∣
∂`

∂λ

∣∣∣∣
∣∣∣∣ c4||x|| (24)

From the definitions ofα andβ together with Assumptions
2, 3 and 5 one can derive

∣∣∣∣
∣∣∣∣
∂`

∂λ

∣∣∣∣
∣∣∣∣ ≤ Lh

%
||α||+ κ2L

2
h

%2
||β|| (25)

Let M = max
(

Lτ Lhc4
% ,

Lτ L2
hc4κ2
%2

)
. Using Young’s in-

equality2ab ≤ a2/µ + b2µ for µ > 0, (24) and (25) lead
to

V̇ ≤ −σ(c3 −Mµ)||x||2 − (λmin(W )− σM/µ)||α||2
−(λmin(Γ)− σM/µ)||β||2 (26)

Notice thatµ > 0 andσ > 0 are arbitrary constants. First,
chooseµ > 0 such thatc3 > Mµ. Next, chooseσ > 0 such
thatλmin(W )−σM/µ > 0 andλmin(Γ)−σM/µ > 0. Be-
causeH is bounded away from singularity (due to Assump-
tions 2 and 5), there exist constantsk1, k2, k3, k4 > 0 such
that

V̇ ≤ −k1||x||2 − k2

∣∣∣∣
∣∣∣∣
∂`

∂u

∣∣∣∣
∣∣∣∣
2

− k3

∣∣∣∣
∣∣∣∣
∂`

∂λ

∣∣∣∣
∣∣∣∣
2

≤ −k4V (27)

Uniform boundedness and exponential convergence follow
directly. ¤
Consider the issue of solving (18) with respect toζ ∈ Rr

andφ ∈ Rp. To achieve a well-defined unique solution to

this time-varying scalar algebraic equation we solve a least-
squares problem subject to (18). This leads to the Lagrangian

L(ζ, φ, ν) =
1
2

(
ζT ζ + φT φ

)
+ ν

(
αT ζ + βT φ + δ

)
(28)

whereν ∈ R is a Lagrange multiplier. First order optimality
conditions leads toζ andφ being given by the solution to the
following time-varying linear system of equations:

(
Ir 0 α
0 Ip β

αT βT 0

)(
ζ
φ
ν

)
=

(
0
0
−δ

)
(29)

Lemma 2 Suppose Assumptions 2, 3 and 5 hold. Then (29)
always has a unique solution forζ andφ.

Proof. Assumingα 6= 0 or β 6= 0, the solution is indeed
unique, see Lemma 16.1 in [13]. On the other hand, ifα = 0
andβ = 0 it is evident from the definition ofδ thatδ = 0, due
to Lemma 1. The last equation in (29) then becomes trivial
andφ = 0, ζ = 0 defines the solution (notice thatν is not
uniquely defined in this case).¤

Proposition 2 Under the assumptions of Proposition 1,λ(t)
is uniformly bounded.

Proof. Substituting into (17) gives

λ̇ = −W
∂h

∂u

∂hT

∂u
λ + χ (30)

with χ = W ∂h
∂u

∂J
∂u +φ. Consider the Lyapunov-like function

V(λ) = 1
2λT λ. Its time-derivative is

V̇ = −λT W
∂h

∂u

∂hT

∂u
λ + λT χ (31)

≤ −%λmin(W )||λ||2 + ||λ|| · ||χ|| (32)

Uniform boundedness ofλ(t) follows because%λmin(W ) >
0 and Proposition 1 and Lemma 2 implies that||χ|| is uni-
formly bounded.¤
Remark 1. Notice that the matricesΓ > 0 and W > 0
may be chosen as time-varying, without changing any of the
theoretical properties, provided they are bounded away from
zero. Newton-like methods can therefore be implemented by
taking

(
u̇
λ̇

)
= −γ

(
HTH+ εIr+p

)−1
(

α
β

)
+

(
ζ
φ

)
(33)

whereγ > 0 andε ≥ 0 are time-varying parameters. In a
discrete-time implementation,γ may be chosen using a line
search to guarantee descent between each sampling instant
(in terms of a merit function), [13].
Remark 2. The terms involved in the algebraic constraint
(18) arise because the optimal solutionu to (4) is time-
varying. The termsζ andφ provides a feedforward-like com-
pensation in the update laws foru andλ, seeking to maintain
the time-varying optimum.
Remark 3. Althoughλ(0) can be chosen arbitrarily, one can
reduce transients byλ(0) = arg minλ V (0, x(0), u(0), λ).
Remark 4. If E∗ contains a unique minimum (for example
under some strict convexity assumption ofJ and additional
assumptions onh), or the dynamics are time-invariant, one
may extend the convergence result in a standard manner to
global exponential stability. Robustness is then an inherent
property.



3 Objectives and constraints
Usually, one wants to introduce a cost functionJ(t, x, u) that
captures multiple objectives such as minimizing power con-
sumption, satisfying input constraints, and avoiding singular-
ities. For example, power consumption can in some cases be
approximated with the following term [3]

J1(u) =
1
2
uT Hu

Input constraints on the formc(u) ≤ 0 can be added to the
optimization problem through a barrier function of the form

J2(u) = −w2

∑

i

log(−ci(u)) (34)

with w2 > 0, [13]. J2 will not be defined outside the admis-
sible region, so Proposition 1 reduces to a local convergence
result.
Since the control allocation algorithm explicitly computesu̇,
input rate constraints can be enforced by reducing the gain
Γ(t) sufficiently. Again, Proposition 1 may be reduced to a
local convergence result because(ζ, φ) (which are not influ-
enced byΓ) may require unacceptable high input rates, and
in addition one can in general not find a strictly positive lower
bound oninft λmin(Γ(t)) ≥ 0.
Singular effector configurations must usually be avoided be-
cause they may lead to temporary loss of full controllability,
[12]. This can be implemented by adding the following non-
convex term to the criterion

J3(t, x, u) = −w3 log det
(

∂h

∂u
(t, x, u)

∂hT

∂u
(t, x, u) + εIp

)

with w3 > 0, and ε > 0. Notice that a finite value of
J3(t, x, u) implies that Assumption 2 is always satisfied if
ε = 0. Hence, using this term in the criterion makes the con-
trol allocation algorithm avoid values ofu where the effector
configuration is singular, such that assumption 2 is effectively
enforced.

4 Examples
4.1 Linear state feedback control with linear effector
model
The example is intended to illustrate that the suggested ap-
proach is a natural nonlinear extension to the generalized in-
verse solution. We consider the over-actuated linear system

ẋ = Ax + Bτ, τ = Gu (35)

where the controllerτc = −Kx is stabilizing such that
A−BK is Hurwitz. We assumeG has full rank, such that the
control allocation problem is non-singular and assumption 2
holds. IfG does not have full rank, then the system(A,BG)
might not be controllable even if(A, B) is controllable.
Hence, this assumption is not restrictive. The cost func-
tion is the standard quadratic formJ(u) = 1

2uT Hu, with
H = HT > 0, and it follows that∂`

∂u = Hu − GT λ, ∂`
∂λ =

τc−Gu. This leads toα = HHu−HGT λ−GT (τc−Gu),
β = −G(Hu − GT λ), andδ = −(τc − Gu)T Kx. The
control allocation algorithm is
(

u̇
λ̇

)
=

(
−Γ(HH + GT G) ΓHGT

WGH −WGGT

) (
u
λ

)

+
(
−ΓGT Kx + ζ

φ

)
(36)

It is straightforward to verify that the system matrix in (36)
is Hurwitz. Notice thatζ = 0 andφ = 0 must hold at the
equilibrium point (origin). Ifx is considered as a constant
input in (36), it is easily verified that

u = H−1GT (GH−1GT )−1(−Kx) (37)

λ = −(GH−1GT )−1(−Kx) (38)

defines the equilibrium point for (36). The solution (37)
coincides with the conventional generalized inverse solu-
tion, e.g. [1], (or the Moore-Penrose pseudo-inverseG+ =
GT (GGT )−1 if H = Ir). Using standard singular perturba-
tion arguments (assuming the(u, λ)-dynamics are faster than
thex-dynamics), it follows that the optimal solution (37) is
asymptotically attained and that the suggested approach only
differs from from the generalized inverse solution by a fast
transient term due to the initial conditionsu(0) andλ(0) not
necessarily satisfying the optimality conditions.

4.2 Low-speed manoeuvering of over-actuated ship
This example is based on [15]. Consider a ship equipped
with two rudder/propeller pairs at the stern, and one tunnel
thruster at the bow. The nonlinear equations of motion in the
horizontal plane are

η̇ = R(ψ)ν (39)
Mν̇ + Dν = τ + d (40)

whereη ∈ R3 contains the(x, y)-position and headingψ
in an Earth-fixed coordinate frame, andν ∈ R3 the corre-
sponding velocity components in a vessel-fixed coordinate
frame.M is an inertia matrix,D is a linear damping matrix,
τ ∈ R3 contains surge and sway forces, as well as the yaw
momentum, andd ∈ R3 is a vector of slowly time-varying
disturbances.R(ψ) is the rotation matrix from the vessel-
fixed frame to the Earth-fixed frame. It is shown in [15] that
the following controller is globally exponentially stabilizing
under a reasonable assumption onψ:

τc = −KIR
T (ψ)ξ −KP RT (ψ)(η − η∗)−KDν(41)

ξ̇ = η − η∗ (42)

The model and controller parameters in the simulation study
are chosen in accordance with the scale model ship studied
in [15]. At low speed, the surge forceX (longitudinal) and
sway forceY (lateral) produced by a propeller/rudder pair is
given by [15]

T =
{

kTpω
2, ω ≥ 0

kTn |ω|ω, ω < 0 (43)

Lr =
{

T (1 + kLnω)(kLδ1δ + kLδ2 |δ| δ), ω ≥ 0
0, ω < 0 (44)

Dr =
{

T (1 + kDnω)(kDδ1 |δ|+ kDδ2δ
2), ω ≥ 0

0, ω < 0 (45)

T is the nominal thrust,Lr is the rudder lift force,Dr is the
rudder drag force,ω is the propeller angular velocity, andδ is
the rudder angle. The surge and sway forces of each thruster
are given as follows:

X = T −Dr, Y = Lr (46)
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Figure 1: Simulation results - solid lines are positions while
dashed lines are reference.

For the bow tunnel thruster, the same model can be used with
rudder angleδ ≡ 0. Let the stern propeller/rudder pairs have
index 1 and 2, and the bow tunnel thruster have index 3. Thus
the virtual controlsτ = (τ1, τ2, τ3)T defined by

τ1 = X1 + X2 (47)
τ2 = Y1 + Y2 + T3 (48)
τ3 = −`1,yX1 + `1,xY1 − `2,yX2 + `2,xY2 + `3,xT3(49)

are related to the control signalsu = (ω1, ω2, ω3, δ1, δ2)T ∈
R5 via the nonlinear model equations (43)- (46). The mo-
ment arms in (49) are defined by the location of the propul-
sion devices. Constraints|ωi| ≤ 18 Hz, and|δi| ≤ 0.61 rad
(35 deg) are implemented as a barrier functionJ2 on the form
(34) withw2 = 0.01. In addition, the cost function measures
relative power consumption and use of rudders

J(u) =
3∑

i=1

ki|ωi|ω2
i +

2∑

j=1

qjδ
2
j + J2(u) (50)

with k1 = k2 = 0.01, k3 = 0.02, andq1 = q2 = 500.
In the simulation example, we use (33) for optimization, with
γ = 1, ε = 10−9. The simulation results are presented in Fig-
ures 1-5, with a constant disturbanced. Except for the initial
transient (due to an arbitrary choice ofu(0) andλ(0)) and a
short period aroundt ≈ 210 whereω3 saturates, we observe
from Figure 3 that the attained generalized forcesτc are very
close to the commanded generalized forcesτ . The control al-
location problems is a non-convex optimization problem due
to asymmetry in rudder lift with positive and negative surge
thrust, cf. (44) and [15]. Hence, the control allocation al-
gorithm only seeks a locally optimal solution. One benefit
of the dynamic control allocation algorithm compared to a
(quasi-)static approach is that one avoids chattering due to
the fact that globally optimal control allocation is in fact dis-
continuous as a function of the requested generalized forces
[15, 16].

0 100 200 300 400 500 600
−0.04

−0.02

0

0.02

0.04

ν 1

0 100 200 300 400 500 600
−0.04

−0.02

0

0.02

0.04

ν 2

0 100 200 300 400 500 600
−0.01

0

0.01

0.02

0.03

ν 3

t

Figure 2: Simulation results - velocities.

5 Concluding remarks

Taking a control-Lyapunov design approach, an optimizing
nonlinear control allocation algorithm is derived. The al-
gorithm leads to asymptotic optimality, thus relaxing the
computational complexity considerably compared to a di-
rect nonlinear programming approach. At the same time,
we guarantee global exponential convergence of the overall
system comprising an uniformly globally exponentially sta-
ble trajectory-tracking nonlinear controller together with the
control allocation algorithm. It is also interesting to observe
that the method leads to feedforward-like terms that takes
into account the fact that the optimum is time-varying.
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Figure 4: Simulation results - control signals computed by the con-
trol allocation algorithm.
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Figure 5: Simulation results - Lagrange multipliers.


