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Abstract

Recent advances in graphics processing units (GPUs)

have resulted in massively parallel hardware that is easily

programmable and widely available in commodity desktop

computer systems. GPUs typically use single-instruction,

multiple-data (SIMD) pipelines to achieve high perfor-

mance with minimal overhead incurred by control hard-

ware. Scalar threads are grouped together into SIMD

batches, sometimes referred to as warps. While SIMD is

ideally suited for simple programs, recent GPUs include

control flow instructions in the GPU instruction set archi-

tecture and programs using these instructions may experi-

ence reduced performance due to the way branch execution

is supported by hardware. One approach is to add a stack

to allow different SIMD processing elements to execute dis-

tinct program paths after a branch instruction. The occur-

rence of diverging branch outcomes for different processing

elements significantly degrades performance. In this paper,

we explore mechanisms for more efficient SIMD branch ex-

ecution on GPUs. We show that a realistic hardware im-

plementation that dynamically regroups threads into new

warps on the fly following the occurrence of diverging

branch outcomes improves performance by an average of

20.7% for an estimated area increase of 4.7%.

1. Introduction

As semiconductor process technology continues to scale

and transistor density increases, computation potential con-

tinues to grow. However, finding effective ways to leverage

process technology scaling for improving the performance

of real world applications has become increasingly chal-

lenging as power limitations restrict clock frequency scal-

ing [13]. To improve performance, hardware must exploit

parallelism. Until recently, the dominant approach has been

to extract more instruction level parallelism from a single

thread through increasingly complex scheduling logic and

larger caches. Now attention has (again) shifted towards

using additional resources to increase throughput by ex-

ploiting explicit thread level parallelism in software (forcing

software developers to share the responsibility for improv-

ing performance).

The modern graphics processing unit (GPU) can be

viewed as an example of the latter approach [18, 28, 6].

Earlier generations of GPUs consisted of fixed function 3D

rendering pipelines. This required new hardware to en-

able new real-time rendering techniques, which impeded

the adoption of new graphics algorithms and thus motivated

the introduction of programmability, long available in tradi-

tional offline computer animation [35], into GPU hardware

for real-time computer graphics. In modern GPUs, much

of the formerly hardwired pipeline is replaced with pro-

grammable hardware processors that run a relatively small

shader program on each input vertex or pixel [18]. Shader

programs are either written by the application developer or

substituted by the graphics driver to implement traditional

fixed-function graphics pipeline operations. The compute

model provided by modern graphics processors for running

non-graphics workloads is closely related to that of stream

processors [29, 11].

The programmability of shader hardware has greatly im-

proved over the past decade, and the shaders of the latest

generation GPUs are Turing-complete, opening up excit-

ing new opportunities to speed up “general purpose” (i.e.,

non-graphics) applications. Based upon experience gained

from pioneering efforts to generalize the usage of GPU

hardware [28, 6], GPU vendors have introduced new pro-

gramming models and associated hardware support to fur-

ther broaden the class of applications that may efficiently

use GPU hardware [1, 27].

Even with a general-purpose programming interface,

mapping existing applications to the parallel architecture of

a GPU is a non-trivial task. Although some applications can

achieve speedups of 20 to 50 times over their CPU equiva-

lent [15], other applications, while successfully parallelized

on different hardware platforms, show little improvement

when mapped to a GPU [4]. One major challenge for con-

temporary GPU architectures is efficiently handling con-
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Figure 1. Performance loss due to branching
when executing scalar SPMD threads using

SIMD hardware (idealized memory system).

trol flow in shader programs [30]. The reason is that, in

an effort to improve computation density, modern GPUs

typically batch together groups of individual threads run-

ning the same shader program, and execute them together

in lock step on a single-instruction, multiple-data (SIMD)

pipeline [19, 21, 22, 20, 27]. Such thread batches are re-

ferred to as warps1 by NVIDIA [27, 30]. This approach

has worked well [17] for graphics operations such as tex-

turing [8, 3], which historically have not required branch

instructions. However, when shader programs do include

branches, the execution of different threads grouped into a

warp to run on the SIMD pipeline may no longer be uniform

across SIMD elements. This causes a hazard in the SIMD

pipeline [22, 37] known as branch divergence [19, 30]. We

found that naı̈ve handling of branch divergence incurs a

significant performance penalty on the GPU for control-

flow intensive applications relative to an ideal multiple-

instruction, multiple-data (MIMD) architecture with the

same peak IPC capability (See Figure 12).

This paper makes the following contributions:

� It establishes that, for the set of non-graphics applica-

tions we studied, reconverging control flow of process-

ing elements at the immediate post-dominator [23] of

the divergent branch is nearly optimal with respect to

oracle information about the future control flow asso-

ciated with each individual processing element.

� It quantifies the performance gap between the im-

mediate post-dominator branch reconvergence mech-

anism and the performance that would be obtained on

a MIMD architecture with support for the same peak

number of operations per cycle. Thus, highlighting the

importance of finding better branch handling mecha-

nisms.

1In the textile industry, the term “warp” refers to “the threads stretched

lengthwise in a loom to be crossed by the weft” [14].
2Naı̈ve and PDOM SIMD are described in Section 3 while DYNB SIMD

is described in Section 4. Benchmarks and microarchitecture are described

in Section 5.

� It proposes and evaluates a novel mechanism for re-

grouping processing elements of individual SIMD

warps on a cycle-by-cycle basis to greatly improve the

efficiency of branch handling.

In particular, for a set of data parallel, non-graphics ap-

plications ported to our modern GPU-like SIMD streaming

processor architecture, we find the speedup obtained by re-

converging the diverging threads within an SIMD warp at

the immediate post-dominator of the control flow path ob-

tains a speedup of 93.4% over not reconverging, and dy-

namically regrouping scalar threads into SIMD warps on a

cycle by cycle basis obtains an additional speedup of 20.7%

(136.9% speedup versus not reconverging). We estimate the

hardware required by this regrouping mechanism adds 4.7%

to the total chip area.

The rest of the paper is organized as follows: Section 2

gives an overview of the baseline GPU architecture used

in this paper. Section 3 describes the immediate post-

dominator control-flow reconvergence mechanism. Sec-

tion 4 describes our proposed dynamic regrouping mech-

anism. Section 5 describes the simulation methodology of

the proposed GPU architecture. Section 6 describes our ex-

perimental results. Section 7 describes related work. Sec-

tion 8 summarizes this paper and suggests future work.

2. SIMD Stream Processor Architecture

Figure 2 illustrates the baseline architecture used in the

rest of this paper. In this figure, each shader core exe-

cutes multiple parallel threads running the same shader pro-

gram, with each thread’s instructions executed in-order by

the hardware. The multiple threads on a given core are

grouped into SIMD warps by the scheduler. Each warp

of threads executes the same instruction simultaneously on

different data values in parallel scalar pipelines. Instruc-

tions read their operands in parallel from a highly banked

register file. Memory requests access a highly banked data

cache and cache misses are forwarded to memory and/or

higher level caches via an interconnection network. Each

memory controller processes memory requests by access-

ing its associated DRAM, possibly in a different order than

the requests are received so as to reduce row activate and

precharge overheads. The interconnection network we sim-

ulated is a crossbar with a parallel iterative matching allo-

cator [12].

Since our focus in this paper is non-graphics applica-

tions, graphic-centric details are omitted from Figure 2.

However, traditional graphics processing still heavily in-

fluences this design: The use of what is essentially SIMD

hardware to execute single-program, multiple-data (SPMD)

software (with possible inter-thread communication) is

heavily motivated by the need to balance efficient “general
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Figure 2. Baseline streaming processor ar-
chitecture. Blocks labeled ‘scalar pipeline’

include register read, execute, memory and

writeback stages.

purpose” computing kernel execution with a large quan-

tity of existing and important (to GPU vendors) graphics

software that has few, if any, control flow operations in

its shaders [30] (shader programs for graphics may very

well make increasing use of control flow operations in the

future, for example to achieve more realistic lighting ef-

fects—increasing the importance of this work).

2.1. Latency Hiding

Since cache hit rates tend to be low for streaming ap-

plications, performance would be severely penalized if the

pipeline had to stall for every memory request that missed.

This is especially true when the latency of memory requests

can be several hundred cycles due to the combined effects of

contention in the interconnection network and row-activate-

precharge overheads at the DRAM data pins. While tra-

ditional microprocessors can mitigate the effects of cache

misses using out-of-order execution, a more compelling ap-

proach when software provides the parallelism is to inter-

leave instruction execution from different threads.

With a large number of shader threads multiplexed on

the same execution resources, our architecture may em-

ploy fine-grained multi-threading (i.e., “barrel process-

ing”), where individual threads are interleaved by the fetch

unit [34] to proactively hide the potential latency of stalls

before they occur. As illustrated by Figure 3, instructions

from multiple shader threads are issued fairly in a round-

robin queue. When a shader thread is blocked by a memory

request, the corresponding shader core simply removes that

thread from the pool of “ready” threads and thereby allows

other shader threads to proceed while the memory system

processes its request. Barrel processing effectively hides

the latency of most memory operations since the pipeline is

occupied with instructions from other threads while mem-

ory operations complete.
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Figure 3. Using barrel processing to hide data
memory access latency.
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2.2. SIMD Execution of Scalar Threads

While barrel processing can hide memory latency with

relatively simple hardware, a modern GPU must also ex-

ploit the explicit parallelism provided by the stream pro-

gramming model [6, 27] associated with programmable

shader hardware to achieve maximum performance at min-

imum cost. SIMD hardware [5] can efficiently support

SPMD program execution provided that individual threads

follow similar control flow. Figure 4 illustrates how in-

structions from multiple shader threads are grouped into

a single SIMD warp and scheduled together into multiple

scalar pipelines. The multiple scalar pipelines execute in

“lock-step” and all data-independent logic may be shared to

greatly reduce area relative to a MIMD architecture. A sig-

nificant source of area savings for such an SIMD pipeline

is the simpler instruction cache support required for a given

number of scalar threads.

3. SIMD Control Flow Support

To ensure the hardware can be easily programmed for

a wide variety of applications, some recent GPU architec-



tures allow individual threads to follow distinct program

paths [26, 27]. We note that where it applies, predication [2]

is a natural way to support such fine-grained control flow on

an SIMD pipeline. However, predication does not eliminate

branches due to loops and introduces overhead due to in-

structions with false predicates.

To support distinct control flow operation outcomes on

distinct processing elements with loops and function calls,

several approaches have been proposed: Lorie and Strong

describe a mechanism using mask bits along with special

compiler-generated priority encoding “else” and “join” in-

structions [19]. Lindholm and Moy describe a mechanism

for supporting branching using a serialization mode [22].

Finally, Woop et al. describe the use of a hardware stack

and masked execution [37].

The effectiveness of an SIMD pipeline is based on the

assumption that all threads running the same shader pro-

gram expose identical control-flow behaviour. While this

assumption is true for most existing graphics rendering rou-

tines [30], most existing general-purpose applications (and

potentially, future graphics rendering routines) tend to have

much more diverse control-flow behaviour. When an input-

dependent branch leads to different control flow paths for

different threads in a warp, a hazard, known as branch di-

vergence occurs because an SIMD pipeline cannot execute

different instructions in the same cycle. The following sec-

tions describe two techniques for handling branch diver-

gence, both of which were implemented in our simulator.

3.1. SIMD Serialization

A naı̈ve solution to handle branch divergence in an

SIMD pipeline is to serialize the threads within a warp as

soon as the program counters diverge. While this method

is easy to understand and implement, it is unacceptable

in terms of performance. Without branch reconvergence,

threads within a warp will continue diverging until each

thread is executed in isolation from other threads in the

original warp, leading to very low utilization of the paral-

lel functional units as shown in Figure 1.

3.2. SIMD Reconvergence

Given the drawback of serialization there must be some

mechanism for reconverging control flow. The opportu-

nity for such reconvergence is illustrated in Figure 5(a). In

this example, a warp of threads diverges after reaching the

branch at A. The first three threads encounter a taken branch

and go to basic block B (indicated by the bit mask 1110

in Figure 5(a)), while the last thread goes to basic block

F (indicated by the bit mask 0001 in Figure 5(a)). The

three threads executing basic block B further diverge to ba-

sic blocks C and D. However, at basic block E the control

-
Ret./Reconv. PC Next PC Active Mask

G 1111

(c)  Initial State

(d)  After Divergent Branch

B/1110

C/1000 D/0110

E/1110

(a)  Example Program

Time

(b)  Re-convergence at Immediate Post-Dominator of B

(e)  After Reconvergence

F/0001

A/1111

G/1111

G B 1110TOS
G F 0001

-
Ret./Reconv. PC Next PC Active Mask

G 1111

G E 1110
G F 0001

E C 1000TOS
E D 0110

(i)
(ii)
(iii)

-
Ret./Reconv. PC Next PC Active Mask

G 1111

G E 1110TOS
G F 0001

A B C D E F G A

Figure 5. Implementation of immediate post-
dominator based reconvergence.

flow paths reach a join point [23]. If the threads that di-

verged from basic block B to C waited before executing E

for the threads that went from basic block B to basic block

D, then all three threads can continue execution in-sync at

block E. Similarly, if these three threads wait after execut-

ing E for the thread that diverged from A to F then all four

threads can execute basic blockG in-sync. Figure 5(b) illus-

trates how this sequence of events would be executed by the

SIMD function units. In this part of the figure solid arrows

indicate SIMD units that are active.

The behaviour described above can be achieved using a

stack based reconvergence mechanism [37]. In this paper,

we use the mechanism shown in Figure 5(c,d,e). Here we

show how the stack is updated as the group of three threads

in Figure 5(a) that execute B diverge and then reconverge

at E. Before the threads execute the diverging branch at B,

the state of the stack is as shown in Figure 5(c). When the

branch divergence is detected, the stack is modified to the

state shown in Figure 5(d). The changes that occur are the

following: First, the original top of stack (TOS) at (i) in

Figure 5(d) has it’s next PC field modified to the instruc-

tion address of the reconvergence point E (this could be ac-

quired through an extra target field in the branch instruc-

tion). Then, a new entry (ii) is allocated onto the stack

and initialized with the reconvergence point address (E)

along with a next PC value (D) of the fall through of the

branch, and a mask (0110) encoding which processing ele-

ments evaluated the branch as “not-taken”. Finally, a new

entry (iii) is allocated onto the stack with the same reconver-

gence point address (E), the target address (C) of the branch

and the mask (1000) encoding the processing element that

evaluated the branch as taken. Note that this mechanism

supports “nested” branch hammocks. As pointed out by

Woop [37], the same stack can be used to store return ad-
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Figure 6. Performance loss for PDOM versus

SIMD warp size (idealized memory system).

dresses for function calls.

In this paper we use the immediate post-dominator [23]

of the diverging branch instruction as the reconvergence

point. A post-dominator is defined as follows: A basic

block X post-dominates basic block Y (written as “X pdom

Y”) if and only if all paths from Y to the exit node go through

X, where a basic block is a piece of code with a single entry

and exit point. A basic block X, distinct from Y, immedi-

ately post-dominates basic block Y if and only if X pdom

Y and there is no basic block Z such that X pdom Z and Z

pdom Y. Immediate post-dominators are typically found at

compile time as part of the control flow analysis necessary

for code optimization.

The performance impact of the immediate post-

dominator reconvergence technique (labeled PDOM) de-

pends upon the number of processing elements (i.e.,

“width”) of an SIMD warp. Figure 6 shows the harmonic

mean IPC of the benchmarks studied in Section 6 normal-

ized to the maximum parallelism possible for 4, 8, and

16 wide SIMD execution assuming 8 shader cores and an

ideal memory system in which cache misses have the same

latency as cache hits. Execution resource utilization de-

creased from 82.7% for 4-wide, to 71.8% for 8-wide down

to 49% for 16-wide.

In the following section we explore whether immedi-

ate post-dominators are the “best” reconvergence points, or

whether there might be a benefit to dynamically predicting

a reconvergence point past the immediate post-dominator

(We show an example where this may be beneficial).

3.3. Reconvergence Point Limit Study

While reconverging at the immediate post-dominator is

able to recover much of the performance lost due to branch

divergence compared with not reconverging at all, Figure 7

shows a simple example where this reconvergence mech-

anism is sub-optimal. In this example, threads with even

value of tid diverge from those with odd values of tid

void shader thread(int tid, int *data) {
for(int i = tid % 2; i < 128; ++i) {

if(i % 2) {
data[tid]++;

}
}

}

Figure 7. Pathological example for which re-
convergence at points beyond the immedi-

ate post-dominator yields the significant im-
provement in performance shown on Fig-

ure 8. The parameter tid is the thread ID.

each iteration of the loop. If even threads allow the odd

threads to “get ahead” by one iteration, all threads can exe-

cute in lock step until individual threads reach the end of the

loop. This suggests that reconverging at points beyond the

immediate post-dominator may yield better performance.

To explore this possibility we conducted a limit study as-

sessing the impact of always predicting the best reconver-

gence point assuming oracle knowledge about future con-

trol flow.

For this limit study, the dynamic instruction traces are

captured from only the first 128 threads. SIMD warps are

formed by grouping threads by increasing thread ID, and an

optimal alignment for the instruction traces of each thread

in a warp are determined via repeated applications of the

Needleman-Wunsch algorithm [24]. With more than two

threads per warp, the optimal alignment is determined by

exhaustively searching all possible pair-wise alignments be-

tween the threads within a warp. The best reconvergence

points are then identified from the optimal alignment.

Figure 8 compares performance of immediate post-

dominator reconvergence versus the predicted reconver-

gence points derived using this method. In this figure we

assume an idealized memory system (all cache accesses

hit) and examine both a contrived program with the behav-

ior abstracted in Figure 7 and the benchmarks described

in Section 5 (represented by the bar labeled “Real Pro-

grams”). While the pathological example experiences a

92% speedup with oracle reconvergence point prediction,

the improvement on the real programs we studied is much

less (2.6%). Interestingly, one of the benchmarks (bitonic

sort) does have similar even/odd thread dependence as our

pathological example. However, it also contains frequent

barrier synchronizations that ensure loop iterations execute

in lock-step.

4. Dynamic Warp Formation & Scheduling

While the post-dominator reconvergence mechanism is

able to mitigate performance loss resulting from diverging

branches, it does not fully utilize the SIMD pipeline relative

to a MIMD architecture with the same peak IPC capability.
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Figure 9. Dynamic warp formation example.

In this section, we describe our proposed hardware mech-

anism for recovering the lost performance potential of the

hardware.

If there is only one thread warp available for schedul-

ing at a time, the performance penalty due to branch diver-

gence is unavoidable since the diverged parts of the warp

cannot execute simultaneously on the SIMD hardware in a

single cycle. However, with the “barrel processing” tech-

nique employed to hide memory access latency, there ought

to be more than one thread warp available for scheduling in

a shader core on any given cycle. After reaching a diverging

branch, each of these warps would be split into two diverged

parts: taken and not taken. Ideally, the diverged parts of

multiple thread warps branching to the same target can be

grouped into complete thread warps and issued to the SIMD

pipeline. In this way, the SIMD pipeline is fully utilized

even when a shader program executes diverging branches.

Figure 9 illustrates this idea. In this figure, eight scalar

threads organized into two warps (W0 and W1) execute the

“if-then-else” branch illustrated on the right hand side of

the figure. Each execution cycle is represented by a rect-

angular box on the left hand side of the figure. The arrows

within each rectangle represent the scalar threads within a

warp. Threads with solid arrows diverge to code block A

while threads with blank arrows diverge to code block B. In

the top part of the figure the SIMD pipeline is not fully uti-

lized after the branch divergence. In the bottom part of the

figure new warps (W2 and W3) are created after the branch

divergence. In this way dynamic warp formation allows full

utilization of the pipeline.

Dynamic warp formation improves performance by cre-

ating new thread warps out of diverged warps as the shader

program executes. Every cycle, the thread scheduler tries to

form new warps from a pool of ready threads by combining

scalar threads whose next PC values are the same. Imple-

menting dynamic warp formation requires careful attention

to the details of the register file, a consideration we explore

in Section 4.1. In addition to forming warps, the thread

scheduler also selects one warp to issue to the SIMD pipe-

line every cycle depending upon a scheduling policy. We

explore the design space of this scheduling policy in detail

in Section 4.3. We show that the thread scheduler policy is

critical to the performance impact of dynamic warp forma-

tion in Section 6.

4.1. Register File Access

So far, we have described dynamic warp formation un-

der the assumption that each thread can be executed in any

of the scalar pipelines (or lanes). This requires the regis-

ters to be equally accessible from all lanes, as illustrated

in Figure 10(a). To reduce area and support a large num-

ber of ports in an SIMD pipeline, a well known approach

is to implement the register file in multiple banks, each ac-

cessible from a single lane as shown in Figure 10(c). The

latter hardware is a natural fit when threads are grouped into

warps “statically” before they begin executing instructions

and stay in the same lane until they complete.

While grouping threads into warps dynamically, it is

preferable to avoid the need to migrate register values with

threads as they get regrouped into different warps. To do

this, the registers used by each scalar thread are assigned

statically at a given offset based upon the thread identi-

fier within a given lane just as when threads are grouped

into warps “statically”. If we form a warp without con-

sideration to the “home” lane of a scalar thread’s registers,

we must design the register file with a crossbar as in Fig-

ure 10(b). Warps formed dynamically may then have two

or more threads with the same “home” lane, resulting in

bank conflicts. These bank conflicts introduce stalls into all

lanes of the pipeline and significantly reduce performance

as shown in Section 6.

A better solution, which we call lane aware dynamic

warp formation, ensures that each thread remains within its

“home” lane. In particular, lane aware dynamic warp for-

mation assigns a thread to a warp only if that warp does

not already contain another thread in the same lane. While

the crossbar in Figure 10(b) is unnecessary for lane aware

dynamic warp formation, the traditional hardware in Fig-

ure 10(c) is insufficient. When threads are grouped into
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ideal dynamic warp formation and MIMD, (b)

naı̈ve dynamic warp formation, (c) static warp
formation, (d) lane-aware dynamic warp for-

mation.

warps “statically”, each thread’s registers are at the same

“offset” within the lane, thus requiring only a single de-

coder. With lane aware dynamic warp formation, the offsets

to access a register in a warp will not be the same in each

lane3. This yields the register file configuration shown in

Figure 10(d), which is accounted for in the area estimation

in Section 4.4.

One subtle performance issue affecting the impact of

lane aware scheduling for one of our benchmarks (Bitonic)

is related to the type of pathological even/odd thread identi-

fier control dependence described in Section 3.3. For exam-

ple, if threads in all even lanes see a branch as taken, while

threads in all odd lanes see the same branch as not-taken,

then it is impossible for dynamic warp formation to create

larger warps. A simple solution we employ for our simu-

lations is to alternately swap the position of even and odd

thread’s home lanes every other warp when threads are first

created (an approach we call thread swizzling).

4.2. Hardware Implementation

Figure 11 shows how dynamic warp formation and

scheduling can be implemented in hardware. When a warp

arrives at the last stage of the SIMD pipeline, its threads’

identifiers (TIDs) and next PC(s) are passed to the thread

scheduler (Figure 11(a)). For conditional branches, there

are at most two different next PC values4. For each unique

next PC sent to the scheduler from writeback, the sched-

uler looks for an existing entry in the PC-warp LUT already

mapped to the PC and allocates a new entry if none exists5

3Note that each lane is still executing the same instruction in any given

cycle—the varying offsets are a byproduct of supporting fine grained mul-

tithreading to hide memory access latency combined with dynamic warp

formation.
4Indirect branches that diverge to more than two PCs can be handled

by stalling the pipeline and sending up to two PCs to the thread scheduler

every cycle.
5In our detailed model we assume the PC-warp LUT is organized as a

small dual-ported set associative structure.
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Figure 11. Implementation of dynamic warp

formation and scheduling. In this figure, H
represents a hash operation. N is the width

of the SIMD pipeline.

(Figure 11(b)).

The PC-warp LUT provides a level of indirection to re-

duce the complexity of locating warps in the warp pool (Fig-

ure 11(c)). It does this by using the IDX field to point to a

warp being formed in the warp pool. This warp is updated

with the thread identifiers of committing threads having this

next PC value. Each entry in the warp pool contains the PC

value of the warp, N TID entries for N lanes in an N-wide

SIMD pipeline, and some heuristic-specific data for issue

logic. In order to handle the worst case where each thread

diverges to a different execution path, the warp pool must

have enough entries for each thread in a shader processor

core to have its own entry.

To implement the lane aware scheduler mentioned in

Section 4.1, each entry in the PC-warp LUT has an oc-

cupancy vector (OCC) tracking which lanes of the current

warp are free. This is compared against a request vector

(REQ) that indicates which lanes are required by the threads

assigned to this warp. If a required lane is already occupied

by a thread, a new warp will be allocated and the TIDs of

the threads causing the conflict will be assigned into this

new warp. The TIDs of the threads that do not cause any

conflict will be assigned to the original warp. In this case,

the PC-warp LUT IDX field is also updated to point to the

new warp in the warp pool. The warp with the older PC

still resides in the warp pool, but will no longer be updated,

which may lower the effectiveness of dynamic warping.

A single warp in the warp pool may be issued to the

SIMD pipeline every cycle according to one of the heuris-

tics mentioned in the next section. Once issued, the warp

will have its warp pool entry returned to the warp allocator.



4.3. Issue Heuristics

Even though dynamic warp formation has the potential

to fully utilize the SIMD pipeline, this will only happen

when the set of PC values currently being executed is small

relative to the number of scalar threads. If each scalar thread

progresses at a substantially different rate, then all threads

will eventually map to entirely different PCs. To avoid this,

all threads should have a similar rate of progress. We have

found that the order in which warps are issued has a critical

effect on this. We explored the following policies:

Majority (DMaj): As long as a majority of the threads are

progressing at the same rate, the scheduling logic will have

a large pool of threads from which to create a new warp

every cycle. The majority heuristic attempts to encourage

this behavior by choosing the most common PC among all

the existing warps and issuing all warps at this PC before

choosing a new PC.

Minority (DMin): If a small minority of threads diverges

away from the rest, the Majority heuristic tends to leave

these threads behind. In the minority heuristic, warps with

the least frequent PCs are given priority with the hope that,

by doing so, these warps may eventually catch up and con-

verge with other threads.

Time Stamp (DTime): The oldest warp will be issued

first.

Post-Dominator Priority (DPdPri): Threads falling be-

hind after a divergence need to catch up with other threads

after the immediate post-dominator. If the issue priority

is set lower for warps that have gone beyond more post-

dominators, then the threads that have yet to go past the

post-dominator tend to catch up.

Program Counter (DPC): In a program sequentially laid

out in instruction memory, the program counter value itself

may be a good indicator of a thread’s progress. By giving

higher issuing priority to warps with smaller PCs, threads

lagging behind are given the opportunity to catch up.

We assume an implementation of the Majority issue

logic constructed with a 32-entry fully associative lookup-

table which tracks the number of threads currently in the

scheduler for a given PC and keeps them sorted by number

of threads. Each cycle, the issue logic searches for or allo-

cates an entry for the PC of each warp entering the sched-

uler, and increments the associated counter with the number

of scalar threads joining the warp pool. To facilitate selec-

tion of the most frequent PC value, the updated entry may

be swapped with its neighbouring entry. If the number of

PCs in flight exceeds the lookup-table capacity, a mecha-

nism such as draining the threads from the majority logic

could be implemented. However, we find that with a 32 en-

try table, the need for this never arises for our benchmarks.

Table 1. Area estimation for dynamic warp
formation and scheduling. RP = Read Port,

WP = Write Port, RWP = Read/Write Port.

# Entry Struct. Area

Structure Entries Content Size Implementation (mm
2)

(bits)

Warp Update 2 TID (8-bit)× 16 336 Register 0.008

Register PC (32-bit) (No Decoder)

REQ (8-bit)

PC-Warp LUT 32 PC (32-bit) 1792 2-Way 0.189

OCC (16-bit) Set-Assoc. Mem.

IDX (8-bit) (2 RP, 2 WP)

Warp Pool 256 TID (8-bit)× 16 43008 Mem. Array 0.702

PC (32-bit) (17 Decoders)

Sche. Data (8-bit) (1 RWP, 2 WP)

Warp Allocator 256 IDX (8-bit) 2048 Memory Array 0.061

Issue Logic 32 PC (32-bit) 1280 Fully Assoc. 1.511

(Majority) Counter (8-bit) (4RP, 4WP)

Total 48464 2.471

4.4. Area Estimation

We have estimated the area of the five major parts of the

hardware implementation of dynamic warp formation and

scheduling with CACTI 4.2 [33]: Warp Update Registers,

PC-Warp LUT, warp pool, warp allocator, and issue logic.

Table 1 list the implementation of these structures and their

area and storage estimates. Using our baseline configura-

tion (16-wide SIMD with 256 Threads) listed in Table 2,

we have estimated the area of the dynamic warp scheduler

in 90nm process technology to be 2.471mm
2 per core.

To evaluate the overhead of having the individual de-

coder for dynamic warp formation and scheduling as de-

scribed in Section 4.1, we first need to estimate the size of

the register file. The SRAM model of CACTI 4.2 [33] esti-

mates a register file with 8192 32-bit registers and a single

decoder reading a row of 16 registers to be 5.7085mm
2.

On the other hand, since the SRAMmodel of CACTI 4.2

does not support banking directly, we decide to estimate the

area of a register file with 512 32-bit registers and 1 register

accessible per port. This register file is estimated6 to be

0.3773mm
2 × 16 = 6.037 mm

2. Notice that both register

file configurations have 2 read ports and 1 write port.

With the two estimations above, the overall area con-

sumption of dynamic warp formation and scheduling for

each core is 2.799 mm
2. With 8 cores per chip as per

our initial configuration, this becomes 22.39mm
2, which is

4.7% of the total area of the GeForce 8800GTX (estimated

from wafer photos to be roughly 480mm
2).

5. Methodology

While simulators for contemporary GPU architectures

exist, none of them model the general-purpose GPU ar-

6This may not entirely capture all wiring complexity since the decoders

are driven by different sources in our proposal.



Table 2. Hardware Configuration
# Shader Cores 8

SIMD Warp Size 16

# Threads per Shader Core 256

# Memory Modules 8

GDDR3 Memory Timing tCL=9, tRP =13, tRC=34

tRAS=21, tRCD=12, tRRD=8

Bandwidth per Memory Module 8Byte/Cycle

Memory Controller out of order

Data Cache Size (per core) 512KB 8-way set assoc.

Data Cache Hit Latency 10 cycle latency (pipelined 1 access/cycle)

Default Warp Issue Heuristic majority

chitecture described in this paper. Therefore we devel-

oped a novel simulator, GPGPU-Sim, to model various as-

pects of the massively parallel architecture used in modern

GPUs with highly programmable pipelines. GPGPU-Sim

was constructed from SimpleScalar version 3.0d [7]. Sim-

outorder was modified to offload manually annotated com-

pute kernels to our cycle-accurate GPU performance simu-

lator, which we developed around SimpleScalar’s PISA in-

struction set architecture. Table 2 shows the baseline con-

figuration we simulated.

The SimpleScalar out-of-order core waits for the GPU

when it reaches a manually annotated computing kernel.

After GPU simulation of the computing kernel is com-

pleted, program control is returned to the SimpleScalar out-

of-order core. This repeats until the benchmark finishes.

The benchmark applications used for this study were

selected from SPEC CPU2006 [32], SPLASH2[36], and

CUDA[25]. Each benchmark was manually modified to ex-

tract and annotate the computing kernels, which is a time-

consuming task limiting the number of benchmarks we

could consider. Our GPU simulator’s programing model

is similar to that of CUDA [27]. A computing kernel is

invoked by a spawn instruction, which signals the Sim-

pleScalar out-of-order core to launch a predetermined num-

ber of threads for parallel execution on the GPU simulator.

6. Experimental Results

First we consider dynamic warp formation and schedul-

ing ignoring the impact of lane conflicts.

Figure 12 shows the performance of the different branch

handling mechanisms discussed so far in this paper and

compares them to a MIMD pipeline with the same peak IPC

capability. Here we use the detailed simulation model de-

scribed in Section 5 including simulation of memory access

latencies. PDOM (reconvergence at the immediate post-

dominator described in Section 3.2) achieves a speedup of

93.4% versus not reconverging (Naı̈ve). Dynamic warp for-

mation (DYNB) achieves a further speedup of 22.5% us-

ing the Majority heuristic. The difference between average

DYNB and MIMD performance is only 4.6%.

Two of the benchmarks (Matrix and FFT) obtain slightly

0

16

32

48

64

80

96

112

128

HMMer lbm Black Bitonic FFT LU Matrix HM

IP
C

Naïve

PDOM

DYNB

MIMD

Figure 12. Performance comparison of Naı̈ve,

PDOM, and DYNB versus MIMD.

Figure 13. Memory bandwidth utilization.
HMMer lbm Black Bitonic FFT LU Matrix

PDOM 58.60% 93.20% 4.96% 36.21% 79.90% 0.76% 38.02%

DYNB 56.86% 95.29% 3.06% 39.95% 78.23% 9.58% 37.01%

Figure 14. Cache miss rates.
HMMer lbm Black Bitonic FFT LU Matrix

PDOM 3.43% 13.35% 1.43% 18.22% 7.35% 0.08% 2.86%

DYNB 1.85% 13.53% 1.34% 24.60% 6.86% 0.30% 2.90%

lower performance with MIMD than with PDOM. We

found that this was because the “free running” nature of

MIMD tended to lower the spatial locality of memory ac-

cesses, resulting a higher cache miss rate (7.67% vs 7.35%

for FFT and 3.43% vs 2.86% for Matrix—see Table 14).

The benchmarks where PDOM outperforms DYNB (Black,

FFT, Matrix) are the ones with limited divergence. Among

them, the minor slowdown of DYNB on FFT and Matrix is

attributed to an extra stage in the pipeline for register file

access overhead for DYNB. The Majority issue heuristic

used by DYNB also lacks the consideration of DRAM bank

conflicts in these benchmarks, introducing disruptive mem-

ory access behaviour and slightly under utilizing the DRAM

bandwidth in comparison to PDOM.

The significant slowdown of Black Scholes (Black) is

a phenomenon exposing the weakness of our default Ma-

jority issue heuristic. Under the Majority issue heuristic, a

minority of threads whose control flow behaviors are dif-

ferent from the rest of the threads are starved during ex-

ecution. Black Scholes has several short and rarely taken

branches that suffer from this weakness, leaving behind

several groups of minority threads. When these minority

threads finally execute after the majority of threads have

reached a fence operation, they form incomplete warps and

the number of warps formed is insufficient to fill up the

pipeline. This can be solved by having a better heuristic.

While benchmark lbm has signicant diverging control

flow it is memory bandwidth limited, as shown in Table 13

and therefore sees little gain from dynamic warp formation.
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Figure 16. Warp size distribution.

6.1. Effects of Issue Heuristics

Figure 15 compares all the warp issue heuristics de-

scribed in Section 4.3, again with a realistic memory sub-

system, but still ignoring the impact of lane conflicts. Over-

all, the default Majority (DMaj) heuristic performs well,

achieving an average speedup of 22.5%, but in some cases,

its performance is not as good as the PC heuristic (DPC)

or PDOM Priority (DPdPri) described in Section 4.3. To

provide additional insight into the differences, Figure 16

shows the distribution of warp sizes issued each cycle for

each heuristic. Each bar is divided into segments labeled

W0, W1, ... W16, which indicate if the SIMD hardware ex-

ecuted operations for 0, 1, ... 16 scalar threads on a given

cycle. “Stall” indicates a stall due to writeback contention

with the memory system (see Figure 3). For heuristics that

do well (DMaj, DPdPri, DPC), we see a decrease in the

number of low occupancy warps relative to those heuristics

which do poorly (DMin, DTime). The data also suggests

it may be possible to further improve dynamic warp for-
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Figure 17. Performance of dynamic warp for-
mation with lane aware scheduling and ac-

counting for register file bank conflicts and
scheduler implementation details.

mation by exploring the scheduler heuristics beyond those

proposed in this paper.

6.2. Effect of Lane Aware Scheduling

To reduce register file design complexity we would like

to use the organization in Figure 10(d) which necessitates

lane aware scheduling discussed in Sections 4.1 and 4.2.

The data in Figure 17 is measured with a detailed sched-

uler hardware model like that described in Section 4.2 with

hardware sized as in Table 1 and employing the thread

swizzling mechanism described in Section 4.1. This figure

shows the impact on performance of lane aware scheduling

and, for comparison, also shows the impact when not using

lane aware scheduling but assuming the register file orga-

nization in Figure 10(b) and modeling register bank con-

flicts when multiple threads from the same “home” lane are

grouped into a single warp. While lane-aware scheduling is

slower than dynamic warp formation assuming no perfor-

mance penalty due to bank conflicts (by 1.43%), it is still

20.7% faster than PDOM. This speedup justifies the 4.7%

area cost (see Section 4.4) of using dynamic warp formation

and scheduling on existing GPUs. We also evaluated the

performance of PDOM Priority with lane aware scheduling

and found performance for Black Scholes improves signifi-

cantly (IPC of 103) while that of HMMer is reduced (IPC of

25) with an overall average speedup of 14.7% over PDOM

(versus 23.7% without lane aware scheduling and when ig-

noring the performance impact of lane conflicts).

7. Related Work

While supporting branches is a relatively new problem

for GPU architecture, it has long been a consideration in



the context of traditional vector computing. Most of the ap-

proaches to supporting branches in a traditional SIMD ma-

chine have centered around the notion of guarded instruc-

tions [5].

A guarded instruction, also known as a predicated or vec-

tor masked instruction, is an instruction whose execution is

dependent on a conditional mask controlled by another in-

struction [5]. If the conditional mask is set, the result of the

instruction will not be committed, nullifying the instruction.

In an SIMD instruction, a vector of conditional masks each

controlled by an element in a stream would be functionally

equivalent to a data dependent branch while maintaining

consistent control-flow. This approach has been employed

by ATI’s CTM and NVIDIA’s CUDA architecture to elimi-

nate short branches and possible branch divergences [1, 27].

Guarded instructions and its variants, however, cannot

eliminate input dependent loops. Branch divergence may

be inevitable, but the period of divergence can be kept short

with reconvergence to minimize performance lost due to un-

filled SIMD pipelines. A patent filed by Lindholm et al. de-

scribes in detail how threads executing in an SIMD pipeline

are serialized to avoid hazards [22], but does not indicate

the use of reconvergence points to recover from such diver-

gence. The notion of reconvergence based on control-flow

analysis in SIMD branch handling was described by Lorie

and Strong [19]. However, the patent proposes to insert the

reconvergence point at the beginning of a branch and not at

the immediate post-dominator as proposed in this paper.

Besides these two main approaches, Woop et al. pro-

posed a complex SIMD branch instruction which outputs a

single final branch condition with a reduction function on

the masked element branch condition [37] in their Ray Pro-

cessing Unit. In this manner, the final branch condition is

always consistent for all elements in an SIMD warp. While

this approach eliminates branch divergence, it may not be

suitable for most general-purpose applications that require

the execution path of each shader program to be different.

The notion of dynamically regrouping the scalar SPMD

threads comprising a single SIMD “task” after control

flow divergence of the SPMD threads was described by

Cervini [9] in the context of simultaneous multithread-

ing (SMT) on a general purpose microprocessor that pro-

vides SIMD function units for exploiting subword paral-

lelism. The mechanism Cervini proposes requires that tasks

have their register values reloaded each time threads are

regrouped. To avoid performance penalties, Cervini pro-

poses that the register file contain additional ports to enable

the register values to be loaded concurrently with ongoing

execution. In addition, Cervini’s mechanism uses special

“code stops” and tags the control flow state of a SPMD

thread with a loop counter list (in addition to the program

counter). We point out that in the context of a modern GPU

the constant movement of data in this proposal could in-

crease power requirements per processing element, perhaps

mitigating the improvements in processing efficiency given

the power wall [13]. In contrast, our proposal uses a highly

banked large register file and maintains a thread’s registers

in a single location to eliminate the need for movement of

register values.

Clark et al. [10] introduce Liquid SIMD, to improve

SIMD binary compatibility by forming SIMD instructions

at runtime by translating annotated scalar instructions with

specialized hardware. In contrast, we focus on improving

performance by regrouping threads into new SIMD warps

even after threads start executing. Shin et al. [31] exam-

ine compiler generation of branches on superword condi-

tion codes (BOSCCs) for handling control flow for SIMD

instruction set extensions. Kapasi [16] introduces condi-

tional routing, a code transformation that creates multiple

kernels from a single kernel with conditional code and con-

nects them via inter-kernel communication to increase the

utilization of an SIMD pipeline. Dynamic warp formation,

differs from this approach in that it exploits the dynamic

conditional behaviour of each scalar thread.

8. Summary

In this paper, we explore the impact of branch diver-

gence on GPU performance for non-graphics applications.

Without any mechanism to handle branch divergence, per-

formance of a GPU’s SIMD pipeline degrades significantly.

While existing approaches to reconverging control flow at

join points such as the immediate post-dominator improve

performance, we found significant performance improve-

ments can be achieved with our proposed dynamic warp

formation and scheduling mechanism. We described and

evaluated a implementation of the hardware required for

dynamic warp formation and tackle the challenge of en-

abling correct access to register data as thread warps are

dynamically regrouped and found performance improved

by 20.7% on average over a mechanism comparable to ex-

isting approaches—reconverging threads at the immediate

post-dominator. Furthermore, we estimated the area of our

proposed hardware changes to be around 4.7%.

Our experimental results highlight the importance of

careful prioritization of threads for scheduling in such

massively parallel hardware, even when individual scalar

threads are executing the same code in the same program

phase. Thus, we believe there is room for future work in

this area.
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