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Abstract

While the agronomic and economic benefits of regulated deficit irrigation (RDI) strategies 

have long been established in red wine grape varieties, spatial variability in water require-

ments across a vineyard limits their practical application. This study aims to evaluate the 

performance of an integrated methodology—based on a vine water consumption model 

and remote sensing data—to optimize the precision irrigation (PI) of a 100-ha commer-

cial vineyard during two consecutive growing seasons. In addition, a cost-benefit analysis 

(CBA) was conducted of the tested strategy. Using an NDVI generated map, a vineyard 

with 52 irrigation sectors and the varieties Tempranillo, Cabernet and Syrah was classi-

fied in three categories (Low, Medium and High). The proposed methodology allowed viti-

culturists to adopt a precise RDI strategy, and, despite differences in water requirement 

between irrigation sectors, pre-defined stem water potential thresholds were not exceeded. 

In both years, the difference between maximum and minimum water applied in the differ-

ent irrigation sectors varied by as much as 25.6%. Annual transpiration simulations showed 

ranges of 240.1–340.8 mm for 2016 and 298.6–366.9 mm for 2017. According to the CBA, 

total savings of 7090.00 € (2016) and 9960.00 € (2017) were obtained in the 100-ha vine-

yard with the PI strategy compared to not PI. After factoring in PI technology and labor 

costs of 5090 €, the net benefit was 20.0 €  ha−1 in 2016 and 48.7 €  ha−1 in 2017. The water 

consumption model adopted here to optimize PI is shown to enhance vineyard profitability, 

water use efficiency and yield.
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model · Stem water potential
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Introduction

In viticulture, maximum incomes are not always achieved with maximum yield but by 

maintaining a certain balance between yield and berry composition. It is evident that judi-

cious irrigation contributes to improving water use efficiency (WUE), controlling canopy 

vigor and enhancing grapevine berry composition (Chaves et al. 2007). In particular, the 

adoption of regulated deficit irrigation (RDI) strategies has been widely used in red grape 

varieties as a water saving strategy as well as to enhance berry composition attributes 

(Roby et  al. 2004; Santesteban et  al. 2011; Basile et  al. 2011; Casassa et  al. 2015). For 

instance, Basile et al. (2011) reported that in cv. ‘Cabernet Sauvignon’, berry composition 

improved when mild stress was applied between fruit set and veraison, and with moderate 

to severe water stress in post-veraison. The precise adoption of RDI requires careful selec-

tion of the moment, intensity and duration of the water deficit application (Conesa et al. 

2018). This can only be properly achieved with a precise knowledge of the seasonal sen-

sitivity of grapevine to water stress and using physiological plant-based tools such as the 

leaf/stem water potential as indicators of water stress (Girona et al. 2006, 2009). However, 

the main drawback when adopting these irrigation strategies in commercial vineyards is 

that it is extremely complicated to attain the same desired water stress level in all the sub-

zones within a vineyard. The spatial differences in soil properties and topography reflect 

changes in water requirements across a vineyard, thereby limiting the efficient use of water. 

If irrigation is uniformly applied without considering spatial differences in water require-

ments there is a risk of a very significant productive and quality reduction in subzones 

where water stress is excessive. Equally, in overwatered subzones, the intended berry com-

position quality levels may not be achieved. To succeed with the practical application of 

RDI strategies at field level, it is first necessary to consider the following three aspects: (i) 

to characterize within-field soil spatial variability, since not all soils retain or provide water 

to the plant at the same rates. Currently, an appropriate procedure to map the spatial vari-

ation of soil properties is through the measurement of apparent soil electrical conductivity 

 (ECa), using electromagnetic induction conductivity instrumentation such as the commer-

cial Veris 3100 sensor system (Veris Technologies, Salina, KS) or EM-38 sensors (Geonics 

Ltd., Mississauga, Ont, Canada) (Corwin and Lesch 2003; Abdy et al. 2008). Good corre-

lations between  ECa and soil salinity, soil water content and soil texture have been widely 

reported (Moral et al. 2010; Uribeetxebarria et al. 2018); (ii) to adapt secondary irrigation 

networks according to the natural variability of soils. Several studies have proposed differ-

ent methodologies to re-design the irrigation sectors based on yield map time-series, soil 

properties or spectral vegetation indices (Bellvert et al. 2012; Martínez-Casasnovas et al. 

2009); and (iii) to obtain appropriate physiological knowledge about the optimal water 

stress thresholds of each variety and the optimal phenological moment to achieve the best 

balance between yield and berry composition.

Until now, the most commonly used irrigation practice by viticulturists has been based 

on a simple water balance approach, where crop evapotranspiration  (ETc) is calculated 

with standard crop coefficients  (Kc) and the soil water content with data from soil mois-

ture sensors, which are installed in a particular representative place of the vineyard. Then, 

irrigation scheduling is uniformly applied in the whole vineyard. Some large modernized 

wineries also complement this methodology with information gathered from other plant-

based sensors (Jones 2004; Eastham and Gray 1998; Ginestar et al. 1998a, b). However, 

the use of any plant-based or similar indicator for scheduling irrigation requires the defini-

tion of reference or threshold values, beyond which irrigation is necessary. In addition, a 
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general limitation to plant-based methods is that they do not usually give information on 

‘how much’ irrigation to apply at any one time, only on whether irrigation is needed or 

not (Jones 2004). Thus, irrigation prescriptions which use such tools when RDI is to be 

imposed have to be determined through trial and error methods.

The development of new precision irrigation (PI) scheduling systems aims to quantify 

the irrigation needs at spatial level according to the actual vine water status and with the 

goal of achieving a specific target. For this to be accomplished, the new challenge for PI in 

viticulture is to use a series of technological procedures in an integrated manner to indi-

vidually resolve the three requirements described above for the implementation for RDI 

strategies, but which, without a clear link between them, cannot be commercially applied. 

Such new methodology needs to be properly integrated and can, for instance, be based on 

the use of geographic information systems (GIS), remote sensing, crop simulation models 

and irrigation management knowledge. These integrated procedures must also consider the 

criteria of the seasonal sensitivity of vines to water stress, and to have a reasonable cost/

benefit ratio. A priori, the proper adoption of RDI strategies in red grape varieties seems 

profitable. According to the Raïmat winery (Spain), the difference in the rate of return 

between standard and high-quality berries can be as much as 310 €  tn−1. This means that 

in a vineyard with an average yield of 8–10 tn  ha−1, an income of 2700 €  ha−1 can be 

obtained. In addition, improvements in water use efficiency (WUE) can also reduce water 

and electricity costs by up to 20%. If the actual average cost of energy and water is 320 € 

 ha−1, a potential saving of 20% corresponds to 64 €  ha−1.

In view of the above, the first objective of the present study was to develop a decision-

oriented vine water consumption model for scheduling irrigation. This model has to be 

able to simulate the actual amount of water evapotranspirated per vine and to determine 

the necessary amount of water to be applied when different irrigation strategies (either full-

irrigation or RDI) are to be imposed. The second objective was to demonstrate the perfor-

mance of an integrated methodology for optimizing the precise irrigation of a 100-ha com-

mercial vineyard based on use of the developed vine water consumption model and remote 

sensing data. Finally, a cost-benefit analysis (CBA) was performed to evaluate the profit-

ability of conducting a PI management using the abovementioned integrated methodology.

It was hypothesized that the implementation of RDI in a 100-ha vineyard with notable 

differences in vine water requirements can only be successfully adopted with a series of 

integrated technological procedures based on the use of remote sensing as a tool to iden-

tify spatial variability and to classify irrigation sectors with similar characteristics, and a 

vine water consumption model capable to quantify irrigation needs according to actual and 

targeted vine water status. The proper adoption of this procedure could enhance vineyard 

profitability, water use efficiency and yield.

Materials and methods

Model description

The model developed in this study uses CropSyst principles (http://model ing.bsyse .wsu.

edu/CS_Suite _4/CropS yst/index .html) (Stöckle et al. 2003) and has been recently adapted 

for different deciduous trees (Marsal et  al. 2013, 2014). For this study, the water con-

sumption model was adapted for grapevines and written in Matlab® language (MATLAB 

2014b, The MathWorks, Inc., Natick, Massachusetts, United States) using experimental 

http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html
http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html
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empirical regression data obtained in previous studies. A diagram of the model with the 

interrelationships between the different parameters is shown in Fig. 1. Input parameters, 

such as weather, fraction of intercepted radiation  (fIR) and stem water potential (Ψstem), 

are introduced in the model in separate files. Since this model is run on a daily basis, daily 

weather data is required (maximum and minimum air temperature, maximum and mini-

mum relative humidity, solar global radiation, rainfall and wind speed). Reference evapo-

transpiration  (ETo) (mm  day−1) estimation was calculated using the FAO Penman–Mon-

teith equation (Allen et al. 1998).

The model allows the user to choose the irrigation strategy to be adopted throughout the 

growing season: (i) full irrigation (FI) or (ii) RDI. Irrigation prescriptions for FI are calcu-

lated based on ET estimates at full transpiring canopy. The stem water potential thresholds 

(Ψthr) can be defined at different phenological stages when an RDI strategy is adopted. 

The vegetative growth of the vine is determined as a function of the fraction of the can-

opy-intercepted solar radiation  (fIR), which can be either measured or simulated. Hourly 

 fIR is converted to daily  fIR  (fIRd) according to the model of Oyarzun et al. (2007). Canopy 

dimensions (i.e. height, width and length) and geographical coordinates of the vineyard are 

needed. If  fIR measurements are not available, the model can generate simulations of  fIRd 

using a polynomial function based on the accumulation of growing degree-days (GDD).

The phenological stages were defined based on GDD. The accumulation of GDD for 

each stage was determined with a modified version of the single triangle algorithm method 

(Zalom et  al. 1983; Nendel 2010) described in Prats-Llinàs et  al. (2020). The base and 

upper threshold temperatures were 4 °C and 26 °C, respectively. A maximum heat tem-

perature threshold of 43 °C was also defined. On the occasions when the daily maxi-

mum temperature exceeded this threshold, the daily maximum temperature was corrected 

Fig. 1  Schematic representation of the interrelationship of the vine-water parameters of the vine water con-

sumption model. Full and RDI full and regulated deficit irrigation strategies, respectively, DOY BB day 

of the year at bud-break, Meteo weather data, no berries number of berries per  m2, which, as default, is 

considered to be 900 berries  m−2,  fIR and  fIRd measured and daily fraction of canopy-intercepted radiation, 

respectively, Ψstemand Ψd midday and daily stem water potential, respectively, CTT  cumulative thermal 

time, ETo reference evapotranspiration, Kcfc full canopy crop coefficient, Ψsc and Ψwilt water potential that 

does not limit transpiration and at wilting point, respectively, Cmax maximum vine hydraulic conductance; 

Umax maximum water uptake, Tp and Ta vine daily potential and actual transpiration, respectively, E soil 

evaporation, Kc irrigation crop coefficient
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by applying the relationship between radiation use efficiency (RUE) and temperature 

described in Prats-Llinàs et al. (2020).

At any stage of canopy development, ET is separated into transpiration (T) and soil 

evaporation (E) components.

Potential transpiration  (Tp) (assuming total canopy cover at full transpiration) is calcu-

lated as:

where  Kcfc represents the  Kc for total canopy cover. In this modelling study,  Kcfc includes 

only vine transpiration and seasonal values were obtained from Picón-Toro et al. (2012) for 

a mature cv. Tempranillo vineyard as a function of  fIRd and thermal time from bud-break.

Soil evaporation (E) is calculated as:

where  Ke represents the soil evaporation coefficient and was calculated using experimental 

data from microlysimeters and as a function of the amount of irrigation water applied in 

the previous irrigation event and  fIRd.

If an RDI strategy is adopted, then it is necessary to enter midday stem water potential 

(Ψstem) measurements into the model. Using this data, the model calculates the amount 

of water needed in order to reach the pre-defined Ψthr. Daily values of Ψstem (Ψd) were 

obtained as an integration of the diurnal course of Ψstem (every 2 h) measurements in TMP 

Low vines. An empirical polynomial relationship which related Ψstem with Ψd was devel-

oped  (R2 = 0.86; n = 40).

Maximum plant hydraulic conductance  (Cmax) can be calculated according to an ana-

logue Ohm’s law for full canopy cover as:

where  Umax is a parameter of the model that represents the maximum water uptake of the 

crop, Ψsc is the lowest plant water potential that does not limit transpiration, and Ψfc is soil 

water potential at field capacity. Values for Ψsc change throughout the season, and those 

adopted in this study coincided with those Ψstem values that had a crop water stress index 

(CWSI) equal to zero (from − 0.4 to − 1.1 MPa) in the empirical regressions obtained by 

Bellvert et  al. (2015) in different grapevine cultivars. Values of Ψfc were established at 

− 0.033 MPa. The percentage of reduction due to water stress was calculated as:

where Ψwilt is the lowest plant water potential at wilting point, when transpiration is null. In 

this study, values of Ψwilt coincide with a CWSI of one (from − 1.1 to − 1.7 MPa) (Bellvert 

et al. 2015).

Then, actual transpiration  (Ta) and evapotranspiration  (ETa) can be estimated as:

ET = T + E

Tp =
(

Kcfc

(

fIRd

)

ETo + (− 0.10 + 0.13 VPD)
)

E = K
e
ET

o

�
d
= − 0.3186�

2

stem
+ 0.2627�

stem
− 0.2584

Cmax =
Umax

Ψfc − Ψsc

Reduction(%) = 1 −
Ψ

d
− Ψ

wilt

Ψ
sc
− Ψ
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Based on this, irrigation scheduling was performed on a weekly basis as:

where rainfall corresponded to that accumulated during the previous week, and 0.95 is the 

efficiency of a drip irrigation system.

Study site

The study was carried out during the growing seasons 2016 and 2017 in a 100-ha organic 

commercial vineyard located in Raïmat (41°39′50ʺN–0°30′27ʺE) (Lleida, Spain) (Fig. 2a). 

The vineyard consisted of 52 irrigation sectors ranging between 0.6 and 2.6 ha and planted 

with the varieties Cabernet Sauvignon (CAB) (38), Tempranillo (TMP) (12) and Syrah 

(SYR) (2). The area has a typical Mediterranean climate, with dry and hot summers and 

mild winters. Total rainfall for the growing period 30th March to 16th October was 163.7 

mm and 149.8 mm for 2016 and 2017, respectively. The annual accumulated reference 

evapotranspiration  (ETo) was 1100 mm in 2016 and 1400 mm in 2017. The vineyard was 

planted in 2010 with a 1.6 × 2.5 m spacing distance. The soil texture was silty-loam and 

the effective soil depth was ~ 0.8 m. The canopy system was trained using vertical shoot 

Ta = Tp(1 − Reduction)

ET
a
=

(

T
a
+ E

)

Water applied = (ET − rainfall)∕0.95

Fig. 2  Study area shown as: a location of the vineyard (41° 39′42.92ʺ N, 0° 30′59.48ʺ E), Lleida (Spain) 

with the distribution of different varieties and airborne-acquired high-resolution interpolated NDVI map 

from July 2015, b classification of the NDVI map into three categories: High, Medium and Low using a 

K-mean clustering analysis, and c irrigation sectors classified by category. Symbols indicate the location of 

the ‘smart points’
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positioning (VSP), with a bilateral, spur-pruned cordon located 1.0 m above the ground. 

Disease control and nutrition vine management were conducted following the wine grape 

production organic protocol of the ‘Costers del Segre’ Denomination of Origin (Catalo-

nia, Spain) and the Catalan Council of Organic Agricultural Production (Catalan initials: 

CCPAE).

The spatial variability of the vineyard in terms of canopy vigor was determined in 

July of the 2015 growing season by using airborne high-resolution imagery. Zenith 

angle images were acquired with an aircraft equipped with a digital multispectral camera 

(DMSC), which integrates four independent narrow bandwidth spectral filters of 20 nm 

width (full-width, half-maximum) at the specific band center of 450 (blue), 550 (green), 

680 (red), and 780 (near-infrared, NIR) nm. Image resolution is 2048 × 2048 pixel with 

14-bit digitalization, with a 24–28 mm fixed focal length yielding an angular field of view 

(FOV) of 17°. Airborne images were acquired by SpecTerra Services Proprietary Limited 

(Perth, WA, Australia) under clear sky conditions at ~ 1500 m above ground level yielding 

images at 0.5 m spatial resolution. Post-flight image processing included a bidirectional 

reflectance distribution function (BRDF) correction for variations in the sun-sensor-target 

viewing geometry across each image. The SpecTerra proprietary BRDF correction algo-

rithm preserved the spectral integrity within an image, but produced DN rather than abso-

lute radiance. Therefore, the normalized difference vegetation index (NDVI) was calcu-

lated as:

Pure vegetation and soil pixels were separated through a supervised classification algo-

rithm. The ordinary kriging algorithm interpolation method was used to obtain NDVI 

maps, using only data from pure vegetation pixels. Then, a K-means clustering analysis 

was performed to classify NDVI spatial variability into three categories/clusters: Low, 

Medium and High (Fig. 2b). The ArcMap software (version 10.5 ESRI Inc. Redlands, ca., 

USA) was used to perform the spatial analysis.

Each irrigation sector was classified according to the predominant NDVI category 

(Fig. 2c). In addition, seven ‘smart points’, which visually corresponded to the most repre-

sentative location by variety and NDVI category were also identified. These ‘smart points’ 

were classified as CAB (High, Medium and Low), TMP (High, Medium and Low) and SYR 

(Low). SYR was classified with only one category because the two irrigation sectors of this 

variety did not show spatial differences in NDVI. Each ‘smart point’ was composed of six 

vines, and vine physiological and structural measurements were conducted every one to 

two weeks and used as inputs of the crop model. The  fIR was measured using a portable 

ceptometer (Accupar Linear PAR, Decagon Devices, Inc., Pullman, WA, USA) placed in 

a horizontal position at ground level and perpendicular to vines. In order to cover vine 

spacing, five equally spaced measurements were taken on the shaded side of each vine. 

The incident radiation above the canopy was determined in an open space adjacent to each 

vine. Vine structural parameters such as height, and canopy width perpendicular to the row 

were also measured. Ψstem was measured at noon with a pressure chamber (model 3005; 

Soil Moisture Equipment Corp., Santa Barbara, ca., USA) according to the recommenda-

tions of McCutchan and Shackel (1992). Leaves were wrapped in plastic bags covered with 

aluminum foil at least one hour before Ψstem was measured. All measurements were taken 

in less than one hour with four leaves measured at each ‘smart point’. Irrigation prescrip-

tions were then conducted independently in each irrigation sector according to the model 

NDVI =
NIR − RED

NIR + RED
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outputs. Irrigation was scheduled on a weekly basis and distributed between three to four 

times a week. Drip emitters of 2.2 L  h−1 were used, separated at 0.5 m. The volume of 

water applied was measured weekly using digital water meters (CZ2000-3M, Contazara, 

Zaragoza, Spain) located at each ‘smart point’.

Definition of irrigation strategies

Irrigation scheduling consisted of adopting a RDI strategy for all wine grape varieties. 

For this purpose, different Ψstem thresholds were pre-defined by considering optimal Ψstem 

values obtained in previous studies in the same varieties (Girona et al. 2009; Basile et al. 

2011). Table 1 shows a summary of the pre-defined Ψstem thresholds. Because, at the end 

of ripening, Syrah berries are more prone than the other varieties to display weight loss due 

to an insufficient compensation of transpirational water loss by xylem water uptake (Schar-

wies 2013), the pre-defined Ψstem values for that variety were slightly higher.

Evaluation of spatial variability and yield

The evaluation of vineyard spatial variability was performed on the basis of time-series 

Landsat-8 NDVI maps, which can be used to characterize canopy growth or vigor. A total 

of nine cloud-free images were downloaded from the Google Evapotranspiration Appli-

cation EEFlux (https ://eeflu x-level 1.appsp ot.com/), and processed each year (2015–2017) 

for the period April to end of August. Then, an ANOVA analysis was conducted with 

the averaged normalized difference vegetation index (NDVI) of each irrigation sector to 

assess spatial differences between irrigation sectors/categories and to evaluate the effect 

of conducting a differential irrigation management strategy during two consecutive years 

on canopy vigor heterogeneity. The fraction of reference ET (ETrF) was also downloaded 

from EEFlux for the same dates as NDVI. ETrF was obtained as the ratio of the computed 

instantaneous actual evapotranspiration  (ETinst) for each pixel and the evapotranspiration of 

a known reference crop (usually alfalfa for METRIC) using local meteorological observa-

tions.  ETinst was obtained from the one-source energy balance model Mapping Evapotran-

spiration at high Resolution with Internalized Calibration (METRIC) (Allen et al. 2007). 

Some studies have shown a good agreement between yield and NDVI in vineyards (Mar-

tinez-Casasnovas et al. 2012; Sun et al. 2017). However, the lack of sensitivity of NDVI 

over leaf area index (LAI) higher than 2.0 (Towers et al. 2019) and the fact that high can-

opy vigor vines have more water demand and therefore could be more sensitive to water 

stress when water is scarce, it is possible that NDVI may not always be the best indicator 

Table 1  Pre-defined midday stem water potential (Ψstem) thresholds for each variety and phenological stage

Year Variety Stage I (flowering to 

fruit set)

Stage II (fruit set to 

veraison)

Stage III (verai-

son to harvest)

2016 Cabernet (CAB) − 0.6 − 0.7 − 1.2

Tempranillo (TMP) − 1.1

Syrah (SYR) − 1.0

2017 Cabernet (CAB) − 0.6 − 0.8 − 1.2

Tempranillo (TMP) − 0.9 − 1.1

Syrah (SYR) − 0.8 − 1.0

https://eeflux-level1.appspot.com/
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for estimating yield. This study, evaluated NDVI and ETrF for the assessment of yield. 

Both seasonal average NDVI and ETrF of all irrigation sectors within the same category 

were averaged and regressed with yield. However, a preliminary step of that regression was 

to normalize the ETrF  (ETrFnorm) using data of the three growing seasons.  ETrFnorm was 

then obtained as:

where ETrF
max

 and ETrF
min

 corresponded to seasonal averaged maximum and minimum 

values of ETrF for the three growing seasons.

On the other hand, this study also evaluated the feasibility of using estimates of the frac-

tion of absorbed photosynthetically active radiation (FAPAR) obtained from the biophysi-

cal processor of the Sentinel Application Platform (SNAP) using Sentinel-2, as a replace-

ment of in-situ  fIR measurements. The Sentinel-2 satellite system has multiple bands in 

the VISNIR spectral range, which can derive information of the biophysical parameters of 

the vegetation through radiative transfer models (RTM) at a spatial resolution of 10–20 m 

(Weiss and Baret 2016). Therefore, FAPAR estimates were validated with  fIRd throughout 

the 2017 growing season.

Harvesting was conducted on different dates and by zones when the accumulated total 

soluble solid concentration values reached the predefined levels established by the Raïmat 

winery.

Estimation of transpiration ratio, irrigation efficiency, and water productivity

Daily values of actual evapotranspiration  (ETa), transpiration  (Ta), and yield for two sea-

sons were used to compute the following parameters: (i) transpiration ratio  (Ta/ETa), (ii) 

irrigation efficiency (i.e.), calculated as the ratio between  Ta and the amount of water 

applied through irrigation and rainfall, and (iii) water productivity (WP) and agronomic 

water productivity (AWP), respectively calculated as the ratio between yield and  Ta, and 

the ratio between yield and water applied (irrigation more rainfall).

Results and discussion

fIRd and stem water potential

In all varieties and categories,  fIRd tended to increase sharply during the first part of 

the growing season, reaching maximum values of ~ 60% at DOY 200 (mid-July). From 

then,  fIRd remained stable for a while, as vegetative growth was controlled by pruning 

operations, before starting to decline until the end of the growing season (Fig. 3a–f). 

The seasonal pattern of  fIRd showed differences between varieties, categories and 

years. In 2016, the  fIRd of TMP was higher than the other two varieties (Fig.  3a–c). 

CAB and TMP also showed significant differences between categories, mostly occur-

ring during phenological stages II and III. In both cases, cases the  fIRd of the High 

category tended to be higher than that of the other categories. In 2017, the  fIRd of all 

varieties increased considerably in comparison to the previous growing season, though 

the differences were greater in CAB and SYR than in TMP (Fig.  3d–f). It has been 

ETrF
norm

=

ETrF − ETrF
min

ETrF
max

− ETrF
min
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widely demonstrated that crop evapotranspiration (ET) is highly correlated with the 

fraction of light intercepted by the canopy (Ayars et al. 2003; Picón-Toro et al. 2012; 

Marsal et  al. 2014). Consequently, differences in the abovementioned  fIRd estimate 

also reflected high variability within the vineyard in ET. However, Fig.  3g–l shows 

that, despite the differences in vine water requirements, Ψstem values followed the same 

trend in the three categories of each variety, and that, by conducting differential irri-

gation management, Ψstem values were maintained in accordance with the pre-defined 

Ψstem thresholds at the different phenological stages.

Fig. 3  Seasonal pattern of a–f daily fraction of canopy-intercepted radiation  (fIRd) and g–l midday stem 

water potential (Ψstem) measured at each ‘smart point’ during the growing seasons 2016 and 2017. Dashed 

arrows indicate the pre-defined Ψstem thresholds, and dashed lines the phenological stages



329Precision Agriculture (2021) 22:319–341 

1 3

Seasonal pattern of vine transpiration and analysis of spatial variability

The actual transpiration  (Ta) of vines at each ‘smart point’ was simulated during the whole 

growing season (Fig. 4). In each variety, simulations of  Ta indicated significant differences 

among categories. The seasonal evolution of  Ta followed the same pattern as that of vegeta-

tive growth, increasing from the beginning of the growing season until reaching maximum 

values of 4.0–5.5 mm  day−1 when  fIRd also reached maximum values of 60% (~ DOY 180). 

Subsequently,  Ta started declining, in part due to the adoption of deficit irrigation during 

post-veraison. Overall, the highest  Ta corresponded to vines of the category High, also 

coinciding with the highest  fIRd. Montoro et al. (2016) reported daily  Ta rates in cv. ‘Tem-

pranillo’ comparable to those estimated in the present study. Other studies reported peak 

values of daily  Ta of about 2.5 mm  day−1 in vines with a canopy light interception of 30% 

(Intrigliolo et al. 2009). Assuming this canopy light interception was half of that measured 

in the current study, it confirms that this value was similar to those reported in the present 

study and which are shown in Fig. 4. In 2016, the highest accumulated  Ta was for TMP, 

ranging from 313.6 mm to 340.8 mm depending on the category (High, Medium or Low). 

In 2016, SYR had similar values to CAB High, with accumulated  Ta of 310.6 mm and 306.2 

mm, respectively. In 2017, SYR had the highest accumulated  Ta with 366.9 mm, while 

TMP and CAB had similar values in their respective categories ranging between 296.3 mm 

and 338.3 mm. Differences between vines in  Ta measured at the different ‘smart points’ 

were calculated with the coefficient of variability  (Cv), which ranged from 7.6–12.6%. 

Table 2 shows that accumulated  Ta was about 15–22% lower than potential transpiration 

 (Tp) over the whole growing season. RDI was mostly adopted during post-veraison (growth 

stage III), with the  CWSISIII showing accumulated water stress during that period which 

ranged from a minimum of 0.17 for SYR Low (2017) to a maximum of 0.36 for CAB High 

Fig. 4  Seasonal pattern of daily and accumulated actual transpiration  (Ta) in each category of the varieties 

Cabernet Sauvignon, Tempranillo and Syrah during the growing seasons 2016 and 2017
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(2016). The results also show that seasonal soil evaporation (E) accounted for 22–24% of 

total annual  ETa. Phogat et al. (2017) reported much higher evaporation values (44–59% of 

 ETa) using a subsurface drip irrigation system. However, the high differences in the amount 

of rainfall during the growing period between the two study sites may explain these dis-

similarities. Other studies (Ferreira et  al. 2012; Netzer et  al. 2009; Cancela et  al. 2012; 

Montoro et al. 2016) have shown seasonal evaporation varying from 7.4–30% of  ETa.

The averaged NDVI showed similar values among varieties/categories, ranging from 

0.48 to 0.57 (Table  2). Significant differences between categories were only detected in 

CAB in 2015 and 2016. Other varieties showed non-significant slight differences in NDVI. 

These results do not fully agree with differences seen either with seasonal  fIRd or with the 

airborne high-resolution NDVI map acquired in 2015, where spatial differences between 

categories in each variety were more noticeable. In fact, the analysis of the coefficient of 

variation  (Cv) of  fIRd during the whole growing seasons of 2016 and 2017 were 13% and 

10%, respectively. Similar values were found for the airborne NDVI map, with a  Cv of 

15% between irrigation sectors. However, lower  Cv values (6.2% and 6.1% in 2016 and 

2017, respectively) were obtained when spatial differences were analyzed with Landsat-8 

NDVI time-series (Table 2). One hypothesis is that these differences might be attributable 

to the coarse pixel size of the satellite imagery, which could soften the spatial differences 

in canopy vigor since it is also considering the effect of cover crop in the mid-row. In addi-

tion, it is important to take into account that spatial differences, when analyzed on a sea-

sonal basis, are not as pronounced as when the analysis is conducted throughout a snapshot 

NDVI map acquired at the moment of maximum spatial differences in vegetative growth. 

Another hypothesis may be related with the saturation of NDVI for high  fIR values, thus 

avoiding that differences in  fIR could be detected from a certain threshold.

After two consecutive years of conducting differential irrigation management, the 

results also show that when analyzing the averaged  Cv of NDVI of all the irrigation sec-

tors of a given variety and comparing it with the previous year (2015), the  Cv tended to 

decrease; from 31.1–28.3% in CAB, from 28.0–26.1% in TMP, and from 16.9–9.5% in 

SYR. Although these were not statistically significant differences, the trend indicates a 

slight reduction in canopy vigor heterogeneity among irrigation sectors, which can also 

influence berry composition.

Amount of water applied and cost-benefit analysis

In both 2016 and 2017, the amount of water applied varied between categories (Fig. 5). 

Overall, vines received more water in 2016 than in 2017, probably because the latter grow-

ing season had a higher rainfall and because the Ψstem reached more negative values dur-

ing stage II. In 2016, the highest amount of water was applied in TMP, followed by CAB 

and SYR. In 2017, differences between varieties were not as clear, with SYR receiving the 

highest amount of water followed by TMP and CAB. These differences between varieties 

in terms of applied water agreed with the different pre-defined Ψstem thresholds. The coef-

ficient of variation  (CV) of water applied in the different irrigation sectors was 10.6% in 

2016 and 9.2% in 2017. The difference between maximum and minimum amount of water 

applied was 84.1 mm (2016) and 79.8 mm (2017), which in both years represents a differ-

ence of 25.6% in the amount of water applied. On the other hand, when the data is ana-

lyzed considering differences between categories within each variety, the highest variations 

were in 2017, with differences of 34.8 mm and 26.3 mm for CAB and TMP, respectively. 

These differences respectively correspond to water reductions of 13.0% and 9.0% for CAB 



332 Precision Agriculture (2021) 22:319–341

1 3

and TMP, respectively. Such significant water savings highlight the importance of conduct-

ing differential and precision irrigation management according to the differences in water 

requirements between irrigation sectors.

Although Ψstem has been commonly used in research and its advantages extensively 

demonstrated (Shackel et  al. 1997; Girona et  al. 2006; Williams 2017), commercial use 

of this technique is still limited, with only a few wineries currently using this tool in their 

protocols for scheduling irrigation. The main shortcomings are the initial investment cost 

and the time that is required to conduct a high number of measurements at midday in order 

to have a good representation of the vine water status of a whole vineyard. However, the 

present study demonstrates that, by taking advantage of remote sensing, it is possible to 

map the spatial variability of a vineyard, to identify zones and irrigation sectors with simi-

lar characteristics and to geolocate representative vines within each zone for collection of 

Ψstem and  fIRd measurements. By integrating this information into the developed vine water 

consumption model, this study has demonstrated that it is possible to conduct effective pre-

cision irrigation (PI) management. However, the costs and benefits of applying this meth-

odology only during two consecutive years are still uncertain. Table 3 shows a cost-benefit 

analysis (CBA) which evaluates the feasibility of using the proposed methodology of the 

present study in a 100-ha vineyard. To achieve it, the PI management adopted in this study 

was compared against a not precision irrigation (NPI). The NPI simulated the irrigation 

prescriptions that a viticulturist should adopt to follow a full-irrigation strategy uniformly 

applied for the entire vineyard. Therefore, irrigation prescriptions were calculated with the 

vine water consumption model based on ET estimates at full transpiring canopy (Table 4).

The total fixed costs for scheduling irrigation based on a PI management system were 

found to be 5090 €. The biggest contributors to the fixed costs were the image acquisi-

tion with airborne, which accounted for 39.3% of fixed cost. However, this cost can be 

significantly reduced with the use of Sentinel-2 open-access data. The equipment recovery 

costs (calculated on a 10-year amortization plan) accounted for about 16% of fixed costs. 

The results indicate that the adoption of PI management in a 100-ha vineyard resulted in 

Fig. 5  Seasonal variation in cumulative water applied for each variety and category in the growing seasons 

2016 and 2017. Dashed lines indicate dates that separates phenological stages II (fruit set to veraison) and 

III (veraison to harvest)
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consumption of 0.26  hm3 and 0.28  hm3 of water in 2017 and 2016, respectively. These 

amounts represent, respectively, a total cost of 188.0 €  ha−1 and 203.0 €  ha−1, of which 

69% is related to the cost of the water itself and 31% to power consumption. Depending on 

year and category, between 14% and 38% less water was needed in the vineyard when a PI 

strategy was adopted compared to a NPI strategy. Generally, these differences were more 

evident in 2017 than in 2016 because in 2017 vines had a higher  fIRd and therefore a higher 

water demand. The total amount of water needed for uniform irrigation of a 100-ha vine-

yard under an NPI strategy was 0.38  hm3 in 2016 and 0.40  hm3 in 2017. These amounts 

represent energy and water costs of 273.9 €  ha−1 and 288.2 €  ha–1, respectively, which are 

35% and 53% higher than those calculated for the PI strategy. In total, the saving costs of 

conducting a PI strategy in the 100-ha amount to 7090.0 € and 9960.0 € in 2016 and 2017 

respectively. However, since the associated technology and labor costs needed to establish 

this management strategy were 5090 €, the net benefit for the 100-ha was 2000 € in 2016 

and 4870 € in 2017. This means that PI can be profitable in the first year of implementa-

tion. One of the main advantages of adopting PI is that fewer irrigation hours are required 

compared to NPI, and therefore these can be scheduled during the hours of the day when 

the electricity price is lowest (usually during the night), with a consequent further reduc-

tion in energy costs. It is also important to mention that this net benefit will rise with the 

number of hectares that are being managed, and that a further increase will be obtained 

once the 10-year term amortization for the purchased equipment has concluded. In addi-

tion, the benefits that can be obtained in terms of improvement in berry quality when an 

RDI is properly adopted should also be considered; according to the Raïmat winery, the 

difference in the rate of return between standard and high-quality berries can be as much as 

310 €  tn− 1.

Table 3  Costs for conducting a precision irrigation (PI) management in the 100-ha vineyard by operating 

the developed system

a Actual cost of acquiring an NDVI map of 100-ha with an airborne platform is 20 €  ha− 1 (price of the 

Spanish company Agropixel). However, currently satellite imagery (i.e. PlanetLab or Sentinel-2) offers the 

possibility to obtain NDVI maps at spatial resolutions of 3–10 m for 5 €  ha− 1 or through open-access
b Cost of the SF-Pres35 (similar to Scholander) (Solfranc Tecnologias, SL)
c,d Amortization of the equipment was calculated on a 10-year basis
e Tentative price related to fees that a company or viticulturist would pay for using the model
f It has been taken into account that the average cost of an IRTA technician capable of conducting these 

functions is 20 €  hour− 1

Concept Cost (€ 100  ha−1)

Costs of obtaining NDVI  mapa 2000

Cost image processing & location of ‘smart 

points’

7 h  day−1 × 1 day × 20 €  h−1 140

Purchase: pressure  chamberb 4500 € 450c

Purchase: ceptometer AccuPAR-80 3600 € 360d

Ψstem and  fIRd measurements 4 hours  day−1 × 15 days × 20 €  h−1 1200

Costs of gasoline 2 L  day−1 × 15 days × 1.33 €  L−1 40

Cost of the crop model: charge fees and 

 maintenancee
3 €  ha−1 300

Trained technician for running the  modelf 2 h  day−1 × 15 days × 20 €  h−1 600

Total 5090
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Maps of transpiration ratio, irrigation efficiency, water productivity and yield

Transpiration ratio, computed in the present study as the ratio between  Ta and  ETa, var-

ied slightly from 0.74 to 0.77 (Fig. 6a, b). Although  Ta/ETa did not show much variation 

between the different irrigation sectors, the most notable differences were seen in the irri-

gation sectors of TMP in 2016, with slightly higher  Ta/ETa values than in the other irri-

gation sectors. These values also illustrate the accumulated seasonal water losses through 

evaporation which, as previously mentioned, accounted for 22–24% of  ETa. The irrigation 

efficiency (IE) of the whole vineyard ranged from 0.58 to 0.83 in 2016 and from 0.69 to 

0.81 in 2017 (Fig. 6c, d). Generally, lower IE values were obtained in 2016 compared to 

2017, probably because of the higher rainfall and, particularly in CAB 2016, because of 

lower accumulated seasonal  Ta. Rainfall or irrigation water that is not transpired by the 

vine can be lost through evaporation or stored in the soil. In fact, the IE results illustrated 

an agreement between irrigation sectors with high IE values and irrigation sectors with 

low soil evaporation or high  Ta/ETa. Interestingly, water productivity (WP) varied non-sig-

nificantly in a range from 2.56 to 5.64 kg  m−3, with the partial exception of TMP in 2016, 

which reached maximum values of 6.54–6.61 kg  m−3 (Fig.  6e, f). Due to the problems 

Table 4  Comparative cost-benefit analysis (CBA) of irrigating a 100-ha vineyard using two different irriga-

tion strategies: (i) precision irrigation (PI) management based on Ψstem thresholds and adopting RDI (actual 

data of this study), (ii) not precision-irrigation (NPI), where water is applied uniformly throughout the vine-

yard by simulating a full-irrigation strategy

CAB high CAB medium CAB low TMP high TMP medium TMP low SYR low

Area (ha) 36.4 28.8 5.8 3.3 6.8 14.9 3.9

Precision irrigation (PI)

 Water applied 

2016 (mm)

262.0 282.3 279.8 312.9 327.5 313.0 243.5

 Water applied 

2017 (mm)

267.5 232.7 266.1 294.1 283.2 267.8 312.5

Not precision irrigation (NPI)

 Water applied 

2016 (mm)

359.1 351.7 323.7 439.7 400.6 407.8 381.3

Average 2016 

(mm)

380.6

Water applied 

2017 (mm)

404.8 379.5 361.0 414.7 397.2 369.8 474.9

Average 2017 

(mm)

399.5

Costs (100-ha) PI 2016 NPI 2016 PI 2017 NPI 2017

hm3 water applied 0.28 0.38 0.26 0.40

Total kWh used 56390.6 76110 52223.2 79900.0

€ energy 6202.9 8372.1 5744.6 8789.0

€ water 14097.6 19027.5 13055.8 19975.0

Total € 20300.6 27399.6 18800.3 28764.0

€  ha−1 203.0 273.9 188.0 287.6

Savings (€  ha−1) 70.9 99.6

Savings (€ 100  ha−1) 7090.0 9960.0
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Fig. 6  Seasonal maps of a, b transpiration ratio  (Ta/ETa), c, d irrigation efficiency (IE)  (Ta/irrigation water 

applied + rainfall), e, f water productivity (WP) (kg of yield/Ta), g, h agronomic water productivity (WP) 

(Kg of yield/irrigation water applied + rainfall), and i, j yield (tones  ha−1) for each irrigation sector of the 

vineyard, for the growing seasons 2016 and 2017



336 Precision Agriculture (2021) 22:319–341

1 3

involved in estimating the component  Ta, it is difficult to find studies in the literature that 

calculate vineyard WP as the ratio of yield/Ta. Among publicly available studies, only Pho-

gat et al. (2017) has reported WP as yield/Ta, with values in a range of 11.2–13.5 kg  m−3 

for Chardonnay wine grapes. These values are higher than those observed in the present 

study. However, the difference may be strongly influenced by the seasonal accumulated 

transpiration, which in the study reported by Phogat et al. (2017) was approximately twice 

as high as that estimated in this study. Most of the published studies refer to WP as the 

yield per unit of water used in evapotranspiration (Kijne et al. 2003; Fereres and Soriano 

2007) or applied through irrigation + rainfall (Egea et al. 2010; Ghrab et al. 2013; Mirás-

Avalos et al. 2016). In the present study, WP calculated based on this definition was named 

as agronomic water productivity (AWP) and it ranged from 2.18 kg  m−3 (SYR in 2017) 

to 5.34 kg  m−3 (TMP in 2016) (Fig. 6g, h). These values agree with WP values in other 

studies of 2.4 kg  m−3 (Texeira et al. 2009) and 3.4 kg  m−3 (Atroosh et al. 2013), whereas a 

study in Chile reported WP values of 4.1–7.3 kg  m−3 depending on the irrigation strategy 

employed (Zuñiga et al. 2018). However, this wide variability in the reported WP values 

is strongly influenced by differences in canopy management and cluster thinning, environ-

mental conditions and rootstock variety.

Yield estimates

Using both satellite and airborne imagery, significant correlations between spectral vegeta-

tion indices and grape yield have been reported in some studies (Sun et al. 2017; Bellvert 

et al. 2012), but not in others (Bonilla et al. 2015, Anastasiou et al. 2018). In the present 

study, no statistically significant correlation was obtained in the regression between NDVI 

and yield (Fig. 7a). For a given range of NDVI values, yield varied in the range 7–22 tn 

 ha−1. These inconsistencies could be attributable to several causes: (i) it is widely acknowl-

edged that yield is a function of transpiration, and that the latter increases as  fIRd increases 

(Suay et al. 2003). However, this is only true under potential conditions. When water stress 

occurs, it is because the demand for water exceeds the available amount of water. Thus, it 

Fig. 7  Relationship between yield and a seasonal averaged NDVI and b the normalized fraction of refer-

ence evapotranspiration  (ETrFnorm), both obtained from Landsat-8 images
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is possible that despite having vines with high canopy vigor (higher water demand), if the 

amount of water applied is below the water demand, vines can be stressed and therefore 

have a negative impact on yield; (ii) the spectral vegetation index NDVI has been widely 

used to identify the spatial and temporal differences in vegetative growth in wine grapes 

(Balbontín et al. 2017; Sun et al. 2017). However, it is well documented that NDVI tends 

to saturate at high leaf area index (LAI) values (Barrett and Curtis 1999, Haboudane et al. 

2004), resulting therefore in a restriction for quantifying vegetative growth, particularly 

in relatively dense canopies. In addition, Guillén-Climent et al. (2012) reported the high 

sensitivity of NDVI to soil background, percentage cover, and sun geometry in heterogene-

ous orchard canopies. The high sensitivity of NDVI to leaf pigments, spacing distance and 

training systems also needs to be taken into consideration. Therefore, no unique relation-

ship between NDVI and LAI is universally applicable, and numerous parameters need to 

be taken into account in order to obtain accurate estimates of LAI. As previously men-

tioned, yield is a function of crop transpiration. In this respect, Fig. 7b shows a good posi-

tive relationship between yield and ETrF_norm for all points except for those of TMP in 

2016 which, for a given level of ETrF_norm, tended to have a higher yield. These differ-

ences in yield could be attributable to a varying number of clusters as the result of differen-

tial cluster thinning.

Regression between FAPAR and  fIRd

A significant correlation was found between  fIRd and FAPAR_S2, with a coefficient of 

determination  (R2) of 0.30 and an RMSE of 0.10 (Fig.  8). Data used in that regression 

corresponded to the period 15th May to 8th October. Data outside this period was not con-

sidered because the presence of inter-row grass cover crop negatively affected the correct 

estimates of FAPAR_S2. Although the initial results were significant and the estimates of 

FAPAR_S2 could probably be used as an alternative to in situ  fIRd measurement, further 

research is needed to validate it in heterogeneous crops. FAPAR_S2 is first obtained from 

radiative transfer models, which depends on canopy structure, vegetation element optical 

properties and illumination conditions. After, it is used to train a neural network which pro-

duces in parallel estimates of the considered biophysical variables. Further research should 

be focus to train the neural network in vines with different row orientations and training 

Fig. 8  Regression between 

the simulated daily fraction 

of intercepted radiation  (fIRd) 

and the fraction of absorbed 

photosynthetically active radia-

tion (FAPAR) obtained from the 

Sentinel-2 biophysical processor 

of the SNAP platform during the 

growing season 2017
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systems. Since most of the cost for conducting a PI management is related to Ψstem and  fIR 

measurements (Table 3), spatio-temporal estimates of FAPAR would considerably reduce 

the cost and to improve the chances to conduct a PI management.

Conclusions

This study demonstrates the technical and economic feasibility of developing a precision 

irrigation management strategy for a 100-ha organic vineyard using the technological pro-

cedure of a decision-oriented vine water consumption model and remote sensing informa-

tion. Despite the heterogeneity in vine water consumption between the different irrigation 

sectors of the vineyard, scheduling irrigation in a differential manner according to the pre-

scriptions generated by the vine water consumption model resulted in vines with similar 

vine water status in all the irrigation sectors and throughout the growing season. In both 

years of the study, the difference between the maximum and the minimum amount of water 

applied in the different irrigation sectors varied by as much as 25.6%. The water savings 

that were achieved increased both water and energy use efficiency. When comparing a PI 

with a NPI strategy in terms of the amount of water needed in the vineyard, differences 

ranged between 14% and 38% depending on the year and water demand of the irrigation 

sector. Energy and water cost savings as high as 35% and 53%, respectively, were obtained 

with the precision irrigation strategy. It is estimated that the net economic benefit to the 

farmer (related to water and energy) of conducting a precision irrigation management strat-

egy, after including all overhead expenses, amounted to 20.0 €  ha−1 in 2016 and 48.7 € 

 ha−1 in 2017. After two consecutive years of differential irrigation management, the coef-

ficient of variability  (Cv) of NDVI between irrigation sectors showed a slight declining 

trend, with values falling from 32.0% in 2015 to 28.4% in 2017, indicating greater homo-

geneity within the vineyard. It therefore seems reasonable to conclude that—taking into 

account the demonstrated net energy and water savings and consequent economic benefit, 

the associated improvement in berry composition attributes due to the adoption of RDI, 

as well as the trend of increased homogeneity—the adoption of PI is both necessary and 

profitable for most wineries. The transpiration ratio, i.e., WP and AWP of the vineyard 

ranged from 0.74 to 0.76  m3  m−3, 0.58–0.83  m3  m−3, 2.56–6.61 kg  m−3 and from 2.18 

to 5.34 kg  m−3 respectively. The seasonal soil evaporation (E) accounted for 22–24% of 

the total amount of evapotranspiration  (ETa). Yield was positively correlated to the frac-

tion of reference evapotranspiration  (ETrFnorm), but not with the NDVI. Finally, although 

more research is needed in this respect, it seems that the use of estimations of the biophysi-

cal parameters of the vegetation (i.e. FAPAR) using the S2 toolbox of the SNAP software 

could be a feasible alternative to obtaining time-series of canopy vegetative growth at spa-

tial level, and as a consequence it will help the reduce costs related to measurements in the 

vines.
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