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Optimizing Pooled Testing for Estimating the
Prevalence of Multiple Diseases

Md S.Warasi , Laura L. Hungerford, and Kevin Lahmers

Pooled testing can enhance the efficiency of diagnosing individuals with diseases of
low prevalence. Often, pooling is implemented using standard groupings (2, 5, 10, etc.).
On the other hand, optimization theory can provide specific guidelines in finding the ideal
pool size and pooling strategy. This article focuses on optimizing the precision of disease
prevalence estimators calculated from multiplex pooled testing data. In the context of
a surveillance application of animal diseases, we study the estimation efficiency (i.e.,
precision) and cost efficiency of the estimators with adjustments for the number of
expended tests. This enables us to determine the pooling strategies that offer the highest
benefits when jointly estimating the prevalence of multiple diseases, such as theileriosis
and anaplasmosis. The outcomes of our work can be used in designing pooled testing
protocols, not only in simple pooling scenarios but also in more complex scenarios
where individual retesting is performed in order to identify positive cases. A software
application using the shiny package in R is provided with this article to facilitate
implementation of our methods.

Supplementary materials accompanying this paper appear online.

Key Words: Animal testing; Experimental design; Group testing; Screening; Surveil-
lance.

1. INTRODUCTION

When disease screening is to be performed for a large population, testing individuals one at
a time can be difficult or infeasible due to the restrictions in testing time and cost. To address
such challenges, Dorfman (1943) introduced a two-stage hierarchical testing protocol when
screening American recruiting soldiers during the Second World War. This protocol is
commonly called pooled testing or group testing. Dorfman’s approach, which involves
testing pooled samples such as blood or swabs in stage 1 and resolving positive pools in

Md S. Warasi (B) Department of Mathematics and Statistics, Radford University, Whitt Hall 224, Radford, VA
24142, USA. (E-mail: msarker@radford.edu).
L. L. Hungerford · K. Lahmers, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg,
VA 24061, USA.

© 2022 International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 27, Number 4, Pages 713–727
https://doi.org/10.1007/s13253-022-00511-4

713

https://doi.org/10.1007/s13253-022-00511-4
http://orcid.org/0000-0003-1740-4223
mailto:msarker@radford.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s13253-022-00511-4&domain=pdf


714 Md S. Warasi et al.

stage 2, can be highly efficient when disease prevalence is low. Over the decades, pooled
testing has been used in screening human populations for HIV and hepatitis B/C (Pilcher
et al. 2005), chlamydia and gonorrhea (Lewis et al. 2012), and other infectious diseases.
The use of pooled testing has been widespread in the recent COVID-19 pandemic (Daniel
et al. 2021; Mutesa et al. 2021). In tracking animal diseases, pooled testing is especially
appealing. Regional and countrywide surveillance are commonly used to prevent the spread
of transboundary diseases. Animal producers often need disease information on individual
animals or herds but cost limits the number of tests that are conducted.

Common goals of pooled testing include screening individuals for disease (known as
case identification) or estimating the prevalence of disease at the subgroup or population
level. Whether the goal is case identification or estimation, pooled testing can provide many
benefits, such as savings in testing cost/time and increasing testing capacity. The focus of
our work is estimation, i.e., to develop statistical methods and software so disease preva-
lence estimation can be performed more easily and efficiently. An interesting feature of
pooled testing is that pooled responses alone can provide sufficient information for preva-
lence estimation (i.e., individual retest information is not required). Thus, when the testing
budget is of main concern, one can find estimates using only pooled responses by expending
only a small fraction of the testing budget required in one-at-a-time testing. It is, however,
worth noting that the estimates become more precise when the additional individual retest
responses are incorporated (Zhang et al. 2013a, 2020a). In the pooled testing literature,
much of the early work involves testing only initial pools (Vansteelandt et al. 2000; Liu
et al. 2012), whereas recent work focuses more on pooled testing with pooled or individual
retesting (Xie 2001; Wang et al. 2014, 2015; McMahan et al. 2017; Liu et al. 2021; Warasi
2021).

While estimation based on pooled testing has been extensively studied with single infec-
tions, much less work on estimation is found with multiple infections. The first recognizable
work with multiple infections is Hughes-Oliver and Rosenberger (2000), where a statistical
model was developed to jointly estimate the prevalence of two or more infections. This
work proceeded with the restrictive assumption that the assay used for diagnosis is perfect.
Also, the work used only pooled responses. Tebbs et al. (2013) overcame these limitations
using the expectation–maximization algorithm, where the model can use error-prone test
responses from aDorfman-type two-stage hierarchical protocol. Li et al. (2017) also allowed
for imperfect diagnosis but studied only some aspects of optimal estimation strategies with
pooled responses. Zhang et al. (2013b) and Lin et al. (2019) developed regression methods
with multiple infections where the goals were only parameter estimation (i.e., optimization
was not their goal). There is no work in the pooled testing literature that provides optimal
strategies for estimation from multistage pooling. Therefore, when the prevalence of multi-
ple infections is to be estimated from pooling data, there are limited or no statistical methods
that can guide one to use the optimal pooling design.

Ourwork aims at filling this important research gap.We study optimality of pooled testing
estimationwith only pooled responses aswell as both pooled and individual retest responses.
As in Li et al. (2017) and Tebbs et al. (2013), we use the maximum likelihood framework,
where our goal is to maximize the precision of the maximum likelihood estimates. Because
testing cost is an important consideration, we account for the number of tests expended so
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Table 1. Historical data and estimates from a sample of 1736 cattle in Virginia

T. orientalis A. marginale Test outcomes Coinfection prevalence

− − 1449 p00 = 0.834
+ − 133 p10 = 0.075
− + 132 p01 = 0.078
+ + 22 p11 = 0.013

the estimates can be most cost effective. Another goal of our work is to develop a user-
friendly software application. We do so because the statistical models for pooled testing
are complicated, especially when individual retesting data from the two-stage protocol are
involved.Our software application can be used to easily implement the optimizationmethods
presented in this article. These methods are illustrated using data on infection with Theileria
orientalis and Anaplasma marginale collected from a large cattle population.

The subsequent sections are organized as follows. In Sect. 2, we describe a motivating
example of animal disease surveillance. In Sect. 3, we describe the pooling protocol and
model framework considered in this article. In Sect. 4, we study the optimality of estimation
based on pooling data. A brief discussion is provided in Sect. 5.

2. ANIMAL TESTING DATA

Theileriosis and anaplasmosis are tick-borne bovine infections caused by the para-
site and bacterial agents Theileria orientalis and Anaplasma marginale. Theileriosis and
anaplasmosis have similar clinical presentations in cattle and co-occur in the eastern United
States (Oakes et al. 2022). Simultaneously testing to differentiate these diseases is impor-
tant because the bacteria causing anaplasmosis responds to treatment with antimicrobials,
while there is no Food and Drug Administration (FDA) approved treatment for theilerio-
sis (USDA 2021). As part of a surveillance study of these infections, blood samples were
collected through collaboration with the Virginia Department of Agriculture and Consumer
Sciences from 1736 adult market cattle in 2018-2020 from different counties in Virginia and
tested at the Virginia-Maryland College of Veterinary Medicine. Cattle samples were indi-
vidually tested using a duplex real-time quantitative PCR assay (qPCR) for both infections
simultaneously. Pooled testing would potentially allow wider future surveillance that could
be conducted more efficiently. However, before implementing a new pooling design, it is
important to determine the optimal design, and a substantial gain is possible from pooled
testing.

Table 1 summarizes the test outcomes, which we view as historical data. The sensitivity
and specificity of the duplex assay for A. marginale are 0.97 and 1.0, respectively, optimized
at 37 amplification cycles. For T. orientalis, both sensitivity and specificity are 1.0, measured
at 45 cycles (Oakes et al. 2022). For qPCR, each cycle doubles the DNA concentration in
the sample, with a threshold of cycles selected to optimize sensitivity and specificity for
pathogen detection (Kralik and Ricchi 2017). Based on the individual test outcomes and
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assay accuracy information, we first estimate the coinfection probabilities p00, p10, p01 and
p01, where

p00 = proportion of cattle negative for both T. orientalis andA. marginale

p10 = proportion of cattle positive forT. orientalis but negative forA. marginale

p01 = proportion of cattle negative for T. orientalis but positive forA. marginale

p11 = proportion of cattle positive for both T. orientalis andA. marginale

and p00+ p10+ p01+ p11 = 1. The coinfection prevalence estimates are depicted in Table 1.
These estimates were calculated accounting for testing error, using methods as in Warasi et
al. (2016, Web Appendix D).

3. PRELIMINARIES

Consider testing a random sample of N cattle with the qPCR assay for T. orientalis and
A. marginale simultaneously. Let p = (p00, p10, p01)′ denote the vector of coinfection
probabilities to be estimated from pooled testing data, where p11 = 1 − p00 − p10 −
p01. We consider use of either only pooled responses or both pooled and individual retest
responses observed from a hierarchical testing protocol. In this section, we describe the
pooling protocol and how the maximum likelihood estimate of p can be calculated from
pooling data.

The first stage in the pooling protocol involves drawing individual blood samples from the
cattle and forming pools by mixing k individual blood samples together prior to testing (i.e.,
k is the pool size). The maximum k for optimization is limited by the potential loss of test
sensitivity due to dilution. Maximum k can be determined in the laboratory by sequentially
testing a set of representative positive samples pooled with an increasing number of negative
samples to find the largest pool size which still maintains high sensitivity (Bateman et al.
2021). Maximum k can alternatively be based on estimating its effects on the weakest
positive samples, since these are most susceptible to becoming false negatives through
dilution (Mutesa et al. 2021). For animal diagnostics, funding for conducting serial pooling
and testing of representative cattle samples may not be available. Thus, we have initially
estimated the maximum k based on the weakest positives. For A. marginale positives, the
assay should maintain a sensitivity of 97% for detecting one positive sample in a pool of
size 16 or smaller, if the threshold for positives is changed from 37 to 40 cycles (Oakes et al.
2022). For T. orientalis positives, the assay should maintain a sensitivity of 100% with a
pool size of up to 16 using a threshold of 43 cycles. We selected 10 as the maximum pool
size for optimization throughout to stay within the limits of dilution effects with these qPCR
thresholds.

Hierarchical pooling yields m = N/k pooled blood samples, which are tested by the
duplex assay in stage 1, followed by individual retesting in stage 2. The steps are described
below.
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Figure 1. Two-stage hierarchical testing with pool size 3, showing an example of possible test outcomes. Pools
that test positively in stage 1 for at least one infection are resolved in stage 2 by duplex testing of individual samples .

1. At stage 1, m pools are tested. If a pool tests negatively for both T. orientalis and
A. marginale, the pool members are diagnosed as negative; i.e., no further test is
performed.

2. At stage 2, the members of the pools that test positively for at least one infection are
retested one by one for case identification. All samples are retested with the duplex
assay rather than separately for T. orientalis and A. marginale.

This type of hierarchical procedure has been commonly used in screening human pop-
ulations. Tebbs et al. (2013) examined the screening accuracy, efficiency and other char-
acteristics of hierarchical testing with a duplex assay for chlamydia and gonorrhea. They
developed an estimation technique for this protocol but did not focus on optimizing the
estimates. We use the same estimation framework but, unlike these authors, we study the
optimization aspects of estimation (e.g., minimizing the mean squared error while reducing
the testing cost). We use an animal disease diagnostic scenario because optimized pooling
approaches have rarely been applied in veterinary diagnostics. Differences in diagnostic
scenarios include that surveillance is often applied at the herd level and cost is often a seri-
ous constraint to disease detection as testing is not covered by insurance. Additionally, our
team includes a veterinary diagnostician and veterinary epidemiologist working to enhance
the strength of testing approaches in veterinary medicine. This includes optimizing pooling
for these two serious diseases to improve animal health using the described methodologies.

Let Z = (Z1, Z2)
′ denote a pooled response from stage 1, where Z1 = 1 (Z2 = 1) if

a pool tests positively for T. orientalis (A. marginale) and Z1 = 0 (Z2 = 0) if a pool tests
negatively for T. orientalis (A. marginale). Similarly, denote an individual response from
stage 2 by Y = (Y1,Y2)′. Figure 1 shows the four possible scenarios that one can see when
testing a pool. Figure 1 also shows how the test outcomes (both pooled and individual) are
coded by 0 and 1. We assume that the assay sensitivity and specificity are unaffected by the
pool size. This is true over the range of k values explored in this application.We also assume
that the test responses observed in stages 1-2 are mutually independent conditional on their
true statuses. These assumptions are commonly adopted in pooled testing (Kim et al. 2007).
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We consider two approaches for estimation. The first uses only pooled responses, Z’s,
from stage 1. Using the method in Li et al. (2017), the maximum likelihood estimates and
covariance matrix are calculated. Our second approach takes advantage of individual retest
responses in addition to the pooled responses. In this case, themaximum likelihood estimates
and covariance matrix are calculated based on the work in Tebbs et al. (2013). Estimation
using additional individual data ismore precise but alsomore challenging because the pooled
and individual responses are potentially correlated (i.e., an individual may be tested in both
stages). Tebbs et al. (2013) addressed this issue using a “missing data” technique, where
the maximum likelihood estimates are calculated by the expectation–maximization (EM)
algorithm and the observed data Fisher information is calculated by Louis (1982) method.

Denote by p̂ = ( p̂00, p̂10, p̂01)′ the maximum likelihood estimate (MLE) of p =
(p00, p10, p01)′, which is calculated using only pooled responses or both pooled and indi-
vidual responses. Then one can find the MLE of p11 as p̂11 = 1− p̂00 − p̂10 − p̂01 and the
MLE of the marginal prevalence of T. orientalis (μ1), marginal prevalence of A. marginale
(μ2) and correlation (ρ) as

μ̂1 = p̂10 + p̂11, μ̂2 = p̂01 + p̂11, ρ̂ = p̂11 − μ̂1μ̂2√
μ̂1(1 − μ̂1)μ̂2(1 − μ̂2)

.

Let I(p) denote the expected Fisher information matrix of p. The covariance matrix
I(p)−1, an inverse of the Fisher information I(p), is estimated at the MLE p̂. The variance
of p̂11, μ̂1, μ̂2 and ρ̂ can be estimated by using the delta method. Then, theWald confidence
interval for each parameter can be easily calculated in the usual manner.

4. EFFICIENCY MEASURES

Pool size plays an important role in gaining savings in testing cost and in realizing
the precision of estimates from pooled testing. With these aspects in mind, we consider
optimizing the following measures of efficiency: (a) E[T ], the expected number of tests
expended, (b) E[(̂p − p)′(̂p − p)], the mean squared error associated with the MLE p̂, and
(c) E[T (̂p − p)′(̂p − p)], the cost per unit information, where T is the number of tests
expended. Note that T is the number of pools m when only pooled testing is used. For
hierarchical testing, T is the total number of tests used in stages 1-2 (i.e.,m plus the number
of individual retests). While E[T ] concerns testing cost, E[(̂p − p)′(̂p − p)] captures the
cost in estimation. Then E[T (̂p− p)′(̂p− p)] can be viewed as a compromise between the
two.

We can examine the measures of efficiency for pooled testing relatively to individual
testing. Therefore, we use relative test efficiency (RTE), relative estimation efficiency (REE)
and relative cost efficiency (RCE), which are defined as

RTE(̂pG , p̂I ) = EG[T ]
EI [T ]

REE(̂pG , p̂I ) = EG[(̂p − p)′(̂p − p)]
EI [(̂p − p)′(̂p − p)]
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RCE(̂pG , p̂I ) = EG[T (̂p − p)′(̂p − p)]
EI [T (̂p − p)′(̂p − p)] ,

where p̂G and p̂I are the MLEs from group or pooled testing (either hierarchical or pools
only) and individual testing (i.e., one-at-a-time testing), respectively. For all three criteria,
smaller is better (i.e., more efficient/precise). Thus, our goal is to identify the pool sizes
that minimize these measures, which we do under three scenarios. In the first, the number
of cattle that we can collect is limited or fixed. In the second, the number of total tests that
we can afford to run is fixed. In the third, our target is a desired level of precision of our
estimates.

4.1. THE SAMPLE SIZE IS FIXED

When the number of cattle N is fixed (i.e., a constant) and only pooled testing is used,
T = N/k is a constant for a given pool size k. Thus, the expected number of tests EG[T ] =
N/k so that RTE(̂pG , p̂I ) = 1/k. Note that the expected number of tests expended with
individual testing is always N , so EI [T ] = N . Because RTE(̂pG , p̂I ) = 1/k, one can easily
see that testing efficiency increases with pool size k.

However, dividing the N samples into larger pools might adversely affect estimation
efficiency because estimates would be based on fewer test responses. To understand the loss
or gain in estimation efficiency, we examine the mean squared error E[(̂p− p)′(̂p− p)]. In
doing so, we first recognize that the MLE p̂ = ( p̂00, p̂10, p̂01)′ has a large-sample multi-
variate normal distribution with mean p and covariance matrix I(p)−1 (Boos and Stefanski
2013, Section 2.5). Then the mean squared error for pooled testing can be expressed as

EG [(̂p − p)′(̂p − p)] = var( p̂00) + var( p̂10) + var( p̂01),

where var( p̂00), var( p̂10) and var( p̂01) are the diagonal elements of the covariance matrix
I(p)−1. For individual testing, the mean squared error EI [(̂p− p)′(̂p− p)] is calculated in
the same manner using pool size k = 1. Then we find REE(̂pG , p̂I ), which we minimize as
a function of the pool size k for optimal estimation efficiency.

Because T is a constant (for pooled only testing), we find an explicit expression of

EG [T (̂p − p)′(̂p − p)] = T [var( p̂00) + var( p̂10) + var( p̂01)],

and EI [T (̂p− p)′(̂p− p)] can be calculated analogously. Then, RCE(̂pG , p̂I ) can be min-
imized with respect to k for optimal cost efficiency. Note that, with pooled testing only, we
calculate E[(̂p− p)′(̂p− p)] and E[T (̂p− p)′(̂p− p)] analytically; see Web Appendix A.

For hierarchical testing, T , the number of tests used, is not fixed because individual
retesting in stage 2 depends onwhether a pool tests negatively or positively for the infections.
Tebbs et al. (2013) provided a closed-formexpressionof EG [T ],whichweuse for calculating
RTE(̂pG , p̂I ), where EI [T ] = N as before.

For hierarchical testing, the large-sample mean squared error is again

EG [(̂p − p)′(̂p − p)] = var( p̂00) + var( p̂10) + var( p̂01).
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Unfortunately, there is no extant work to calculate the expected information matrix I(p),
and thus evaluation of the variance components var( p̂00), var( p̂10) and var( p̂01) is not
possible based on the methods available in the literature. Because T is random, finding an
explicit expression of EG[T (̂p − p)′(̂p − p)] is even more difficult. To overcome these
challenges, we have developed a computation algorithm that can be used to approximate
I(p), EG[T (̂p − p)′(̂p − p)], or any other quantities that are hard to calculate analytically.
Then, the variance components var( p̂00), var( p̂10) and var( p̂01) can be found as before. The
computation algorithm is described below, where hierarchical testing data that consists of
both pooled and individual responses is denoted by D.

1. Specify a value of p = (p00, p10, p01)′ from historical or pilot study data.

2. Simulate D according to the hierarchical testing protocol at the parameter value p
given in step 1.

3. Do the following.

(a) Calculate the observed information matrix I (p) at the given value p.

(b) Find the MLE p̂ and the number of tests T from the simulated data D, and
then calculate T (̂p − p)′(̂p − p).

4. Repeat steps 2-3 G times, where G is large, and do the following.

(a) Take an average of the values of I (p) found in step 3(a). This average is an
estimate of the expected information matrix I(p).

(b) Take an average of the values of T (̂p − p)′(̂p − p) found in step 3(b). This
average is an estimate of EG[T (̂p − p)′(̂p − p)].

As mentioned in Sect. 3, we calculate the MLE p̂ and observed information matrix I (p) in
steps 3(a)-3(b) based on the work in Tebbs et al. (2013). The MLE is calculated using the
EM algorithm where a Gibbs sampler is implemented to approximate the E-step. Also, the
same Gibbs sampler is used to approximate the expectations involved in I (p). In both steps
3(a)-3(b), we use 3000 Gibbs iterates after discarding the initial 1000 iterates as a burn-in
period; for more information about theMLE and informationmatrix, refer toWebAppendix
A. Step 4 is justified by the law of large numbers; i.e., when the number of repetitions G
is large, the averages in step 4 are reasonable approximations. In Appendix B of the web-
based supplementary material, we discuss how large G should be to achieve a reasonable
approximation of I(p) and EG[T (̂p − p)′(̂p − p)].

To identify the optimal pooling configurations for our cattle data example, we compute
RTE(̂pG , p̂I ), REE(̂pG , p̂I ) and RCE(̂pG , p̂I ) with sample size N = 500, 1000, 2000 and
parameter p = (0.834, 0.075, 0.078)′ taken from Table 1. In Fig. 2, the relative efficiency
results are plotted against pool sizes k = 2, 3, . . . , 10. For pooled testing only, none of
the relative measures depends on N because N is canceled out from the numerator and
denominator; i.e, all three relativemeasures are independent of N but we show them for each
choice of N in Fig. 2 for comparison. For hierarchical testing, we calculate RTE(̂pG , p̂I ),
which is also independent of N . For hierarchical testing, we calculate REE(̂pG , p̂I ) and
RCE(̂pG, p̂I ) using our computation algorithm with G = 5000 repetitions to approximate
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Figure 2. Relative test efficiency, relative estimation efficiency and relative cost efficiency as a function of the
pool size with sample sizes N = 500 (left), 1000 (middle) and 2000 (right). Results are shown for pooled testing
only (PTO) and two-stage hierarchical testing (H2).

the expected values in step 4. We made this choice of G based on the convergence tests in
Web Appendix B, where one can see that the sample averages converge at G = 5000 or
faster. We have found that the approximations (not shown) are reasonable even with much
smaller G, such as 1000.

For each of the relative measures, the optimal pool size occurs where the measures have
the smallest values. When using only pools, the smallest pool size, 2, provides the best
precision and the largest pool size, 10, requires the fewest number of tests. When these are
simultaneously considered, the optimal pool size is 8. For hierarchical testing, pool size
3 offers the fewest number of tests. Figure 2 shows that the relative estimation efficiency
curves are flat; i.e., pool size does not have a noticeable impact on precision. This is likely
because positive pools are retested so each positive case is identified. Because pool size does
not affect estimation efficiency, one has the freedom to choose the pool size that yields the
highest cost savings without compromising precision in estimation. This is reflected in the
cost efficiency graphs in Fig. 2, which shows that optimal cost efficiency is achieved at pool
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Table 2. Relative estimation efficiency (REE) with pooled testing only

Pool size 2 3 4 5 6 7 8 9 10

REE 0.564 0.424 0.361 0.327 0.310 0.303 0.303 0.309 0.319

size 3. Even though different choices of N are used, the overall patterns of REE(̂pG , p̂I )

and RCE(̂pG , p̂I ) are not affected, which is expected when the large-sample assumption is
reasonable.

Pooled testing can be compared with individual testing from the results in Fig. 2. Inter-
estingly, hierarchical testing provides somewhat better estimation precision (the flat graphs
are below 1) even using fewer tests, when compared to individual testing. Pooled testing
only provides coarse estimates, which is not unexpected because only pools are used and the
assay sensitivities/specificities are very high. However, the precision loss can be mitigated
by using the optimally chosen pool size (which is 2), which still provides a 50% decrease
in the number of tests with only about a 10% loss in precision. Also, when cost-saving is
of interest, pooled testing only can be the most attractive option, as is evident in the cost
efficiency graphs.

4.2. THE NUMBER OF TESTS IS FIXED

A second scenario is when the number of tests to be expended, T , is fixed, for example,
when the testing budget is limited but the goal is to test a larger number of cattle than could
be tested using the same number of tests only individually. We can do this only for testing
of pools because T is not deterministic for hierarchical testing; i.e., individual retesting in
stage 2 is uncertain as it depends on the pooled responses in stage 1.

Because T is fixed, the same number of individual and pooled tests must be used in the
relative measures. In this case, RTE(̂pG , p̂I ), by definition, is 1.0, and T does not play any
role in RCE(̂pG , p̂I ) as well. Therefore, we focus on only the relative estimation efficiency
REE(̂pG, p̂I ). For each pool size k = 2, 3, . . . , 10, we calculate REE(̂pG , p̂I ) at the true
value p = (0.834, 0.075, 0.078)′. The results are shown in Table 2, where pool sizes 7 and
8 provide the smallest REE(̂pG , p̂I ). Thus, either 7 or 8 can be used as the optimal pool
size.

In this scenario, the number of cattle that can be tested using the same number of tests that
individual testing requires is k ∗ N . This can yield a substantial gain in estimator precision.
For example, when N = 100, individual testing expends T = 100 tests. Then even with
k = 2, 200 cattle could be tested with the same T and precision would be almost twice as
high, REE(̂pG , p̂I ) = 0.564. With 700 or 800 cattle (i.e., the optimal configuration), this
gain is much higher, REE(̂pG, p̂I ) = 0.303. However, increasing the number of cattle is
not always better. This is given in Table 2, where precision starts to become worse at pool
size 9.
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Table 3. Number of tests, T ∗, required to estimate p with a maximum error of E0

Pool size E0 = 0.001 0.003 0.005 0.007 0.009 0.011 0.013 0.015

1 285 95 57 41 32 26 22 19
2 161 54 33 23 18 15 13 11
3 121 41 25 18 14 11 10 9
4 103 35 21 15 12 10 8 7
5 94 32 19 14 11 9 8 7
6 89 30 18∗ 13∗ 10∗ 9 7∗ 6∗
7 87∗ 29∗ 18 13 10 8∗ 7 6
8 87 29 18 13 10 8 7 6
9 89 30 18 13 10 9 7 6
10 91 31 19 13 11 9 7 7

The minimum value of T ∗ over the pool sizes is marked by asterisk (∗). When multiple pools are optimal, the
smaller one is marked. Pool size 1 refers to individual testing

4.3. THE MINIMAL LEVEL OF PRECISION IS FIXED

Our final consideration of optimality is when a certain level of precision needs to be
maintained in estimation. This is especially useful when estimation accuracy is of primary
interest in disease surveillance or population-based decision making. By doing this, we can
find the pool size that provides the best precision with the lowest testing cost. As in Sect. 4.2,
we use only pooled responses because individual retesting in stage 2 is uncertain.

Let E0 denote the upper bound of the mean squared error E[(̂p − p)′(̂p − p)]; i.e., E0

can be viewed as the maximum amount of error in estimation. Let T ∗ denote the minimum
number of tests needed to reach the desired precision. Then we find T ∗ when the maximum
value of E[(̂p − p)′(̂p − p)] is smaller than E0. That is, T ∗ is the T that satisfies

max E[(̂p − p)′(̂p − p)] < E0.

We perform this calculation using our software where, under each pool size k, we keep
increasing T . When E[(̂p − p)′(̂p − p)] becomes smaller than E0, the program stops and
records T as T ∗.

Table 3 displays the number of tests needed to achieve a desired level of precision
(E0 = 0.001, 0.003, . . . , 0.015) using pools of size 1 (individual testing) to size 10. The
optimal pool size for each is the one that corresponds to the smallest T ∗. As one might
expect, more tests are required for a smaller E0 (i.e., higher level of precision). The number
of required tests for an E0 decreases quickly as pool size increases, but plateaus at a pool
size of 6 or 7. With E0 = 0.001, for instance, pooled testing with pool size 7 takes only 87
tests to achieve the precision whereas individual testing requires 285 tests. Although the
total number of tests is minimized, the number of cattle being tested (k ∗ T ) with pooling
is larger than for individual testing, allowing 609 cattle to be tested with 87 tests in this
example.
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4.4. SOFTWARE APPLICATION FOR OPTIMIZATION

Determining the optimal pooling strategy for field use is directly beneficial to diagnos-
ticians. Thus, we provide an interactive software application using the shiny package
(Chang et al. 2021) in R (R Core Team 2021). From pooled tests alone or both pooled and
individual retests, the software can provide the efficiency results presented in this article.
Note that the computation algorithm in Sect. 4.1 is computationally intensive because the
EM algorithm and observed information matrix that it uses in step 3 involve a Gibbs sam-
pler. Therefore, we strategically use compiled Fortran and C code to enhance computing
efficiency of the software. With G = 1 repetition and sample size N = 1000, the computa-
tion algorithm is completed in 0.9 seconds for a pool size in an Intel 3.6GHz 32GB RAM
machine. With G = 1000 repetitions, the computing time is about 15 minutes.

The software application will be disseminated in two ways. We will make it available at
the free distribution site https://www.shinyapps.io. This distribution will be most
portable and accessible; i.e., this can be accessed from any place without installing R or
any other package. We will also provide a script file for the R users. Additional information
about the software application is provided in Web Appendix C.

5. DISCUSSION

Pooling samples for testing is a useful technique when disease prevalence is low and
testing retains high sensitivity and specificity. Determining the optimal pooling strategy is
complex because it depends on many factors, such as the goal of testing, disease epidemi-
ology, precision of the outcome, urgency of results, number of available samples and cost
(Laurin et al. 2019). However, one of the challenges to widespread adoption of pooled test-
ing is availability of the methods that determine the ideal pool size. The methods reported
herein provide optimization techniques under several constraints with illustration through
a current field application. To make implementation of our work effortless, we provide a
software application.

Three constraints that could guide the design of a pooled sampling program were exam-
ined. The first was to design a strategy for a fixed number of individual samples. In this case,
hierarchical testing gives the same precision in estimation with any pool size. Thus, we can
choose the pool size that offers the highest cost savings. Methods were also developed to
select the optimal pool size to limit the number of tests used. Here, we set our total num-
ber of available tests to be the number required to test every sample individually. We then
optimized the estimation precision to determine the largest number of animals that could
be pool-tested with this same number of tests. A valuable generalization is that the optimal
pool size is less than merely pooling as many animals as possible. The third option was
to determine the fewest number of tests that could be used to estimate the prevalence in a
population with a predetermined level of precision. When estimating the prevalence based
on results from only the pools, pooled testing requires less than a third of the tests needed
by individual testing to achieve the same precision.

Our work makes several assumptions that can be relaxed for more flexibility and gener-
ality. We use a duplex assay for testing the cattle where k = 10 is used as the maximum
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pool size to safeguard against potential loss of sensitivity due to dilution. We also assume
that sensitivity and specificity of the assay are constant over the limited range of pool sizes.
While these assumptions are reasonable in the surveillance application of the animal dis-
eases, more general methods such as those that allow for differential misclassification errors
(Hung and Swallow 1999; Zhang et al. 2020b) or pooled dilution effects (McMahan et al.
2013;Warasi et al. 2017;Mokalled et al. 2020) could be important future work. These would
be especially useful when the disease prevalence is very low or the pool size to be used is
large. We take a likelihood-based approach assuming that a reasonable prior value of the
parameter p = (p00, p10, p01)′ is available from historical or pilot study data. Understand-
ably, this approachmay provide incorrect optimality results when p is misspecified; seeWeb
Appendix D, where we explored the effects of misspecification of p. Thus, a more flexible
approach such as adaptive algorithm (Hughes-Oliver and Swallow 1994; Hughes-Oliver
and Rosenberger 2000) that relies less on the prior value of p would be a valuable future
extension of our work.

Although surveillance ofT. orientalis andA.marginale among cattle inVirginia is used as
an example, this work can also be useful in applications in human medicine, environmental
testing and other fields. The software that we provide allows animal and public health
professionals to easily optimize pooling scenarios for their needs. For example, when an
optimal pooling design is to be identified for estimating the prevalence of any co-occurring
pathogens, one only needs to update the value of p and assay sensitivity/specificity. The
computation algorithm introduced in this article can be extended to accommodate data
arising from more complex pooling protocols, such as hierarchical testing with three or
more stages (Hou et al. 2017) and array testing (Hou et al. 2020; Bilder et al. 2021).
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