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Abstract: Plant geneticists and breeders have used marker technology since the 1980s in quantitative
trait locus (QTL) identification. Marker-assisted selection is effective for large-effect QTL but has
been challenging to use with quantitative traits controlled by multiple minor effect alleles. Therefore,
genomic selection (GS) was proposed to estimate all markers simultaneously, thereby capturing
all their effects. However, breeding programs are still struggling to identify the best strategy to
implement it into their programs. Traditional breeding programs need to be optimized to implement
GS effectively. This review explores the optimization of breeding programs for variety release based
on aspects of the breeder’s equation. Optimizations include reorganizing field designs, training
populations, increasing the number of lines evaluated, and leveraging the large amount of genomic
and phenotypic data collected across different growing seasons and environments to increase heri-
tability estimates, selection intensity, and selection accuracy. Breeding programs can leverage their
phenotypic and genotypic data to maximize genetic gain and selection accuracy through GS meth-
ods utilizing multi-trait and, multi-environment models, high-throughput phenotyping, and deep
learning approaches. Overall, this review describes various methods that plant breeders can utilize
to increase genetic gains and effectively implement GS in breeding.

Keywords: plant breeding; speed breeding; training population; field design; multi-environment;
multi-trait; deep learning; high-throughput phenotyping; genetic gain

1. Genomic Selection

With the advent of marker technology in the 1980s, geneticists and breeders have used
marker technology to improve selection strategy and efficiency in breeding programs [1].
Marker technologies were first used in quantitative trait loci (QTL) identification [2–4].
The identification of QTLs allowed marker-assisted selection (MAS) and introgression to
select and deploy specific marker-linked traits in a population efficiently [5]. Marker use is
effective for large-effect QTL but has proven to be challenging to use with quantitative traits
that are controlled by multiple genes with minor effects. Previous methods to deal with
quantitative traits were developed, such as a multi-marker MAS system, but it is difficult to
identify and account for all the allele effects [6,7]. Therefore, Meuwissen et al. [8] proposed
the idea of simultaneously estimating all markers regardless of “significance”, and thereby,
capturing all their effects. Meuwissen et al. [8] coined this method “Genomic Selection”
(GS), which has also been referred to as genome-wide selection or genomic prediction [1,8].

The first successful studies using GS were in dairy cattle (Bos taurus) breeding, where
it was implemented to market bulls [9]. Until recently, plant breeders have typically relied
on phenotypic selection (PS). However, this trend has been changing within the last decade.
The first GS study in plant breeding was conducted in maize (Zea mays L.) [10]; after which
the approach has been successfully implemented in other cereal grains such as wheat
(Triticum aestivum L.), barley (Hordeum vulgare L.), and oat (Avena sativa L.) [10–13].
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2. Genetic Gain

Genetic gain, also known as the genetic response (R), is calculated by what is known as
the breeder’s equation, R = irσA

t , where i is the selection intensity; σA is the square root of
the additive genetic variance; r is the selection accuracy, which is the equivalent to narrow-
sense heritability (h2) in PS; and t is the cycle time [14,15]. Plant breeders use the breeder’s
equation to increase the genetic gain of their breeding program. By increasing one of the
components in the numerator or decreasing cycle time (t), a breeder can increase genetic
gain. The increase of genetic gain using PS is difficult for traits with low heritability [12].
Consequently, selection on traits with low heritability, such as grain yield, is completed
at the later stages of a breeding program. If the environmental effect on a trait is high
enough, such as drought, disease, or other adverse conditions, the selection based on PS
will be challenging. The limitations of changing the denominator (t) are affected by the
ability to evaluate the gene in question. An example of this limitation is grain yield, in
which the trait can only be measured after the full maturity of the plant. One of the ways to
maximize the genetic gain is to increase the selection accuracy in a breeding cycle, which
can be accomplished by different molecular genetics approaches such as MAS or GS [5,8].

The traditional breeding program focuses on selecting varieties for release.
Gaynor et al. [16] proposed reorganizing the traditional breeding program into two parts:
the product development (PD) component which is similar to traditional breeding pro-
grams, and a population improvement component to utilize recurrent GS. Pipelines for
PD have been extensively studied for the implementation of GS because it is easily inte-
grated into existing structures of breeding programs [17–19]. Genomic selection allows
the use of genomic-estimated breeding values (GEBVs) in lieu of phenotypic data. Re-
placing phenotypes with GEBVs allows the restructuring of breeding programs. Genomic
selection can simply replace phenotypic or MAS for selection purposes [20,21]. However,
this strategy does not necessarily increase genetic gain for certain traits, such as grain
yield, due to the lack of increase in selection accuracy compared to PS. There are sev-
eral opportunities to increase the genetic gain by optimizing breeding programs for GS.
These include reorganizing field designs, increasing the number of lines evaluated, and
leveraging the large amount of genomic and phenotypic data collected across different
growing seasons and environments to increase heritability estimates, selection intensity,
and selection accuracy [17–19]. The trait data consist of phenotypic values collected from
multiple environments, multiple traits, and high-throughput phenotyping. Recent develop-
ments of multi-trait, multi-environment GS models are poised to leverage the large amount
of phenotypic data in breeding programs to improve selection accuracy for quantitative
traits [22,23]. In this review, we explore the optimization of breeding programs for GS for a
wheat (inbred crop) breeding program based on the components of the breeder’s equation.

3. Breeding Program Optimization

Wheat breeding PD programs focus on developing inbred lines for release as inbred
varieties. Traditionally, after crossing and population improvement, inbred lines are de-
veloped either through self-pollination or doubled haploids. The inbred lines are then
phenotyped in headrows and field trials before being selected as parents in the crossing
block. This method takes up to four to six years in wheat, depending on the breeding
program structure and preference of the breeder. In the Washington State University Win-
ter Wheat breeding program, for example, the inbred lines are developed through both
self-pollination and doubled haploids. Headrows are the first stage of phenotyping and
happen in the fourth year, followed by unreplicated preliminary yield trials (PYT) in the
fifth year. It takes until the sixth year to start with replicated field trials in the advanced
trials. Inbred lines are in replicated yield trials up to five more years when varieties are
released at the end of the 11th year. The long length of the breeding program allows for
ample opportunity to optimize the breeding program (Figure 1).
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can decrease the length of the PD pipeline, and therefore cycle length. This can be achieved 
through traditional self-pollination such as single-seed descent (SSD) or rapid fixation of 
lines via doubled haploids (DH). The creation of inbred lines allows the within-line 
variation to be minimized while increasing between line variation to allow maximum 
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Figure 1. Optimization of the traditional breeding pipeline and product development based on an
11–year breeding program from parental crossing to variety release. The effect of each component
of optimization (genomic selection, training population design, inbred line development, field
design, high-throughput phenotyping (HTP) on different aspects of the breeder’s equation (selection
intensity, selection accuracy, genetic variance, and cycle time) is shown by the coverage of the method
of optimization within the respective column of the different factors of the breeder’s equation. For
example, for Years 1–3 of the breeding cycle, the composition and structure of the training population
(purple) affect both selection accuracy and genetic variance, whereas the choice of genomic selection
models affects the intensity of selection, prediction accuracy, and genetic variance.

3.1. Speed Breeding and Doubled Haploids

The optimization process for the PD pipeline can start immediately after the hybridiza-
tion of the parental lines. The first optimization is in inbred development, which can
decrease the length of the PD pipeline, and therefore cycle length. This can be achieved
through traditional self-pollination such as single-seed descent (SSD) or rapid fixation
of lines via doubled haploids (DH). The creation of inbred lines allows the within-line
variation to be minimized while increasing between line variation to allow maximum
genetic gain via selection. However, one of the most recent developments in inbred de-
velopment is speed breeding which does not require specialized labs for in vitro culturing
and can be applied over diverse germplasm, unlike DH production [24]. Speed breeding
accelerates generation advancement by manipulating growing conditions under prolonged
photoperiod and through temperature control to increase the rate of development and
growth in plants [25]. Therefore, speed breeding has the ability to reduce the generation
time and accelerate breeding programs. Using speed breeding, Watson et al. [25] were able
to reach six generations per year in wheat. After the creation of the inbred lines, they can be
implemented into the training population and phenotyped in field trials. In another study,
Watson et al. [26] integrated multivariate GS and speed breeding to reduce the breeding
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cycle by quickly producing inbred lines and integrate indirect selection for traits such as
height and flowering time as well as yield-related traits before field trials.

3.2. Training Population Design

The predictive ability of GS models is primarily dependent on the training population
used for predictions. Optimizing training populations influence the genetic variance and
selection accuracy factors in the breeder’s equation. The training population should be de-
veloped once the test (validation) population and goal of prediction are identified. Training
populations range from biparental populations in some of the earlier GS studies [8,27,28];
to using exotic or diverse populations [29] or using the breeding lines themselves [30–32].
Regardless of the goal, the training population needs to balance the costs of phenotyping
while maximizing predictive ability [33].

The composition and structure of the training population directly relate to prediction
accuracy [34,35]. Utilizing GS within bi-parental populations reduces the number of
lines phenotyped and genotyped for high levels of accuracy due to high levels of linkage
disequilibrium [36]. They can also be readily applied to recurrent selection to predict
future cycles of selection from intermating related lines [12,13,27,37]. An advantage of
biparental populations is the high level of genetic relatedness between the training and
test populations. However, when combing unrelated lines from various pedigrees, the
prediction accuracy generally decreases [38–40]. Training populations based on bi-parental
populations and selecting within individual families have limited applicability within a
large breeding program, especially when resources are limited [17]. There have been many
comparisons of training populations within breeding programs [30,32,41,42].

Another method is to use diversity panels that are commonly used and developed for
genome-wide association studies [31,32,41,42]. These populations generally have a large
population structure and reduced prediction accuracy [32]. When there is greater diversity
within a training population, more lines and markers are needed to increase accuracy. This
can be difficult to do within traditional breeding programs, as it requires the cultivation
of an additional set of lines just for the training population. An alternative is to use the
breeding program itself as the training population [30]. As lines being tested within the
breeding program are genotyped and phenotyped, they begin to develop the basis for
the training population, and over time, large datasets are collected with little additional
work. However, with most breeding population trials, many lines share some degree of
relatedness, which can increase GS prediction accuracy. Ensuring lines that are highly
related with a limited population structure is ideal in training population optimization [35].

One of the most important factors in determining the accuracy of GS is the population
size [34–36]. Training population size affects genetic variance, and large diversity and
genetic variance require larger training populations [35,43]. The more diverse a training
population is, the larger the number of genotypes needed to account for the large genetic
diversity, specifically for low heritability traits [44]. Training population size impacts accu-
racy more than marker number or density. The size of the training population and marker
density is dependent on the QTL number and heritability of the trait. Low heritability
traits require larger population sizes, but results have shown that there are effective popu-
lation sizes for even extremely low heritability traits, and these traits can still be accurately
predicted [36,45].

Specifically, in a breeding program, the goal for optimum training population size is to
create a population that maximizes prediction accuracy with the least number of individuals
possible. Finding the optimum size reduces the cost of genotyping and phenotyping,
and hence increases the efficiency of plant breeding programs. It has been shown that
prediction accuracy improves as the number of genotypes increases due to the reduction
of bias and variance of marker effect estimates [46,47]. Smaller training sets have the risk
of overestimating the genotypic effect when predicting larger validation sets. In general,
prediction accuracy in wheat has been shown to increase with the increase of training
population size, with the highest accuracy around 300 genotypes and a gradual plateau
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after 300 lines [35,48]. Muleta et al. [29] further demonstrated an increase in accuracy as the
training population increased in both elite breeding lines and diversity panels.

Methods to identify optimized training populations within populations have been
compared. For example, Tiede and Smith [13] compared a stratified sampling method,
Gmean, CDmean, and selection of training populations by genetic algorithms (STPGA)
for predicting yield and disease resistance in barley. Stratified sampling creates training
populations based on clusters from population structures already existing in the breeding
program. Gmean calculates the means of the training population and validation population
within a genomic-relationship matrix, and lines within the training population with the
highest mean relationships to the validation population were used. The CDmean maximizes
the coefficient of determination, whereas STPGA utilizes genotypic and phenotypic data
to minimize prediction error variance among selection candidates. While Gmean was
found to perform best for grain yield, STPGA performed best for deoxynivalenol. The
best optimization is dependent on the population, and the breeder needs to compare the
methods to determine the best fit for the trait in question [13]. In another study, a weighted
relationship matrix with stratified sampling was shown to be the best method for training
population optimization, especially in forward predictions of distant generations [49].

Within breeding programs, large amounts of phenotyped lines are not usually a
constraint. In crops such as wheat, pooling together many small families for the training
population is advised, whereas for hybrid crops such as maize, choosing a few families
with a large number of lines is more appropriate [33]. The number of lines per family
that typically reach the field trials is small, which reduces the ability to form a training
population based on a few families with many lines. Therefore, by combining breeding
populations trials with various pedigrees and genetic relatedness, many lines can form
a training population, especially if their ancestral pedigrees have been genotyped. This
can help optimize genetic relatedness and training population selection through genomic
relationship (GRM) or marker matrices [33]. By leveraging and optimizing the breeding
program for GS purposes, large training populations with shared ancestry can be developed.
However, in order to do so, one needs to design the program and models to deal with
combining trials and environments.

3.3. Field Design

Once lines are considered fixed in terms of allele frequency, the PD and selection can
begin on a large scale. The inbred lines still need to be phenotyped in headrows and field tri-
als, and GS can be fully implemented for selection. There have been various developments
in optimizing PD pipelines for GS. Breeding programs have limited resources to allocate
and can limit the size, number of replications, and locations of field trials. Ultimately,
these factors influence the ability to estimate marker effects and genetic gain. In general
selection terms, screening more lines increases the chance to identify high-performing lines
while replicating individual lines creates more accurate genotypic estimates [33]. Due
to increased genotypic estimates, the phenotypic variation is decreased, which increases
heritability. However, the increase in heritability plateaus and further optimization of field
designs need to be completed [50].

Individual trial designs are just as important to increase heritability and phenotypic
data quality. Field trials can be optimized to increase heritability, genetic variance, selection
accuracy, and an increase in lines screened which can improve selection intensity and
genetic gain. This is due to GS model accuracy being contingent on the quality of the
phenotypic data and control of spatial variation to increase heritability and selection
accuracy [19,51].

Spatial variation can be accounted for in the initial design of the trial through blocking,
checks, and analysis via spatial correction. Blocking and randomization designs range from
the basic with no blocking, to completely randomized design and randomized complete
block through the row-column designs. Incomplete block designs are a popular method
to increase the number of lines screened with limited resources, such as the alpha-lattice
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design [52]. In early generations, un-replicated or augmented complete block design or
incomplete block designs hinge on un-replicated genotypes with replicated checks [53].

Recently, other augmented designs have been explored, such as the partially replicated
experimental design (PREP) that uses replicated genotypes instead of checks which help
avoid bias [54]. The PREP design was shown to display optimum accuracies using a fixed
budget and resources compared to other designs [54]. Moreover, the PREP design spreads
replicate across locations instead of replicating all lines in all locations and thus increases
the number of lines phenotyped. The augmented PREP (APREP) design extended the
original PREP design with multi-environments in which lines are replicated in a single
environment, and all other environments are un-replicated [55].

Recent simulations showed that completely replicated designs such as the alpha-
lattice and row-column designs increased GS prediction accuracy over all other partially
replicated or un-replicated designs [19]. This was due to the increase in heritability from
replication and the ability to partition genotypic and environmental effects and reduce error.
Overall, the alpha-lattice design performed the best over all heritability and genotype-by-
environment (GE) scenarios for GS prediction accuracy. The PREP designs outperformed
the un-replicated designs for GS prediction accuracy and had the highest response to
selection when the heritability was low, and the population size was large [19].

Spatial variation can also be accounted for via spatial correction. Spatial correc-
tions during statistical analysis range from the common two-dimensional autoregressive
model for spatial variation for a row-column design [56] and a two-dimensional spline
model [51,57]. Additionally, spatial correction can also be analyzed with nearest neighbor
analysis and the one-dimensional linear variance model plus the incomplete block model,
additive or separable form [55,58,59]. In Ward et al. [60] both one-dimensional and two-
dimensional autoregressive models led to large increases in heritability, but only a small to
non-significant increase in GS prediction accuracy. Additionally, Hoefler et al. [19] noted
that spatial corrections including the two-dimensional autoregressive model had a minimal
increase in GS prediction accuracy when implemented to the range of field designs stated
previously but would be most beneficial in large trials. Therefore, the advantage of spatial
corrections is case-specific [51,55,57,61,62].

4. Leveraging Phenotypic Data
4.1. Multi-Environment Models

Genomic selection has been shown to be accurate in single environments, but most
prediction models do not have the predictive power to make selections across multiple
environments or account for genotype-by-environment (GE) interaction. In plant breeding,
GE plays a major role in the variation of certain traits, such as grain yield. Phenotypic
variation can be divided into genetic and non-genetic effects [63]. GE increases pheno-
typic variation without increasing genetic variation and thus, decreasing heritability [64].
Adequate experimental designs and phenotypic adjustments historically accounted for
non-genetic effects. However, accounting for GE in prediction models, such as using
genomic best linear unbiased prediction (GBLUP), is important to optimize a breeding
program to account for the combination of trials over multiple years and locations, which
can ultimately increase selection accuracy and genetic variance (Table 1).

One of the simplest methods to account for GE in GS models is the two-step adjust-
ments (Two-step GBLUP). In this process, field and environmental corrections are applied
to the phenotypic data before integrating them into the GS models. Predictions using
two-step models were shown to be equivalent in prediction accuracy to single-step GBLUP
models that integrate covariates or GE marker interaction into the GS model [60]. In another
method to optimize environments for GS purposes, Lado et al. [69] grouped environments
based on genotype-by-GE biplots to create mega-environments and optimized variance-
covariance matrices across environments (GGE GBLUP) with low GE to better predict
genotype performance in untested environments.
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Table 1. Genomic selection (GS) models leveraging phenotypic data for multi-trait (MT), genotype-
by-environment interaction (GE), and multi-trait, multi-environment (MTME) models that have
shown an increase in prediction accuracy over single-environment, single-trait, GS models.

Model Factor Description

Software
Package

(Programming
Language)

Reference(s)

Two-Step
Genomic best

linear unbiased
prediction
(GBLUP)

GE

Environmental and
Phenotypic Adjustments
made prior to GS using a

linear mixed model.

ASREML (R)
BGLR (R) [60]

Single-Step
GBLUP

GE, MT,
MTME

GE GBLUP models using
compound symmetry,

heterogeneous variance, and
factor-analytic

unstructured models.

ASREML (R)
BGLR (R) [60]

Factor-Analytic
(FA) GBLUP GE FA GE GBLUP Model ASREML (R)

BGLR (R) [65]

Crop-Growth
(CG) covariate

GBLUP
GE

CG model derived stress
environmental covariates (EC)
using the Kronecker product

ASREML (R)
BGLR (R) [66]

Reaction-Norm
(RN) GBLUP GE

RN model where the main
and interaction effects of

markers and environmental
covariates are introduced
using highly dimensional

random variance-
covariance structures

BGLR (R) [67]

RN model for
phenotypic

plasticity (PP)
GBLUP

GE RN GBLUP model for
phenotypic plasticity

rrBLUP (R)
BGLR (R) [68]

Enviromic-aided
(ET) GBLUP GE EC GBLUP using

Envirotyping EnvRtype (R) [63]

Genotype-by-
Genotype-

Environment
(GGE) GBLUP

GE

GE based on GGE
Mega-environments and
additive main-effects and
multiplicative interaction

(AMMI) using the
Kronecker product

rrBLUP (R)
BGLR (R) [69]

Marker-
Environment

Interaction (ME)
GBLUP)

GE

ME model that decomposes
the marker effects into

components common across
environments and

environment-specific
deviations.

BGLR (R) [70]

ME Linear
Genome-Based

Kernel (GB)
GBLUP

GE ME with the Linear GB kernel BGLR (R) [71]

ME Gaussian
Kernel (GK)

GBLUP
GE ME with the Gaussian

GK kernel BGLR (R) [71]
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Table 1. Cont.

Model Factor Description

Software
Package

(Programming
Language)

Reference(s)

GB GBLUP GE, MT,
MTME

GE using Kronecker product
with the Linear GB

GBLUP model

BGLR (R);
BMTME (R) [22,64,72,73]

GK GBLUP GE, MT,
MTME

GE using Kronecker product
with the Gaussian GK

GBLUP model

BGLR (R);
BMTME (R) [22,64,72,73]

BGGE GB
GBLUP GE

GE using Hadamard product
with the Linear GB

GBLUP model
BGGE (R) [74]

BGGE GK
GBLUP GE

GE using Hadamard product
with the Gaussian GK

GBLUP model
BGGE (R) [74]

Approximate
Kernel (AK) RN

GBLUP
GE Sparse Approximate Model

using the RN GBLUP model BGLR (R) [75]

AK GBLUP GE, MT,
MTME

Sparse Approximate Model
using the Kronecker product
for GB and GK GBLUP along

with various other kernels

BGLR (R) [76]

Multi-Layer
Perceptron

(MLP)

GE, MT,
MTME

Deep learning MLP that uses
a combination of input,

hidden, and output layers
using a large number of
neurons for building the
relationship between the

predictors and output that
has the ability to incorporate
GB and other kernels and use

any GE method.

TensorFlow (R
and Python)
and Keras (R
and Python)

[72,73]

Further, several models implicitly account for the GE effect within the GS model
itself. One of the first methods to deal with GE was implementing factor analytic (FA
GBLUP) models that are flexible for the genetic variance-covariance for environments [65].
Jarquín et al. [67] extended the GE GBLUP model by using genetic markers and envi-
ronmental covariates (EC) to increase prediction accuracy significantly. Further, GS has
been modeled using reaction-norm (RN) from ECs, which is a linearized response from
genotypes for a target environmental gradient and can be modeled explicitly as genotype-
specific covariates using factorial regressions (RN GBLUP) [66,77,78]. Another approach for
utilizing RN models is to model phenotypic plasticity (PP GBLUP) [68]. In understanding
phenotypic plasticity, they identified environmental indices to connect environments quan-
titatively using GS with RN parameters. Environmental covariates can also be modeled
using crop growth models (CG GBLUP) and deep kernel approaches [66,79–81]. Recently,
environmental covariates using geographic information system information have been
used to better deal with GE [82]. Further, Costa-Neto et al. [63] developed an R package
called “EnvRtype” to integrate large-scale envirotyping (enviromics) into quantitative
genomics for implementation in GS. EnvRtyping was utilized for enviromic-aided GS (ET
GBLUP) and outperformed conventional GBLUP for predicting grain yield in maize into
untested environments.

The next development for multi-environment GS models was accounting for the
effects of Marker-Environment interaction (ME). GE can be modeled explicitly by modeling
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interactions between markers and environments using ME in GBLUP [70]. The ME model
decomposes effects into components common across environments and environment-
specific deviations. This can be used to model stable effects across environments and
environment-specific interactions [70]. Additionally, ME can be modeled using GBLUP
(ME GBLUP) or variable selection methods. However, the ME approach has limitations on
covariance patterns, making the model positive and homogenous and best suited for joint
analysis of positively correlated environments.

Additionally, GE can be modeled using genome-based kernels, pedigree, and GRMs.
In genomic prediction, linear models incorporate genetic values as linear combinations
of markers so that the linear genome-based (GB) kernel is equivalent to ME. However,
departures from linearity happen regularly in GS due to complex interactions among genes
and their interaction with the environments and can be addressed using nonlinear kernels
such as Gaussian kernels (GK). Cuevas et al. [71] compared methods that applied the ME
GBLUP method of Lopez-Cruz et al. [70] using the linear GB (ME GB GBLUP) and the
nonlinear GK (ME GK GBLUP) model and displayed an increase in accuracy by up to 17%
over ME GBLUP. However, the ME GK and GB GBLUP models also assume positively
correlated environments [71]. These models assume a positive correlation because they use
the Hadamard product for modeling GE and exchange information between environments
using the variance-covariance matrix of the main effects. This method has an advantage
when the number of lines in each environment is the same but can also be extended to an
unbalanced number of lines in each environment, as shown in Bandeira e Sousa et al. [83].

In contrast, GE GBLUP can be accomplished by using the Kronecker product of the
variance-covariance matrices of the relationships between environments and GRMs. The
Kronecker method allows negative correlations between environments. Bayesian regression
models for GE previously used the Kronecker method for unstructured variance-covariance
matrices between environments and genomic kernels using both the GK (GK GBLUP)
and GB (GB GBLUP) kernels [84]. However, the Bayesian models used to implement
the kernels increased computing time. To overcome this, Granato et al. [74] created the
Bayesian Genomic GE (“BGGE”) package in R to fit Bayesian models with homogenous
error variances proposed in Jarquín et al. [67] and Lopez-Cruz et al. [70]. Cuevas et al. [85]
compared the Hadamard product ME GBLUP model with the ME GB GBLUP and ME GK
GBLUP kernels implemented in BGGE to the GB GBLUP and GK GBLUP kernels using the
Kronecker product method. The Hadamard product models decreased computing time
but proved the advantages of the Kronecker product models for environments with zero to
negative correlations while confirming the increase in accuracy of using the GK over the
GB [85].

Another useful evolution in modeling GE is using sparse matrices to create approx-
imate kernels to reduce computational time with comparable prediction accuracy (AK
GBLUP) [75]. Approximate kernels are advantageous for large datasets requiring intense
computation and matrix decomposition time [75]. The prediction accuracy of the approxi-
mate kernels depends on the number of subset lines and the decrease in eigenvalue decom-
position of the GRM. Further, Montesinos-López et al. [86] outlined the implementation of
sparse matrices from Cuevas et al. [75]. They integrated them with the Bayesian methods
from Cuevas et al. [84] to create linear, polynomial, sigmoid, Gaussian, and Arc-cosines
with one or more hidden layers and exponential kernels in both a multi-environment and
multi-trait framework.

4.2. Multi-Trait Models

In addition to GE, breeders simultaneously select multiple traits to advance lines.
Genomic selection has been mainly used for the prediction of single traits, but the ability
to select for multiple traits would be advantageous when trying to evaluate and select
genotypes based on combinations of yield components, end-use quality, or disease traits.
Additionally, multiple traits may be positively or negatively correlated, which increases the
complexity of improving multiple traits simultaneously [22]. The joint analysis of multiple
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traits takes advantage of the genetic correlation between the traits, which can increase
prediction accuracy, specifically for lowly heritable traits that are genetically correlated with
highly heritable traits, and ultimately increases selection accuracy and genetic variance
similar to accounting for GE [22,87–89].

Multi-trait (MT) analysis can also facilitate predicting untested lines and unobserved
traits. MT or multivariate models can take advantage of correlation to increase accuracy,
statistical power, parameter estimation, and ultimately reduce selection bias when imple-
menting MT selection [22]. MT models range from GBLUP, Bayesian, and, recently, deep
learning (DL) models [22,23,72]. The MT models have been used in BLUP models [90]. Ac-
cording to Calus and Veerkamp [91], multivariate Bayes Stochastic Search Variable Selection
outperformed Bayes Cπ and GBLUP, when the trait had major QTLs and the MT models
had higher prediction accuracies compared to single-trait models. However, for polygenic
traits, the multivariate trait models performed similarly to the single univariate models [87].
Multivariate models predict better when the traits in question are genetically correlated
with each other [87]. Accuracy of GS for low heritability traits (e.g., grain yield) can also be
significantly increased by multivariate models when a correlated highly heritability trait
is available [87,91]. MT models can improve indirect selection due to increased genetic
correlation estimates [22,72,92]. Montesinos-López et al. [76] showed the higher the genetic
correlation between traits, the higher the prediction accuracy and benefit of MT over single
trait models.

Using GS to predict selection indices is another way to select multiple traits. Index
selection involves selecting multiple traits simultaneously based on a selection index [93].
A selection index integrates and weights multiple traits to create greater genetic gain as
compared to independent trait selection. Selection indices can use marker sets as indirect
selection traits. Using MAS and linear stepwise regression models violates selection index
assumptions of multivariate normality since selection is based on only a few large-effect
loci. However, GS does not violate this assumption since it simultaneously predicts all
marker effects [94]. Genotypic selection indices have been shown to be more efficient than
PS indices in both simulated and empirical data [95].

4.3. Multi-Environment, Multi-Trait Approaches

The advantages of GE and MT models can be combined into multi-trait, multi-
environment (MTME) models. In Ward et al. [60], a single-step MTME GBLUP model
using unstructured variance-covariance matrices between residuals, main effects, and GE
implemented in ASReml displayed an increase in accuracy for lowly heritability traits.
The common MT and GE GBLUP models are unable to estimate separable unstructured
variance-covariance matrices for a three-way interaction term. The multivariate GBLUP
model has to assume one of the variance-covariance matrices as a new variable created by
merging two of the three factors and estimating the covariance matrix with two components
that cannot be separated [22]. The MT and GE Bayesian models have been extensively
used, as discussed previously, but a Bayesian MTME model (BMTME) was not developed
until Montesinos-López et al. [22] unified the two models. The BMTME model can be
advantageous when individuals are phenotyped for all traits in one environment but
not in the others, and vice-versa for environments. The BMTME models were evaluated
using grain yield, disease index, and plant height using multiple covariance structures.
Montesinos-López et al. [76] found that when trait correlations are above 0.50, the unstruc-
tured covariance matrix outperformed the diagonal and standard covariance matrices. The
standard covariance matrices are performed similarly to the other covariance structures
when the correlation is low. The MTME models allow GS models to take advantage of
common breeding program scenarios when lines are phenotyped for multiple traits in mul-
tiple environments and allow the leverage of compiling all available data to predict using a
single model. As an approach, MTME models demonstrated an improved accuracy over
single trait models for a variety of agronomic traits, including grain yield and enhanced
resource efficiency in wheat [96].
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4.4. Deep Learning

The latest development in GS is the implementation of machine and deep learning
models, which can significantly impact multi-environment and multi-trait applications
to increase genetic variance and selection accuracy. Machine learning (ML) models use
statistical methods to learn iteratively for improved performance and accuracy without
explicitly being told what to do [72]. Deep learning is a form of ML that uses densely
connected artificial neural networks with multiple layers linked using subsets of non-linear
semi-parametric models [97]. Neural networks were modeled after the complexities and
biological networks of brain neurons [98]. The “deep” in DL, refers to the use of multiple
combinations of layers that transform data such as marker information [72]. These models
can be used for both classification and regression and have shown to be comparable or even
increase prediction accuracy to linear regression GS models [23,72,99–101]. One of the most
commonly used DL models is a multi-layer perceptron (MLP) neural network model, also
referred to as a feed-forward neural network [101]. The MLP uses densely connected layers,
also called networks, composed of input, output, and multiple hidden layers. Weighted
units or neurons are then connected in a network with nonlinear activation functions
that are able to accurately predict the genetic architecture of a trait [101]. In theory, MLP
may require a large number of hidden layers especially when the data is nonlinear [102].
However, in practice, one layer with many neurons is enough to approximate the desired
degree of accuracy with only two layers to better capture the non-linear interactions [102].
Another common DL model, convolutional neural networks (CNN), is a special case of
DL models where hidden layers consist of convolutional layers that are flattened and fully
connected via dense layers. The CNNs were first proposed in GS to account for inputs that
are associated, such as LD between markers [101]. In another study, MLP outperformed
CNN and rrBLUP models in a spring wheat nested association mapping population across
five different agronomic traits [101].

In the context of GE, Montesinos-López et al. [72] compared GBLUP and DL MLP GE
models. When GE was accounted for, the GBLUP model obtained the highest accuracy in
eight of the nine data sets, but the DL MLP had the highest accuracy in six out of the nine
data sets when GE was ignored. The increase in accuracy in the DL MLP when GE was not
implicitly modeled was accounted for by the ability of DL MLP models to capture complex
relationships in the data without explicitly accounting for them. The lack of improvement
in accuracy for the DL was due to the scarcity of data in the smaller data sets when using
grid-search and hyperparameter optimization. Further disadvantages of the DL were
due to the increased computation time to optimize the models, increase in the number of
layers and units, and a demand for higher experience to implement them. Additionally,
Montesinos-López et al. [73] compared an MTME DL MLP model to the MTME GBLUP
models outlined in Montesinos-López et al. [22] using the BMTME package with compar-
isons to both models with and without the inclusion of GE. Montesinos-López et al. [73]
showed similar results to Montesinos-López et al. [72] and found that MTME GBLUP
models displayed higher accuracy in two of three data sets. Further, the MTME GBLUP
displayed higher accuracy across environments with GE, and the MTME MLP displayed
higher accuracy across environments without the inclusion of GE. However, in contrast to
the single trait GE comparison in Montesinos-López et al. [72], the MTME MLP required
less computational resources than the MTME GBLUP models. Therefore, with contrasting
results, the DL models are currently an addition to the GS toolbox rather than a replacement,
and models for GE should be compared and used on a case-by-case basis.

4.5. High-Throughput Phenotyping

High-throughput phenotyping spectral data can also be integrated into univariate
and MT models and can significantly impact genetic variance, selection intensity, and
selection accuracy. Spectral reflectance indices (SRI) are standardized secondary traits
highly associated with primary traits of interest and difficult and expensive traits to pheno-
type. These secondary traits usually have higher genetic and phenotypic correlation, high
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heritability values, and are easier to phenotype than complex lowly heritable traits. This
association and the underlying prediction improvement in MT models lie in the genetic
correlation of SRIs and grain yield [23,87,103]. Rutkoski et al. [104] were among the first
to model SRIs collected using HTP tools using a multivariate GBLUP model and showed
an increase in prediction accuracy for grain yield by 70% (Table 2). SRIs allow for the
simple addition of a single or a few secondary traits in MT models. However, another
common form of HTP data is hyperspectral. Hyperspectral sensors capture thousands of
points across the reflectance spectrum. Relationship matrixes generated from hyperspectral
data have been shown to model both genetic main effects and GE interaction effects [105].
By incorporating marker, pedigree, and HTP data, an additive benefit was found when
evaluating genetic and GE effects across a breeding program. This, in turn, increased
prediction ability for grain yield when multiple kernels were used in GBLUP models.
Furthermore, Sandhu et al. [23] demonstrated that MT ML random forest and DL MLP
models increased prediction accuracy for grain yield and grain protein content by up to 29
and 15%, respectively, when SRIs were incorporated into the model.

Table 2. Univariate and multivariate genomic selection (GS) models that have been used to incorpo-
rate high-throughput phenotyping (HTP) spectral reflectance indices (SRI).

Model Description

Software
Package

(Programming
Language)

Reference(s)

Genomic best linear
unbiased prediction

(GBLUP)

The GBLUP model that uses
GRMs for predicting their

performance. In addition, has
the ability to use single and

multi-kernel models
combining hyperspectral and
genomic marker information

ASReml (R);
BGLR (R) [23,103–105]

Bayesian

Bayesian models (Bayes A,
Bayes B, Bayes C, Bayes Cπ,
Bayes D, Bayes Lasso, Bayes
Ridge Regression) that use

marker effects by assuming a
scaled inverted chi-square

distribution, scaled t
distribution, or double

exponential distribution for
variance parameters to model

marker effects.

BLGR(R);
BMTME (R) [23]

Elastic Net (EN)

EN is the intermediate between
ridge regression and lasso
using an average weight

penalty for marker
effect estimations.

glmnet (R) [103]

Partial least square
regression (PLSR)

PLSR is a dimensional
reduction approach that uses
latent variables derived from

predictors to link with the
response variables.

pls (R) [103]

Random Forest (RF)

RF uses a network of the tree
with varying number of nodes,

resampling, and depth for
building the final tree

regression for predictions

caret (R);
Scikit-learn

(Python)
[23]
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Table 2. Cont.

Model Description

Software
Package

(Programming
Language)

Reference(s)

Support-Vector
Machine (SVM)

SVM is a non-parametric
method that uses kernels

functions, and cost functions to
model hyperplanes

for predictions.

caret (R);
Scikit-learn

(Python)
[23]

Convolutional Neural
Network (CNN)

Deep learning CNN that uses
convolutional, flattening,

pooling, and dense layers for
predicting using kernels to

reduce the excess predictors
from the model.

caret (R); Keras (R
and Python);
Scikit-learn

(Python)

[23]

Multi-layer
Perceptron (MLP)

Deep learning MLP that uses a
combination of input, hidden,

and output layers using a large
number of neurons for

building the relationship
between the predictors

caret (R); Keras (R
and Python);
Scikit-learn

(Python)

[23]

5. Genotypic Data and Major Genes

The development of next-generation sequencing (NGS) allowed an exponential ad-
vance in genotyping driven by the goal of sequencing different genomes. Sequencing has
improved with the implementation of parallel sequencing that allowed polymorphism dis-
covery, gene expression analysis, and population genotyping. The cost of genotyping has al-
lowed the application of NGS and revolutionized applied plant breeding [106]. Before NGS,
MAS was the primary use of genotypic data in selection. However, the advantages of GS
over MAS have been observed in many studies [21,32,36,107]. Markers for major genes used
in MAS in breeding programs for traits such as disease resistance can still be utilized with
the integration of MAS and GS. Furthermore, markers for major genes and significant loci
derived from GWAS can be integrated into GS models such as rrBLUP as fixed effects and
help account for genetic variance and selection accuracy [20,21,32,108]. The advantage of
integrating the major markers varies. For example, Rutkoski et al. [20] showed a significant
increase in prediction accuracy for quantitative stem rust (Puccinia graminis f. sp. tritici).
Conversely, integrating major markers for stripe rust (Puccinia striiformis f. sp. tritici) has
been demonstrated to have little or no increase in prediction accuracy [32].

Significant markers from GWAS can also be integrated into GS models; however, neg-
ligible increases in prediction accuracy have been found. Publicly available GWAS markers
were integrated into GS models, but accuracy only increased by 1% [109]. Therefore,
population-specific de novo GWAS markers were integrated. Arruda et al. [21] demon-
strated an increase in accuracy of 14% when integrating significant de novo GWAS markers
for Fusarium head blight (Fusarium graminearum Schwabe) and Spindel et al. [110] demon-
strated an increase in accuracy by 10%. In contrast, Merrick et al. [32] and Rice and
Lipka [108] demonstrated a decrease in prediction accuracy by using de novo GWAS mark-
ers for simulated traits across various types of genetic architectures. The lack of increase
in accuracy can be a consequence of the GS models already accounting for the majority of
variation of the trait in the genome-wide markers or that the major marker may not account
for enough phenotypic variation [32]. Therefore, major genes should be integrated into GS
models on a population basis; and further, as Bernardo [111] proposed, only markers that
account for more than 10% of the variation should be incorporated into GS models.
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6. Real World Applications

The first practical application of GS for selecting lines in small grains was published
by Asoro et al. [11] in oats. β-glucan was selected and compared by GS, MAS, and PS. In
this study, GS and MAS increased β-glucan in their resulting populations. GS has also been
applied on large scale at CIMMYT, Mexico, since 2010 [112]. CIMMYT has explored the
optimization of various aspects of GS, where it is currently implemented to increase the
accuracy of line selection in the PD portion of the CIMMYT spring wheat program. At
CIMMYT, GS is implemented to select lines in the same generation or to select lines in earlier
generations with two selection cycles annually [112]. As the training population grew,
newer genotyping technology and improved GS models were implemented, consequently
improving the GS accuracy for grain yield within the CIMMYT breeding program over
the last ten years. In the case of grain yield, for example, CIMMYT was able to predict
low-performing lines for culling; however, finding the top 10% performing lines imposed
some difficulty [112]. Additionally, the prediction accuracy for disease resistance and
end-use quality traits were high, with values reaching up to 83% [112]. Therefore, GS has
the ability to discard lines for grain yield but should be used with caution when selecting
top-performing lines in the PD pipeline. However, there was a significant reduction in
costs for the implementation of GS in early generation yield trials with low replication for
grain yield and disease resistance, and no testing for end-use quality was required [112].

A new trend in public breeding programs is to leverage the resources of multiple
breeding programs to efficiently phenotype early-stage lines and integrate GS consortiums
(GSC). These GSCs increase the size of programs and screening environments without
increasing the investment and resource allocation in a single program [113]. Lines are
phenotyped in some or all programs in sparse testing schemes, and the GS is implemented
to predict local (single program) and broad (multiple programs) values of lines. In addition,
the GSC allows a common genotyping platform to implement large-scale genotyping to
increase the size of the training populations without increasing investments. Further, large-
scale GS allows the prediction of the performance of lines or traits not phenotyped in all
environments. However, Sneller et al. [113] indicated the importance of creating training
populations with related germplasm from each program rather than utilizing all lines.
Overall, GSCs have the ability to increase the size of individual breeding programs and the
accuracy of GS methods without increasing resource allocation and investments [113].

7. Conclusions

In our review, we explored optimizing a breeding program for GS based on aspects of
the breeder’s equation. We outlined the need to redesign the PD pipeline from the ground
up by integrating speed breeding and double-haploid technologies and implementing
newer field designs while optimizing training populations in an effort to increase statistical
power to increase selection accuracy and genetic gains. By utilizing GS and leveraging the
existing program’s phenotypic data as well as the multi-environment trials, the PD pipeline
can be optimized to increase selection accuracy and genetic gain. Multi-environment mod-
els can account for GE for complex traits, whereas multi-trait models can take advantage
of the genetic correlation of highly heritable traits to increase the prediction accuracy of
complex and low heritable traits. In addition, newer methodologies to integrate environ-
mental variables and HTP can aid GS models as well as utilize newer statistical models
such as DL to improve selection accuracy. Therefore, by redesigning the breeding pro-
gram to take advantage of the plethora of new technologies while optimizing components
based on the breeder’s equation, we can change the traditional thinking of breeding as a
“numbers game” to a more precise and efficient “chess game” to maximize resources and
exponentially increase genetic gains and improve new varieties.
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