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Abstract

For object category recognition to scale beyond a small

number of classes, it is important that algorithms be able

to learn from a small amount of labeled data per additional

class. One-shot recognition aims to apply the knowledge

gained from a set of categories with plentiful data to cat-

egories for which only a single exemplar is available for

each. As with earlier efforts motivated by transfer learn-

ing, we seek an internal representation for the domain that

generalizes across classes. However, in contrast to exist-

ing work, we formulate the problem in a fundamentally new

manner by optimizing the internal representation for the

one-shot task using the notion of micro-sets.

A micro-set is a sample of data that contains only a sin-

gle instance of each category, sampled from the pool of

available data, which serves as a mechanism to force the

learned representation to explicitly address the variability

and noise inherent in the one-shot recognition task. We op-

timize our learned domain features so that they minimize an

expected loss over micro-sets drawn from the training set

and show that these features generalize effectively to pre-

viously unseen categories. We detail a discriminative ap-

proach for optimizing one-shot recognition using micro-sets

and present experiments on the Animals with Attributes and

Caltech-101 datasets that demonstrate the benefits of our

formulation.

1. Introduction

Numerous papers have shown that recognition perfor-

mance increases as more training examples of each object

type become available. This makes one-shot recognition,

where the system is only given one example of each object

type, one of the most difficult types of object recognition

tasks.

With the training data of each class limited to one ex-

ample in the one-shot problem, this paper will show how a

large number of examples from similar types of objects can

be used to improve one-shot recognition performance. Ef-

fectively, the system presented here “learns how to learn”

from the small set of images presented to the one-shot

recognition system.

Using animals as an example, similar to [14], consider

the one-shot recognition task of distinguishing between im-

ages of ostriches and hyenas, with only one ostrich image

and one hyena image. Inspired by work on transfer learn-

ing, we argue that learning an intermediate representation

that makes it easier to perform a similar task, say distin-

guishing between a goose and a dog, is helpful for solving

the original problem.

In this paper, we propose a novel, straightforward,

learning-based approach for finding this intermediate rep-

resentation. Assuming that relatively large amounts of data

are available for the related tasks, such as the dog and goose

problem from above, we show how training over micro-

sets makes it possible to directly simulate and optimize the

usefulness of the intermediate representation for one-shot

recognition.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews work in object recognition with a particu-

lar focus on one-shot recognition. Section 3 formulates our

problem. Section 4 details the micro-set framework. Sec-

tion 5 describes our experimental methodology Sections 6

and 7 presents experimental results on the Animals with

Attributes [14] and Caltech-101 [16] datasets, respectively.

Section 8 discusses the implications of our experiments and

Section 9 concludes the paper.

2. Related Work

Object category recognition has been an active research

area in computer vision for several decades (see [3] for a

recent comprehensive survey). However, despite significant

evidence that humans can learn concepts from just a few

exemplars, there has been comparatively little work in the

area of one-shot recognition. Our approach is most related

to transfer learning for recognition [6, 16, 7, 13, 22], learn-

ing predictive structures from multiple tasks [1], learning

(pseudo-)metrics for recognition [7, 25], learning discrimi-

native representations for efficient retrieval [10, 11, 24, 26]

and recent efforts in exploiting semantic attributes for rec-

ognizing novel classes [5, 14, 20]. We briefly discuss these

below.

The phrase “one-shot learning” was popularized by Fei-



Fei et al. [16], where parametric class models are learned in

a Bayesian framework. A class-independent prior is learned

from the familiar classes and then applied to the rare classes

to bias parameters towards values observed in the famil-

iar classes. However, since this prior is not category spe-

cific, it is biased towards popular features common across

all objects of interest. Bart and Ullman [2] employ cross-

generalization to transfer semantically-related patches be-

tween familiar and rare classes in a class-specific manner.

Even though the method is evaluated on a large number of

classes, the formulation only considers one novel category

at a time in a leave-one-out manner; this is a binary task (to

determine whether the novel category is present) whereas

we directly address the more challenging task of assigning

a test image to one of many novel classes, for each of which

we have only a single training instance.

Miller et al. [17] and Fink [7] explore one-shot learning

in the context of letter/digit recognition. The former intro-

duces the notion of generating synthetic data to augment the

single example using data-driven (rather than ad hoc) trans-

forms while the latter learns a pseudo-metric that preserves

class membership in the presence of intra-class variation.

The results on one-vs-one discrimination are promising but

generalizing the methods beyond the handwritten character

domain is not straightforward.

At a high level, our approach is also related to the fea-

ture learning approaches investigated in image [10, 26], mu-

sic [11] and pose [24] retrieval. Their goal is to learn a

compact, discriminative representation using a set of train-

ing instances that generalizes to unseen media collections.

Such representations, often learned using a pairwise variant

of boosting, can be equivalently considered as binary at-

tributes, bit strings or distance functions in Hamming space

that classify membership in local neighborhoods. A key

difference is that our proposed approach seeks intermediate

representations that generalize over variations in object ap-

pearance due to intra-class variation while approaches such

as [11] primarily aim to reliably retrieve the correct object

under challenging imaging conditions. Thus, our work is

more philosophically aligned to Nowak and Jurie [18], who

exploit knowledge gleaned from pairs of “same” and “dif-

ferent” objects to learn a similarity function that enables

them to compare images of previously unseen objects.

Our work is also inspired by several recent papers that

learn semantic attributes and apply these to recognizing in-

stances from novel classes [5, 14, 20]. Such approaches

train a set of classifiers to recognize pre-defined attributes

(e.g., whether the image shows an animal that lives in water)

and combine these with side semantic information about the

novel class (e.g., dolphins live in water) to recognize novel

categories for which no training examples exist. Our pro-

posed method differs from these in two important aspects:

(1) we seek to learn our semantic attributes rather than em-

ploying pre-defined ones; (2) in exchange for a single ex-

emplar of the object, we eschew any side information about

the semantic relationships between object categories.

In relation to the prior work, the novel aspects of our

proposed approach include:

1. New framework for learning intermediate repre-

sentations directly from data.

This framework is based on directly modeling the

generalization performance in the one-shot recogni-

tion task, while previous approaches have focused on

heuristics based on separation. The advantages of this

new framework are discussed below in Section 8.

2. Specific focus on the one-shot recognition task.

In contrast to the work discussed above, our work fo-

cuses on the one-shot recognition task in the training

as well as the testing phase. Specifically, the one-shot

recognition task requires the classifier to operate under

extremely noisy conditions, particularly when a given

exemplar is not sufficiently representative of its cat-

egory. The micro-set framework forces the internal

representation to cope with the noise and variability

of the problem by imposing the one-shot conditions

during training. Furthermore, the framework is inher-

ently discriminative and multi-category, ensuring that

the objective of the training phase matches that of the

final multi-class problem.

3. Evaluation on real-world images with many novel

categories.

Unlike earlier approaches that are evaluated using a

leave-one-out approach to novel categories, our exper-

iments employ a minimum of 10 novel categories in

each run. We present results on multiple, standard-

ized image datasets using an experimental methodol-

ogy suggested by Lampert et al. [14].

3. Formulating the Learning Problem

The first step in learning the intermediate representation

is deciding on a classification methodology for framing the

one-shot recognition problem. In previous work, there has

been some variation in how this problem is posed. For ex-

ample, work such as Fink [7], poses the problem in a stan-

dard multi-class classification formulation, where the goal

is to correctly classify each image as depicting one of sev-

eral object types. An alternative approach, espoused by Fei-

Fei et al. [15, 16], is to separate images depicting the object

of interest from those without the object using a binary clas-

sifier, given a single instance of the object.

Our work focuses on the multi-class classification ap-

proach. Each of the test images will be assigned a single

label denoting the dominant object in the scene. The clas-

sification itself will be posed in a nearest-neighbor frame-

work; with only one example per object type available, the

nearest-neighbor paradigm is a natural choice for imple-

menting this classification. For a problem with K classes,

the training images will be represented by a set of feature

vectors, t1, . . . , tK . The object in a novel test image is

then classified by comparing its feature vector x against the



features for each of the K object classes and assigning the

novel image to the class of the most similar exemplar. De-

noting C as the estimated class, this can be expressed for-

mally as

C = arg min
i∈1...K

||x − ti||2, (1)

where the distance is measured using the Euclidean (ℓ2)

norm in this case.1

3.1. Defining and Incorporating Attributes

Having defined this basic, nearest-neighbors formula-

tion, the next step is to incorporate the intermediate rep-

resentation into the classifier. For the purposes of this work,

we consider intermediate representations consisting of the

output of a vector function r(x), applied to the original fea-

ture vector x:

C = arg min
i∈1...K

||r(x) − r(ti)||2, (2)

This intermediate representation, r(x), should be chosen

to make the nearest-neighbor classification perform as well

as possible. We have explored a variety of intermediate rep-

resentation types, ranging from linear projections,

r(x) = Ax, (3)

to complicated non-linear functions such as multi-layer per-

ceptrons. The latter often overfit to the training data and

thus performed poorly on the one-shot task. In our experi-

ments, we have observed the best results using a basic non-

linear function consisting of a logistic function that is ap-

plied in an element-wise fashion to the results of a linear

projection with a matrix A:

r(x) =
1

1 + exp (Ax)
. (4)

In the experiments described in Section 5, we refer to this

type of internal representation as a logistic projection.

4. Learning the Intermediate Representation

To optimize the intermediate representation function,

r(x), we adapt the criterion underlying Neighborhood

Components Analysis (NCA), proposed by Goldberger et

al. [9]. This criterion can be thought of as using the soft-

max function to convert distances between points to proba-

bilities.

In the original NCA criterion, the probability that point i

selects point j as a neighbor, denoted pij , is expressed as

pij =
exp(−||r(xi) − r(xj)||

2)
∑

k 6=i

exp(−||r(xi) − r(xk)||2)
, (5)

1 This paper focuses on ℓ2 since our experiments have shown no sig-

nificant improvements from employing other norms.

where the summation in the denominator is over all data

points, except point i.

In one-shot recognition, this probability can instead be

expressed as just pk, which denotes the probability that the

test image, x, contains the object with label k. The mathe-

matical form of pk is very similar to Equation (5):

pk =
exp(−||r(x) − r(tk)||2)

∑K

j=1 exp(−||r(x) − r(tj)||2)
, (6)

where t1, . . . tK are the exemplars of each class, as de-

scribed above.

4.1. Learning with microsets

Standard supervised learning cannot be applied to learn-

ing r(x) for the one-shot task, as only a single example per

class is available. Instead, we argue that optimizing r(x) on

a related task, where large amounts of labeled data is avail-

able, will enhance one-shot recognition performance; this

is similar in spirit to the work on transfer learning in the

machine-learning community.

The process for training r(x) is formulated to improve

one-shot recognition as much as possible by directly simu-

lating the one-shot recognition problem in the training cri-

terion. The basic idea is to transform the training set into

a huge number of different one-shot recognition problems

and to optimize over the recognition performance averaged

across these many problems. This enables the system to find

an r(x) function that can best cope with the uncertainty and

difficulty that comes from having only one example per ob-

ject category.

For training, the labeled corpus of data generates a series

of micro-sets, as depicted in Figure 1. In each micro-set,

one image per class is identified as a training example for

that class, while the remaining images serve as testing prox-

ies. For a particular micro-set, given index i, let the function

µTr(i, k) denote the image index of the exemplar for class

k. Likewise, µTe(i, k) will denote the set of test images for

class k in micro-set i. Equation 7 can then be adapted to

model the probability of correctly performing the one-shot

recognition task in micro-set i as

pµi
=

K
∑

k=1





∑

i∈µTe(i,k)

exp(−||r(ti) − r(tµTr(i,k)||
2)

∑K

j=1 exp(−||r(ti) − r(tµTr(i,j))||2)



 .

(7)

In a one-shot recognition system, one of the major

sources of variability is the choice of the exemplar image

for each object category. One of the goals of the learning

process is to find an intermediate representation that is re-

silient to this variation. Thus, the learning criterion sums

over the classification accuracy of as many micro-sets as

possible:



Micro-
Training Set

Micro-
Training Set

Micro-
Training Set

Training Set
Micro-Test Set

Micro-Set #1

Micro-Test Set

Micro-Set #2

Micro-Test Set

Micro-Set #9...
Figure 1. As shown above, a simple training set consisting of three example images for the two object classes, can be used to generate nine

micro-sets. Each micro-set is one of the one-shot recognition problems that could be generated with the training set. The intermediate

representation function, r(x), from Equation (5), is found by optimizing the probability of correct one-shot recognition across all of these

sets.

L =

M
∑

i=1

pµi
(8)

where M is the number of micro-sets, which should be as

large as possible.

5. Experimental Methodology

To evaluate the impact of different learned intermediate

representations on classification accuracy, we adopt a vari-

ant of the experimental methodology proposed for zero-shot

recognition recently proposed in [14]. We present results

on two large, publicly-available datasets: Animals with At-

tributes [14] and Caltech-101 [16]. Both of these standard

datasets contain many images from a large set of classes,

enabling us to evaluate one-shot recognition performance

over a wide variety of configurations.

Our methodology is summarized as follows. First, we

hold out ten categories to serve as test classes; these are

used to evaluate how well an intermediate representation

enhances classification performance on a novel recognition

problem. Next, we train intermediate representations (using

different algorithms) with images from the remaining cate-

gories. Finally, we evaluate the multi-class classification

performance using a series of independent one-shot tasks

that are averaged together to determine overall accuracy.

Specifically, for each one-shot task we randomly sample

one image from each of the ten held-out categories; these

serve as the single-exemplar “training set” for the task. The

remaining images from the ten held-out categories are used

as the “testing set”. Since there are varying numbers of test-

ing images for each held-out category, the errors obtained

for each class are normalized by the number of testing im-

ages in that class. The classification error for the given

one-shot task is computed using the nearest-neighbor rule

(Eqn. 2). To obtain an accurate estimate of the intermedi-

ate representations’ overall classification performance, we

repeat this one-shot task 10,000 times and present averaged

results.

The following subsections describe the feature represen-

tation and implementation details for the learning procedure

employed in our experiments.

5.1. Image features

Each image in these data sets is represented by a vec-

tor of local features. To facilitate replication of our experi-

ments and to enable future researchers to directly compare

their one-shot recognition algorithms with ours, we restrict

ourselves to publicly-available pre-computed features. A

more judicious selection of low-level features could lead

to better recognition accuracy but that is orthogonal to the

primary contribution on this paper, which is to propose an

effective general framework for learning intermediate rep-

resentations in the context of one-shot recognition.

5.1.1 Animals with attributes dataset

The Animals with Attributes dataset introduced by Lam-

pert et al. [14] consists of 30,475 images of 50 animals, ac-

companied by several pre-extracted features. The dataset2

also contains semantic side information (e.g., whether

a given animal lives in water) in the form of an 85-

dimensional Osherson’s attribute [19, 12] vector for each

animal category that we specifically do not use in our ex-

periments.

Our primary motivation in using this dataset is to directly

compare our intermediate representation that was trained

without side information against semantic attributes [14] in

the context of one-shot recognition. In other words, we seek

to understand the degree to which semantic side information

helps in transfer learning to novel animal classes.

2 Downloaded from http://attributes.kyb.tuebingen.

mpg.de/.

http://attributes.kyb.tuebingen.mpg.de/
http://attributes.kyb.tuebingen.mpg.de/


The features pre-extracted by Lampert et al. [14] were

used as the low-level image features. These include six dif-

ferent feature types: RGB color histograms, SIFT, rgSIFT,

PHOG, SURF, and local self-similarity histograms. Con-

catenated together, the features form a 10,950-dimensional

vector. We processed the low-level image features as fol-

lows. First, we performed a feature-wise normalization,

followed by a dimensionality reduction to 500 dimensions

using Principal Components Analysis (PCA). The result-

ing 500-dimensional vectors were then normalized to en-

sure that the range of each feature fell between -1 to 1.

5.1.2 Caltech-101 dataset

The Caltech-101 dataset [16] consists of 9,146 images from

101 distinct object categories, along with images in a back-

ground category, which we do not use. Our primary mo-

tivations for using this popular dataset, despite its noted

deficiencies [21], are that Caltech-101 includes a broader

range of object categories compared to the Animals with

Attributes dataset and that publicly-available low-level fea-

tures for Caltech-101 will make it easier for others to per-

form direct comparisons against our proposed methods.

In our experiments, we employ the features computed

by Gehler and Nowozin [8].3 In particular, we used the

PHOG, LBP, and bag-of-words SIFT features, and also used

additional USIFT features we extracted ourselves. Concate-

nated together, the features form a 2,881-dimensional vec-

tor. We also applied the normalization and dimensional-

ity reduction described above to the Caltech-101 features to

generate a feature vector of 500 dimensions for each image.

5.2. Learning r(x) using microsets

The procedure for learning the intermediate representa-

tion is the same for both datasets. Once the ten categories

used for testing have been removed, the remaining object

categories are used to learn r(x). In both sets of experi-

ments, a minimum of 40 classes are used to learn r(x). Be-

cause our micro-set framework simulates one-shot recog-

nition during training, we could draw from an enormous

number of potential micro-sets; for instance, given a dataset

with N images per category, there are N40 ways of select-

ing a training micro-set containing one exemplar from each

of the 40 categories. To make good use of this diversity,

we employ stochastic gradient descent during our training

procedure, as follows.

Each iteration of the stochastic gradient procedure can

be viewed as an instance of Efron’s bootstrap [4], where the

pool of samples is much larger than the size of the training

set required for micro-set learning. Specifically, we sample

a new micro-set (consisting of a single exemplar from each

of the available classes and ten test examples that are used

to compute recognition accuracy) during each iteration; we

3 Downloaded from http://www.vision.ee.ethz.ch/

˜pgehler/projects/iccv09/.

10-Class Accuracy

Method Mean Variance Min Max

Random chance 10%

Identity transfor-

mation (Raw)
14.1% 0% 7.2% 22.7%

Intermediate representation trained with micro-sets

Linear projection 23.7% 0.1% 11.4% 35.2%

Logistic projec-

tion
27.2% 0.1% 11.1% 37.8%

Using Osherson’s attributes from [14]

One-shot 29.0% 0.14% 10.7% 42.4%

Manually defined

(Zero-shot)
40.5%

Table 1. Results for one-shot classification for the 10-class recog-

nition task on the Animals with Attributes dataset. Notice that

the logistic projection intermediate representation, trained using

the micro-set method, performs nearly as well as the semantic at-

tributes manually defined for the task of recognizing animals.

compute a gradient from the micro-set and use it to update

r(x). Empirically, we observe that the optimization con-

verges after approximately 500 iterations.

6. Experiments with Animals with Attributes

For the experiments with the Animals with Attributes

dataset, our division of the 50 animal classes into 40 train-

ing and 10 testing categories is the same as that suggested

in [14]. Tables 1 and 2 summarize one-shot recognition ac-

curacy for two types of classification problems. In the 10-

class problem, the testing images are classified into one of

the 10 object categories that were held out while optimizing

r(x). In the 50-class problem, each image can be labeled

with any of the 50 categories in the data set; here, since

all of the query images are still drawn from the 10 held-out

classes, the 40 classes in the training set serve as distractors.

We discuss both of these in greater detail in the following

sub-sections.

6.1. OneShot Accuracy on 10Class Recognition

The key observations from Table 1 regarding the 10-class

one-shot problem include:

• The best intermediate representation trained using

the micro-sets approach almost doubles the classifi-

cation accuracy obtained using the raw features.

The benefits of micro-set training are clear, both for

the linear and the logistic projection. The latter nearly

doubles the recognition rate from 14% to 27%.

• This learned representation performs comparably

to the human-identified attributes, in a one-shot

recognition framework.

For this comparison, we represent each image using

the 85-dimensional vector of its Osherson attributes, as

provided in the Animals with Attributes dataset. Those

http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/


were generated by Lampert et al. [14] using semantic

attribute detectors trained using human-specified side

information for each of the 50 animal categories, such

as “does this animal eat fish?” The accuracy of this

baseline is denoted as as “Osherson’s (one-shot)”.

Given that the Osherson attributes were designed to

discriminate between animals, we are pleased to see

that our intermediate representation, trained using

micro-sets without any human-specified side informa-

tion, achieves comparable accuracy in the one-shot

recognition task.

• Representing the category using manually-specified

semantic attributes significantly outperforms one-

shot recognition.

For this baseline, denoted “Osherson’s (zero-shot)” in

Table 1, we employ the human-generated category-

based representation made available by Lampert et

al. [14] in the place of our one-shot exemplars. Specif-

ically, rather than representing an animal category us-

ing the semantic attributes derived from a single ex-

emplar, we represent each class with the Osherson se-

mantic attributes for that animal (i.e., its ground truth

attributes). This representation eliminates both the

variability introduced by the idiosyncrasies of the few

training samples in the one-shot framework and the

uncertainty of estimating the semantic attributes from

those images.

Unsurprisingly, the recognition accuracy achieved us-

ing these human-specified category descriptions is

much higher than that obtained using our learned rep-

resentation on the 10-class recognition problem. How-

ever, this baseline shows that the dataset is challenging

even when ground-truth category-level information is

available. We also note that this baseline performs very

poorly (worse than chance!) on the 50-class version of

the same task; this interesting observation is discussed

in more detail in Section 6.2, below.

• Max performance on one-shot can match zero-shot

performance

Clearly, one-shot recognition accuracy is sensitive to

the choice of the single exemplar in the training set.

Although the variance in our experimental results is

low, we do observe that the min and max columns show

a significant range. In the best case (max), a favorable

choice of exemplars enables one-shot recognition ac-

curacy to attain the performance of Lampert et al.’s

zero-shot training. On the other hand, an unfortunate

choice of exemplars, where the selected image is not

representative of its category [23], leads to poor per-

formance (min).

6.2. OneShot Accuracy on 50class Recognition

Moving to the 50-class recognition problem (see Table 2)

decreases recognition performance across all experiments,

which is not surprising given that the number of possible

50-Class Accuracy

Method Mean Variance Min Max

Random chance 2%

Identity transfor-

mation (Raw)
5.38% 0.1% 0% 22%

Intermediate representation trained with micro-sets

Linear projection 8.4% 0.07% 1.34% 18.3%

Logistic projec-

tion
7.5% 0.06% 2.07% 18.3%

Using Osherson’s attributes from [14]

One-shot 0.09% 0.008% 0% 5%

Manually defined

(Zero-shot)
1%

Table 2. Results for one-shot classification for the 50-class recog-

nition task on the Animals with Attributes dataset. When consid-

ering all 50 classes, the learned representation significantly out-

performs the semantic attributes.

Figure 2. Confusion matrices for classification accuracies of the

50-class one-shot recognition evaluation on the Animals with At-

tributes data-set. Many of the mistakes are with similar image

classes, for instance “persian+cat” is frequently classified with

“siamese+cat”. With only one example per category, it is difficult

for the system to make fine distinctions of this sort.

labels for each image has increased by a factor of five.

The most notable result is that the recognition perfor-

mance for the Osherson’s (zero-shot) baseline drops below

chance levels. In contrast, the degradation in performance

when using the intermediate representation learned using

the micro-sets approach is much less; in fact, accuracy rela-

tive to chance levels improves from 2.7× to 3.74× chance.

We also note that linear projection outperforms logistic pro-

jection in this setting, indicating that the former is less prone

to overfitting on the 40 training classes.

It should be noted that the low recognition rates in the

50-class recognition problem do not indicate that the repre-

sentation completely fails. As can be seen in the confusion

matrix in Figure 2, the misclassifications are primarily be-

tween animals from similar categories. For example, the

humpback whale class is misclassified most as blue whale,

dolphin, or killer whale.



(a) Raw features (with PCA)

(b) Learned representation (with micro-sets)

Figure 3. These two figures show the benefit of the learned inter-

mediate representation, even after reducing the data to two dimen-

sions. The points in each of these plots were computed using the

t-SNE reduction technique [27]. Each color represents a different

animal class from the ten held-out categories. As shown in (b), af-

ter image feature vectors are processed with the intermediate rep-

resentation, clusters corresponding to different animal categories

can still be seen in the 2D plot.

6.3. Visualizing the Improvement

Surprisingly, the benefit of this representation can be

seen even after reducing the dimensionality of the image

features to two dimensions. Figure 3 is a t-SNE visualiza-

tion [27] of: (a) the raw feature vectors reduced using PCA

to 500 dimensions; and (b) the intermediate representation

learned using micro-sets. Each dot in the plot corresponds

to an image from the ten held-out categories of the dataset,

with color denoting the animal category. Note that very lit-

tle category-relevant structure is visible in the first graph

but several distinct clusters, each corresponding to an ani-

mal, are visible in the visualization of the micro-set based

representation. Interestingly, these clusters survive despite

having been reduced in dimension from 500 to 2.

7. Experiments with Caltech-101

The experiments detailed in the previous section were

also conducted on the Caltech-101 dataset [16]. Our goal

was to evaluate how representations optimized using micro-

Accuracy

Method Mean Min Max

Random Chance 10%

Raw Features (PCA) 30.4% 10.69% 47.3%

Trained on 40 classes 43.0% 19.5% 59.8%

Trained on 65 classes 48.30% 27.7% 64.5%

Trained on 91 classes 52.41% 30.62% 68.6%

Table 3. Results for 10-class one-shot classification on Caltech-

101, using the logistic projection as the intermediate representa-

tion. The same 10 testing categories were used for all methods,

and the PCA vectors were taken from the 40 class case. Train-

ing on more categories improves the one-shot recognition perfor-

mance.

sets perform on datasets with a broader range of categories

than animals alone, and with a greater number of object

classes.

Again, the images from 10 classes were held out as test-

ing categories, while the remaining images were available

to train r(x), using the logistic projection from Equation 4,

as the intermediate representation. To better understand the

impact of training classes on our internal representation, we

repeated the training procedure using 40, 65, and 91 classes.

These were designed so that the larger sets contained all of

the object categories present in the smaller sets.

These three different training classes make it possible to

measure the benefit of using a large number of classes to

learn r(x). As shown in Table 3, increasing the number of

classes leads to an increased recognition performance, with

almost a 10% difference between the models trained on 45

and 91 categories. This confirms that exposing the micro-

set training process to more categories generates an inter-

mediate representation that is better able to separate novel

image categories when presented with the testing classes.

It should be noted that even though our model is opti-

mized for one-shot recognition, it is straightforward to ex-

tend the classification process to use more examples per

class. As an example, by using three exemplars per class,

recognition accuracy improves 5%.

8. Discussion

As mentioned in Section 2, the proposed approach for

learning the intermediate representation is unique in that

the learning criterion directly simulates the generalization

performance of the one-shot classifier. In each micro-set,

the NCA criterion measures the probability that a nearest-

neighbor classifier assigns the ground-truth label to each

image in the test-set for that micro-set. This effectively

measures how well the intermediate representation enables

a nearest-neighbor classifier to generalize from the training

examples in that micro-set. Averaging these probabilities

over large numbers of micro-sets leads to a better estimate

of the true generalization performance.

A major advantage of the micro-set approach is that it



is both straightforward to implement and scales well to

large data-sets. Other transfer-learning approaches, such

as [22, 7] require computationally-expensive global steps.

By contrast, our approach can be implemented with ba-

sic gradient-descent techniques, using a criterion that is

straightforward to differentiate. Because the overall crite-

rion is computed independently across micro-sets, the train-

ing parallelizes easily in a many-core or cluster architecture.

The micro-set approach also scales well to large data-sets

using a stochastic gradient descent implementation, as in

the experiments discussed in Section 5.

In contrast to transfer learning approaches such as [22],

our framework does not employ unlabeled data. This is

because the amount of available labeled data for common

categories already overwhelms our current (and projected)

computing resources during the training phase. In fact, un-

labeled data exacerbates rather than alleviates the problem.

For these reasons, we argue that exploiting unlabeled data is

less important than taking advantage of the large quantities

of labels that are already available for related classes. Our

focus is on showing how these can be effectively leveraged

for the task of one-shot recognition.

9. Conclusion

In this paper, we have introduced a novel approach for

learning an intermediate representation for one-shot recog-

nition. Our approach directly simulates the generalization

performance of a nearest-neighbor classifier by optimizing a

NCA-like criterion over a large number of micro-sets. Each

micro-set consists of a different one-shot recognition prob-

lem generated from the large set of training images. As

we have shown, this approach makes it possible to learn

an intermediate representation that significantly improves

recognition performance for one-shot recognition of novel

categories.
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