
756 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Optimizing OSPF/IS–IS Weights in a
Changing World

Bernard Fortz, Associate Member, IEEEand Mikkel Thorup

Abstract—A system of techniques is presented for optimizing
open shortest path first (OSPF) or intermediate system–interme-
diate system (IS–IS) weights for intradomain routing in a changing
world, the goal being to avoid overloaded links. We address pre-
dicted periodic changes in traffic as well as problems arising from
link failures and emerging hot spots.

Index Terms—Combinatorial optimization, intermediate
system–intermediate system (IS–IS), local search, open shortest
path first (OSPF), shortest path first, traffic engineering, traffic
management.

I. INTRODUCTION

T HE OPTIMIZATION goals of traffic engineering are to
enhance the performance of Internet protocol (IP) traffic

while utilizing network resources economically. In this paper,
our focus is onoptimizing open shortest path first (OSPF) or
intermediate system–intermediate system (IS–IS) traffic routing
so as to make more efficient use of network resources in sce-
narios of changes to traffic and networks.

Shortest path first (SPF) protocols such as OSPF [23] or IS–IS
[8] are the most commonly used intradomain Internet routing
protocols today. Traffic is routed along shortest paths to the
destination. The weights of the links, and thereby the shortest
path routes, can be changed by the network operator. A simple
default weight setting suggested by Cisco [11] is to make the
weight of a link inversely proportional to its capacity. As an al-
ternative to OSPF/IS–IS, the more flexible multiprotocol label
switching (MPLS) protocol has been suggested [5], [25]. MPLS
is not yet widely deployed, but in principle, it would allow ar-
bitrary routing in networks.

Our general objective in this paper is to route demands
through an OSPF/IS–IS based network so as to avoid conges-
tion in terms of link loads exceeding capacities with resulting
packet loss and back off in TCP.

In the context of afixed network with a fixed known de-
mand matrix this problem has already been addressed experi-
mentally in [20] with real and synthetic data, showing that we
can find weight settings supporting 50%–110% more demands

Manuscript received March 8, 2001; revised December 20, 2001. The work
of B. Fortz was supported by the AT&T Research Prize 1997.

B. Fortz is with the Institut d’Administration et de Gestion, Uni-
versité Catholique de Louvain, Louvain-la-Neuve, Belgium (e-mail:
fortz@poms.ucl.ac.be).

M. Thorup is with AT&T Labs-Research, Shannon Laboratory, Florham Park,
NJ 07932 USA (e-mail: mthorup@research.att.com).

Publisher Item Identifier S 0733-8716(02)03143-8.

than Cisco’s defaults inverse-capacity-weights, and get within a
few percent of the best possible with general routing, including
MPLS. Similar positive findings have been reported in [6], [14],
[21], and [24]. Here, the demand matrix could be based on con-
crete measurements, as described in [17] (see also [10] and
[12]), but could also be based on concrete service level agree-
ments (SLAs).

However, as stipulated in [3],demand matrices and networks
change. The obvious idea for dealing with change is to just reset
the weights using the above mentioned techniques. However, as
we shall see shortly, there are several reasons why one should
avoid weight changesas much as possible. Our target in this
paper is to match the above mentioned improvements for fixed
networks and demand matrices in scenarios of changing net-
works and demand matrices, changing as few weights as pos-
sible.

Why Weight Changes are Bad:There are multiple reasons
why weight changes are to be avoided as much as possible. First
we note that even a single weight change is disruptive for a net-
work. The weight change has to be flooded in the network. As
the routers learn about the change, they recompute their shortest
paths to update their routing tables, and it may take seconds
before all routers agree on the new shortest paths. Meanwhile,
packets may arrive out of order, degrading the performance of
TCP. Obviously, the more weight changes we try to flood si-
multaneously, the more chaos we introduce in the network with
packets being sent back and forth between routers with very di-
verging pictures of the weights and shortest paths in the net-
work.

A quite different problem with many weight changes is that a
human network operator oversees the configuration of weights
and is making sure that the resulting routing is well behaved,
making sure that a diverse set of requirements is satisfied. These
requirements may be very specific to the network, and may
never be explicitly formulated until the network operator sees
a concrete problem. In contrast, we are developing a generic
tool for reducing congestion in arbitrary networks according to
a specific mathematical formulation of congestion. Indeed, con-
gestion is important, but our tool can only act as a decision sup-
port system over which the human operator has full control. If
the tool suggests a few congestion reducing weight changes, the
operator has a chance of checking that these are consistent with
other requirements, but if we suggest too many changes, he is
less likely to be able to endorse them.

In fact, our tool allows the operator to limit the range of
different weights. If he does not approve of suggested weight
changes, he can limit the ranges, thus, forcing the tool to come
up with new suggestions. This kind of interactive play is only

0733-8716/02$17.00 © 2002 IEEE

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 757

meaningful if the number of weight changes is so limited that a
human can comprehend them. We note that limiting the range of
weights is technically trivial, and it will not be discussed further
in this paper.

Good Performance With Few Weight Changes:Motivated by
the problems in changing weights, our first contribution is a
technique for optimizing weights, changing as few weights as
possible.

The technique was applied to a real weight setting of the
AT&T IP backbone, and it was found that increasing a single
weight from 1024 to 1025 reduced the max-utilization by 8%.
Here, theutilization of a link is the ratio of its load over its
capacity, so utilization above 100% means an overloaded link.
The max-utilization is the maximum utilization over all links
in the network. Thus, from the perspective of max-utilization,
the weight change was worth an 8% increase in link capacities.
Checking the impact of a single weight change is relatively easy,
and executing it is much cheaper than buying and installing new
links with higher capacity.

Our technique was also tried on the experimental networks
from [20], including a proposed AT&T IP backbone as well as
the synthetic two-level graphs of Zeguraet al. [9], [29], [30].
Here it was found that if we started with Cisco’s suggested de-
fault link weights inversely proportional to link capacities, using
at most ten weight changes, we could support around 50% more
demands, achieving about 2/3 of the gains reported in [20] with
a complete change of all weights.

Of particular interest, we considered the problem of reestab-
lishing performance after a local change such as a link failure or
a new hot spot. That is, our starting point was a set of weights
optimized for a network with a given demand matrix. We then
simulated all possible single link failures and hot spots, and dis-
covered that even in the worst cases, three weight changes suf-
ficed to get within a few percent of the best possible with a com-
plete dynamic change of all weights.

We note that improved routing may cause TCP to send
packets more aggressively, thus, changing the demand matrix.
Allowing TCP to send more traffic thanks to less loaded links
and packet loss is in itself considered positive, and here we
ignore the more complicated interaction. We note, however,
that we in response to demand changes from TCP could apply
the weight changes iteratively.

Periodic Daily Changes:Even on a daily basis there are large
structural differences between day and evening traffic. However,
this pattern is relatively similar for different days, that is, the
traffic undergoes quite predicted periodic changes on a daily
basis [17], [18].

The most obvious idea for dealing with daily changes would
be to use the above techniques to adapt the weights to the
changes. However, even a few daily weight changes are best
avoided.

We propose here to seekoneweight setting that is good for
all the typical periodic changes happening during a day. To deal
with periodic changes, we suggest optimizing the weight setting
based on a few representative demand matrices, such as one
day and one evening matrix. Our basic idea is that if one set of
weights works well for some representative demand matrices,
it works as well for all demand matrices dominated (in each

entry) by convex combinations of these representative demand
matrices, thus, allowing us to cover an infinite space of demand
matrices rather than just a few singular points. This combined
with general robustness to noise gives us a chance of addressing
all the periodic changes happening throughout a day.

For our test instances, we succeeded in finding single weight
settings for pairs of structurally different demand matrices that
simultaneously for each individual demand matrix gave routing
close to the optimum for general routing (including MPLS) for
that demand matrix. That is, our fixed weight setting is compet-
itive with ideal dynamic routing with unlimited power to adapt
independently to each demand matrix.

This finding is somewhat surprising in that it is easy to
construct pairs of demand matrices so that however we fix the
routing, even with MPLS, it is going to be bad for at least one
of the demand matrices.

Our successful optimization over multiple demand matrices
is also interesting fordifferentiated serviceswith quality-of-ser-
vice (QoS) constraints. Here, we want to find one weight setting
that on the one hand satisfies certain performance guarantees for
high priority customers, and on the other hand gives good best
effort service for the general traffic. Having one demand ma-
trix for the high priority customers and another for the regular
traffic, we can apply the above mentioned techniques.

Summary of Contribution:This is the first paper addressing
the problem of finding good weight settings for OSPF/IS–IS
without the freedom to change all weights. We believe that re-
specting the problem in changing weights takes us from a nice
classical style combinatorial optimization problem to something
of true practical relevance.

Our technique for tuning a weight setting with as few weight
changes as possible is a novel general adaptation of the classical
local search approach of combinatorial optimization [1], and we
expect it to find many other applications in areas where param-
eter changes are undesirable. From a programming perspective,
the adaptation had the advantage that we could largely reuse our
previous local search code for a good setting of all weights [20].

Concerning periodic changes, our main new idea isnot to do
the obvious thing of precomputing weight changes for a transi-
tion between, say, day and evening, but to strive for one weight
setting good for the whole day.

The value of our techniques is demonstrated experimentally
on synthetic and real networks, showing that we can improve
significantly over standard default weight settings, and in fact
get close to the best dynamic routing with the more general
MPLS scheme. As pointed out in [4], [19], and [20], it is trivial
to construct networks and demand matrices for which the best
OSPF/IS–IS routing is worse than the best MPLS routing. Also,
in this paper, we present a negative example with two demand
matrices that do not have a good common routing, even with
MPLS. Thus, our positive results cannot be achieved in general,
but they indicate that the negative examples are unlikely to dom-
inate in real networks.

In combination, our techniques provide an efficient tool for
OSPF/IS–IS traffic management in a changing world. It is now
an integrated part of AT&Ts NetScope/Bravo traffic engineering
tool for IP networks [16]. Note that our work may also be ap-
plicable to MPLS traffic engineering when label-switched paths

758 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 1. The need for global weights optimization.

or tunnels become logical links with weights like the physical
links in OSPF/IS–IS.

Contents: First, in Section II, we define our exact model and
objectives. Next, in Section III, we present our technique for op-
timizing with few weight changes. In Section IV, this technique
is applied in connection with link failures and hot spots. Then, in
Section V, we describe and evaluate our approach with multiple
demand matrices. Finally, we have some concluding remarks in
Section VI.

II. M ODELS AND EXPERIMENTAL TEST-BED

This section presents the basic framework from [20] used to
evaluate weight settings for a given network and demand matrix.
Whereas [20] kept the network and demand matrix fixed, we
are going to show how to deal with changes in the subsequent
sections. The original presentation of the framework from [20]
was rather short, and here we provide much more motivating
discussions and background.

A. The General Routing Problem

Optimizing the use of existing network resources can be seen
as a general routing problem defined as follows. We are given
directed graph , , whose nodes and
arcs represent routers and the links between them, arc capacities

, and a demand matrix that, for each pair
of nodes, tells us how much traffic flow we need to send from
to . We refer to and as the source and the destination of the
demand. Many of the entries ofmay be zero, and in particular,

should be zero if there is no path fromto in . A
routing solution specifies for each source–destination pair how
the demanded traffic should flow in the network. The loadon
an arc is then the total traffic flow through the arc, including
the contributions from each source–destination pair.

In the left side of Fig. 1 is a concrete example of a network
in which each of the nodes, , , and demands a flow of
1 to . In the displayed routing solution, the flows just follow
shortest paths to the destination, and thereby a load of three is
accumulated on link , whereas, all other links have loads
zero or one. The table on the right will be discussed in the next
subsection.

For real instances of the problem, additional complicating
constraints such as nodes forbidden for transit traffic or point-to-
multipoint demands arise [17]. These kind of constraints can be
integrated by modifying the graph including artificial links, but

these constraints do not affect the methods and results presented
here and are left out for the sake of clarity.

So far, we have been rather vague about our objective of
“avoiding overloaded arcs,” and we will now define some more
exact objectives. Recall that the utilization of an arcis the load
divided by the capacity, i.e., , and a link is overloaded if
the utilization exceeds 100%. The max-utilization is the max-
imum utilization over all links. Thus, if all links in Fig. 1 had
capacity 2, the max-utilization would be 3/2150%.

Minimizing the max-utilization as in [21] is a natural and in-
tuitive objective for routing. In our example, we can reduce the
max-utilization to one by sending the traffic fromvia and

to instead of via . We note that there may be some links
for which we are particularly concerned about high utilization,
but we can just view such links as having a reduced capacity. We
will consider the max-utilization in this paper, but it suffers from
allowing a single bottle-neck, e.g., an ingress link from another
domain over which we have no control, to dominate the whole
picture. Also, it does not penalize using very long detours. To
get a measurement considering the whole network, we consider
cost functions of the form

summing a cost from each arc depending on
the relation between the load and the capacity . In
[24], they use a queuing theory style link cost function

. With this function, it is more
expensive to send flow along arcs whose loads approach ca-
pacity, which is what we want. However, the function does not
deal with overloaded links, and in reality, a single overloaded
link does not take down a whole network. To overcome this
problem, we resorted to a piece-wise linear approximation of

, defined with heavy penalty for overloaded links.
More precisely, for some fixed capacity, we define
as the continuous function with and derivative in
the load of

for
for
for
for
for
for

(1)

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 759

Fig. 2. Arc cost�(` ; 1) as a function of load̀ with capacityc = 1.

The arc cost function is illustrated in Fig. 2. Generally, it is
cheap to send flow over an arc with a small utilization .
The cost increases progressively as the utilization approaches
100%, and explodes when we go above 110%.

Because of the explosive increase in cost as loads exceed ca-
pacities, our objective typically implies that we keep the max-
utilization below 1, or at least below 1.1, if at all possible.

The objective function was chosen on the basis of discussions
on costs with people close to the AT&T IP backbone. The exact
coefficients are not important. We tried many variations and
found that this did not change the quality of our results. Also, it
had no substantial impact to use a smoother objective function
with smaller segments. More importantly, the routing solutions
found were very robust to changes in the objective function. In
particular, when optimizing routings for, our solutions tended
to also do very well with respect to max-utilization.

The piece-wise linearity of our cost function has the advan-
tage that using a linear programming (LP) solver, we can find
the optimal solution to the general routing problem with no lim-
itations to how we can distribute the flow between the paths.
We can then compare ourselves against this unrealistic ideal to
see how competitive we are withanyother approach, including
MPLS.

A problem in the current formulation of is that it does not
provide a universal measure of congestion. With the max-uti-
lization, it is clear for any routing in any network that we have
a problem if it exceeds 100%, and we would like a similar uni-
versal cutoff for our summed link costs. To achieve this, we use
a normalized cost function1

where is the cost we would have had if all flow was sent along
hop-count shortest paths and the capacities matched the loads.
When capacities match loads, we pay per unit load over
a link, so if is the hop-count distance betweenand
, . Note that for

a given network and demand matrix, the division bydoes
not affect which routings are considered good. Summing up,

implies that we are performing as badly as if all flows
where along hop-count shortest paths with loads matching the
capacities. The same cost can, of course, also stem from some

1The normalization from [20] was defined differently so that it was�(1; 1) =
10 (2=3) times bigger.

loads going above capacity and others going below, or by flows
following longer detours via less utilized arcs. Nevertheless, it
is natural to say that a routingcongestsa network if .

B. OSPF/IS–IS Routing

As mentioned earlier, this paper focuses on routing with
OSPF [23] and IS–IS [8], which are the most commonly used
intradomain Internet routing protocols today. The network
operator assigns a weight to each link, and shortest paths
from each router to each destination are computed using these
weights as lengths of the links. In each router, the next link
on all shortest paths to all possible destinations is stored in a
table, and a flow arriving at the router is sent to its destination
by splitting the flow between the links that are on the shortest
paths to the destination. The details of the splitting/tie-breaking
depends on the configuration of the router. In this paper we
assume a hash-based splitting, as used in the AT&T IP network:
if a router has multiple outgoing links on shortest paths to
a destination, packets are assigned an outgoing link based
on a hash function of some information in their header. The
hashing ascertains that packets from the same flow follow the
same path, which is important for the packets to arrive in the
order they were transmitted. The hash-based splitting generally
results in a roughly even split, and for simplicity, in our analysis
and simulations, we assume that the split is exactly even.

In [19] and [20], it was found that Cisco’s [11] suggested
default of setting weights inversely proportional to the capacity
was as good or better than setting all weights to one, or using
physical distance. This justifies that inverse capacity is the only
default weight setting that we compare ourselves against in the
current paper.

C. The Need for Global Optimization

A naive approach to the problem of trying to improve a given
routing by modifying only one or few weights would be to just
increase the weight of overloaded links, thus, avoiding the need
for sophisticated tools as presented in this paper. (Un)fortu-
nately, such a strategy is often insufficient to provide the best
results. To illustrate this, reconsider the network of Fig. 1 as-
suming that all capacities are two. Suppose that we want to
send one unit of flow from , , and to . The table in
Fig. 1 presents the loads resulting from three different weight
settings. For units weights, we get a maximal load of three on
link . If we wish to decrease this maximal load by in-
creasing the weight of this heavily loaded link, the best solution
is to set the weight to two. We then get that the flows coming
from , and are split along the two possible paths, and the
maximal load becomes 2.5 on link . If we instead look
for the best change over all links, we easily see that setting the
weight of link to three changes the routing for the flow
from to , but not those from and to , and the maximal
load in the network is thereby decreased to two, matching the
capacity.

Note, that in this optimal solution, the shortest paths are
unique, hence, that we made no use of the even splitting feature.
Rather it just singles out part of the traffic fromand redirects
it. A similar pattern was found in many of the optimized weight
settings from [20]. A somewhat similar finding is reported in

760 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

[26], where the authors, in a slightly different context, show
that the best routing strategy usually is obtained with a limited
number of different paths.

D. Test Instances

Our basic experimental networks and demand matrices are
the same as in [19] and [20]. We have a proposed AT&T IP back-
bone with 90 nodes, 274 arcs and projected demands. Also, we
have a synthetic two-level networks produced using the gener-
ator GT-ITM [29], based on a model of Calvert, Bhattacharjee,
Daor, and Zegura [9], [30]. This model places nodes in a unit
square, thus, getting a distance between each pair of
nodes. These distances lead to random distribution of two-level
graphs, with arcs divided in two classes:local accessarcs and
long distancearcs. Arc capacities were set equal to 200 for local
access arcs and to 1000 for long distance arcs. Many networks
were generated and tested, also including Waxman graphs [28]
and random graphs, but for space reasons, we only present ex-
periments over one two-level graph with 50 nodes and 148 arcs.
Results for other networks are consistent with those reproduced
here and follow the same patterns.

The above synthetic network model does not include a model
for the demands. Inspired by classical entropy models for urban
traffic [27], we decided to model the demands as follows. For
each node , we pick two random numbers , . Fur-
ther, for each pair of nodes we pick a random number

. Now, if the Euclidean distance () between
and is , the demand betweenand is

(2)

Here, is a parameter and is the largest Euclidean distance
between any pair of nodes. Above, the and model that
different nodes can be more or less active senders and receivers,
thus, modeling hot spots on the net. Because we are multiplying
three random variables, we have a quite large variation in the
demands. The distance factor implies that we have
relatively more demand between close pairs of nodes, yet the
distance on its own never has an impact bigger than a factor

… . In our experiments, we also tried not using
the distance factor , and the results were essentially
unchanged. This model—without the distance factor—has also
been used in [13] for Internet traffic. They also consider voice
and transaction data but with a large distance factor.

In our experiments, we generated one demand matrix for
each network, then we scaled it (by multiplying each entry by
a constant) at different levels to obtain different total demands.
All our results are reported for these increasing total demands,
which allows to measure, for a given routing, at which level
of total demand congestion occurs for the given topology and
demand pattern.

Our technique for few weight changes was also tested on the
real AT&T IP backbone with its real weight setting and mea-
sured demands [17].

Discussion of Test Instances:We will now briefly discuss
our choice of synthetic data. On the positive side, for the net-
work model itself, it has already been established that it gives
good approximations to real networks in many aspects [9], [30].

Further, the similarity in results found in [20] between the pro-
posed AT&T IP backbone and our synthetic networks indicate
that the model is reasonably faithful for our purpose.

On the negative side, it has recently been found that the degree
distribution for IP networks has heavy tails [15] (we note that
[15] actually considers the Internet as a whole, whereas, we are
only considering a single domain), and similar findings have
been found for the demands [17], that is, we should have some
nodes with very high degrees, and some very large demands.
Our synthetic models do not provide such heavy tails.

Generating networks and demand matrices with heavy tails is
in itself easy [2]. For the networks, one could even use some of
the official networks available at [7]. However, in real networks,
the heavy tails of the networks and demand matrices are highly
dependent. Generally, heavy tails means structure. High degree
nodes are placed at strategic positions relative to the structure of
the expected demand matrix. Indeed, we have found that AT&Ts
network performs very poorly on a random demand matrix. A
random heavy tail demand matrix placing a large demand in,
say, Alaska, would be even worse. Thus, networks and demand
matrices with heavy tails have to be tailored to each other to be
realistic. So far, there is no established model for such tailored
combination, and tailoring the input data ourselves would make
our results less convincing.

The advantage of Zegura’s networks is that they are con-
structed in a generic way not favoring any particular demands,
and for that reason they work reasonably well for generic de-
mand matrices such as ours.

Thus, we argue there is no obvious better choice of a model,
given that, to claim good optimization results, we cannot con-
vincingly construct a model by hand. However, for the sake of
optimization work like ours, we see it as an important challenge
to develop a single heavy tail model integrating both IP networks
and demand matrices where the IP network is reasonably tuned
for the demand matrix. In fact, as argued above, we think that
such an integrated approach may give a better understanding of
the heavy tails found in IP network, viewing the height degree
nodes as strategically positioned hops.

III. FEW WEIGHT CHANGES

In this section, we consider the problem of optimizing,
making as few weight changes as possible. We apply our tech-
nique for few changes in two scenarios. One is when the weight
setting has not previously been optimized, e.g., if the network is
so far just run with inverse capacity weights following Cisco’s
recommendation [11]. The other one, described in Section IV,
is in response to problematic changes in demands or topology
like critical link failures or emerging hot spots.

A. Technique for Few Changes

We want to make as few weight changes as possible. The local
search from [19] and [20] that we used for multiple demand ma-
trices works with a single solution that is iteratively improved by
small changes in the current solution. It typically performs a lot
of iterations (5000 in our practical experiments) and, therefore,
produces a solution completely different from the starting one.
This can be seen as a depth-first search in the solution space, but

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 761

Fig. 3. Optimizing with few changes on two-level graph with 100 nodes and 280 arcs.

Fig. 4. Few changes on AT&Ts proposed backbone.

since we want to make as few changes as possible, our approach
should rather be a breadth first search.

Our heuristic for improving an input weight setting with as
few weight changes as possible works as follows: first we con-
sider about 1000 single weight changes to, corresponding to
about five weight changes for each arc in our largest networks.
As in [19] and [20], we limit the number of weight changes
considered by applying random sampling to the neighborhood
structure, as exploring the full neighborhood is too time con-
suming. Instead of selecting only the best weight change as in
[19] and [20], we keep the 100 best weight changes in a family
of “best weight settings.” The process is iterated withinstead
of : we consider 1000 single weight changes for each weight
setting in and a new is selected containing the 100 best of
the old weight settings in and the about 100 000 new weight
settings considered. Afteriterations, including the start from

, the family consists of weight settings with up toweight
changes from . The size of corresponds to the breadth of
our search. All the above numbers are just parameters that ex-
perimentally were found to give a good compromise between
quality of solution and time. For the largest networks consid-
ered, 10 iterations took about 1 1/2 hours on a single processor
of a 194 MHz CPU SGI Challenge XL. If running time is an
issue, one can, for example, reduce the family size or the number
of iteration, or even better, buy a better faster computer or par-
allelize the code.

This technique for few changes has, to our knowledge, not
been used before. Its main interest is that it provides a general
framework for optimizing with few changes that can be easily
adapted for other applications. It has the advantage that if a local
search such as our previous heuristic from [20] is available, the

main ingredients such as the changes applied to one solution to
get a neighbor of it, or the procedures to evaluate a new solution,
can be reused in this new framework, saving a lot of implemen-
tation work.

B. Experiments With Few Changes

As our base experiment with few changes, we took the in-
verse-capacity weight setting (InvCapOSPF) as a starting point.
A concrete output for running the code for 3-iterations is pre-
sented in Fig. 3.

It tells the user how much improvement can be obtained with
one, two, and three changes and which changes to make. Fur-
ther, it shows more precisely how the loads on the most utilized
links change as more changes are applied.

The results of applying our technique are presented in Figs. 4
and 5, with InvCap denoting that we applied changes. Di-
rectOSPF represents a weight setting, involving all weights, op-
timized with our local search from [20], and OPT is the solution
of the general routing problem, including the possibilities with
MPLS. Note that the variations in the right side of Figs. 4 and 5
are due to the fact that the optimization is done using our metric
and that max-utilization is computed afterwards.

First, as in [19], and [20], we note that all curves start off
pretty flat, and then, quite suddenly, start increasing rapidly.
This behavior follows our cost function that explodes when the
load of a link reaches its capacity [cf. (1), Fig. 2].

The most interesting comparison between the different
schemes is the amount of demand they can cope with before
the network suddenly gets congested in the sense that its
normalized cost exceeds one. For the real network, one change

762 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 5. Few changes on two-level graph.

Fig. 6. Link failure on AT&Ts proposed backbone.

Fig. 7. Resurrecting performance after worst possible link failure in AT&Ts proposed backbone.

gives 10%, three changes gives 25% while ten changes gives
35%. On the synthetic network, one change gives 50%, three
changes give 75% while ten changes give 90%. Thus, quite
substantial improvements can be obtained with few changes.

The code was also run with on the real AT&T IP backbone
with its real weight setting and measured demands. It was found
that changing the weight of a single link from 1024 to 1025
improved the max-utilization by 8%. Further details on this are,
however, proprietary.

IV. L INK FAILURES AND HOT SPOTS

In this section, we consider the problem of link failures
and emerging hot spots. We show that they are not normally
problematic. However, there are a few critical cases, but for
these, we reestablish good performance with at most three
weight changes.

A. Link Failures

For AT&Ts proposed IP backbone, we tried all possible link
failures, and computed the routing both with InvCapOSPF, and

with a weight setting optimized from before the link failure (Di-
rectOSPF). The results are depicted in Fig. 6, giving the values,
first without link failures, then as average over all link failures,
and finally with worst-case link failures. Here, by worst case, we
mean the link whose deletion decreases the objective function
the most for the given weight setting. This link is, thus, found
independently for each weight setting considered.

For average link failures, we see that DirectOSPF performs
25% better than InvCapOSPF, which is still pretty good. How-
ever, for worst-case link failures for the proposed AT&T IP
backbone in Fig. 6, we see that our optimized weights do 65%
worse than InvCapOSPF. Shortly, we will turn this defeat into
victory.

If we remove the worst-case link that caused the biggest
problem for weight settings found by our DirectOSPF for
the proposed AT&T IP backbone and reoptimize with as few
weight changes as possible, as described in the last section,
we obtain results depicted in Fig. 7. Here, OldOSPF denotes
our optimized weight setting from before the link failure, and
Old denotes the result of optimizing this weight setting with

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 763

Fig. 8. Hot spot on AT&Ts proposed backbone.

Fig. 9. Resurrecting performance the worst hot spot in AT&Ts proposed backbone.

changes. InvCapOSPF, DirectOSPF, and OPT are all based
directly on the network without the bad link.

First, observe that OldOSPF comes down and performs as
well or better than InvCapOSPF for demands scaled around
11 000 and 19 000. The reason for this is that for the original
weight settings generated for these two demand scalings, it was
actually a different link that was bad. However, for all the other
demand levels, it is the worst possible link we have deleted.
This essentially means that our weight setting had some dif-
ferent choices in what links to make critical, and the choice hap-
pened to come out differently for two of the scalings. The jumps
nearly disappear after just one weight change, which makes us
beat InvCap everywhere.

What we now see is that after just one weight change, we do
60% better than InvCap and with three changes we do 160%
better, getting within 10% of OPT.

B. New Hot Spots

Our next experiments concern the developments of new
hot spots. The essential experiment is to take one router and
multiply all incoming demands by a factor of three. This
corresponds to multiplying one by three in (2), which again
amounts to multiplying all entries in a column of the demand
matrix by three. This is likely to give more structural difference
than just noise, turning links towardinto bottlenecks.

The results of the experiments are depicted in Fig. 8. As
for link failures, the average and the worst performance are
obtained over hot-spotting all nodes, one at the time. We do
this with the weight settings both from InvCapOSPF and
DirectOSPF. We see that DirectOSPF performs 20% better
than InvCapOSPF for average hot spots, and 30% better for
worst-case hot spots. Without hot spots, DirectOSPF performed
50% better than InvCapOSPF. Thus, we do lose some of our

Fig. 10. Bad choice.

advantage over InvCapOSPF, but our optimized weight setting
still provides a clear advantage over InvCapOSPF.

As for link failures, we tried to take the worst possible hot
spot (in the sense that it deteriorates the most the objective func-
tion), and reestablish good performance. The result is depicted
in Fig. 9. The nice thing is that we only need a single weight
change to get back very close to optimum, which is even better
than for the worst possible link failure.

V. MULTIPLE DEMAND MATRICES

Our motivation for working with multiple demand matrices
is the general experience from AT&T that traffic follows quite
regular periods with a peak in the day and in the evening. The
network operators do not want to change weights on a regular
basis so we want just one weight setting which is good for the
whole period. We then collect a peak demand matrix for the day
and one for the evening. A weight setting performing good on
both performs good on all convex combinations and, hence, it
has a good chance of performing well for the whole period.

A. An Impossible Example

In Fig. 10, it is illustrated that if we have to fix one set of
routes for two different demand matrices, this may force us to

764 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 11. Simultaneous optimization on AT&Ts proposed backbone and scaled projected demands (D).

increase the max-utilization by 50% for one of them. In the ex-
ample, one demand matrix wants one unit of demand fromto

and from to while the other wants one unit of demand
from to and from to . However, any flow from to

has to share a link with either flow from to , or from
to . In each situation independently, we can get max-utiliza-
tion 1, but if we have to fix the routing from to , the best we
can do is to split the – flow evenly, getting a max-utilization
of 3/2 in both cases. As for the negative examples in [20], this
worst-case example is far from real networks, and we will see
that in practice, real networks perform much better.

B. Optimizing for Multiple Demand Matrices

Given a network with several demand ma-
trices , we want to find a single weight setting

which works well for all of them. In general, we will
use to denote the load on link with network ,
demand matrix , and weight setting . Similarly for our cost
function, we have with

as defined in (1).
Now consider a demand matrix dominated by a convex

combination of , that is
where . Here everything is understood to
be entry-wise, so for all ,

.
Since the routing for each source–destination pair is

fixed by the weight setting , for each arc ,
.

In particular, it follows that the max-utilization for is no
worse that the worst max-utilization for the . Further,
since each arc cost function is convex,

and, hence,
.

Thus, our weight setting does no worse for than for
the worst of the , neither with respect to our cost function

, nor with respect to max-utilization. Note that the same
observation holds true with MPLS, as long as the routing for
each source–destination pair is fixed.

From [19], we know that it is -hard even to approxi-
mate a good weight setting for a single fixed demand matrix,
that is, unless , there cannot be any general method
providing guaranteed good results. However, an efficient local
search heuristic for the problem is suggested in [19] and [20]
that for a given network and demand matrix looks for a
weight setting that minimizes .

To optimize simultaneously for several demand matrices
, we simply modify the local search heuristic to

minimize

(3)

As in our original motivation for defining , this has the effect
of penalizing highly loaded links, this time, for all the demand
matrices instead of just one. Our negative theoretical example
shows that we cannot in general hope for good results, but we
can still hope to do well in practice.

C. Experiments for Multiple Demand Matrices

In [19] and [20], there was only one demand matrix for
each network. Here, we generated a second independent ma-
trix , using the same distribution, and scaled to have the
same total demand as . We call this demand matrix a twin
of . The difference between and models structural
differences in traffic, with a complete change in who are the
big senders and receivers, thus modeling, e.g., the difference be-
tween day and evening traffic. We also derived a noisy version

of that will be discussed later.
We compared OPT, InvCapOSPF, and DirectOSPF (obtained

with our heuristic from [20]) against OSPF/IS–IS routings of
using weight settings optimized relative to (TwinOSPF)

and for and simultaneously (PairOSPF) as in (3). A sym-
metric set of experiments were performed with the roles of
and interchanged. A good performance of PairOSPF on both

and shows that we have successfully found one weight
setting that compromised neither demand matrix.

The results of our experiments are presented in Figs. 11–14
with different scalings of the demand matrices.

In the experiments, we see that DirectOSPF allows us to cope
with 50%–110% more demand than the InvCapOSPF. Also, Di-
rectOSPF is less than 2% from being able to cope with the same
demands as the optimal general routing OPT.

If we look at TwinOSPF, we see that it is often at least as bad,
or worse than InvCapOSPF. Nevertheless, PairOSPF does very
well, never getting more than 10% worse than DirectOSPF and
OPT. In particular, PairOSPF is always doing simultaneously
well for both demand matrices it optimizes over.

Put in terms of our day–evening example, this means that if
we just optimize relative to a peak demand matrix from the day,
we cannot expect to gain anything for the evening. However,

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 765

Fig. 12. Simultaneous optimization on AT&Ts proposed backbone and synthetic twin demands (D).

Fig. 13. Simultaneous optimization on two-level graph (D).

Fig. 14. Simultaneous optimization on two-level graph and twin demands (D).

if we do simultaneous optimization for a day and evening de-
mand matrix, we can hope do well on both. This combined with
our robustness to noise (see Section V-D below) and our auto-
matic benefit for all convex combinations gives us a good chance
of dealing well for typical daily periodic changes with a single
weight setting.

One may wonder why things work so well in spite of simple
negative examples like the one presented in Fig. 10. A simple
explanation comes from the fact that even if a bad example oc-
curs as a subgraph of the network, real networks are usually
large enough that we can steer the traffic around such a small
bottleneck even with limited control over the routing. Indeed, in
our experiments it usually turned out that only a small number
of links where overloaded, so our bottlenecks were local, and
making just a few good weight changes allowed us to smooth
out these local discrepancies.

D. Robustness to Noise

We derived a noisy version of by multiplying each
entry by a random number between zero and two. On the average

this changes each entry by 50% without changing the expected
total demand. The discrepancy betweenand could rep-
resent problems of getting exact measures [17], or general fluc-
tuations in traffic.

The results of our experiments with noise are also presented
in Figs. 11 and 13, where we compared DirectOSPF against
routings of using weight settings optimized relative to
(NoiseOSPF). NoiseOSPF is doing quite well, gaining a min-
imum of 40% over InvCapOSPF. Thus, our weight settings are
pretty robust to noise, and this implies that we only need a rough
estimate of the demand matrix.

Note that the results obtained with with weights opti-
mized for (TwinOSPF) are much worse than those with
(NoiseOSPF), meaning weight settings are more sensitive to
structural changes than to noise.

E. Differentiated Service

We now outline how our positive experience with multiple de-
mand matrices could also be applied with differentiated service.
Suppose we have two classes of customers: gold customers that

766 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

were promised a guaranteed bandwidth, and normal customers.
We want to ensure that gold customers packets are routed in the
first 60% of the capacity of each link. Suppose we can find a
weight setting such that we remain below 60% of the capacity
if we only send gold customers demands. Then, we can en-
sure with this weight setting that gold customers packets will
be send below 60% of the capacity by giving them the priority
over normal customers using weighted fair queuing. Letbe
the demand matrix describing the bandwidth promised to gold
customers. We need to route with max-utilization 3/5. Re-
call that our objective function is designed to keep max-uti-
lization below one, which is also evident in our experiments
with DirectOSPF. To satisfy our gold customers, keeping their
max-utilization below 3/5, we can, therefore, optimize with re-
spect to .

However, this approach does not take normal customers into
account, and could lead to really bad situations for them. To
remedy this, let be a demand matrix estimating the total
traffic, including the gold customers. We want to provide good
best-effort service with respect to , while keeping the ob-
jective of getting the gold customers max-utilization below 3/5.
This problem has been addressed for MPLS [22] where it is just
a multicommodity flow problem.

This leads us to a combined objective function of the form

where is a parameter that we can optimize. Ifis sufficiently
high, we only care about the first term, and then we are pretty
sure to stay below 60% capacity for gold customers, if at all
possible. However, as soon as we have satisfied the gold cus-
tomers, we better start worrying about best effort service for ev-
erybody as in the second term, so the natural optimization is to
use the smallest for which the gold customers get satisfied.
This smallest can be found by a binary search.

The interesting thing here is that our successful experiments
with multiple demand matrices indicate that we can satisfy both
gold customers and normal customers with OSPF/IS–IS without
compromising either.

VI. CONCLUSION

We have presented a system of algorithms for efficient
OSPF traffic management in a changing world. As described
in Section V, we can optimize efficiently over a few peak
demand matrices, say representing day and evening US traffic
and international traffic in the night, and thereby produce a
weight setting covering all demand matrices dominated by
convex combinations of these peaks. The noise tolerance from
Section V implies that we do not need to find the absolute
peaks, as long as we get within a reasonable neighborhood of
them. Further, the results from Section IV indicate that our
weight setting is good for new hot spots, and most link failures,
so generally, we do not expect to have to change the weight
setting.

However, by simulation, we may discover that a few critical
link failures can cause problems. For these few links we precom-
pute a few weight changes to be applied in case they fail. Sim-

ilar proactive strategies can be applied against other predicted
changes.

In case the whole structure of the demand matrix evolves to
a degree that our weight setting is no longer satisfactory, we ex-
pect to reestablish good performance with just a few changes.
Here the code from Section III can be used to generally monitor
the network, keeping the network operator informed whether he
can improve network performance with a few changes. The cur-
rent running times of one–two hours may be considered too slow
for such on-line traffic engineering. However, as is typical for
local search, we can always make a less exhaustive search to ter-
minate earlier. Within 10–15 minutes, one often get within 5%
of the presented results. Also, there are much faster machines
on the market. Anyhow, our system is expected to be most in-
teresting to network operators in cases where real problems are
experienced in the network, and where the alternative is to buy
new hardware. In such a case, one–two hours of CPU time is
cheap.

Besides the above concrete results, we believe that we have
set a quite general framework for efficient traffic management,
and many of the objectives could be reused within MPLS
routing. Particularly this covers the convexity idea.

In combination, our techniques provide an efficient system
for OSPF/IS–IS traffic management in a changing world. It is
now an integrated part of AT&Ts NetScope/Bravo traffic engi-
neering tool for IP networks [16].

ACKNOWLEDGMENT

The authors would like to thank J. Rexford for some very
useful and patient comments to different drafts of this paper.

REFERENCES

[1] E. H. L. Aarts and J. K. Lenstra, Eds., “Local search in combinatorial
optimization,” inDiscrete Mathematics and Optimization. Chichester,
England: Wiley, 1997.

[2] W. Aiello, F. Chung, and L. Lu, “A random model for massive graphs,”
in Proc. 32nd ACM Symp. Theory Computing (STOC), 2000, pp.
171–179.

[3] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. (2000)
A framework for internet traffic engineering. Network Working
Group, Internet Draft (work in progress). [Online]. Available:
http://search.ietf.org/internet-drafts/ draft-ietf-tewg-framework-02.txt.

[4] D. O. Awduche, “MPLS and traffic engineering in IP networks,”IEEE
Communications Magazine, vol. 37, pp. 42–47, Dec. 1999.

[5] D. O. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus.
(1999, Sept.) Requirements for traffic engineering over MPLS. Net-
work Working Group, Request for Comments. [Online]. Available:
http://search.ietf.org/rfc/rfc2702.txt.

[6] A. Bley, M. Grötchel, and R. Wessäly, “Design of broadband virtual pri-
vate networks: Model and heuristics for the B-WiN,” inProc. DIMPCS
Workshop on Robust Communication Networks and Survivability AMS-
DIMACS Series 53, 1998, pp. 1–16.

[7] Caida.. [Online]. Available: http://www.caida.org/tools/visualization/
mapnet/Data/.

[8] R. Callon. (1990, Dec.) Use of OSI IS–IS for routing in TCP/IP and
dual environments. Network Working Group, Request for Comments:
Rep. 1195. [Online]. Available: http://search.ietf.org/rfc/rfc1195.txt.

[9] K. Calvert, M. Doar, and E. W. Zegura, “Modeling Internet topology,”
IEEE Commun. Mag., vol. 35, pp. 160–163, 1997.

[10] J. Cao, D. Davis, S. V. Wiel, and B. Yu, “Time-varying network tomog-
raphy: Router link data,”J. Amer. Statist. Assoc., vol. 95, pp. 1063–1075,
2000.

[11] Cisco. (1997) Configuring OSPF. [Online]. Available: Documenta-
tion at http://www.cisco.com/uni-verc/cc/td/doc/product/software/ios
113ed/113ed_cr/np1_c/1cospf.htm.

FORTZ AND THORUP: OPTIMIZING OSPF/IS–IS WEIGHTS IN A CHANGING WORLD 767

[12] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct
traffic observation,”ACH/IEEE Trans. Networking, vol. 9, pp. 280–292.

[13] A. Dwivedi and R. E. Wagner, “Traffic model for USA long-distance
optimal network,” inProc. Optical Fiber Communication Conf. (OFC),
vol. TuK1, 2000, pp. 156–158.

[14] M. Ericsson, M. G. C Resende, and P. M. Pardalos, “A genetic algorithm
for the weight setting problem in OSPF routing,” J. Combinatorial Op-
timization, 2002, to be published.

[15] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the Internet topology,” inProc. ACM SIGCOMM’99: Conf.
Applications, Technologies, Architectures, and Protocols for Computer
Communications, 1999, pp. 251–262.

[16] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“NetScope: Traffic engineering for IP networks,”IEEE Network Mag.
(Special Issue on Internet Traffic Eng.), vol. 14, no. 2, pp. 11–19,
Mar./Apr. 2000.

[17] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F.
True, “Deriving traffic demands for operational IP networks: Method-
ology and experience,”IEEE/ACM Trans. Networking, pp. 265–279,
2001.

[18] A. Feldmann, J. Rexford, and R. Caceres, “Efficient policies for car-
rying web traffic over flow-switched networks,”IEEE/ACM Trans. Net-
working, vol. 6, pp. 673–685, 1998.

[19] B. Fortz and M. Thorup. (2000) Increasing Internet capacity using local
search. Université Libre de Bruxelles, Tech. Rep. IS-MG 2000/21. [On-
line]. Available: http://smg.ulb.ac.be/Preprints/Fortz00_21.html.

[20] , “Internet traffic engineering by optimizing OSPF weights,” in
Proc. 19th IEEE Conf. Computer Communications (INFOCOM), 2000,
pp. 519–528.

[21] F. Y. S. Lin and J. L. Wang, “Minimax open shortest path first routing
algorithms in networks supporting the SMDS services,” inProc. IEEE
Int. Conf. Communications (ICC), vol. 2, 1993, pp. 666–670.

[22] D. Mitra and K. G. Ramakrishnan, “A case study of multiservice, mul-
tipriority traffic engineering design for data networks,” inProc. IEEE
GLOBECOM, 1999, pp. 1077–1083.

[23] J. T. Moy. (1991, July) OSPF version 2. Network Working
Group, Request for Comments: 1247. [Online]. Available:
http://search.ietf.org/rfc/rfc1247.txt.

[24] K. G. Ramakrishnan and M. A. Rodrigues, “Optimal routing in
shortest-path data networks,”Lucent Bell Labs Technical Journal, vol.
6, no. 1, 2001.

[25] E. C. Rosen, A. Viswanathan, and R. Callon. (2001) Multiprotocol
label switching architecture. Network Working Group, Request for
Comments. [Online]. Available: http://search.ietf.org/rfc/rfc3031.txt.

[26] A. Sridharan, S. Bhattacharyya, C. Diot, R. Guerin, and J. Jetcheva, “On
the impact of aggregation on the performance of traffic aware routing,”,
[Online]. Available: http://www.seas.upenn.edu:8080/guerin/, 2000,
submitted for publication.

[27] P. L. Toint, “Transportation modeling and operations research: A fruitful
connection,” inOperations Research and Decision Aid Methodologies
in Traffic and Transportation Management. ser. NATO ASI Series: Ser.
F, Computer and Systems Sciences, M. Labbé, G. Laporte, K. Tanczos,
and P. L. Toint, Eds. New York: Springer-Verlag, 1998, vol. 166, pp.
1–27.

[28] B. M. Waxman, “Routing of multipoint connections,”IEEE J. Select.
Areas Commun. (Special Issue on Broadband Packet Communications),
vol. 6, pp. 1617–1622, 1988.

[29] E. W. Zegura. (1996) GT-ITM: Georgia Tech internetwork topology
models (software). [Online]. Available: http://www.cc.gatech.edu/
fac/Ellen.Zegura/gt-itm/gt-itm.tar.gz.

[30] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an in-
ternetwork,” inProc. 15th IEEE Conf. Computer Communications (IN-
FOCOM), 1996, pp. 594–602.

Bernard Fortz (M’99–A’00) received the Ph.D. de-
gree in operations research from the Université Libre
de Bruxelles, Belgium.

He is a Professor of Operations Research at the
Institut d’Administration et de Gestion of the Uni-
versité Catholique de Louvain, Belgium. His main
research interests are combinatorial optimization,
network design problems, and the optimization of
Internet resources using efficient routing protocols.

Dr. Fortz was awarded the AT&T research prize,
in 1997.

Mikkel Thorup received the Ph.D. degree from
Oxford University, Oxford, U.K., in 1993.

From 1993 to 1998, he was with the University
of Copenhagen, Denmark. In the summer of 1997,
he was a Distinguished Visiting Professor at the
Max-Plank-Institut fur Informatik, Germany. He
is currently a Principal Technical Staff Member at
AT&T Labs-Research, Florham Park, NJ, where he
has been since 1998. His main interest is algorithms
and data structures, and he serves on the Editorial
Board ofJournal of Algorithms.

