
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2016

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1335

Optimizing Performance in Highly
Utilized Multicores with Intelligent
Prefetching

MUNEEB KHAN

ISSN 1651-6214
ISBN 978-91-554-9450-6
urn:nbn:se:uu:diva-272095

Dissertation presented at Uppsala University to be publicly examined in ITC/2446,
Informationsteknologiskt centrum, Lägerhyddsvägen 2, Uppsala, Monday, 21 March
2016 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted
in English. Faculty examiner: Professor Per Stenström (Department of Computer Science and
Engineering, Chalmers University of Technology).

Abstract
Khan, M. 2016. Optimizing Performance in Highly Utilized Multicores with Intelligent
Prefetching. Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology 1335. 54 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-554-9450-6.

Modern processors apply sophisticated techniques, such as deep cache hierarchies and hardware
prefetching, to increase performance. Such complex hardware structures have helped improve
performance in general, however, their full potential is not realized as software often utilizes
the memory hierarchy inefficiently. Performance can be improved further by ensuring careful
interaction between software and hardware. Performance can typically improve by increasing
the cache utilization and by conserving the DRAM bandwidth, i.e., retaining more useful data in
the caches and lowering data requests to the DRAM. One way to achieve this is to conserve space
across the cache hierarchy and increase opportunity for temporal reuse of cached data. Similarly,
conserving the DRAM bandwidth is essential for performance in highly utilized multicores, as
it can easily become a critical resource. When multiple cores are active and the per-core share
of DRAM bandwidth shrinks, its efficient utilization plays an important role in improving the
overall performance. Together the cache hierarchy and the DRAM bandwidth play a significant
role in defining the overall performance in multicores.

Based on deep insight from memory behavior modeling of software, this thesis explores
five software-only methods to analyze and increase performance in multicores. The underlying
philosophy that drives these techniques is to increase cache utilization and conserve DRAM
bandwidth by 1) focusing on making data prefetching more accurate, and 2) lowering the
miss rate in the cache hierarchy either by preserving useful data longer by cache-bypassing
the less useful data or via code size compaction using compiler options. First, we show how
microarchitecture-independent memory access profiles can be used to analyze the Instruction
Cache performance of software. We use this information in a compiler pass to recompile
application phases (with large Instruction cache miss rate) for smaller code size in an
effort to improve the application Instruction Cache behavior. Second, we demonstrate how
a resourceefficient software prefetching method can be combined with hardware prefetching
to improve performance in multicores when running software that exhibits irregular memory
access patterns. Third, we show that hardware prefetching on high performance commodity
multicores is sub-optimal and demonstrate how a resource-efficient software-only prefetching
method can perform better in fully utilized multicores. Fourth, we present an adaptive
prefetching approach that dynamically combines software and hardware prefetching in a runtime
system to improve performance in highly utilized multicores. Finally, in the fifth work we
develop a method to predict per-core prefetching configurations that deliver near-optimal overall
multicore performance. These software techniques enable us to tap greater performance in
multicores (up to 50%), without requiring more processing resources.

Keywords: Performance, Optimization, Prefetching, multicore, memory hierarchy

Muneeb Khan, Department of Information Technology, Computer Architecture and Computer
Communication, Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Muneeb Khan 2016

ISSN 1651-6214
ISBN 978-91-554-9450-6
urn:nbn:se:uu:diva-272095 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-272095)

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim

Because it was grassy and wanted wear,

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I,

I took the one less traveled by,

And that has made all the difference

– Robert Frost

Dedicated to my very supportive parents,

my brother, my loving wife

and dearest Fateh and Rehma.

List of papers

This thesis is based on the following papers, which are referred to in the text

by their Roman numerals.

I Muneeb Khan, Andreas Sembrant and Erik Hagersten, "Low overhead

Instruction Cache Modeling using Instruction Reuse Profiles". In Proc.

International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), 2012.

I’m the primary author of this paper. Andreas Sembrant provided

phase detection software and helped with the case study.

II Muneeb Khan and Erik Hagersten, "Resource Conscious Prefetching

for Irregular Applications on Multicores". In Proc. International

Conference on Embedded Computer Systems: Architectures, Modeling

and Simulation (ICSAMOS), 2014.

I’m the primary author of this paper.

III Muneeb Khan, Andreas Sandberg and Erik Hagersten, "A Case for

Resource Efficient Prefetching in Multicores". In Proc. International

Conference on Parallel Processing (ICPP), 2014.

I’m the primary author of this paper. Andreas Sandberg was involved

in discussions and provided some software infrastructure.

IV Muneeb Khan, Michael A. Laurenzano, Jason Mars, Erik Hagersten

and David Black-Schaffer, "AREP: Adaptive Resource Efficient

Prefetching for Maximizing Multicore Performance". In Proc.

International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2015.

I’m the primary author of this paper. Michael Laurenzano was

involved in the discussions and provided the basic protean code

infrastructure which I extended further to realize this work.

V Muneeb Khan, David Black-Schaffer and Erik Hagersten,

"Perf-Insight: A Simple, Scalable Approach to Optimal Data

Prefetching in Multicores". Technical Report 2015-037, Department of

Information Technology, Uppsala University, 2015.

I’m the primary author of this paper.

Reprints were made with permission from the publishers.

Papers have been reformatted but the text is verbatim.

Other publications not included:

• Muneeb Khan, Andreas Sandberg and Erik Hagersten, "A Case for

Resource Efficient Prefetching in Multicores". (Long abstract) In Proc.

International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2014.

I’m the primary author of this paper. Andreas Sandberg was involved

in discussions and provided some software infrastructure. This was

published as an abstract and presented as a poster.

• Muneeb Khan and Erik Hagersten, "Investigating How Simple Software

Optimizations Effect Relative Throughput Scaling on Multicores",

Technical Report 2012-010, Department of Information Technology,

Uppsala University, 2012.

I’m the primary author of this paper. Nikos Nikoleris was involved in

the discussions.

• Muneeb Khan and Erik Hagersten, "Optimization Study for Multicores",

In Proc. Swedish Workshop on Multicore Computing (MCC), 2009.

I’m the primary author of this paper.

Contents

1 Introduction 1

2 Efficient Cache Modeling 5

2.1 Stack Distance based Modeling 5

2.2 StatStack – Sparse Data Reuse based Model 6

2.3 Data Reuse Sampling . 7

3 Fast Instruction Cache Modeling 9

3.1 Low-overhead Instruction Reuse Profiling 9

3.2 Sampling Overhead . 12

3.3 Optimizing Instruction Cache Performance 13

3.4 Summary . 13

4 Data Prefetching 15

4.1 Hardware Prefetching . 15

4.2 Performance Issues In Multicores 16

4.3 Software Prefetching . 16

4.4 Irregular Memory Accesses 16

5 Optimizing Performance for Irregular Applications 17

5.1 Identifying Delinquent Loads 17

5.2 Identifying Irregular Memory Accesses 18

5.3 Prefetching Irregular Memory Accesses 18

5.4 Performance . 20

5.5 Binary Rewriting . 20

5.6 Summary . 21

6 Resource Efficient Data Prefetching 23

6.1 Identifying Regular Delinquent Loads 23

6.2 How Far to Prefetch . 23

6.3 Cache Bypassing . 24

6.4 Prefetch Coverage & Insertion 24

6.5 Performance Scaling . 25

6.6 Summary . 25

ix

7 Adaptive Resource Efficient Prefetching 27

7.1 Combining Hardware and Software Prefetching 27

7.2 Choosing Best Option at Runtime 29

7.3 Performance . 29

7.4 Summary . 30

8 Predicting the Impact of Data Prefetching on Performance 31

8.1 Application Bandwidth & Performance Behavior 32

8.2 Estimating Application Behavior Efficiently 33

8.3 Performance Prediction . 34

8.4 Summary . 36

9 Related Work 39

10 Summary 41

11 Svensk Sammanfattning 45

11.1 Bakgrund . 45

11.2 Sammanfattning av Forskningen 46

12 Acknowledgments 49

References 51

1. Introduction

Computers are ubiquitous in today’s world. They range from handhelds and

mobile devices to racked servers in data warehouses. With compute de-

vices found everywhere, multicore processors (or, alternatively, chip multi-

processors) are the most common processing platform today. Multiple cores

working together provide an efficient alternative to aggressive single-core pro-

cessors in terms of processing throughput and energy efficiency.

Each core in modern processors can process data much faster than it is

delivered from the main memory, which makes the DRAM a significant bot-

tleneck especially when multiple cores are active. Modern processors make

use of caches (smaller, but faster memory units located closer to the proces-

sor) to hide memory latency from DRAM and to provide higher bandwidth.

To use caches to the fullest, processor architects often design elaborate cache

hierarchies with a combination of larger and smaller caches, where the increas-

ingly faster (and smaller) caches sit increasingly closer to the cores. Typically,

all cores in a multicore processor share the cache hierarchy (partly) and the

interface to the DRAM, the memory controller. Figure 1.1 shows the mem-

ory hierarchy in a typical multicore processor such as Intel Sandybridge and

AMD Phenom II. In this case all cores have a set of private caches (L1 and

L2) and share the last level cache (LLC) and the memory controller. Under

such arrangement the LLC and memory bandwidth can easily become major

performance bottlenecks. These shared resources in multicores play an impor-

tant role in defining the overall multicore performance. One way to maximize

performance in multicores is to optimize the use of the memory hierarchy, es-

pecially the shared memory resources. This thesis investigates software-only

techniques that optimize the software application’s use of the memory hierar-

chy in multicores, resulting in significant performance improvements.

To improve the use of shared resources and to improve performance in mul-

ticores it is important to have insight into the application’s memory behav-

ior. There are many ways to profile information about application’s memory

behavior, ranging from detailed simulation to low-overhead memory system

modeling techniques. Low-overhead cache performance modeling techniques

can provide the necessary information to enable effective software optimiza-

tions. Cache modeling techniques such as StatStack [8] can, for example,

provide information about the fraction of data requests that miss at each cache

level in the memory hierarchy; this is called the application’s miss-ratio. Sim-

ilarly, StatStack can also provide the fraction of all data requests from individ-

ual memory instructions in the application that miss at each cache level. The

1

La
st-le

ve
l C

a
che

 (LLC
)

M
e
m

o
ry

 C
o
ntro

lle
r

core L1 L2

M
a

in M
e
m

o
ry

Processor

core L1 L2

core L1 L2

core L1 L2

Figure 1.1. Memory hierarchy of a typical multicore processor. Each core has two

private caches and shares the last level cache with other cores on the processor. The

processor has a memory controller with three memory channels to the main memory.

application-wide average miss ratio behavior helps identify applications that

should be targeted for software optimization of memory accesses to improve

the use of shared resources. Whereas, the per-instruction information is useful

to identify and target individual instructions for optimizing the application’s

overall memory access behavior.

For a complete picture of an application’s memory behavior it is necessary

to have insight into how the application’s instruction stream is accessed across

the memory hierarchy. Paper I facilitates this by using StatStack to model in-

struction cache performance. The paper presents a instruction-stream specific

sampling mechanism that enables capturing instruction-reuse samples with a

low-overhead. The instruction-reuse profiles enable StatStack to model in-

struction cache miss-ratio for any application. We combine instruction cache

performance with phase information to classify application phases where the

instruction stream experiences high miss ratio in the instruction cache. We use

this classification to identify parts of the software codebase that are likely to

affect performance (due to high instruction cache miss-ratio) and require opti-

mizations to reduce the code footprint. Code size optimizations applied to the

right parts of the codebase can improve the locality of the required application

code in the instruction cache and improve performance.

To hide memory latency (and reduce the miss ratio across the cache hi-

erarchy) modern high performance processors are equipped with hardware

prefetchers. This hardware utility detects memory access patterns of inde-

pendent data streams and proactively fetches data that is expected to be used

soon. Hardware prefetchers may be located at different levels in the cache

hierarchy and fetch data from the next level (further from the core) in the

memory hierarchy. Hardware prefetchers in commodity processors are good

at detecting and prefetching for regular memory access patterns. However, ir-

2

regular memory accesses, such as pointer chasing and indirect-indexing, used

by many real-world applications remain unhandled. In Paper II we introduce a

low-overhead framework that helps identify memory instructions that exhibit

irregular access patterns and miss frequently in the cache. These memory in-

structions are targeted for irregular prefetching in software, while hardware

prefetching takes care of prefetching for regular memory accesses. We inves-

tigate the benefits of irregular prefetching in software for single-thread per-

formance and throughput performance when several irregular applications are

co-run.

While hardware prefetchers can increase single-thread performance signifi-

cantly, they also tend to increase pressure on the shared resources (LLC capac-

ity and shared memory bandwidth). Aggressive hardware prefetchers are not

accurate and fetch significant amount of useless cache lines from the DRAM.

This increases useless data requests to the DRAM and wastes the shared re-

sources. While aggressive use of shared resources is usually not an issue when

running a single thread, the limited off-chip bandwidth can quickly become a

bottleneck when several threads are co-run. This can limit the overall multi-

core performance. In Paper III we show that a less aggressive software-only

prefetching method outperforms hardware prefetching in modern multicores

when they are fully utilized. By accurately prefetching the required data,

the software-only method conserves the shared resources. As a result of this

resource-lean prefetching, shared resources are less contended when all cores

are active and performance improves significantly over hardware prefetching.

The opportunity to increase performance using a less aggressive software-

only prefetching mechanism, described in Paper III, gives insight into the im-

portance of shared resources in highly utilized multicores. While the software-

only prefetching method performs well in general, hardware prefetching

can sometimes perform better, making the software-only option alone non-

optimal. A better prefetching strategy is to choose the option that performs

best in a given execution context. To address this Paper IV describes a runtime

method that adapts the data prefetching strategy dynamically. The runtime

system detects changes in the execution environment and reacts by monitoring

the performance of several prefetching options and adapting the best strategy

dynamically in real-time. The five data prefetching strategies explored in this

work are a combination of hardware prefetching (on a modern Intel multicore

processor) and software prefetching (from Paper III) that are applied uniformly

across all cores. The ability to adapt data prefetching at runtime gives life to a

robust performance optimization mechanism that improves multicore perfor-

mance by more than 8% (on average) over hardware prefetching.

The runtime method in Paper IV applies the selected data prefetching option

uniformly across all cores to maximize overall performance. However, apply-

ing the same policy across all cores is usually not the best way to achieve opti-

mal performance, as some co-running applications may work better with dif-

ferent options. The ability to configure the prefetching strategy on a per-core

3

basis independently exposes more opportunities for improving performance.

However, this also results in a large combination of prefetch settings that must

be traversed to identify and select the best. For example, 5 different prefetch

settings across 4 cores results in 625 permutations (54) of unique prefetch

configurations. Evaluating performance at runtime for all these prefetch com-

binations using the greedy approach described in Paper IV is not a feasible

solution. We address this problem in Paper V which presents a simple scalable

approach that predicts performance across all different prefetch combinations

using a handful of combinations whose performance is monitored at runtime.

The monitored combinations cover only 5% of the entire set of configurations

(625), but are sufficient to give insight into each application’s behavior under

the 5 individual prefetch options. This information is combined with an it-

erative approach that, as a first step, estimates the memory bandwidth of the

mix under any arbitrary prefetch combination, and then estimates the perfor-

mance. The approach is used to predict throughput performance across all

(625) prefetch combinations, which guides us to identify a prefetch configura-

tion that provides near-optimal performance.

4

2. Efficient Cache Modeling

The work presented in this thesis makes extensive use of low-overhead cache

modeling. First, to model instruction cache performance. Second, to identify

memory-intensive applications amenable to memory access optimizations and

the memory instructions that miss frequently in the caches.

StatStack is a fast cache model that estimates miss-ratio – The fraction of

memory accesses that miss in a cache of a given size. As example, Figure 2.1

shows the average miss-ratios for the entire run of mcf benchmark and of a

single load instruction in the benchmark, both modeled using StatStack. Per-

instruction miss-ratio curves are used by our analysis to determine the loads

that frequently miss in the cache and can benefit from data prefetching.

 0

 10

 20

 30

 40

 50

8k 16k
32k

64k
128k

256k
512k

1M 2M 4M 8M

M
is

s
 R

a
ti
o

 (
%

)

Cache Size

per-instruction average

Figure 2.1. miss-ratio Modeling - average miss-ratio of mcf and miss-ratio of a fre-

quently executed load - both modeled by StatStack.

2.1 Stack Distance based Modeling

Stack distance [31] forms the basis of several techniques that give insight into

application data locality. Stack distance (in terms of caches) is the number of

unique cache lines accessed between two successive references to the same

cache line. Thinking in terms of a stack – a memory reference to a new cache

line places the cache line at the top of the stack and pushes all other cache

lines on the stack a step deeper. When a cache line X is re-referenced, it is

brought back to the top of the stack from a depth d. At this point d is X’s

stack distance. For a given cache size S, if the stack distance d for a given

cache line A is larger than S, the memory instruction that referenced cache line

A will miss in the cache. If all stack distances of a cache line A are known,

5

A B B C D C A C D B … … …

Epoch boundary

Figure 2.2. Reuse distances in memory access stream. The arcs join successive ac-

cesses to same cache line. The stack distance of A is the number of arcs crossing the

epoch boundary.

the miss-ratio for any memory instruction that references A can be estimated

as the fraction of A’s stack distance distribution where d > S. The overall

application miss-ratio can be estimated as the weighted average of all memory

instructions in the application. Stack distance based cache modeling assumes

a fully-associative cache.

2.2 StatStack – Sparse Data Reuse based Model

StatStack [8] is a statistical cache model that estimates application miss-ratio

for data caches (that employ LRU replacement policy) of any given size. In

contrast to stack distance, reuse distance is a simpler metric that counts all

memory references between two references to the same cache line. StatStack

uses sampled reuse distance profiles to estimate the stack distance distribution

and model the application’s cache performance. It is important to note that

StatStack only models capacity misses. The input to StatStack is the reuse

distance distribution of all memory references of a given application. This can

be effectively estimated by sparse sampling of the application’s memory reuse

distances. Although the distribution is based on sparse sampling of memory

references, the resulting reuse distance distribution is representative enough to

accurately model miss-ratio when fed to the StatStack model. The StatStack

model can be explained with the help of a simple example, consider the mem-

ory access sequence in Figure 2.2. This sequence represents a single reuse

epoch of cache line A, with several interleaving memory accesses. The arcs

connect subsequent accesses to the same cache lines, showing data reuse in

this epoch. Here cache line A has a reuse distance of 5 since there are five

memory accesses executed between two consecutive accesses to A . The stack

distance for A is 3, as there are only three unique cache lines (B, C and D)

accessed during A’s reuse period.

The stack distance of A is equal to the number of interleaving memory ac-

cesses whose reuse distance is greater than their distance to A at the epoch’s

end. So, if we know all the interleaving memory accesses in A’s reuse, we can

determine A’s stack distance. However, the reuse distance distribution input to

StatStack is a representative sample of the application reuse distance and not

the entire reuse trace. So to estimate the stack distance of A, StatStack applies

6

Reuse distance
distribution

A X A

d

P(reuse X>d)

d

?

Figure 2.3. Reuse distance distribution is used to calculate the probability of (memory

access) X’s reuse crossing the epoch boundary.

a probabilistic approach. StatStack finds the probability for each memory ac-

cess in this reuse epoch to have reuse distance greater than its distance to A.

For example, in Figure 2.3 if the reuse of X is greater than d , then this memory

access will add to the stack distance of A. StatStack approximates the proba-

bility of X’s reuse to be greater than d as the fraction of all memory accesses in

the reuse distance distribution whose reuse distance is greater than d. This ap-

proximation is based on the assumption that for a given execution vicinity, the

reuse distribution is uniform. This procedure is repeated to approximate the

probability of reuse crossing the epoch boundary for all interleaving memory

accesses. Adding these probabilities then gives us the expected stack distance

of A.

StatStack uses this methodology to estimate the stack distance for all the

memory accesses in the sampled reuse distance distribution. These estimated

stack distances make up the expected stack distance distribution. This ex-

pected stack distance distribution can then be used to estimate the miss-ratio

for any given cache size. For a cache size S, the fraction of memory refer-

ences with expected stack distance greater than S will be the miss-ratio for

that cache size. StatStack can similarly model per-instruction miss-ratios (as

shown in Figure 2.1) for a given memory instruction by isolating the stack

distances that correspond to the reuse distance samples associated with the

memory instruction. Pan et al. have shown that reuse distance distribution can

be used to model a wider range of replacement policies besides LRU, such as

random replacement, pseudo-LRU and MRU [33]. Those extensions can also

be used to model cache behavior. We rely on StatStack for modeling cache

performance.

2.3 Data Reuse Sampling

Data reuse samples are used as input to StatStack to model cache behavior for

different cache sizes. To enable efficient cache modeling we need to sample

data reuse with a low-overhead. Data reuse sampling captures reuse distance

profiles across the entire execution of an application. The sampler (developed

7

by Berg and Hagersten) attaches to a process (like a debugger process) and

uses performance counter overflow traps to halt the execution of the applica-

tion process after a number of memory references have executed. Memory

references are sampled randomly to avoid sampling bias. After deciding to

sample a memory reference, the sampler records the address of the cache line

accessed and sets page protection for the entire page, where the cache line re-

sides. The sampler then records the number of memory references executed to

date and then continues executing the process. When a memory reference tries

to access the cache line being “watched”, a page access fault occurs halting the

execution of the process. The sampler determines if the page access fault was

due to accessing the cache line being sampled. If so, the reuse distance for

this cache line is recorded as the difference of memory references executed to

date and the number of memory references recorded previously, when setting

the watchpoint. The sampler removes the page protection (if no other cache

line in the page is being watched) and continues the process. This watchpoint

mechanism has the drawback of considerable amount of false-positives. This

happens when a cache line other than the one being watched is accessed from

the same page, after the watchpoint has been setup for that page. The sampler

simply ignores such cases of false-positives and continues the execution of the

stopped process. Sembrant et al. show that data reuse samples can be captured

over the entire execution of an application with an overhead of less than 20%

over native execution using a phase-guided approach.

8

3. Fast Instruction Cache Modeling

Performance improvement techniques mostly focus on optimizing the data ac-

cess behavior and largely ignore the role of the instruction cache. Since most

applications miss more frequently in the data cache compared to the instruc-

tion cache. However, simply comparing the frequency of instruction cache

misses and data cache misses can be misleading as applications usually exe-

cute several instructions for every data reference. The instruction stream is the

source of continuous application execution and latency stemming from stalls

in the instruction stream directly impacts the application performance. The

more an application misses in the instruction cache the slower it runs. Paper

I describes how statistical cache modeling can be extended to model instruc-

tion cache performance with low-overhead. We further demonstrate how this

information can be used to improve instruction cache performance.

Chapter 2 described how StatStack uses sparse data reuse samples to model

the data cache performance. Similarly, to model instruction cache perfor-

mance, StatStack requires instruction reuse profiles. There are several chal-

lenges when it comes to enabling low-overhead sampling of instruction reuse.

First, page-protection based sampling (in the instruction stream) is very slow

since the most active part of the application code resides in a handful of pages.

The control usually remains in the same page after setting watchpoints (Sec-

tion 2.3) and the resulting false positives slowdown the execution speed to that

of single-stepping i.e. stopping execution due to false-positives after each in-

struction. Second, instructions in x86 processors are not cache line aligned

and sometimes an instruction in one cache line can spill into the next. This

raises the issue of which cache line(s) to sample. Third, instructions in the

x86 instruction set architecture are not the same size.

3.1 Low-overhead Instruction Reuse Profiling

To avoid the slowdown from frequent false-positive page traps we instead use

breakpoints on instructions inside the cache line being sampled. Watchpoints

can be effectively localized to a single cache line if breakpoints are set on every

single instruction in the cache line being sampled. This way, one of the break-

points would trigger when an instruction in the cache line is accessed again.

As a result the application process will halt and the cache line reuse can be

measured. We note that such an arrangement is only needed when measuring

9

the temporal reuse of instruction cache lines. The more common (and proba-

ble) case in instruction streams is spatial reuse. To sample instruction reuse,

the sampler halts the application execution after a random number of instruc-

tions. The reuse for the cache line pointed by the instruction pointer (ip) is

sampled. The sampler single-steps the application process to execute exactly

one more instruction in the instruction stream. If the instruction pointer now

points to an instruction in the same cache line, a reuse distance of 0 is recorded

for this sample. This is simply a case of spatial locality. However, if the execu-

tion lands in a new cache line, then the sampler decides to place watchpoint on

the sampled cache line, and record its reuse distance when execution returns

there. The reuse distance in this case will be greater than zero.

To monitor cache line reuse (when reuse is greater than zero), the sampler

sets a breakpoint on the first byte of the instructions residing in that cache

line. This is done by overwriting the first byte of the instructions with the

breakpoint instruction. The original first byte of the instructions is saved in

a data structure to be restored later. The sampler then records the number

of instructions retired to date, and continues the execution of the application

process. When execution returns to the sampled cache line, a breakpoint will

trigger and halt the process. The sampler then measures the reuse distance of

the sampled cache line as the difference of instructions retired to date and the

number recorded previously. The sampler then restores the original first byte

of the instructions in the cache line before continuing the program execution.

The sampling technique described here is generic enough to be applicable to

any architecture, even though our implementation is for x86.

Instructions in the x86 ISA are of variable length and not necessarily

aligned to the cache line boundary. Consequently some instructions may span

two cache lines. For example, in the benchmark gcc about 5% of the instruc-

tions spanned two cache lines. An instruction crossing a cache line boundary

is called a Multi-Block Reference (MBR). If the sampled instruction happens

to be a MBR, the sampler monitors both the cache lines containing parts of

the sampled instruction. An MBR instruction is also the last instruction in a

cache line. The following two cases can occur when single-stepping an MBR

instruction: Figure 3.1a (if MBR is not a jump) – The execution arrives at the

first instruction in the next cache line. The sampler sets breakpoints on the

cache line containing the first byte of the MBR instruction. The sample for

this cache line will be greater than 0. For the next cache line, 0 reuse distance

is recorded, since the next instruction executed is in the same cache line where

the later part of the MBR instruction is located. Figure 3.1b (if MBR is a jump)

– The execution jumps to a cache line other than the very next. The sampler

sets breakpoints on both the contiguous cache lines that the MBR instruction

spans. Reuse distance is recorded for each cache line separately when their

respective breakpoints trigger.

Instruction cache lines contain several instructions and sometimes also sev-

eral basic blocks. The sampler may therefore stop at an instruction in the

10

x x

IP single step

IP after single step

x x

BP BP BP BP BP BP

(a) MBR instruction is not a branch

x x

IP single step

x

BP BP BP BP BP BP

x

BP BP BP BP BP

(b) MBR instruction is a branch

Figure 3.1. To measure instruction reuse for a Multi-Block Reference (MBR) (An

instruction crossing a cache line boundary), the sampler single-steps the execution. If

the execution remains on the second cache line (3.1a), the first cache line is watched,

and 0 reuse is registered for the second cache line. In case of a branch (3.1b), both

cache lines are watched.

middle of the cache line. If that happens, it is hard to know the address of

the first instruction (or any preceding instructions) in that cache line in or-

der to set a breakpoint. One solution is to use static analysis on the binary,

however, we are interested in an approach to sample a dynamic instruction

stream. This is especially a challenge in environments using JIT (just-in-time)

compilation. We adopt a fast and effective learning mechanism to handle this

problem. We decode instructions for a part of the instruction stream, start-

ing from the instruction being sampled up to that cache line’s boundary, and

save their addresses in a hash map (knowledgebase). The sampler repeats this

process every time it stops to take a sample. This way the sampler builds a

knowledgebase over time about instruction addresses in sampled cache lines.

When the sampler decides to monitor a cache line, it uses the address of the

sampled instruction to hash into the knowledgebase to retrieve addresses of

known instructions in that cache line. The sampler places breakpoints on the

retrieved addresses to monitor the cache line. The sampler also adds informa-

tion about previously unseen instructions belonging to a known cache line as it

samples the same cache lines over and over again. This improves the accuracy

of the sampler when trying to place breakpoints in known cache lines. The

learning mechanism can however be a source of errors when computing reuse

distances larger than zero. It is entirely possible that the sampler is never able

to learn all instructions in the cache lines it is trying to set breakpoints for.

11

J

BP BP BP

Figure 3.2. Instruction cache lines can sometimes contain several basic blocks. If the

execution jumps into the middle of a cache line, breakpoints can only be inserted into

the succeeding instructions. As a result, only parts of the cache line will be watched.

If execution continues on the non-watched part, the measured reuse distance will be

exaggerated.

As a result, breakpoints in later parts of watched cache lines may not trigger

due to execution being deferred by a jump (Figure 3.2). This jump may be

separating the unknown part of the cache line from the known part. This can

happen at basic block boundaries, where instructions from two different basic

blocks reside in the same cache line. This can result in reuse distances of such

samples being exaggerated. However, in practice this did not affect the overall

accuracy.

3.2 Sampling Overhead

Figure 3.3 compares the overhead of a breakpoint-based sampler (described

in Section 3.1) to a instruction-reuse sampler implemented using page-based

sampling (described in Section 2.3). Our breakpoint-based sampler is 10×

faster than the page-based approach.

 0

 4

 8

 12

 16

 20

gcc/166

gcc/200

gcc/s04

gcc/scilab

h264ref/base

h264ref/m
ain

om
netpp

povray

sjeng

tonto
xalan

average

T
im

e
 (

m
s
)

Page Protection Breakpoint

Figure 3.3. Overhead per sample for breakpoint and page-protection sampler. Page-

protection has high overhead because of false-positives. Breakpoint based sampler is

10× faster than page-protection.

12

3.3 Optimizing Instruction Cache Performance

Applications’ execution varies over time due to phases. Phase information can

be used to estimate per-phase miss ratios and explore program regions with

high instruction cache miss ratio. Such detailed information about individual

program phases is not deducible by simply looking at the average miss ratio

of the entire execution. We used ScarPhase [40], a low-overhead phase detec-

tion library to detect program phases. We combine phase information (from

ScarPhase) with StatStack to model per-phase instruction cache miss ratio for

an application. This helps us point out program phases that suffer from a high

instruction cache miss ratio. We can use this information to optimize such

program phases, for example, for reduced instruction cache (code) footprint.

By classifying instruction cache miss-ratios by phase for gcc, we found out

that one recurring phase (that executes for about 10% of the time) has a miss

ratio of about 1.4% for a 32 kB cache size. Using debug information we iden-

tified the part of the application source that is responsible for this phase and

recompiled it with the Os (code size) compiler optimization. The Os option

directs the compiler to optimize for smaller code size instead of performance.

As a result, the active code footprint was reduced from 73 kB to around 64

kB for the entire execution and the instruction cache miss ratio for this phase

reduced by almost a factor two, from 1.4% to 0.77%.

3.4 Summary

To fully understand an application’s performance issues arising from memory

bottlenecks it is important to understand the behavior of the instruction stream

(in addition to the data stream). Paper I extends the low-overhead statistical

cache model StatStack [8] to model the performance of instruction caches of

varying sizes. Most importantly, the paper describes an efficient instruction-

stream specific reuse profiling method. Instead of relying on watchpoints at

the page-level granularity (Section 2.3), we developed a breakpoint-based ap-

proach that localizes the watchpoint to only the cache lines being monitored

for temporal reuse. The method lowers the sampling overhead (compared to

the page-based approach) by a factor of ten, on average slowing down appli-

cations by only 25% over native execution. The paper evaluates the accuracy

of the models miss ratio estimation against reference miss ratio obtained from

functional cache simulation. Finally, the paper shows how the model can guide

compiler optimizations. With phase guided profiling, we modeled instruction

cache performance over time to identify phases with large instruction cache

footprint. We then demonstrate that this information can be used to reduce

code footprint and optimize for instruction cache behavior, lowering the miss

ratio significantly.

13

4. Data Prefetching

Processor throughput can be improved by applying techniques that effectively

hide the memory latency of memory accesses that frequently miss in the cache.

Data prefetching is one such technique that hides memory latency (and lowers

miss rate) by identifying the behavior of individual memory access streams

and proactively fetching data for them. Proactively fetching useful data can

effectively hide the latency of performance critical loads, i.e. loads that suf-

fer long latency cache misses, which can increase performance significantly.

However, data prefetches must be issued well ahead in time of the actual ac-

cess to effectively hide the memory latency. Workloads that largely traverse

the memory in a uniform way, with regular strided accesses, benefit most from

data prefetching as it is easy to predict the next access correctly and prefetch

the required data in a timely manner. In modern processors prefetching is usu-

ally done at the cache line granularity and can be performed by the hardware,

the compiler or the programmer. The prefetched data is placed in the caches.

4.1 Hardware Prefetching

Modern high performance processors largely employ built-in hardware

prefetchers to proactively fetch useful data to the cache from the memory hier-

archy. Hardware prefetchers monitor the processor’s accesses to detect regular

access patterns or strides, and use this information to automatically generate

memory addresses that will be accessed in future and should be prefetched.

Some hardware prefetchers also always prefetch the adjacent cache line af-

ter a demand access. This is called next-line prefetching. Modern multicore

processors have elaborate cache hierarchies with several levels of caches. Usu-

ally, independent hardware prefetchers work across the different cache levels.

When a hardware prefetcher predicts the cache line that should be prefetched,

it requests that cache line from the next level in the memory hierarchy. The

hardware prefetchers at LLC issue prefetch requests directly to the DRAM.

As a result, prefetchers’ activity at the LLC can increase the off-chip traffic.

High performance processors typically employ aggressive prefetchers which

can benefit performance significantly, but also increase useless prefetching due

to their lower accuracy [34].

15

4.2 Performance Issues In Multicores

Aggressive prefetchers in high performance processors can significantly in-

crease data requests to DRAM, sometimes resulting in a twofold increase

in the off-chip data traffic. Such aggressive prefetching wastes shared re-

sources such as the LLC space and off-chip bandwidth. This can severely

impact the performance of threads co-running on neighboring cores when

several cores become active and the LLC space and off-chip bandwidth are

constrained. Such affects limit the overall throughput performance in mul-

ticores [7, 22, 34, 42]. Throughput performance in multicores can be in-

creased significantly by appropriately regulating the aggressiveness of hard-

ware prefetchers in execution environments where the shared off-chip band-

width (and LLC space) is constrained [7, 16, 18, 22, 34, 42].

4.3 Software Prefetching

Many modern processors support data prefetching in software. Most ISAs

provide prefetch instructions that can be used by the compiler or the pro-

grammer at appropriate places in the code. Prefetch instructions are usu-

ally non-binding, i.e., the prefetched data is placed in the cache hierarchy

instead of a register. Some processors provide instructions that can be used to

prefetch data to different levels in the cache hierarchy, such as the prefetcht0,

prefetcht1 and prefetcht2 instructions supported by Intel processors. The non-

temporal prefetch instruction (prefetchnta in Intel) hints the processor that the

prefetched data should not be cached for long as it will not be re-used soon.

Several studies [27, 28, 43, 44] have proposed using application execution

profiles to hint compilers on where to insert software prefetches in the code.

4.4 Irregular Memory Accesses

Data prefetching is easily performed for memory accesses that traverse the

memory space in a uniform, regular and predictable way. However, some

memory accesses traverse the memory address space in a non-uniform way

which is hard to predict. For example, irregular memory accesses arise due

to traversal of linked data structures, such as trees and graphs. Hardware

prefetchers in commodity processors do not handle such random accesses well

and the memory latency of such accesses mostly remains fully exposed. Chap-

ter 5 discusses efficient software prefetching for irregular accesses in detail.

16

5. Optimizing Performance for Irregular
Applications

Modern processors typically employ stream (or stride) prefetchers that proac-

tively fetch data from DRAM before it is requested by the application. This

prefetching hides memory latency for applications with regular memory ac-

cess patterns. However, hardware prefetchers in commodity processors do not

handle irregular memory accesses well, that arise in many real-world appli-

cations, for example, due to pointer-chasing and indirect indexing. While it

is possible to lower the latency of irregular accesses by prefetching them in

software [1, 21, 26, 35, 37], doing so requires a method that conserves shared

resources (LLC capacity and off-chip bandwidth) in multicores.

Hardware prefetchers in commodity processors can be very aggressive,

sometimes prefetching more than twice the data required for an application

[16, 18]. As a result, LLC space is wasted and off-chip bandwidth consump-

tion grows. This hurts the performance of threads co-running on neighboring

cores. Irregular prefetching mechanisms that greedily prefetch all identified

pointers (such as [5, 26]) can further pressure shared resources and degrade

overall throughput. Therefore, to efficiently handle irregular prefetches in

multicores we have to be careful to not over-prefetch and stress the shared

(LLC and DRAM bandwidth) resources. Paper II describes such a method.

5.1 Identifying Delinquent Loads

Load instructions that miss frequently in the data cache are called delinquent

loads. Software prefetching must only target such instructions to improve ap-

plication performance with minimal overhead. To identify delinquent loads

we use StatStack to model per-instruction miss ratios (Figure 2.1). We only

insert prefetches for load instructions that can benefit from prefetching in soft-

ware. We use a cost-benefit analysis to measure the trade-off between the

cost of the software prefetch and the performance benefit it can deliver. This

analysis takes into account the memory latency, the latency of the target load

instruction and the miss-ratio of the target load instruction (Figure 2.1). This

helps us determine quantitatively if inserting software prefetch for a load will

improve performance or not. For example, assume that a load hits in the L1

cache 90% of the time and 10% of the time in L2. A software prefetch for

this instruction will be effective only 1 in 10 times to remove the L1 misses.

17

Assume that it takes 1 cycle to execute a software prefetch instruction and the

latency to the L2 cache is 5 cycles. Then we will end up executing 10 prefetch

instructions costing us 10 cycles and in return saving only 5 cycles (saving

an L1 miss that hits in L2). Such software prefetching becomes an overhead

and hurts performance instead of improving it. We employ such a cost-benefit

analysis to avoid inserting software prefetches that may hurt performance.

A load is considered favorable for prefetching only if it is estimated to save

more cycles than the software prefetching instructions will cost. The delin-

quent load identification pass performs the cost-benefit analysis and selects

only those delinquent loads for which software prefetching benefits perfor-

mance. Only these loads are further analyzed for irregular prefetching.

5.2 Identifying Irregular Memory Accesses

Since hardware prefetching can handle regular memory accesses well, we

only insert software prefetches for irregular memory accesses. We identify

and prefetch for irregular memory accesses by using per-instruction stride in-

formation and short instruction trace samples. This information is gathered

during the sampling pass along with the data reuse information. Figure 5.1

illustrates the combined data reuse, stride and trace sampling for a memory

reference. The additional functionality of recording strides and micro-traces

can be added to the existing reuse sampler (Section 2.3) keeping the aver-

age overhead below 40% over native execution. We use the per-instruction

stride information to separate regular-strided loads and irregular loads. Loads

that exhibit a dominant stride (i.e. more than 70% of it’s stride samples are

similar) are categorized as regular-strided loads; the rest are categorized as

irregular. Of all the delinquent loads identified (Section 5.1), only those cat-

egorized as irregular are considered for the prefetching analysis. Next, the

algorithm extracts the sequence of instructions required to compute the ad-

dress to prefetch, called the Precomputation Sequence [35], for each of these

irregular delinquent loads, and schedules it at the assembler level.

5.3 Prefetching Irregular Memory Accesses

This work is about prefetching efficiently for irregular memory accesses –

specifically pointer chasing (such as linked data structures) and indirect in-

dexing (such as a[b[i]]). This section describes how sampled runtime infor-

mation is used to determine the sequence of instructions required to prefetch

data for an irregular load. This sequence of instructions is the Precomputa-

tion Sequence (PS). For each irregular load, the algorithm scans all sampled

micro-traces associated with it, and detects unique sub-loops (that correspond

to unique paths in a loop) and the probability with which each such path is

18

Figure 5.1. Data Reuse, Stride and Trace sampling - Stride is computed as the dif-

ference of data addresses accessed by successive executions of sampled load PC1.

Reuse distance is the number of memory references between two accesses to sampled

cache line (CL A). micro-trace is a small history of instruction addresses executed just

before the sampled load.

executed. The sub-loop with the highest probability corresponds to the most

frequently executed path in a loop, and is selected for PS extraction.

Linked Data Structures (LDS): The selected sub-loop is scanned (starting

from the irregular delinquent load) to detect loads that have data dependencies.

All such loads are added to a queue until a dataflow cycle is detected. At this

point we should have all the instructions required to compute the address the

irregular delinquent load will access in the next iteration. This sequence of in-

structions isolated from the selected path is the PS for the irregular load. If the

irregular load accesses a deep nested object the extracted PS is longer. During

our experiments we found that prefetching nested objects results in negligi-

ble performance improvements. This is because in out-of-order execution the

miss latency of accessing a nested object is overlapped with the miss latency

of accessing the next pointer, when the loops are small. Ebrahimi et al. make

a similar observation in their work [6].

Indirect Indexing: In case of indirect-indexing the instruction producing

the redirection-index (b[i] in a[b[i]]) is a regular-strided load. When scanning

the selected sub-loop for loads with dataflow edges, the analysis tracks the

instruction that produces the register containing the redirection index (b[i])

used to offset into array a. Once the instruction that produces the redirection

index is found, we determine the stride of this instruction. At this point we

should have all the instructions required to compute the address the indirect-

indexing load will access in the next iteration. This sequence of instructions

isolated from the selected path is the PS for the indirect indexing delinquent

load.

The extracted PS can be used to schedule instructions that prefetch data

for the next iteration for irregular delinquent loads. For detailed discussion on

how the PS is scheduled at the assembler level to perform software prefetching

see Paper II. The instructions in the PS contribute to execution overhead and

are taken into account for the cost-benefit analysis described in Section 5.1.

19

5.4 Performance

To evaluate how this method performs in multicores we experimented with

mixes of several applications co-run in parallel to completion. Several applica-

tions running in parallel on different cores stress the shared LLC and off-chip

bandwidth. In such an execution environment, a resource conscious prefetch-

ing strategy will benefit performance most. Figure 5.2 compares the speedup

from i) performance achieved with hardware prefetching alone (HWPF), and

ii) performance achieved by combining hardware prefetching and irregular

prefetching (HW+Ir-Pref) across 182 mixes of 4 applications that exhibit irreg-

ular memory access patterns. The average for irregular software prefetching

alone (Ir-Pref) is also shown. The performance is normalized to the baseline

of No-Prefetching. On average, irregular prefetching alone performs 10% bet-

ter than the baseline. When hardware prefetching and irregular prefetching

work together, performance over hardware prefetching alone improves by 8%

on average.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

S
p

e
e

d
u

p

H/W + Ir-Pref Hardware Pref

Figure 5.2. Performance across 182 mixed 4-core workloads on AMD Phenom II

(averages on right). Mixes are sorted in increasing order of speedup for HW+Ir-Pref.

5.5 Binary Rewriting

There are several ways to schedule (insert) the instructions in the application

to enable software prefetching. Dynamic binary rewriting and Just-In-Time

compilation are two methods that provide the flexibility to manipulate the in-

struction stream efficiently at runtime. All software prefetching work in this

thesis relies heavily on the ability to introduce software prefetching dynami-

cally in the instruction stream. This is especially important when considering

real-world scenarios where processor loads can vary significantly over time

and enabling/disabling software prefetching may be necessary to manage per-

formance at runtime. Paper IV discusses a runtime framework that has the

capability of maintaining multiple versions of an application and switching

between those versions at runtime.

20

5.6 Summary

Many real-world applications exhibit irregular memory access patterns during

execution. Such memory accesses usually arise from the use of linked data

structures and indirect-indexing. Hardware prefetchers in commodity proces-

sors can not handle irregular accesses well and the memory latency usually

remains fully exposed for such memory accesses. To capitalize on this perfor-

mance opportunity Paper II proposes a low-overhead framework that can do

useful and shared-resource friendly prefetching of irregular memory access

patterns in software. We use runtime profiles to i) identify irregular delinquent

loads that can benefit from prefetching in software, and 2) identify and sched-

ule instructions that prefetch useful data for such loads. The proposed method

ensures shared resource (LLC space and off-chip bandwidth) conservation in

multicores. As a result the method benefits throughput performance (on aver-

age 9%) in highly utilized multicores without wasting the shared resources.

21

6. Resource Efficient Data Prefetching

Hardware prefetchers in commodity processors are very aggressive and in-

crease the useless off-chip traffic significantly [16, 18, 34, 42]. This wastes

precious LLC space and off-chip bandwidth. While increased use of shared

resources is usually not an issue when running a single thread, the limited

off-chip bandwidth can quickly become a bottleneck when several threads co-

run [11, 16]. In such an execution environment, where shared resources are

constrained, useless prefetching (on any thread) can be harmful and impact

the performance of co-running threads [34, 42]. To get better performance on

highly loaded multicore processors, it is essential to regulate data prefetching

so that it is timely as well as accurate, i.e., does not waste shared resources.

In Paper III we present a framework that uses StatStack to accurately identify

delinquent memory instructions and automatically insert software prefetches

for them. Our prefetching scheme has good accuracy and lowers LLC pollu-

tion and off-chip bandwidth consumption. The full advantage of the scheme is

realized when several cores are used and demand for shared resources grows.

6.1 Identifying Regular Delinquent Loads
We have already described in Section 5.1 how StatStack is used to identify

delinquent loads. The work described in Paper III uses StatStack in the same

way along with the cost-benefit analysis (Section 5.1) to single out the loads

that should be targeted for software prefetching. One difference (w.r.t. irregu-

lar prefetching, Section 5.3) is that the number of prefetch instructions sched-

uled for prefetching of regular accesses is just one, i.e., the software prefetch

instruction. So the cost-benefit analysis here assumes the overhead of execut-

ing only one additional instruction, unlike irregular prefetching which requires

several. Our method uses per-instruction stride samples (see Section 5.2) to

identify delinquent loads with regular strides. The stride analysis groups all

strides of similar size that are likely to fall in the same cache line. After group-

ing similar strides, the analysis categorizes a load as having regular stride if

more than 70% of its stride samples are similar. The analysis then selects the

most frequent stride to compute a suitable prefetch distance.

6.2 How Far to Prefetch
To effectively hide memory latency, prefetches should be issued a suitable

number of iterations earlier than the demand load. This is called the prefetch

23

distance and it is a function of the memory latency and the number of cycles

it takes to execute a single iteration of the loop where the delinquent load is

located [32]. The relationship between these two latencies defines the suitable

prefetch distance that should be used to ensure timely prefetching. We use

performance counters to determine the average memory latency. To determine

the latency of a single iteration of the loop we use recurrence (total memory

instructions inside a loop)1 and the average latency of a single memory access

as measured using performance counters. Here, we make the assumption that

the latency of the loop’s iteration mainly comes from memory instructions.

This assumption works well in practice. The prefetch distance computed is

converted to an offset (number of bytes) for the software prefetch instruction

inserted.

6.3 Cache Bypassing

Modern processors support a special data prefetching mechanism called non-

temporal prefetch. The non-temporal prefetch instruction can be used to

prefetch data into the L1 cache without evicting other data from the cache hi-

erarchy. When this cache line is evicted, it goes directly to the DRAM instead

of working its way up the cache hierarchy. This behavior is extremely use-

ful when it is known that some data will not be reused from L2/LLC and can

help retain temporally useful data in the caches longer. To improve on soft-

ware prefetching, we include an analysis (originally proposed by Sandberg

et al. [38]) to discover opportunities for cache bypassing. Briefly, the tech-

nique uses StatStack to determine if the data accessed by a delinquent load is

reused from the cache hierarchy by subsequent memory instruction(s). This is

determined using the per-instruction miss ratio curves (as shown in Figure 2.1)

of the subsequent memory instruction(s). If these memory instructions do not

reuse data from the caches their miss ratio will be constant between the L1 and

LLC sizes. This information is enough to determine that the target delinquent

load is a non-temporal access and its data can be cache-bypassed.

6.4 Prefetch Coverage & Insertion

To evaluate how effectively cache misses are covered by our method we looked

at 12 benchmarks (11 from Spec CPU 2006 [9] and a genetic algorithm ap-

plication cigar [23]), whose dataset does not fit in the LLC. On average the

L1 miss coverage is 58%, similar to the coverage of a prefetcher that targets

strided loads. The analysis identifies the loads targeted for software prefetch

(Section 6.1), the type of prefetch, i.e. normal or non-temporal (Section 6.3),

1interleaving memory instructions between PC1: LD X and PC1: LD Y in Figure 5.1.

24

and the ideal prefetch distance (Section 6.2). x86 architectures support the

base+offset addressing mode and inserting a single prefetch instruction of the

format "prefetch offset(base)" suffices. For a load at address A using base reg-

ister base to access memory, the prefetch is inserted right after it in the source

as follows

A: load (base), dst

prefetch[nta] prefetch-distance(base)

Here the offset is the prefetch distance and the base register is taken directly

from the target load. Such optimizations can be applied directly at the binary

level via dynamic binary rewriting (as discussed in Section 5.5). This method

is aimed towards compiler and source independence, such that optimizations

may be applied even when the source is not available.

6.5 Performance Scaling
Hardware prefetching increases useless off-chip traffic significantly, thereby

frequently polluting the shared LLC, and consuming more off-chip bandwidth.

This directly impacts the performance of threads co-running on neighboring

cores. To assess the positive impact of our software prefetching method’s

resource conservation in multicores, we ran 180 randomly generated work-

load mixes on both processors. Each mix contains four randomly selected

workloads (from the 12 benchmarks). The workloads in each mix are run in

parallel on four cores to completion. Figure 6.1 compares the throughput per-

formance (weighted speedup) when using our software prefetching method

and hardware prefetching alone on a 4-core AMD Phenom II multicore pro-

cessor. The baseline is the original mix with hardware prefetching turned off.

Figure 6.1 shows the distribution function of throughput performance across

the 180 mixes2. At best, software prefetching increases overall performance

by 28% whereas hardware prefetching improves performance by 17%. On

average, software prefetching improves performance by 10% over hardware

prefetching. This is because our software-only prefetching method is accurate

and conserves the shared LLC and off-chip bandwidth.

6.6 Summary
High performance processors widely employ hardware prefetching to hide

memory latency. While hardware prefetchers can improve single-thread per-

formance significantly, aggressive prefetchers waste shared resources, the off-

chip bandwidth and LLC capacity [34]. This impacts the overall processor

2Both, hardware prefetching and software prefetching approach, have their points sorted ac-

cording to their speedup.

25

-5

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

S
p

e
e

d
u

p
 (

%
)

Runs (%)

Soft Pref. Hardware Pref.

Figure 6.1. Distribution function of performance (weighted speedup) across 180

mixed workloads on AMD Phenom II (averages on right).

performance [16, 18]. Paper III investigates a resource-efficient prefetching

method that helps improve throughput performance in multicores when shared

resources are constrained. The proposed method i) accurately prefetches the

required data, ii) avoids (useless) speculative prefetching, and iii) employs

cache bypassing to retain useful data in the cache hierarchy. In contrast

to hardware prefetchers (in commodity multicores), this resource-efficient

prefetching method avoids useless off-chip traffic, and as a result avoids LLC

pollution and lowers off-chip bandwidth demand. This improves through-

put performance in multicores when several applications co-run and share

resources. Across 180 4-application mixes that fully utilize the multicore,

the resource-efficient software prefetching method achieves higher through-

put (15% on average) compared to hardware prefetching (5% on average).

This work highlights the importance of shared-resource friendly prefetching

for optimizing performance in multicores.

26

7. Adaptive Resource Efficient Prefetching

In Chapter 6 we described how aggressive hardware prefetchers hurt over-

all performance in commodity multicores. We proposed a simple solution

to the problem, that is to use static software prefetching instead of hard-

ware prefetching when multicores are fully utilized. The accurate software

prefetching method proposed ensures better average performance compared to

hardware prefetching in fully loaded multicores. However, any static prefetch-

ing approach is sub-optimal given varying workload execution environments

and processor loads, and can not be expected to maximize performance in all

situations. So it is extremely important to identify and utilize the right data

prefetching options for a given execution context [7, 22]. Paper IV describes

such a framework, that identifies and applies the correct prefetching approach

at runtime to maximize performance.

Experiments with multicores show that the optimal data prefetching strat-

egy varies with changing execution environment. In Figure 7.1, the color

coded best prefetching curve (called static-max) shows the overall speedup

of the best performing option from 5 different prefetching options across 160

mixed workloads (of 4 co-running applications). The (five) different prefetch-

ing options are shown with different colors and are a combination of hardware

and/or software prefetching applied uniformly across all cores. It is evident

from the curve that there is no single prefetching option that serves as silver

bullet and the winning prefetch strategy is context dependent. To maximize

performance we need the ability to i) dynamically combine any available hard-

ware and software prefetching options, and ii) discover the best prefetching

option at runtime and adapt it. This functionality can be achieved in a runtime

framework that facilitates binary rewriting (Section 5.5) or multi-versioning

of application code to turn on/off software prefetching on the fly. The run-

time framework, at the same time, is also responsible for controlling hardware

prefetching on all cores. Such functionality gives us the ability to control data

prefetching and combine it in several different ways in a live system.

7.1 Combining Hardware and Software Prefetching

Choosing the best prefetching option requires exploring performance across

various hardware and software prefetching configurations. Hardware prefetch-

ers on modern processors can be configured by programming Model-Specific

Registers (MSR). To configure software prefetching the runtime should be

27

 0

 10

 20

 30

 40

 50

 60

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

T
h

ro
u

g
h

p
u

t
In

c
re

a
s
e

 (
%

)

Runs (%)

static-max

sm
ax

avg.

Figure 7.1. The static-max curve shows that applying the right prefetch settings can

improve performance up to 50% and 10% on average (smax) over hardware prefetch-

ing. Each prefetch setting is shown with a different color. There is no single prefetch

option that always performs best implying that the best prefetch option depends on the

execution environment.

able to insert (and remove) software prefetches in the code on the fly. To

dynamically adjust prefetch configurations and sample performance for those

settings, the runtime must switch very quickly (to avoid performance over-

heads) between the different settings, which includes configuring hardware

and software prefetching at runtime.

Inserting (and removing) software prefetches in the instruction stream on

the fly (to enable switching of software prefetch configurations) is a major

challenge. This can be achieved using JIT compilation, however, frequent JIT-

ing of code impacts performance and is not a feasible option. To that end we

have extended the Protean code framework, originally developed by Lauren-

zano et al. [19], to maintain and use multiple versions of application. Using

Protean code we create two versions of the application binary at execution

start up: the original binary and another one with software prefetches inserted.

The runtime can then switch between these two versions at runtime to turn

off/on software prefetching. The runtime can combine this capability with

various hardware prefetcher configurations to create several prefetching op-

tions. This work combines hardware and software prefetching options to con-

figure prefetch settings in a total of 5 different ways – i) Hardware Prefetch-

ing only, ii) Hardware Prefetching + Software Prefetching, iii) L1 Hardware

prefetching + Software Prefetching1, iv) Software prefetching only (all hard-

ware prefetchers disabled) and v) No Prefetching. The selected option is ap-

plied uniformly across all cores.

1Hardware prefetchers at L1 and L2/LLC can be configured separately on Intel Sandybridge

processors. In this case hardware prefetching is enabled at L1 level only.

28

7.2 Choosing Best Option at Runtime

The runtime framework operates in two modes: 1) the exploration mode –

when the runtime quickly samples performance across all prefetching options

(listed in Section 7.1) to identify the best option, and 2) the performance mon-

itoring mode – when performance is monitored for the prefetch configuration

applied to sense phase changes. We use performance as a proxy to detect

(phase) changes in execution environment. In the monitoring mode, when the

runtime senses a phase change it enters the exploration mode to determine the

best policy for the new phase. After sampling the performance (for 125 ms)

for each prefetch option (in exploration mode), the runtime applies the op-

tion with the maximum performance. The runtime then re-enters the monitor-

ing phase to sense changes in the execution environment. Paper IV discusses

phase-based exploration in detail.

7.3 Performance

Figure 7.2 shows the performance (weighted speedup over hardware prefetch-

ing) of the phase-adaptive runtime prefetching method - adaptive resource-

efficient prefetching (AREP) across 160 mixes of 4 applications. The mixes are

sorted in descending order of static-max performance. The static-max shows

that there is an opportunity to improve the throughput by 10% on average by

statically choosing the best prefetching choice for the entire execution of the

mix. Note that the static-max incurs no exploration. As described (in Sec-

tions 7.1 and 7.2) AREP monitors the performance of five different prefetch

options at phase boundaries and adapts the best performing policy until the

next phase change. AREP improves the performance by 8.1% on average and

up to 49% in the best case.

-10

 0

 10

 20

 30

 40

 50

 60

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

T
h

ro
u

g
h

p
u

t
In

c
re

a
s
e

 (
%

)

Runs (%)

static-max AREP

arep
sm

ax

avg.

Figure 7.2. Performance of AREP compared to hardware prefetching (0-axis) and

static-max. AREP, on average, is within 2% of the static-max performance. The

mixes are sorted in descending order of static-max performance.

29

7.4 Summary

High performance processors employ hardware prefetching to hide memory

latency. While hardware prefetchers can improve single-thread performance

considerably, aggressive prefetchers waste shared resources, such as offchip

bandwidth and last level cache capacity, which can impact overall proces-

sor performance [11, 16, 34]. Chapter 6 discusses that a resource-efficient

software-only prefetching method can avoid useless prefetches and improve

throughput performance significantly in fully utilized multicores. However,

static software prefetching approach can be sub-optimal for some mixes, as

seen in Figure 7.1. Moreover, hardware prefetching is not always harmful

and performance can be improved further by selectively combining hardware

and software prefetching at runtime. Paper IV describes a runtime framework

(called AREP) that can configure 5 different data prefetching options across

the multicore and select the one that performs best at runtime. The 5 prefetch-

ing options are a combination of hardware and software prefetching. The re-

sults show that AREP can improve throughput over hardware prefetching by

up to 49% at best and 8.1% on average. Paper V looks at further improving

overall performance by predicting the optimal prefetch combination where the

prefetch options are adjusted independently across all cores.

30

8. Predicting the Impact of Data Prefetching
on Performance

Chapter 7 showed that relying on a single data prefetching method is sub-

optimal. Moreover it describes a framework (AREP) that dynamically ex-

plores several available data prefetching options at runtime and applies the sin-

gle best prefetching option (uniformly across all cores) that improves through-

put performance for the multicore. However, applying a single prefetch option

is usually not the best setting for all co-running threads. Each application has

different sensitivities to different prefetching options, and to how much the

shared memory bandwidth [22] and LLC are stressed by co-running applica-

tions [30, 36, 45]. So, requiring the same prefetch strategy for each co-running

application in a mix sacrifices a significant amount of performance. Prefetch-

ing needs to be configured at the per-application level to achieve optimal per-

formance. AREP could potentially support such exploration. However, the

large exploration space that needs to be traversed at runtime is a significant

challenge. For example, in case of a 4-core processor and 5 prefetch options,

a total of 625 (54) prefetch combinations need to be explored. The number

of prefetch combinations grow exponentially with each added core. The ap-

proach used by AREP is to sample the performance of each prefetch option

for a short duration. However, this approach is not feasible for exploring too

many options at runtime.

Figure 8.1 shows the performance for a mix of 4 applications across the

625 prefetch combinations. The performance of the five options explored by

AREP are clearly marked and show that there is significant room for improv-

ing performance further by configuring prefetching on a per-core basis. In

this mix, AREP increases performance by 5%, whereas, the optimal combi-

nation increases performance by 18%. Paper V introduces an efficient and

scalable method Perf-Insight that uses the application bandwidth and perfor-

mance behavior (for the different prefetch options) in a mix to predict the op-

timal prefetch combination. The method looks at how each of the co-running

applications respond to choices in its own prefetch strategy and the off-chip

bandwidth pressure of other applications in the mix. The method uses this in-

formation to estimate each application’s performance within a mix for a given

prefetch option and behavior of co-running applications. This is used as a

basis to predict the prefetching combination that maximizes performance.

31

-10

-5

0

5

10

15

20

10
0

20
0

30
0

40
0

50
0

60
0

S
p

e
e

d
u

p
 (

%
)

Unique Prefetch Configurations

AREP

Figure 8.1. Distribution of performance gain over No-Prefetching across all 625 dif-

ferent possible prefetch combinations for a 4 application mix. The combinations are

sorted by their overall performance. The 5 blue points highlight the settings sampled

by AREP, where all applications have the same prefetch setting. In this mix the max-

imum speedup of AREP [18] is 5%, while the maximum speedup can be up to 18%

with the per-application prefetch settings configured independently.

8.1 Application Bandwidth & Performance Behavior

To understand how prefetching choices affect an application’s memory band-

width consumption and performance (in a mix) we need to look into each

application’s sensitivity to prefetching (how much its individual performance

increases as data is prefetched faster) and how effective each prefetching op-

tion is for that application. These sensitivities are particularly important in

application mixes because off-chip bandwidth and LLC are shared, and often

scarce, resources [13, 16, 18]. To quantify these sensitivities, we first investi-

gate the relationship of individual applications’ off-chip bandwidth consump-

tion to that of the other applications executing in the mix, for each prefetch

setting. This gives us insight into how off-chip bandwidth is shared within the

mix, taking into account the aggressiveness of each application. Figure 8.2

shows the off-chip bandwidth share for one application as a function of dif-

ferent prefetch options (shown using different colors) and as a function of the

off-chip bandwidth used by other co-running applications (x-axis). To connect

this to performance, we then investigate how the individual applications’ per-

formance changes as a function of their own off-chip bandwidth consumption,

again, as for each prefetch option. Figure 8.3 shows this relationship. The

data in both Figures 8.2 and 8.3 show good uniformity. Using this data we

have developed a model for application performance sensitivity in context of

the application’s off-chip bandwidth share and prefetch option applied. The

models can then be used to estimate each application’s off-chip bandwidth

and performance (for a given prefetch setting) in a mix. However, to make

this approach practical it is important to effectively estimate the applications’

off-chip bandwidth and performance models using fewer data points.

32

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 5.5 6 6.5 7 7.5 8 8.5

M
y
 O

ff
c
h

ip
 B

W
 (

G
B

/s
)

Offchip Bandwidth excluding Me (GB/s)

NOPREF
HWPF

SWPF
L1HW+SWPF

HW+SWPF

Figure 8.2. Off-chip bandwidth for GemsFDTD for the five different prefetch options

as a function of the bandwidth of the other applications in the mix, across all 625

possible combinations in the application mix. For each prefetch option there is a

clear linear relationship between GemsFDTD’s bandwidth and the bandwidth demand

(pressure) of the other applications in the mix (excluding GemsFDTD). The black

lines show the linear BW-BW Model based on the reference data from all 625 possible

prefetch combinations for this mix.

8.2 Estimating Application Behavior Efficiently

The data shown in Figures 8.2 and 8.3 indicate that we can estimate the appli-

cation’s off-chip bandwidth and performance behavior in a mix using a simple

linear model for each prefetching choice. Figure 8.2 shows the linear fit called

BW-BW Model for each prefetching choice, whereas the BW-Perf Model is

illustrated in Figure 8.3. Further, with such models we can iteratively solve for

how any combination of prefetching choices will perform in a mix. However,

the data presented so far is based on exhaustive evaluations of all 625 possible

combinations, and is neither practical to gather in itself (taking nearly 21 hours

with our 2 minute-per-mix experiments) nor remotely feasible for larger core

counts. To lower the number of data points to model the off-chip bandwidth

and performance models we note that the linear BW-BW Models and BW-Perf

Models can be approximated by points at either extreme: the best (most) off-

chip bandwidth achieved for each prefetch setting and the worst (least). If we

can efficiently find these points (or close approximations to them) then we can

reduce the required data to two points per application per prefetch setting.

To identify the best and worst bandwidth points for each prefetch option

we make the following assumptions: The best conditions for an application

(most off-chip bandwidth) will occur when the other applications in the mix

use as little off-chip bandwidth as possible, which means setting them to No-

Prefetching, and the worst (least off-chip bandwidth) will occur when the other

applications in the mix use as much off-chip bandwidth as possible, which

means setting them to Hardware Prefetching.

The accuracy of this best case/worst case approximation is shown for one

application in a 4 application mix in Figures 8.4a and 8.4b. The results from

the best case/worst case points are shown for each prefetch setting with col-

33

-50

 0

 50

 100

 150

 1 1.5 2 2.5 3 3.5 4

M
y
 P

e
rf

o
rm

a
n

c
e

 (
%

)

My Offchip BW (GB/s)

NOPREF
HWPF

SWPF
L1HW+SWPF

HW+SWPF

Figure 8.3. Performance (speedup over No-Prefetching) of GemsFDTD for the five

different prefetch options as a function of its bandwidth, across all 625 possible com-

binations in the application mix. For each prefetch option there is a clear linear rela-

tionship between GemsFDTD’s performance and its bandwidth. The black lines show

the linear BW-Perf Model, based on the reference data from all 625 possible prefetch

combinations for this mix.

ored dots (showing the extreme points) and the linear fit with colored lines.

The linear fit to all 625 combinations is shown with black lines for reference.

The fit to the best case/worst case points is very close to the fit using all com-

binations, while only requiring gathering data for 10 combinations (for this

application). Across all 4 applications in the mix, only 34 combinations are

required to approximate the BW-BW Model and the BW-Perf Model. This can

be effectively used to model the sensitivity of an application’s performance to

its share in the off-chip bandwidth. The number of combinations required to

estimate the BW-BW Model and BW-Perf Model grow linearly in the number

of cores, whereas the total prefetch combinations grow exponentially.

8.3 Performance Prediction

The BW-BW Model and BW-Perf Model allow us to understand the interac-

tion between the off-chip bandwidth demands and allocations in a mix and

the resulting performance for each application, as a function of the chosen

prefetch settings. To determine the performance for an arbitrary selection of

prefetching choices in a mix, we run an iterative solver that uses the BW-BW

Model to find a steady-state solution to how much bandwidth each application

receives. For each application we begin by using the four best case settings as

the starting point for our iterations. Once we have arrived at a steady-state for

the applications’ bandwidths, we can estimate performance from the BW-Perf

Model for each application.

To find the best performing prefetch combination, we repeat the above for

each setting for each application (625 combinations in total), which requires

34 best-case/worst-case data points. Figure 8.5 compares the predicted perfor-

34

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 5.5 6 6.5 7 7.5 8 8.5

M
y
 O

ff
c
h

ip
 B

W
 (

G
B

/s
)

Offchip Bandwidth excluding Me (GB/s)

NOPREF
HWPF

SWPF
L1HW+SWPF

HW+SWPF

(a) Application Off-chip Bandwidth Model - GemsFDTD

-50

 0

 50

 100

 150

 1 1.5 2 2.5 3 3.5 4

M
y
 P

e
rf

o
rm

a
n

c
e

 (
%

)

My Offchip BW (GB/s)

NOPREF
HWPF

SWPF
L1HW+SWPF

HW+SWPF

(b) Application Performance Model - GemsFDTD

Figure 8.4. Comparison of our Off-chip Bandwidth Model and Performance Model

for one application in a 4 application mix. Colored points and lines show the result of

modeling behavior using only the best case and worst case points, while black lines

show the results of using the all 625 combinations (also shown in Figures 8.2 and 8.3).

The model created using the extreme points accurately depicts the overall off-chip

bandwidth and performance trends for the applications for each prefetch choice, as

can be seen by the very good match between the black and colored lines.

mance to reference data for a single mix. Prefetching combinations are sorted

in decreasing order of real performance. Here the clear shift in performance

after the best 380 configurations is correctly captured by our model. The aver-

age errors for predicted performance is 1% in this case. To select the optimal

prefetching configuration we simply select the combination with the highest

predicted performance. Estimation errors are below 3.5% for most mixes used

in experiments, which shows that using best case/worst case input data and our

iterative solver can predict performance accurately. Perf-Insight helps deliver

near-optimal performance. Across 14 mixes, the performance increase over

No-Prefetching are: 9% for hardware prefetching, 22% for the oracle, 15%

for AREP and 21% for Perf-Insight. Perf-Insight’s performance on average is

merely 1% shy of the optimal (oracle).

35

8.4 Summary

Hardware and software data prefetching options can be effectively combined

to improve multicore performance using the runtime method (AREP) de-

scribed in Paper IV. AREP regulates data prefetcher aggressiveness (uni-

formly across all cores) at runtime to improve overall performance. How-

ever, this approach leaves considerable performance opportunity un-explored

as data prefetching is not configured at the per-core level. The reason AREP

avoids per-core tuning of prefetch settings is that the prefetch combinations

grow exponentially with increasing number of cores, and it is not possible to

monitor them all at runtime.

We developed an efficient way to solve this problem with an approach that

predicts the performance of all prefetch combinations based on application be-

havior information used as input. Paper V introduces Perf-Insight, a new, sim-

ple model for understanding the interaction between applications’ individual

performance and off-chip bandwidth, the off-chip bandwidth demand of the

other applications in the mix, and the per-application prefetching choice. To

make this approach practical, we developed a technique to efficiently calibrate

the models using the best-case/worst case settings, which allows us to both cal-

ibrate applications while running in the mix and also scale the calibration pro-

cedure linearly with the number of applications. Finally, we use this approach

to predict throughput performance (of mixes) across all combinations of avail-

able prefetch options, which guides us to select the best prefetch option on a

per-core basis to achieve near-optimal performance. While we demonstrated

Perf-Insight with a collection of 5 hardware and software prefetching tech-

niques and chose the combination with the best performance, the Perf-Insight

approach works with any available prefetching choices that can be controlled

at runtime. With Perf-Insight we are able to robustly choose near-optimal

prefetch combinations for a range of workload mixes, and demonstrate signif-

icant real-world performance benefits across a wide variety of workload mixes

on commodity hardware.

36

-3
0

-2
0

-1
0 0

 1
0

 2
0

 3
0

 4
0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

Performance (%)

U
n
iq

u
e
 P

re
fe

tc
h
 C

o
n
fi
g
u
ra

ti
o
n
s

re
a
l

p
re

d
ic

te
d

(a
)

P
er

fo
rm

an
ce

P
re

d
ic

ti
o

n

 5 6 7 8 9

 1
0

 1
1

 1
2

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

Offchip Bandwidth (GB/s)

re
a
l

p
re

d
ic

te
d

 150

 175

 200

(b
)

O
ff

-c
h

ip
B

an
d

w
id

th
P

re
d

ic
ti

o
n

F
ig

u
re

8
.5

.
C

o
m

p
ar

is
o
n

o
f

P
er

fo
rm

an
ce

p
re

d
ic

ti
o
n

(t
o
p
)

an
d

O
ff

-c
h
ip

B
an

d
w

id
th

p
re

d
ic

ti
o
n

(b
o
tt

o
m

)
ac

ro
ss

th
e

al
l

co
m

b
in

at
io

n
s

o
f

p
re

fe
tc

h

se
tt

in
g
s

fo
r

a
m

ix
o
f

4
ap

p
li

ca
ti

o
n
s.

O
ff

-c
h
ip

B
an

d
w

id
th

p
re

d
ic

ti
o
n

er
ro

r
is

le
ss

th
an

1
%

o
n

av
er

ag
e

fo
r

th
is

m
ix

.
A

n
en

la
rg

em
en

t
o
f

se
v
er

al
o
f

th
e

m
ix

es
is

sh
o
w

n
to

d
em

o
n
st

ra
te

h
o
w

ac
cu

ra
te

th
e

b
an

d
w

id
th

p
re

d
ic

ti
o
n

is
.

37

9. Related Work

This thesis discusses software techniques that mainly utilize data prefetching

to improve performance in multicores. The list of prefetching work is too

detailed to cover exhaustively, so we discuss the most relevant prior work that

relates to the prefetching techniques described in this thesis.

Several works have used software prefetching to improve single-thread per-

formance [28, 29, 35, 43, 44, 46]. Mowry et al. [32] and Santhanam et al.

[39] describe a compiler based software prefetching algorithm based on static

analysis. Implementation of similar software prefetching algorithms are avail-

able in production compilers such as GCC and Open64. However, software

prefetching guided by static compiler analysis is shown to degrade single-

thread performance [29]. Profile-guided optimization (PGO) techniques, such

as [27, 43, 44], have used stride profiling to discover loads with frequently

recurring strides, to insert software prefetches for them. Lee et al. [20] inves-

tigated combining hardware prefetching and software prefetching for single-

threaded applications, concluding that caution should be exercised when mix-

ing the two. In contrast to their work we have shown that hardware prefetch-

ing can be combined with software prefetching in a useful way to increase

throughput performance in multicores. Dynamic optimization frameworks

such as [3, 24] use extensive (Itanium-specific) architectural register sup-

port for sampling relevant memory events and performance counters to de-

tect delinquent loads and insert software prefetches for them. Beyler et al.

[3] monitor stride behavior of regularly occurring loads at runtime using a

separate thread context. Once the monitoring thread notices a regular stride,

it inserts software prefetch for that load on the fly. However, this approach

degrades performance for several benchmarks when the prefetching can not

amortize the cost of the runtime system’s overhead. Such techniques that uti-

lize architecture specific features are also not easily portable to other plat-

forms.

Rabbah et al. [35] proposed a profile driven compiler-based method for iso-

lating and scheduling the precomputation sequence (PS) (referred to as load

dependence chain (LDC)) for both regular and irregular delinquent loads.

They proposed the framework as part of the ORC (open research compiler)

targeting VLIW architectures. The PS is extracted using profiler feedback,

the compiler then appropriately inserts the PS instructions in scheduling slots

at low-level IR. Our method, described in Paper II, of PS extraction and its

speculative scheduling at the assembler level is an adaptation of their method.

Other software-based LDS prefetching approaches such as [21, 26, 37] either

39

require the programmer or the compiler to identify pointer accesses that fre-

quently miss in the cache, through memory access profiling. Software prefetch

instructions are then inserted ahead of pointer access to hide some memory

latency. For pointer-chasing codes they did not observe large performance

improvements. Software-based approaches such as [4, 25] use a secondary

thread context constructed by compilers to run-ahead and prefetch for the

main application thread on multi-threaded processors. Inagaki et al. [10] and

Adl-Tabatabai et al. [1] proposed software-based prefetching methods that are

limited to managed runtime systems (specifically Java) as they require infor-

mation about object metadata.

Content-directed prefetching (CDP) [5] is a predictive hardware-software

pointer prefetching method that uses compiler hints to identify pointer fields in

newly fetched cache blocks. The pointer-addresses identified in newly fetched

cache blocks are then prefetched greedily. Ebrahimi et al. [6] improved CDP

by proposing profile-driven hints to identify and prefetch only the most fre-

quently accessed pointer fields in the fetched cache blocks.

Liu and Solihin [22] have proposed analytical models for bandwidth par-

titioning to identify when prefetching can help in improving system perfor-

mance. Sandberg et al. used reuse-distance based cache modeling to in-

sert non-temporal prefetch instructions to cache bypass the data that is not

reused from the lower level caches [38]. Similarly, Laurenzano et al. [19]

proposed a runtime mechanism to find opportunities to insert non-temporal

prefetch instructions in batch applications to conserve LLC space so that user-

facing applications’ performance in datacenters remains predictable. Jiménez

et al. implemented a runtime mechanism for exploring and adjusting hardware

prefetcher configuration on a POWER7 processor to maximize performance

[11]. The POWER7 processor allows the prefetcher aggressiveness to be con-

figured at 7 different levels. Their runtime method explores the best hardware

prefetcher settings on per-core basis (for two cores only) and applies the one

that performs best. Unlike our work, their method avoids interaction with

software prefetching by explicitly disabling software prefetch insertion

40

10. Summary

Multicore processors are the most common general-purpose processing plat-

form used today and consist of several processors, termed cores, hosted on a

single chip. Typically, all cores in multicores share the last-level cache and the

DRAM bandwidth. When several threads co-run across several cores, each

of them affects the performance of the neighboring cores depending on how

they utilize the shared resources. In such execution environment, the use of

the memory hierarchy, especially the resources shared by all cores play a sig-

nificant role in defining the overall performance of the multicore. This thesis

investigates software-only techniques that improve the way software utilizes

the memory hierarchy, especially the shared resources, in an effort to improve

overall multicore performance.

Cache behavior modeling techniques, such as StatStack, have typically

been used to model the way applications’ data stream uses the cache hier-

archy. StatStack uses profiled information about how data is reused over time

to estimate (using a probabilistic model) how frequently data requests miss in

the cache hierarchy. In Paper I we extend StatStack to model instruction cache

behavior. Here the model uses information about instruction reuse to predict

how often the application misses in the instruction cache. This is used to iden-

tify performance bottlenecks arising due to code segments that are too large

to fit in the instruction cache. We also introduce an instruction-stream spe-

cific profiling method that is, on average, 10× faster than the profiling method

used for StatStack. With a case study we show that application phases with

high instruction-cache miss ratio can be identified using this method, and op-

timizing for code size (instead of performance) for such phases can lower the

miss ratio by half.

Hardware prefetchers in commodity processors are good at improving per-

formance for applications with regular memory accesses but do not handle

irregular memory accesses well. Performance, for irregular applications,

can improve by prefetching irregular accesses in software while hardware

prefetching takes care of regular memory accesses. In Paper II we describe

a low-overhead framework that enables accurate (resource-efficient) software

prefetching for applications with irregular access patterns. The framework

identifies memory accesses i) that miss frequently in the cache hierarchy,

ii) that are irregular and can not be handled by the hardware prefetcher, and

iii) that benefit performance when targeted by software prefetching. The

framework uses sampled trace information to determine the chain of instruc-

tions required to prefetch data for the targeted irregular loads in software and

41

ensure resource-conscious prefetching. As a result, the additional prefetching

(targeting irregular loads) improves performance (by 10% on average) with-

out increasing the pressure on shared resources, even when several irregular

applications co-run on a multicore.

Hardware prefetchers in high performance multicore processors are ag-

gressive and increase DRAM traffic significantly. This increases pressure on

shared resources and impacts the performance of applications co-running on

neighboring cores. Overall, multicore throughput performance is affected neg-

atively from useless prefetching activity. In Paper III we describe a software

prefetching mechanism that utilizes shared resources more efficiently, cou-

pled with timely prefetching of data. As a result it performs better than hard-

ware prefetching on fully utilized multicores. Using a cost-benefit analysis

the method singles-out loads (with regular strides) where software prefetching

benefits performance and targets them only. In addition to accurate prefetch-

ing, the method also makes use of cache-bypassing, whenever possible, to

maintain temporally useful data longer in the cache hierarchy. In a fully uti-

lized modern multicore processor, we show that using this shared resource

conscious software prefetching approach improves performance by 10%, on

average, over hardware prefetching.

In Paper IV we show that software prefetching alone is sub-optimal for

maximizing performance in highly utilized multicores, and hardware prefetch-

ing performs better in some cases. The optimal data prefetching strategy

is context dependent and differs across varying multicore execution environ-

ments. This paper describes a framework, called Adaptive Resource-Efficient

Prefetching (AREP), that dynamically adapts the prefetching strategy, uni-

formly across all cores, at runtime. AREP chooses from 5 different prefetch-

ing options (combinations of hardware and software prefetching) that exert

varying pressure on shared resources. The framework selects between the 5

prefetching options by profiling their performance at runtime and applying the

one that performs best. By applying the right prefetching strategy at runtime

AREP is able to increase throughput by up to 49% and more than 8% on aver-

age.

Paper V introduces a scalable method Perf-Insight to achieve near-optimal

performance by varying prefetch options independently across all cores in a

multicore. AREP (Paper IV) chooses from 5 prefetch settings and applies the

selected prefetch setting uniformly across all cores. This strategy was adapted

to avoid exploring the large combination space, that results from varying the

prefetch settings at the per-core level, at runtime. The unique combinations

grow exponentially in the number of cores and are impossible to explore ex-

haustively at runtime. Perf-Insight introduces a method that uses the off-chip

bandwidth behavior of applications in a mix as a function of their prefetch

setting to predict the bandwidth share of each application and its performance

in the mix. The method only requires to profile a handful of prefetch combi-

nations to use as a baseline to model the bandwidth sharing and performance

42

scaling effects. Using the bandwidth and performance models Perf-Insight ac-

curately predicts throughput performance for all prefetch combinations. This

guides in choosing the right prefetch combination that delivers optimal perfor-

mance.

Efficient utilization of the memory hierarchy is key to better performance in

multicore processors. This work presents a software approach towards achiev-

ing efficient utilization of memory resources in multicore processors to max-

imize performance. First, we present a method to identify performance bot-

tlenecks arising in the instruction stream of software and propose a possible

way to resolve it with application code compaction. Second, we propose a low-

overhead framework for efficient prefetching of data for irregular applications.

This software technique prefetches the data required by the software without

stressing the memory resources shared by all cores, which results in significant

performance gains. Third, we show that hardware prefetchers in commod-

ity processors are sub-optimal and propose a resource efficient software-only

prefetching method that performs better in fully utilized multicores. Fourth,

we combine hardware and software prefetching in a runtime framework that

enables us to explore and apply the best prefetch option in a given execution

environment. Finally, we develop a method that enables us to predict the right

prefetch options on a per-core basis to achieve near optimal performance with

a heterogeneous mix of prefetch options applied across the cores.

43

11. Svensk Sammanfattning

Idag finns flerkärninga (såkallade multicore) processorer in nästan alla datorer,

från smartphones till högprestande servrar. En flerkärnig processor består av

flera kärnor (där varje kärna är som en traditionel processor) som sitter på

ett och samma chip. Dessa kärnor jobbar tillsammans för att leverera samma

beräkningskapacitet som flera datorer fast på ett chip. Den här paradigmen

har möjligjort att vi kan använda hårdvaran på ett energieffektivare sätt samt

leverera bättre prestanda.

11.1 Bakgrund

Dessvärre finns det en begränsning med flerkärninga processors då kärnorna

delar vissa kritiska resurser. Utöver det, så kan varje kärna använda data

mycket snabbare än den kan hämta ny data från huvudminnet (DRAM). Då

minnet också är en delad resurs skapar det en märkbar prestandaflaskhals i

systemet som begränsar hur fort varje kärna kan arbeta. Den här minnesbe-

gränsningen har varit känt sedan länge, långt innan flerkärninga processorer

började användas. Ett sätt att minska latensen att hämta data och öka band-

brädden (antalet parallella hämtningar) från huvudminnet är att använda en

så kallade cache. En cache är ett mindre minne som är mycket snabbare än

huvudminnet (pga av dess storlek) som placeras mellan processorn och hu-

vudminnet. En cache lagrar den senast använda datan. Det gör att kärnan kan

hämta data snabbt från cacheminnet istället för huvudminnet då det är vanligt

att samma data återanvänds flera gånger. För att maximera prestandan används

flera cachar av olika storlek och egenskaper (latens, energi, bandbredd). Figur

1.1 visar en typisk bild av en modern flerkärnig processor. Alla kärnor har två

nivår av egna privata cacher (L1 och L2) och en delad stor sista nivå cache

(LLC). Eftersom sista nivå cachen (LLC) är delad av alla kärnor så blir den i

likhet med huvudminnet en begränsad

a tgång som alla kärnor tävlar om. Tillsammans har de olika cacharna och

minnessystemet en viktig roll i hur fort en flerkärning processor kan arbeta.

Det här arbetet fokuserar huvudsakligen på hur man med hjälp av mjukvara

(datorprogram) kan använda de delade resurserna (cacheminnen och huvud-

minne) på ett effektivt sätt för att förbättre prestandan hos moderna flerkärniga

processorer.

För att noggrant och kritiskt analysera datorprograms prestanda är en vik-

tig del att förstå hur programmets minnesbeteende ser ut. Det finns flera sätt

45

att ta fram information om programs minnesbeteende, från långsam detaljerad

simulering till snabb minnesmodellering. Cachemodellering använder infor-

mation om hur ett program återanvänder data för att modellera till exempel

programmet prestanda som en funktion av de olika cacharnas storlek (se Fig-

ure 2.1). Sådana modeller ger bra intuition om hur bra ett program använder

cachehierakin och kan därför användas för att vägleda olika optimeringar som

förbättrar prestandan.

11.2 Sammanfattning av Forskningen

Varje kärna har i verkligheten två olika L1 cachar. En för instruktioner och en

för data. Detta gör att en processor kan hämta instruktioner samtidigt som den

hämtar data. Ett datorprograms instruktioner talar om för processorn vilka op-

erationer som ska utföras på datan. Både instruktionscachen och datacachen

spelar en viktig roll i ett programs prestanda. Om ett program missar i L1 in-

struktionscachen (dvs instruktionen finns inte sparad i L1 cachen), stannar pro-

cessorn up tills instruktionen som den väntar på hämtas från någon av de andra

nivåerna i minneshierarkin (till exempel L2, LLC eller DRAM). Dvs, ju oftare

ett program missar i L1 cachen ju långsammare går programmet. Cachemodel-

lering har huvudsakligen används för att analysera ett programs databeteende.

Men, samma metod kan också användas för att analysera programs instruktio-

nensbeteende. I artikel 1 utökar vi en cachemodelleringsteknik, kallad Stat-

Stack, till att modellera instruktionscacher. Den nya modellen använder infor-

mation om hur programmets instruktioner återanvänds över tid for att förutspå

om programmet kommer missa i instruktionscachen (om programmet är för

stort för att få plats i instruktionscachen). Informationen används sedan för att

hitta vilka delar av programmet som får prestandaproblem. I artikeln föres-

lår vi också en snabb metod med låg overhead för att spara under körningen

specifik information som sedan används av modellen. I studien visar vi också

att vi kan identifiera delarna av programmet med prestandaproblem och opti-

mera dem så att de får plats i instrucktionscachen. Resultatet är att vi minskar

antalet missar i instruktionscachen med 50%.

Moderna processorar använder speciell hårdvara, så kallad förhämtare (eng.

prefetcher), för att förbättre prestandan. En förhämtare förutspår om ett pro-

gram kommer att använda viss data och hämtar datan innan programmet bejär

det. Datan finns således i det närmaste cacheminnet istället för i huvudminnet

vilket förbättrar prestandan då den kan hämta datan mycket snabbare. För att

göra det, upptäcker förhämtaren mönster i programmet beteende. Förhämtare

är för det mesta bra på att upptäcka och hämta regulära mönster men får prob-

lem med irregulära vilket skadar prestandan. Ett sätt att lösa det här problemet

är att låta en hårdvarubaserad förhämtare hantera regulära mönster och mjuk-

varubaserade förhämtare hantera irregulära mönster. I artikel 2 beskriver vi ett

effektivt mjukvarubaserat verktyg för att noggrant (resurseffektivt) förämta ir-

46

regulära mönster i datorprogram. Verktyget identifierar minnesaccesser som:

1) missar ofta i cachehierarkin och har hög minneslatens, 2) är irregulära och

som hårdvaruförhämtaren inte kan hantera, och 3) förbättar prestandan när

dem hämtas med den mjukvarubaserade förhämtaren. Verktyget använder en

snabb profileringsteknik med låg overhead för att samla den information krävs

för att förhämta data. Resultatet av studien visar att med hjälp av vår mjuk-

varubaserde förhämtning (som endast fokuserar på irregulära mönster) kan

prestandan förbättras med 10%. Den gör det utan att öka trycket på delade

resurser, även när flera program körs samtidigt.

Hårdvarubaserade förhämtare i högprestanda datorer är ofta aggressiva och

öker minnestrafiken markant. Det beror på att de hämtar mer data än vad

programmet använder då den hittar mönster som inte alltid stämmer. Det här

ökar trycket på delade resurser och försämrar prestandan hos de andra pro-

grammen som körs samtidigt på de andra kärnorna. I artikel 3 beskriver vi en

mjukvarubaserad förhämtningsmetod som använder the delade resurserna mer

effektivt. Den använder en kostnad/prestanda analys som hittar instruktioner

som hämtar data med regulära mönster i programmet och där mjukvarubaserad

förhämtning förbättrar presendan. Med program som stressar de delade resurs-

erna förbättar den nya metoden prestandan med 10% i jämnförelse med en

hårdvarubaserad förhämtning.

I artikel 4 visar vi att mjukvarubasered förhämtning inte alltid är bäst för

prestande i högt belastade system där många program körs samtidigt, samt att

hårvarubaserad förhämtning presterar bäst i vissa fall. En optimal förhämt-

ningsstrategi beror på vilka program som körs och vilka flerkärninga datorer

de körs på. I artikeln bestriker vi verktyget Adaptive Resource Efficient

Prefetching (AREP) som dynamiskt anpassar vilken förhämtningsstrategi som

ska användas medan programmet körs. AREP väljer bland 5 olika strategier

(olika blandningar av hårdvaru- och mjukvarubaserade förhämtare) som sätter

olika tryck på de delade resurserna. Verktyget bevakar de olika strategierna

och väljer den som har den bästa prestandan. Studien visar att AREP förbät-

trar prestandan med up till 49% och i genomsnitt 8% i jämnförelse men endast

hårdvarubaserad förhämtning.

I artikel 5 beskriver vi en skalbar metod Perf-Insight för att uppnå nästan op-

timal prestanda genom att variera de olika förhämtningsstrategierna oberoende

för alla kärnor i en flerkärnig dator. AREP (artikel 4) valde den bästa av 5

strategier för alla kärnor (dvs samma strategi för alla kärnor). AREP använde

den metoden för att minska antalet kombinationer som måste testas. Till ex-

empel, i en flerkärnig dator med 4 kärnor och 5 olika strategier blir det totala

antalet unika kombinationer 625. Antalet unika kombinationer växer exponen-

tialt med antalet kärnor vilket blir omöjligt att utforska under körningens gång.

Perf-Insight använder en ny metod som använder minnesbandbreddsbeteendet

i en blandning av program som en funktion för att förutspå bandbreddsbehovet

och prestandan av varje program i blandningen. Metoden behöver bara testa

ett fåtal kombinationer för att modellera bandbreddsdelningen och hur pre-

47

standan påverkas. Med bandbredd och prestanda modeller kan Perf-Insight

noggrant förutspå gemensam prestanda och välja rätt förhämtningsstrategi. I

genomsnitt förbättras prestandan med mer än 12% i jämnförelse med endast

hårdvarubaserad förhämning.

Att effektivt använda minneshierarkin är nyckeln till bättre prestanda i

flerkärninga datorer. Det här arbetet presenterar en mjukvarubaserad ansats

att uppnå effektivt användande av minnesresurser i flerkärninga datorer för

att maximera prestandan. Första, vi presenterar en metod som identifierar

prestandaproblem med instruktioner i program och föreslår en lösning att

minska storleken på programmet. Andra, vi presenterar ett verktyg med

låg overhead för att effektivt förhämnta data med irregulära mönster. Den

här tekniken förhämtar data utan att stressa delade minnesresurser vilket re-

sulterar i markanta prestandavinster. Tredje, vi visar att hårdvarubaserade

förhämtare inte alltid är optimala och föreslår en resurseffektivare mjuk-

varubaserad förhämtare som presterar bättre på belastade system. Fjärde, vi

kombinerar hårdvarubasereda förhämtare med mjukvarubaserade i ett verk-

tyg som gör att vi kan utforska och tillämpa den bästa strategin i ett givet

system. Slutligen, vi utvecklar en metod som kan förutspå de bästa förhämt-

ningsparametrarna för varje kärna för att uppnå nästan optimal prestanda bland

många inställningar.

48

12. Acknowledgments

As I sit down to pen this and think about those who I should thank and ac-

knowledge for helping and supporting me reach this point, I realize the list is

long if not endless. I would like to start by thanking my advisor Erik Hager-

sten. I have been his student since 2007 when I first attended the famed "Ad-

vanced Computer Architecture" class. In early 2009 I became his Masters

thesis student and later the same year his PhD student. I am extremely grate-

ful to him for opening up the avenue towards research and for his commitment

to mentoring me for more than 6 years. He has inspired me to reason and

think creatively. He certainly has a huge role in shaping me into an indepen-

dent researcher. I would like to thank my co-advisor David Black-Schaffer for

helping me with my research through constructive feedback and well-directed

discussions. He has helped me to think about my research ideas more clearly

and evaluate and present them in a very structured way. His influence will have

a significant impact on the way I evaluate and present my ideas. I would like

to thank my co-advisor Bengt Jonsson for being very supportive and commit-

ted to my research plan and goals throughout my PhD. I would thank Stefanos

Kaxiras for his support and his attitude to inspiring novel research ideas among

all members in the group. He has given good advice on several of my research

ideas and other issues.

I am proud that today my research contributes to some interesting topics in

the "Advanced Computer Architecture" class at Uppsala University. The same

class I once attended as a student. My research has contributed a significant

new branch to UART’s (Uppsala Architecture Research Team) research exper-

tise and I hope that it will influence good research that comes out of this group

in future.

Many others have contributed directly or indirectly to my research efforts.

I would like to thank all who have been a member of UART since I joined.

David Eklöv for insightful discussions and critical approach to research. An-

dreas Sandberg and Andreas Sembrant for interesting collaborations. Nikos

Nikoleris and I shared the office space for quite some time, we have had many

interesting and helpful discussions all along. Pan for keeping me up to date

on whats going on around and of course for the interesting research discus-

sions. Kostas (Konstantinos Koukos) for fun discussions about prefetching

and life; at some point, life and prefetching meant the same for both of us.

Its different now. Vasilis for great insightful research discussions; his con-

stant calm through all stages of research is an example for all. Him never

being irate with research is still a mystery to me. Mahdad for interesting dis-

cussions on coherence and FPGAs. Magnus Själander for his useful insights

49

into implementation level details about the processor and the memory hier-

archy. The young blood in UART – Moncef, Ricordo and German for great

research discussions while keeping the environment lively. Alberto Ross for

fun at all times, whether it be research, partying, traveling, conferences etc.; it

has always been fun around him. Alexandra Jimborean for many interesting

research and non-research discussions. Trevor has definitely added to both re-

search and fun at UART. His insights in computer architecture research have

helped all in UART.

I pay my respects to late Ivan Christoff. He had been a personal mentor

and a good friend ever since I came to Uppsala. He gave me his unparalleled

support in achieving my research and academic goals. Its sad to see him gone

when I have finally reached this point. Thank you Ivan.

In my ever growing list of people to thank, I can not forget my long-time

friends from Pakistan who have always been very supportive. My parents and

brother have obviously played a vital role, it goes without saying. My lov-

ing wife and my dearest kids have been a source of great comfort for me.

The Pakistani community in Uppsala and friends in Stockholm have always

been a source of comfort, and have played the role of a family. We have

engaged in uncountable activities, ranging from Cricket, family barbecues,

fishing, canoeing, parties, boating, bowling, sky-diving, table-tennis, start-ups

and God knows what not. The so called "International Pakistani Students Up-

psala World Championship", a premier Table Tennis league (in our mind), has

always been a very refreshing event. Thank you, you are all very important to

me. It also goes without saying that I wouldn’t have survived a foreign land

without this community, no Pakistani can.

Finally, as expression of my faith and tradition becomes harder in today’s

world, I have been fortunate to be part of an environment free of such issues.

At UART I have never felt uncomfortable. In my final words I thank the

Almighty for His favors and blessings despite my frailty.

50

References

[1] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney. Prefetch

injection based on hardware monitoring and object metadata. In Proc. ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), 2004.

[2] E. Berg and E. Hagersten. Statcache: a probabilistic approach to efficient and

accurate data locality analysis. In Int. Symposium on Performance Analysis of

Systems and Software, 2004.

[3] J. C. Beyler and P. Clauss. Performance Driven Data Cache Prefetching in a

Dynamic Software Optimization System. In Proc. Annual International

Conference on Supercomputing (ICS), 2007.

[4] J. Collins, P. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. Shen.

Speculative precomputation: long-range prefetching of delinquent loads. In

Proc. International Symposium on Computer Architecture (ISCA), 2001.

[5] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed data

prefetching mechanism. In Proc. International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2002.

[6] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems. In HPCA,

2009.

[7] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Prefetch-aware shared

resource management for multi-core systems. In Proc. International Symposium

on Computer Architecture (ISCA), 2011.

[8] D. Eklov and E. Hagersten. Statstack: Efficient modeling of lru caches. In Proc.

International Symposium on Performance Analysis of Systems and Software

(ISPASS), 2010.

[9] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer

Architecture News, 2006.

[10] T. Inagaki, T. Onodera, H. Komatsu, and T. Nakatani. Stride prefetching by

dynamically inspecting objects. In PLDI, 2003.

[11] V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and F. P.

O’Connell. Making data prefetch smarter: Adaptive prefetching on power7. In

Proc. International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2012.

[12] M. Khan and E. Hagersten. Optimization study for multicores. In Proc.

Swedish Workshop on Multicore Computing (MCC), 2009.

[13] M. Khan and E. Hagersten. Resource conscious prefetching for irregular

applications in multicores. In Proc. International Conference on Embedded

Computer Systems: Architectures, Modeling and Simulation (ICSAMOS), 2014.

[14] M. Khan, N. Nikoleris, and E. Hagersten. Investigating how simple software

optimizations effect relative throughput scaling on multicores. Technical report,

2012.

51

[15] M. Khan, A. Sembrant, and E. Hagersten. Low overhead instruction-cache

modeling using instruction reuse profiles. In Proc. International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD), 2012.

[16] M. Khan, A. Sandberg, and E. Hagersten. A case for resource efficient

prefetching in multicores. In Proc. International Conference on Parallel

Processing (ICPP), 2014.

[17] M. Khan, A. Sandberg, and E. Hagersten. A case for resource efficient

prefetching in multicores. In Proc. International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2014.

[18] M. Khan, M. A. Laurenzano, J. Mars, E. Hagersten, and D. Black-Schaffer.

AREP: Adaptive resource efficient prefetching for maximizing multicore

performance. In Proc. International Conference on Parallel Architectures and

Compilation Techniques (PACT), 2015.

[19] M. Laurenzano, Y. Zhang, L. Tang, and J. Mars. Protean code: Achieving

near-free online code transformations for warehouse scale computers. In Proc.

Annual International Symposium on Microarchitecture (MICRO), 2014.

[20] J. Lee, H. Kim, and R. Vuduc. When Prefetching Works, When It Doesn’t, and

Why. ACM Transactions on Architecture and Code Optimization (TACO), 2012.

[21] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. Spaid: software

prefetching in pointer- and call-intensive environments. In Proc. Annual

International Symposium on Microarchitecture (MICRO), 1995.

[22] F. Liu and Y. Solihin. Studying the impact of hardware prefetching and

bandwidth partitioning in chip-multiprocessors. In Proc. ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS), 2011.

[23] S. J. Louis. CIGAR - Case Injected Genetic Algortihm. URL

http://www.cse.unr.edu/~sushil/class/gas/code/cigar/.

http://www.cse.unr.edu/ sushil/class/gas/code/cigar/.

[24] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-Y. Chen. The

Performance of Runtime Data Cache Prefetching in a Dynamic Optimization

System. In Proc. Annual International Symposium on Microarchitecture

(MICRO), 2003.

[25] C.-K. Luk. Tolerating memory latency through software-controlled

pre-execution in simultaneous multithreading processors. In Proc. International

Symposium on Computer Architecture (ISCA), 2001.

[26] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data

structures. In Proc. International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 1996.

[27] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn.

Profile-Guided Post-Link Stride Prefetching. In Proc. Annual International

Conference on Supercomputing (ICS), 2002.

[28] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney. Ispike: A Post-link

Optimizer for the Intel Itanium Architecture. In Proc. International Symposium

on Code Generation and Optimization (CGO), 2004.

[29] J. Mars and R. Hundt. Scenario Based Optimization: A Framework for

Statically Enabling Online Optimizations. In Proc. International Symposium on

Code Generation and Optimization (CGO), 2009.

52

[30] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-up: Increasing

utilization in modern warehouse scale computers via sensible co-locations. In

Proc. Annual International Symposium on Microarchitecture (MICRO),

MICRO-44, 2011.

[31] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques

for storage hierarchies. IBM Syst. J., 1970.

[32] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler

algorithm for prefetching. In Proc. International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 1992.

[33] X. Pan and B. Jonsson. A modeling framework for reuse distance-based

estimation of cache performance. In Proc. International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2015.

[34] S. Pugsley, Z. Chishti, C. Wilkerson, P. fei Chuang, R. Scott, A. Jaleel, S.-L. Lu,

K. Chow, and R. Balasubramonian. Sandbox prefetching: Safe run-time

evaluation of aggressive prefetchers. In HPCA, 2014.

[35] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-F. Wong.

Compiler orchestrated prefetching via speculation and predication. In Proc.

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2004.

[36] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling

the bandwidth wall: Challenges in and avenues for cmp scaling. In Proc.

International Symposium on Computer Architecture (ISCA), 2009.

[37] A. Roth and G. Sohi. Effective jump-pointer prefetching for linked data

structures. In Proc. International Symposium on Computer Architecture (ISCA),

1999.

[38] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing Cache Pollution Through

Detection and Elimination of Non-Temporal Memory Accesses. In Proc. High

Performance Computing, Networking, Storage and Analysis (SC), 2010.

[39] V. Santhanam, E. H. Gornish, and W.-C. Hsu. Data Prefetching on the HP

PA-8000. In Proc. International Symposium on Computer Architecture (ISCA),

1997.

[40] A. Sembrant, D. Eklöv, and E. Hagersten. Efficient software-based online phase

classification. In Int. Symposium on Workload Characterization, 2011.

[41] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase guided profiling for

fast cache modeling. In Int. Symposium on Code Generation and Optimization,

2012.

[42] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers.

In HPCA, 2007.

[43] Y. Wu. Efficient Discovery of Regular Stride Patterns in Irregular Programs and

Its Use in Compiler Prefetching. In Proc. ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2002.

[44] Y. Wu, M. J. Serrano, R. Krishnaiyer, W. Li, and J. Fang. Value-Profile Guided

Stride Prefetching for Irregular Code. In Proc. International Conference on

Compiler Construction (CC), 2002.

[45] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online qos

management for increased utilization in warehouse scale computers. In Proc.

53

International Symposium on Computer Architecture (ISCA), 2013.

[46] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong. Ubiquitous

Memory Introspection. In Proc. International Symposium on Code Generation

and Optimization (CGO), 2007.

54

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1335

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-272095

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2016

	Abstract
	List of papers
	1. Introduction
	2. Efficient Cache Modeling
	2.1 Stack Distance based Modeling
	2.2 StatStack – Sparse Data Reuse based Model
	2.3 Data Reuse Sampling

	3. Fast Instruction Cache Modeling
	3.1 Low-overhead Instruction Reuse Profiling
	3.2 Sampling Overhead
	3.3 Optimizing Instruction Cache Performance
	3.4 Summary

	4. Data Prefetching
	4.1 Hardware Prefetching
	4.2 Performance Issues In Multicores
	4.3 Software Prefetching
	4.4 Irregular Memory Accesses

	5. Optimizing Performance for Irregular Applications
	5.1 Identifying Delinquent Loads
	5.2 Identifying Irregular Memory Accesses
	5.3 Prefetching Irregular Memory Accesses
	5.4 Performance
	5.5 Binary Rewriting
	5.6 Summary

	6. Resource Efficient Data Prefetching
	6.1 Identifying Regular Delinquent Loads
	6.2 How Far to Prefetch
	6.3 Cache Bypassing
	6.4 Prefetch Coverage & Insertion
	6.5 Performance Scaling
	6.6 Summary

	7. Adaptive Resource Efficient Prefetching
	7.1 Combining Hardware and Software Prefetching
	7.2 Choosing Best Option at Runtime
	7.3 Performance
	7.4 Summary

	8. Predicting the Impact of Data Prefetching on Performance
	8.1 Application Bandwidth & Performance Behavior
	8.2 Estimating Application Behavior Efficiently
	8.3 Performance Prediction
	8.4 Summary

	9. Related Work
	10. Summary
	11. Svensk Sammanfattning
	11.1 Bakgrund
	11.2 Sammanfattning av Forskningen

	12. Acknowledgments
	References

