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Optimizing partitions of percolating graphs
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Abstract

The partitioning of random graphs is investigated numerically using “simulated annealing” and
“extremal optimization”. While generally in an NP-hard problem, it is shown that the optimization
of the graph partitions is particularly di�cult for sparse graphs with average connectivities near
the percolation threshold. At this threshold, the relative error of “simulated annealing” is found to
diverge in the thermodynamic limit. On the other hand, “extremal optimization”, a new general
purpose method based on self-organized criticality, produces near-optimal partitions with bounded
error at any low connectivity at a comparable computational cost. c© 1999 Elsevier Science
B.V. All rights reserved.
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The partitioning of graphs is generally an NP-hard optimization problem with many
practical applications such as VLSI design [1] and load-balancing between parallel
processors [2]. In physics, it is most closely related to �nding ground states of spin
glasses [3,4]. The graph (bi-) partitioning problem is easy to formulate: Take N points
where N is an even number, let any pair of two points be connected by an edge with
a probability p, divide the points into two sets of equal size N=2 such that the number
of edges connecting both sets, m, is minimal: M = mopt. The global constraint of an
equal division of the points between the sets places this problem generally among the
hardest problems in combinatorial optimization, requiring a computational e�ort that
would grow faster than any power of N to determine the exact solution with certainty.
Fast heuristic methods, such as Kernighan–Lin [5], are moderately successful in �nding
some of the vast number of near-optimal con�gurations. In this paper we will focus
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instead on two more generally applicable optimization methods: simulated annealing
[SA] [3,4] and extremal optimization (EO) [6].
The graph partitioning problem depends on the probability p with which any two

points in the system are connected. Thus, p determines the total number of edges
in an instance, L = pN (N − 1)=2 on average, and its mean connectivity per point,
C = p(N − 1) on average. In fact, graph partitioning has a lot of similarities with
percolation: If the mean connectivity C is very small, the graph of N points consists
of many disconnected, small clusters or single points which are easily enumerated
and sorted into two equal partitions with no edges between them (mopt = 0). If C is
large (p = O(1)), almost all points are connected into one giant cluster and mopt =
O(N 2). But when p = O(1=N ), say 1¡C¡ 10, the distribution of cluster sizes is
broad, and thus the partitioning problem is nontrivial. Obviously, as soon as a cluster
of size ¿N=2 appears, mopt¿ 0. Thus, we observe a percolation-like transition at a
Ccrit with the cutsize mopt as the order parameter. We will show that SA, based on
equilibrium statistical mechanics, performs poorly near this critical point. By contrast,
EO, a self-organized critical [7] optimization method, approximates mopt far better for
any C, and is about as fast as SA at least for C¡ 10.
In SA [3,4], we try to minimize a global cost function given by f = m + �(P1 −

P2)2, where P1 and P2 are the number of points in the respective sets. Allowing the
size of the sets to 
uctuate is required to improve SA’s performance in outcome and
computational time at the cost of an arbitrary parameter � to be determined. Then,
starting at a “temperature” T0, the annealing schedule proceeds with lN trial Monte
Carlo steps on f by tentatively moving a randomly chosen point from one set to the
other (which changes m) to equilibrate the system. After that, we set Ti = Ti−1(1− �),
equilibrate again for lN trials, and so on, until the MC acceptance rate drops below
Astop for K consecutive temperature levels. At this point the optimization process can
be considered “frozen” and the con�guration should be near-optimal, m ≈ mopt. While
SA is intuitive, controlled, and of very general applicability, its performance in practice
is strongly dependent on a multitude of parameters which have to be arduously tuned.
For us it is thus expedient (and most unbiased!) to rely on an extensive study of SA
for graph partitioning [8] which determined � = 0:05, T0 = 2:5, � = 0:04, Astop = 2%,
and K = 5. Ref. [8] set l = 16, but performance improved noticeably for our choice,
l= 32.
EO has recently been proposed as an alternative optimization method [6], based on

insights into nonequilibrium critical phenomena. Here, each point i obtains a “�tness”
�i=gi=(gi+bi), where gi and bi are the number of “good” and “bad” edges that connect
that point within its set and across the partition, resp. (�i=1 for isolated points.) Note
that

∑
i bi=2 = m. At all times, an ordered list �16�26 · · ·6�N is maintained where

�n is the �tness of the point with the nth rank in the list. At each update we choose
two points n = n1 and n = n2 from the two di�erent sets at random according to
their rank with probability P(n) ∼ n−�. These two points swap sets no matter what
the resulting new cutsize m may be. Then, these two points, and all points they are
connected to, re-evaluate their �tness �. Finally, the ranked list of �’s is reordered and
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Fig. 1. Two random geometric graphs, N = 500, with C = 4 (left) and C = 8 (right) in an optimized
con�guration found by EO. At C = 4 the graph barely percolates, with merely one “bad” edge (thick line)
connecting a set of 250 round points with a set of 250 square points, thus mopt = 1. For the denser graph
on the right, EO reduced the cutsize to mopt = 13 bad edges.

the process is started again. We repeat for about 400N update steps per run while
storing the best result generated along the way. Note that no scales are introduced
into the process, since – unlike in Monte Carlo – all moves are accepted. Instead of a
global cost function, the rank-ordered list of �tnesses provides the information about
optimal con�gurations. This information emerges in a self-organized manner merely by
selecting with a bias against badly adapted points, instead of “breeding” better ones
[9,10]. There is only one parameter, chosen to be � = 1:5 here, which �xes EO to
run at the edge of ergodicity [6] and appears to be universal for graph partitioning,
independent of N and C.
In our numerical simulations (for more data see Ref. [11]) we have generated

“geometrical” graphs of mean connectivity C by dropping N points at random into
the unit square where any two points are connected if their Euclidean distance d
obeys N�d2¡C. Two such graphs, already optimized, are shown in Fig. 1. We chose
N = 500; 1000 and 2000, and for each N we varied the mean connectivity between
C = 2 and C = 16. Then, at each C we generated 20 di�erent instances of graphs
(identical for SA and EO) and performed 50 optimization runs for each method on
that instance. Each run, we used a new random initial condition by arbitrarily dividing
the points into two equal-sized sets.
Unable to determine mopt for each graph exactly, we used the best m found in

the 100 combined runs of EO and SA as our best cutsize. (EO found such best m’s
exclusively for 2¡C¡ 10, and mostly for all other C’s.) We then average ten values
from a best-of-�ve selection in that sequence of 50 runs and determine the relative error
above the best cutsize found for that graph. Finally, all errors from the 20 instances at
a given C are averaged. In Fig. 2, we plot these average errors for EO and SA as a
function of C for N = 500. We also plot the average best cutsize of those 20 graphs
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Fig. 2. Plot of the average error at N = 1000 for SA and EO as a function of the mean connectivity C,
and of the average best cutsize, on the left. On the right, a plot of the average runtime for SA and EO as
a function of C.

for each C which rises above 0 for C¿Ccrit ≈ 4. Exactly at Ccrit , the error of SA
is maximal, at 300%, while EO’s error is less then 40% throughout. For N = 1000
and 2000, SA’s error rises to 600% and 1100% while EO’s error hardly changes. Also
plotted are the averaged runtimes for SA and EO at each C, which are comparable for
C¡ 10. (Due to re-sorting connected points, EO’s runtime rises ˙ C.)

I thank Allon Percus for very helpful discussions.
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