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Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the
planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative
effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving
the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the
farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional
neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3,
and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on
two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on
the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%-

15%. Inception V3 is identified as the best performing algorithm on both datasets.

1. Introduction

No life is possible without plants; they provide food to all
terrestrial living organisms and protect the ozone layer that
is responsible for filtering harmful UV radiations of the sun.
Although plants are essential for life, they face several
challenges to grow as a variety of diseases hit them. The need
for rapid recognition and diagnosis of diseases helps reduce
the chances of damage to ecosystem. In the absence of
systematic disease identification, the quality and quantity of
products are affected. This further affects the economy of a
country [1]. The United Nations Food and Agriculture
Organization (FAO) proposes that agriculture production
needs to increase by 70% by 2050 to overcome the world’s
food needs [2]. On the other hand, a rapid increase in the use
of chemicals such as fungicides and bactericides to curtail

diseases has been negatively affecting the agro-ecosystem.
Thus, we need rapid and effective early disease detection and
classification techniques to identify the plant disease to
sustain the agro-ecosystem. Among several fruit plants,
tomato is a part of the daily diet. The need for early iden-
tification of tomato plant leaf diseases through technology-
oriented approaches such as image processing and deep
learning provides the opportunity for the development of
such systems. Approximately 50% of the plant’s production
is damaged due to several diseases [1]. Farmers identify the
disease by examining the plant and making judgements
based on their past experiences [3]. This method does not
provide accurate results as different farmers may have dif-
ferent experiences and the method lacks scientific rigour as
well. There are chances that the farmers might miss clas-
sifying a disease and a wrong treatment may cause more
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damage to the plant. Likewise, domain experts’ visit to the
field is costly. This necessitates the need of an automated
image-based disease detection and classification mechanism
that can replace the domain expert.

A number of researchers focused on the development of
automated techniques for plant’s disease identification using
state-of-the-art techniques [4-9]. Durmus et al. [4] used two
different deep learning neural network architectures,
namely, AlexNet and SqueezeNet for automated detection of
disease in tomato leaves. The authors used images of the
PlantVillage dataset. The authors did not evaluate the per-
formance of the neural network architectures based on
standard performance metrics of F1, recall, precision, etc.,
instead they used only accuracy and inference time of the
model. Tm et al. [5] proposed a variant of the convolutional
neural net called LeNet for detection and identification of
diseases in tomato leaves. The objective of the work was to
identify a computationally robust technique for the un-
derlying problem. The authors used images from Planet-
Village repository and reported an accuracy of 94%.
Mohanty et al. [6] used AlexNet and GoogLeNet deep
learning architectures to develop models for classification of
tomato leaf diseases. The authors used a combination of
learning algorithms and various splits of training and testing
and reported an accuracy of 99.35% using the PlanetVillage
dataset. For other contributions, the reader is referred to
[7-9]. A common problem observed in the literature is the
choice of dataset. The majority of the techniques proposed
used controlled datasets that contain images obtained in
perfect conditions in a controlled environment. However, in
the real world, it is not possible to obtain high quality and
high-resolution images of higher quality for possible de-
tection and classification of tomato leaf diseases.

In this work, we evaluate convolutional neural network-
based architectures, namely, VGG-16, VGG-19, ResNet, and
Inception V3, for image-based detection and classification of
tomato leaf diseases. Unlike previous studies, we used two
types of datasets; firstly, we collected real field data from a
tomato field in an uncontrolled environment and then used
data augmentation technique to increase the number of
instances; secondly, we also used laboratory data collected in
a controlled environment. We report the results based on
various performance metrics including accuracy, recall,
precision, and Fl-score. Thus, our evaluation methods are
more robust and representative of a real-world scenario.

Rest of the paper is organized as follows. Section 2
presents the proposed approach including working of the
CNN models, description of the datasets, and performance
evaluation metrics. Section 3 presents the results based on
the performance evaluation metrics for feature extraction as
well as parameter-tuning. The results are discussed in the
same section as well. Section 4 concludes the work and
provides directions for future research.

2. Materials and Methods

2.1. Approach. We consider four well known convolutional
neural networks (CNNs) architectures for identification and
classification of diseases in the tomato plant leaf. These
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architectures include VGG (VGG-16, VGG-19), residual
neural network (ResNet), and Inception V3. Although the
concept of deep neural network is not new, the availability of
substantial amount of data and affordable computational
power made it a reliable method in a variety of domains.
CNNs are well known for image-based classification
problems [10-12]. A distinguishing feature of CNN is the use
of convolution layer, which omits the need of matrix
multiplication. The various layers in a typical CNN include
convolution, activation, pooling, and classification [13]. The
purpose of the convolution layer is to reduce the dimension
of input. The task of the activation layer is to apply nonlinear
operators such as rectified linear unit (ReLu). The pooling
layer is applied to further reduce the dimensions by the
application of a statistical function such as MaxPool on
neighboring values. After applications of these steps, a
softmax function can be applied to classify the input into one
of predetermined classes.

Although CNNs are shown to achieve excellent per-
formance on image classification problems [14], two key
problems are reported in the implementation and use of
CNNs. Firstly, CNN involves a considerable number of
parameters that are estimated in the training phase; sec-
ondly, the training phase by itself requires a large number of
input images. Thus, designing and training CNNs from
scratch is not considered an ideal solution. Instead, a rather
unique and novel approach is used in which pretrained CNN
models are considered and only the last few layers of the
model are used in the training phase to estimate the pa-
rameters associated with those layers. Several such pre-
trained models are proposed in the literature, and we discuss
the notable ones selected for our study.

2.1.1. VGG Net. The pretrained model was introduced by
Visual Geometric Group (VGG) at the University of Oxford,
and thus the name VGG [10]. The basic working principle of
VGG Net is to use deeper layer with smaller filters. The input
layer dimension of the VGG architecture is set for an image
size of 244 x 244. Preprocessing involves subtraction of the
mean RGB value from each pixel of the input image. Pre-
processing is followed by a stack of 5 convolutional layers,
each of which is followed by a MaxPool layer, i.e., each set of
convolutional layers is followed by a MaxPool layer. The
final MaxPool layer precedes three fully connected (FC)
layers. The first two FC layers have 64 x 64 (4096) channels,
whereas the last FC layer has 1000 channels, which is fol-
lowed by a softmax activation function. VGG network has
multiple flavors, notably VGG-16 and VGG-19. VGG-16
and VGG-19 use the same architecture with different
number of layers. VGG-16 uses 16 layers, whereas VGG-19
uses 19 layers. The differentiatin% factor is the number of
convolution layers in the 3™, 4™ and 5™ layers of con-
volutional layers stacks.

2.1.2. ResNet. Residual network (ResNet) addressed the
problem of training and overfitting in deep neural networks
by introducing the concept of residual learning [15]. He et al.
[15] highlighted that as the neural network architecture



Complexity

becomes deeper, degradation occurs. Degradation is the
phenomenon of increase in the training error as more layers
are added to the architecture of a neural network. To solve
the problem of degradation, the authors introduced residual
block. Unlike VGG, which adds a stack of convolutional
layers followed by a MaxPool layer, ResNet attempts to
identify a residual mapping between the input to the con-
volutional layers and the output at the MaxPool layer, thus
eliminating the computational cost of input being processed
by the convolutional layer stack.

2.1.3. Inception Network. Szegedy et al. [16] extended the
concept of network in network and proposed a modified
CNN architecture to achieve improved performance by
increasing the depth of the network and keeping the
computational cost low. In contrast to VGG, Inception
networks proved to be computationally efficient in terms of
computing resource utilization as well as the number of
parameters. However, the downside of the original inception
network was its limited application adaptability in new use
cases. Szegedy et al. [14] refined the original inception
network model by introducing factorized convolutions with
large filter size, factorization into smaller convolutions, and
asymmetric convolutions. For details, the reader is referred
to [14, 16].

As a preprocessing step, we used histogram equalization
to increase the contrast. In addition, the input images are
resized to match the requirements of the individual network
(for instance, for VGG, the images are resized to 244 x 244).

2.2. Datasets. A categorized dataset is an essential part of a
quantitative assessment. Although a standard categorized
laboratory-based tomato leaf disease dataset has been de-
veloped for the assessment of the system [17], it is recorded
in a controlled environment. There is no inclusive standard
field-based database. In this research, we collected tomato
leaf data from various fields in a natural uncontrolled en-
vironment. Afterward, the data are inspected by a domain
expert to identify and classify the images into various
categories.

The laboratory-based dataset contains 2364 images
categorized into four types of different tomato leaf disease-
infected high-resolution images. Each class contains 591
images. For system training and evaluation, we divided this
dataset into three parts for training, validation, and testing,
respectively. The specific ratio of each is 70%, 20%, and 10%,
respectively. The detailed summary of the laboratory-based
dataset is provided in Table 1.

It was a challenging task to collect datasets from different
fields of tomato crop. The data were collected using a cell
phone and in natural daylight conditions. The resultant
datasets contain six types of infected tomato leaves. A total
number of 317 images were collected with a cell phone
camera. These were less in numbers for model training and
evaluation. A higher number of images were needed to train
a deep learning algorithm. Therefore, the data augmentation
technique was used to increase the number of samples in the
dataset. After the data augmentation, we obtained 15,216

TaBLE 1: Distribution of the laboratory-based dataset for training,
validation, and evaluation.

Type of tomato leaf disease ~ Training  Validation  Testing
Healthy 413 118 60
Late blight 413 118 60
Septoria leafspot 413 118 60
Yellow-curved 413 118 60

samples for the field-based dataset. The dataset was further
divided into three parts for model training (70%), validation
(20%), and testing (10%), respectively. Summary of distri-
bution of the field-based dataset is provided in Table 2.

2.3. Performance Evaluation Metrics. We used accuracy,
precision, recall, and Fl-score as performance evaluation
metrics. Note that the basic confusion matrix can be mis-
leading; therefore, we used the aforementioned performance
evaluation criteria.

2.3.1. Accuracy. Accuracy (A) represents the proportion of
currently classified predictions and is calculated as follows:
B TP + TN (1)
"~ TP + TN +FP +FN’

Note that TP, TN, FP, and FN represent true positive,
true negative, false positive, and false negative, respectively.

2.3.2. Precision. Precision (P) represents the proportion of
positive outcomes that were actually correct and is calculated
as follows:

TP

= — 2
TP + FP 2

p

2.3.3. Recall. Recall (R) measures the proportion of actual
positives that were identified correctly and is calculated as
follows:

TP

= 3
TP + FN ®)

R

2.3.4. F1-Score. Fl-score is defined as the harmonic mean of
precision and recall and calculated as follows:
P-R

Fl1=2 x 4
P+R @

3. Results and Discussion

In this section, we report the results of the experiments
performed in the study. The experiments performed in the
study utilized several pretrained neural network architec-
tures as feature extractors and fine-tuned the higher di-
mensional layers (last few layers) to learn features
corresponding to the dataset. Pretrained neural network
architectures utilized are VGG1-6, VGG-19, ResNet, and
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TaBLE 2: Distribution of the field-based dataset for training, validation, and evaluation.

Type of tomato leaf disease Training Validation Testing
Healthy 2790 796 398
Late blight 3393 968 485
Septoria leafspot 403 115 58
Bacterial speck 336 96 48
Bacterial spot 739 211 106
Early blight 2991 854 427

Inception V3. A total of sixteen experiments were per-
formed, eight on each dataset. In four experiments, pre-
trained neural network architectures are used as feature
extractors, whereas in the remaining four experiments,
hyperparameter tuning is used. For all experiments, we have
used 10-fold cross-validation.

3.1. Results Using Feature Extraction. In this section, results
are reported for both datasets using pretrained neural
networks as feature extractors. The image classification
process can be divided into two parts. Feature extraction is
carried out by convolutional neural networks, and the
classification is performed by fully connected layers with the
ReLu activation function and softmax. Table 3 presents the
results on both datasets using pretrained neural network
architectures as feature extractors. Analysis of results con-
cludes that Inception V3 outperformed all other pretrained
models with the highest reported accuracy in both datasets.
However, the laboratory dataset achieved better classifica-
tion accuracy (93.40% using Inception V3). This may be due
to the reason that the laboratory dataset is a standard bal-
anced dataset curated by experts in the domain, whereas our
field dataset was collected through a cell phone camera and is
an imbalanced dataset.

3.2. Results Using Parameter-Tuning. In this section, results
are reported for both datasets by fine-tuning the parameters
of the pretrained neural network architectures. The high-
dimensional layers of pretrained neural network architec-
tures are trained to adjust the parameters according to our
dataset. Low-dimensional layers’ features are kept the same
for both datasets. The classification task is carried out using
fully connected layers with the ReLu activation function and
softmax is employed at the final layer. Table 4 presents the
results on both datasets by fine-tuning the pretrained neural
network architecture. Analysis of results concludes that the
Inception V3 architecture outperformed all other pretrained
models with the highest reported accuracy in both datasets.
As expected, the accuracy is high on the laboratory-based
dataset.

Table 5 summarizes recall, precision, and Fl-score
achieved by the four models on the two datasets.

In terms of recall score, as expected, all models per-
formed better on a laboratory-based dataset than a field-

TaBLE 3: Classification accuracy using feature extraction.

Model Laboratory dataset Field dataset
VGG-16 88.10 76.20
VGG-19 90.00 79.60
ResNet 91.70 81.70
Inception V3 93.40 85.00

TaBLE 4: Classification accuracy using parameter-tuning.

Model Laboratory dataset (%) Field dataset (%)
VGG-16 98.50 84.10
VGG-19 98.30 86.30
ResNet 99.40 91.30
Inception V3 99.60 93.70

based dataset. The average performance difference in the
recall score for the two datasets is 13.7%. Inception V3 is the
best performing model achieving 0.996 and 0.906 recall
score on the laboratory-based dataset and field-based
dataset. The same performance trend is observed on pre-
cision and F1-score. In both instances, the score achieved on
the laboratory-based dataset is superior to that achieved on
the field-based dataset. In terms of precision, the difference
between the score achieved on the laboratory-based data and
field-based dataset is 17.9%. For Fl-score, the difference is
15.8%. Figure 1 summarizes the average accuracy, recall,
precision, and Fl-score using the parameter-tuning tech-
nique on laboratory-based and field-based datasets.
Several interesting observations can be drawn from the
reported performance metrics. For all models, fine-tuning
the parameters of a pretrained neural network architecture
achieved better classification accuracy as compared to using
the neural network architecture with feature extraction only.
This observation is typically common as using the feature
extractor that is trained on a different dataset may not always
capture the best set of discriminative features of the images
under study (tomato leaf diseases in our case). As far as
accuracies among models are concerned, Inception V3
outperformed all other pretrained models. This may be due
to the reason that Inception V3 uses different kernel sizes for
the effective recognition of variable-sized features. Instead of
simply going deeper in terms of the number of layers, it goes
wider. Multiple kernels of different sizes are implemented
within the same layer. Expectedly, all models performed
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TaBLE 5: Recall, precision, and Fl-score using parameter-tuning.
Recall Precision F1-score
Model . . .
Laboratory Field Laboratory Field Laboratory Field
VGG-16 0.991 0.792 0.99 0.758 0.99 0.776
VGG-19 0.991 0.847 0.989 0.811 0.989 0.828
ResNet 0.995 0.883 0.994 0.841 0.994 0.861
Inception V3 0.996 0.906 0.996 0.845 0.995 0.876
1
0.98
0.96
0.94
0.92
=
S 09
w
0.88
0.86
0.84
0.82
0.8
Accuracy Recall Precision Fl-score

Performance metrics

= Laboratory dataset
= Field dataset

FIGURE 1: Summary of performance on laboratory- and field-based datasets.

better on the laboratory-based dataset than field-based
dataset as the data are collected from the field in an un-
controlled manner.

4. Conclusions

In this work, we used different pretrained convolutional
neural networks for automatic detection and classification of
diseases in a tomato plant leaf. We considered four different
models, namely, VGG-19, VGG-16, ResNet, and Inception
V3, and evaluated their performance on two divergent
datasets. The first dataset is a controlled dataset whose images
are acquired in a laboratory; the second dataset is prepared by
us by collecting data from the field in natural light with the
help of a cell phone. Thus, the second data are representative
of a real-world situation and were hence proved to be more
challenging for various pretrained neural network models.
We observed that parameter-tuning results in more accurate
results than feature extraction. Likewise, the average per-
formance on the laboratory-based dataset was 10%-15%
superior in comparison to the field-based dataset. Inception
V3 was the best performing model on both the datasets.

As these models do not perform well on the field-based
dataset, therefore, a natural extension of our work will be to
optimize these models for better performance on real-world
field-based data.

Data Availability

Previously reported data (laboratory-based dataset) were
used to support this study and are available at https://github.

com/PrajwalaTM/tomato-leaf-disease-detection. The field-
based data used to support the findings of this study are
available from the corresponding author upon request.
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