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INTRODUCTION

A virtual	enterprise is a coalition of autonomous 
business entities, usually of small or medium 
scale, who collaborate on the manufacturing of 

complex products, often with the intention of 
competing with large, monolithic enterprises. 
The members of a virtual enterprise often pos-
sess complementary skills and technologies 
whose combination is deemed necessary for the 
target product, and the collaboration is often ad 
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ABSTRACT
A	virtual	enterprise	is	an	ad	hoc	coalition	of	independent	business	entities	who	collaborate	on	the	manufac-
turing	of	complex	products	in	a	networked	environment.	This	collaboration	is	enabled	by	the	concept	of	a	
transaction,	a	mechanism	with	which	members	acquire	necessary	components	from	other	members.	An	exter-
nal	procurement	request	submitted	to	the	enterprise	launches	a	tree-structured	series	of	transactions	among	
its	members	(similar	to	supply	chains).	Each	such	transaction	is	associated	with	a	purchase	price,	but	also	
with	a	risk	of	failure.	That	members	have	the	option	to	procure	components	from	different	co-members,	each	
charging	its	individual	price	and	posing	its	specific	risk,	raises	challenging	optimization	problems	related	
to	the	fulfillment	of	business	objectives.	This	paper	defines	a	transaction	model	for	virtual	enterprises,	with	
formal	concepts	such	as	price,	risk,	and	business	objectives.	The	Decision	Guidance	Query	Language	(DGQL)	
is	presented,	a	language	for	modeling	and	solving	optimization	problems	in	a	database	setting,	and	shows	
how	DGQL	can	provide	intuitive	and	efficient	solutions	to	the	optimization	problems	raised	in	the	model.	
The	model,	the	optimization	programs,	and	the	experimentation	promote	strong	collaboration	and	common	
objectives	among	its	members,	and	one	in	which	collaboration	is	limited,	with	members	retaining	much	of	
their	autonomy	and	individual	objectives.
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hoc, for a specific product only, after which the 
virtual enterprise might dissolve.

Within this general framework, the level of 
collaboration among enterprise members, and 
the extent of sharing of information and strategic 
decisions can vary substantially, creating virtual 
enterprises of significantly different styles. In 
one setup, enterprise members preserve their 
independence to the greatest degree possible. 
They share only a minimal amount of informa-
tion (e.g., the products they are willing to make 
available to others and the prices they charge), 
and they optimize their performance according 
to their own interests and criteria. At the oppo-
site extreme, enterprise members share all their 
information (e.g., manufacturing processes, 
sources of supply, costs, and risks), and abide 
by a global optimization process that instructs 
them on their production steps. We refer to the 
former setup as an autonomous enterprise, and 
to the latter as a coordinated enterprise.

The primary means for enabling collabo-
rations in virtual enterprises are transactions: 
bilateral exchanges between two enterprise 
members in which goods are delivered in return 
for payment. The fulfillment of a target prod-
uct may thus propagate into a tree-structured 
set of transactions among the members of the 
enterprise. Since the same product can often be 
procured from multiple enterprise members, a 
target product may be fulfilled with alternative 
transaction trees. Since each procurement deci-
sion is associated with performance parameters 
such as product price and the risk of non-
delivery, members must select their transaction 
partners judiciously. This presents substantial 
optimization challenges.

In this paper we explore issues of optimal 
decision making in virtual enterprises using the 
Decision Guidance Query Language (DGQL), 
a language for solving decision optimization 
problems. A brief overview of the language is 
provided in the section The	Decision	Guidance	
Query	Language. The section that follows it 
describes our formal model for virtual enterprise 
transactions, including concepts such as transac-
tion cost, product price, and procurement risk. 
Using expected profit as optimization target, 

the subsequent section presents the DGQL 
programs for two types of virtual enterprises: 
autonomous and coordinated. A system that 
implements (compiles and executes) such 
DGQL programs is described in the next sec-
tion. This section also reports on experiments 
with both autonomous and coordinated virtual 
enterprises. The final section summarizes our 
findings and suggests various directions for 
future work. We begin with a brief review of 
work related to this research.

BACKGROUND

To put this work in context, we review briefly 
of related work in two areas: virtual enterprises 
and optimization tools.

VIRTUAL ENTERPRISES

Cooperatives of independent entities that col-
laborate on the manufacturing of goods have 
been around for decades. Often the members of 
such cooperatives reside in the same industrial 
district. This geographical proximity provides 
advantages of common culture and mutual 
trust (Brusco, 1992). The collaborating enti-
ties are often of small and medium size, and 
their strategic approach is to focus on their 
core business (i.e., excel in a limited section of 
the “value chain”), and to seek collaborations 
with neighboring entities to perform the other 
requisite activities in the value chain.

Essentially, virtual enterprises (also re-
ferred to as virtual organizations or corpora-
tions) are modern versions of these cooperatives, 
from which geographical constraints have 
been removed. By means of communications 
and information technology, the entities par-
ticipating in an alliance need not be confined 
to a particular location. Virtual enterprises are 
often characterized as agile, flexible, dynamic, 
proactive, and unconstrained by predefined 
structures. The essential principles of virtual en-
terprises may be summarized thus (Davidow & 
Malone, 1992; Goldman, Nagel, & Preiss, 1995; 
Camarinha-Matos, 2003; Barbini & D’Atri, 
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2005): (1) Market-driven cooperation. Virtual 
enterprises are set-up to exploit specific business 
opportunities, and are therefore intensely result-
oriented. (2) Complementariness of skills. The 
members of each virtual enterprise are chosen 
to complement each other’s competencies. (3) 
Dynamic participation. Members can join or 
withdraw from an enterprise, according to their 
own self-interests. (4) Coalition of peers. A 
virtual enterprise is not dominated by individual 
members; rather, it is a coalition of peers. (5) 
Controlled sharing. Members work together, 
integrating their processes and sharing their 
resources; yet, sharing is not boundless, and 
members may protect certain assets from their 
peers. (6) Limited duration. Virtual enterprises 
are not intended to be permanent, or even long-
term organizations; rather, they are aimed at 
achieving short or medium term goals.

The interest of the information technol-
ogy research community in the area of virtual 
enterprises dates to the mid-1990s, with much 
of the work focusing on organizational issues, 
communication processes and information 
systems support (Mowshowitz, 1997; Monge 
& DeSanctis, 1999). An overview of current 
approaches towards the establishment of in-
frastructures for virtual enterprises is given in 
Camarinha-Matos and Afsarmanesh (2004).

The concept of transaction has been dis-
cussed extensively in economics and related 
disciplines (business, banking, etc.); and (with 
a considerably different interpretation) in com-
puter applications such as database systems 
(Elmagramid, 1992) or workflow systems 
(Grefen, 2002). In the area of virtual enterprises, 
the VirtuE model (D’Atri & Motro, 2008, 2010) 
introduced a concept of transaction that com-
bines elements from both distributed database 
systems and economics. In other words, it 
used the structures of computer transactions to 
implement concepts borrowed from economics.

The work here continues in this vein, with 
the introduction of a cost model. This cost model, 
which borrows concepts from transaction cost 
theory (for example, search and information 
cost) (Smith, Venkatraman & Dholakia, 1999), 
enables us to discuss formally concepts such 

as transaction cost, failure, risk, and revenue 
in virtual enterprise environments.

OPTIMIZATION TOOLS

The problem of decision optimization deals 
with finding values for control variables that 
maximize or minimize an objective within given 
constraints. It is used in many applications 
such as deciding on optimal manufacturing 
patterns and sourcing of virtual enterprises, 
or more broadly, deciding on optimal busi-
ness transactions within supply chains. The 
state-of-the-art implementation of decision 
optimization applications involves mathemati-
cal and constraint programming (MP and CP), 
using languages such as AMPL (Fourer, Gay, & 
Kernighan, 2002) or GAMS (Boisvert, Howe, 
& Kahaner, 1985).

While software developers find database 
programming mostly intuitive, they typically 
do not have the mathematical expertise neces-
sary for MP and CP. In contrast to MP and CP, 
database management (DBMS) tools are more 
intuitive and have been adopted in many appli-
cation domains. In addition, much investment 
has already been spent on database applications. 
Clearly, it is desirable to leverage this investment 
when building decision optimization applica-
tions. However, DBMS query languages are 
not designed for decision optimization as they 
cannot express decision optimization problems, 
notably over continuous variables. Indeed, in the 
continuous variable case, there are potentially 
infinite possibilities to choose from that cannot 
be expressed as regular database queries. For 
the discrete case, when potential choices are 
from a large space, populating tables with all 
possible choices and then ranking them with a 
query can be rather inefficient. Although query 
languages can handle some limited discrete 
optimization computations, e.g., find a tuple 
that has a minimal value over a finite set of 
discrete choices (Ilyas, Beskales, & Soliman, 
2008), even in the cases of expressible rank 
queries, evaluation algorithms have not typically 
taken advantage of MP and CP search strate-
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gies to achieve potential efficiency and flexible 
optimization goals. More importantly, the op-
timization query will look very different from 
the reporting query, increasing the complexity 
of system management.

Specialized optimization tools (e.g., for op-
timizing price-revenue, transportation, sourcing 
or production planning) have been developed for 
the benefit of end users, or for integration with 
other systems (e.g., ERP/ERM), so that opera-
tions research expertise would not be necessary. 
However, this approach is not extensible, and 
does not support general decision-guidance 
application development.

In this paper, we implement the problem 
of optimizing virtual enterprise transactions 
using the Decision Guidance Query Language 
(DGQL) (Brodsky, Bhot, Chandrashekar, Egge, 
& Wang, 2009), a language designed for mak-
ing decision optimization easier, especially in 
applications where database technology is used 
heavily. Roughly speaking, DGQL is to SQL 
what the language CoJava (Brodsky & Nash, 
2006) is to the object-oriented programming 
language Java; i.e., a completely procedural 
specification is translated into a declarative 
optimization problem. The language Modelica 
(Fritzson & Engelson 1998) also allows the 
specification of constraints using a procedural-
like specification, although it is fundamentally 
an equation specification language. In a nutshell, 
DGQL provides query-like abstractions for 
expressing decision optimization problems so 
that database programmers would be able to 
use it without prior experience in MP, and more 
importantly, they would be able to reuse the 
queries already built into existing applications. 
An informal description of DGQL is given next.

THE DECISION GUIDANCE 
QUERY LANGUAGE

A key observation that motivated the develop-
ment of DGQL is that database languages are 
intuitive to use for computing business metrics, 
e.g., for reporting purposes, while decision op-
timization in principle is often the “inverse” of 

the reporting functionality already in place; that 
is finding operational choices that optimize a 
business metric, e.g., minimize cost. In addition, 
code used in reporting functions often contains 
business logic that is needed in the decision 
optimization tasks. Based on this observation, 
a decision optimization problem in DGQL is 
written as a “regular” database program, i.e., a 
sequence of relational views and accompanying 
integrity constraints, together with annotation 
of which database table column needs to be de-
cided by the system (i.e., variables) and toward 
what goal (i.e., optimization objective). Here, 
existing queries in the reporting software can be 
used directly. Essentially, DGQL allows users 
to write an optimization problem as if writing 
a reporting query in a forward manner.

The challenge in the DGQL approach, how-
ever, is how to execute the “inverse” decision 
optimization based on a “forwardly” expressed 
code. This is done by encoding the DGQL que-
ries as an MP formulation, and by solving the 
MP problem and then deriving the solution to 
the DGQL optimization problem. A technical 
question with two interrelated parts arises: (1) 
Is it possible to encode a DGQL query as an 
MP formulation such that (2) the solution can 
be found efficiently? We answer this question 
positively and therefore suggest that DGQL 
has the potential to achieve both easy develop-
ment and efficiency for decision guidance. In 
terms of efficiency, the overall performance 
of intuitive DGQL queries compares squarely 
with expert-generated MP problems, as will be 
demonstrated in the experiments that follow.

In this section we informally describe 
DGQL mainly borrowing from Brodsky et al. 
(2009). To explain the DGQL approach and 
its semantics intuitively, we consider a simple 
example of sourcing optimization, i.e., finding 
the best suppliers for a given demand of items 
to be purchased. To begin, we consider an even 
simpler database reporting application, in which 
the following are stored in the database (key 
fields are underlined):

Demand = (Item, Requested)
Supply = (Vendor, Item, Price)
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Orders = (Vendor, Item, Quantity)

Demand specifies the quantities that need to 
be procured for each item, Supply specifies the 
prices vendors charge for the items they provide, 
and Orders lists the items ordered from vendors 
and their desired quantities. With these tables, 
a reporting application may use this query to 
calculate the total cost of all orders (assuming 
that all items ordered are indeed supplied):

create view Total_Cost as 
select sum (S.Price x O.Quantity) as 
Total 
from Supply S, Orders O 
where O.Vendor = S.Vendor and O.Item 
= S.Item

To calculate the total quantity ordered and 
the total quantity requested for each item in 
Demand, the reporting application may use:

create view Requested_vs_Ordered as 
select O.Item, sum (O.Quantity) as Or-
dered, D.Requested 
from Demand D left outer join Orders O 
  on D.Item = O.Item 
group by O.Item, D.Requested

So far, the reporting application achieved its 
goals with pure SQL statements. Assume now 
that instead of having the table Orders stored 
in the database, we would like the system to 
compute it optimally. That is, the cost of the 
order should be minimal while the demand 
is satisfied (i.e., for every item, the ordered 
quantity is at least as the quantity requested 
in Demand). In DGQL, we reuse the existing 
SQL statements of the reporting application, 
with some additions. First, we use an augment 
clause to indicate what we would like to find 
in the Orders table:

create view Orders as 
augment 
  select S.Vendor, S.Item from Supply 
with Quantity integer >= 0

This statement indicates that the attribute 
quantity is not known, but needs to be de-

termined by the system. Second, we add the 
following SQL integrity constraint, which is 
self-explanatory:

constraint Order_Satisfies_Demand 
on Requested_vs_Ordered 
check Ordered >= Requested

Finally, we issue the minimize command:

minimize Total_Cost

Executing the program that consists of the 
two original SQL statements and the three ad-
ditional statements results in an optimal Orders 
table: Vendors and items (extracted from the 
Supply table) are augmented with appropriate 
quantities so that the requested quantities are 
satisfied, while the total cost is minimized.

Note that the optimization here may be 
viewed as the “inverse” of the reporting ap-
plication: The reporting application calculated 
the total cost for a given set of orders, whereas 
the optimization calculated the set of orders for 
minimal total cost. While in this small example, 
the optimal solution will designate a single ven-
dor for each item (the vendor with the lowest 
cost), in general, such optimization problems 
are non-trivial, as they might impose various 
constraints (e.g., vendors may have limited 
quantities on hand, or they should reside in a 
particular vicinity).

To handle this optimization problem (i.e., 
find the optimal orders), state-of-the-art tools 
require modeling the situation in a separate 
decision optimization system. The DGQL ap-
proach is to extend the SQL statements of the 
reporting application with SQL-like statements 
for specifying the constraints and the objec-
tive − to automatically generate mathematical 
programming models that will give the optimal 
solution. The resulting set of statements is called 
a DGQL query. For the purpose of explanation, 
the problem we described was particularly 
simple. The optimization problems discussed 
or suggested in the following sections are con-
siderably more complex.
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A TRANSACTION MODEL FOR 
VIRTUAL ENTERPRISES

The model we describe was derived from the vir-
tual enterprise model VirtuE (D’Atri & Motro, 
2008), which has been distilled to include only 
the concepts essential to this work.

Basic Concepts

A virtual enterprise is a set of members	M and a 
set of products	P. Each member manufactures 
at least one product from the set P. For each 
product p ∈ P that member m ∈ M manufac-
tures, there is at least one production	plan	s(m,	
p), which is the set of component products that 
m must obtain from other enterprise members 
to manufacture p (i.e., the bill of materials), 
and for each component, the member from 
which it will be obtained. A null production 
plan (i.e., s(m,	p) = ∅) indicates that m does 
not need to import any component products to 
manufacture p.

Each production plan is associated with a 
price and a risk. The price is the amount that 
the member requests from a client in return for 
this product. The risk is the probability that 
this member will fail to deliver the requested 
product. Note that members may charge differ-
ent prices for the same product, depending on 
the production plan and the associated risk. For 
example, a particular plan that reduces risk may 
entail a higher price, possibly to compensate for 
higher costs of procurement. Hence, members 
can be thought as offering different versions 
of the same product. The structure of price and 
risk is discussed later in this section.

Transactions

A transaction is a bilateral exchange between 
two parties in which goods are delivered in return 
of payment. The party initiating the transaction, 
requesting the goods and providing the pay-
ment is the client; the party responding to the 
transaction, providing the goods and receiving 
the payment is the supplier. Transactions are 
usually divided into distinct steps, and in this 
paper, we assume they comprise three steps: 

(1) order is the request by the client to the 
supplier that describes the goods needed; (2) 
manufacturing is the phase in which the sup-
plier prepares the goods; and (3) fulfillment is 
the delivery of the goods by the supplier to the 
client. Thus, orders initiate transactions, and 
fulfillments conclude them.

In a virtual enterprise environment, trans-
actions are the mechanism for providing target 
products to enterprise clients. Such transactions 
are termed external transactions. To fulfill an 
external transaction, the enterprise member 
may procure necessary products from other 
members of the enterprise. These exchanges 
are termed internal transactions. In an internal 
transaction both the client and the supplier are 
members of the enterprise. The supplier of an 
internal transaction may, in turn, initiate other 
internal transactions. Altogether, the execution 
of an external transaction is a distributed effort 
of a group of enterprise members.

Assume an external client initiates a trans-
action t that orders product p from member 
m. Once this member receives the order, it 
examines the production plan that corresponds 
to this offer, and then launches a set of transac-
tions that procure the components. When these 
transactions have been fulfilled, m can manu-
facture the product and deliver it to its client. 
The satisfaction of an external transaction is 
therefore a recursive process. We assume that 
the process terminates with transactions that 
procure products whose manufacturing does 
not require importation.

Transactions can be illustrated with tree 
diagrams, in which nodes represent manufactur-
ing of products by suppliers, and edges indicate 
initiation of sub-transactions. In a transaction 
tree, the root node models the manufacturing 
of the ultimate product (the product ordered by 
the external client), internal nodes model the 
manufacturing of component products, and leaf 
nodes model the manufacturing of import-free 
products. Each transaction is assumed to have 
a unique identifier, which is assigned to the 
manufacturing node. A simple transaction tree 
is shown Figure 1. In this example, an external 
client submits a transaction t0 to order product 
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p0 from member m0. To fulfill this order, m0 
submits two sub transactions: t1 orders product 
p1 from member m1, and t2 orders p2 from m2. m1 
fulfills t1 locally; but m2 submits two additional 
sub-transactions: t3 orders p3 from m3, and t4 
orders p4 from m4. Both m3 and m4 fulfill their 
orders locally.

Price

As already mentioned, each member associ-
ates a price with each of its production plans 
(product versions). Alternatively, this price may 
be associated with the transactions that order 
this product version. Let t be a transaction that 
orders part p from member m, and let s(m,	p) be 
the corresponding production plan. We denote 
price(t) the amount charged by m for the product 
p. We assume that price(t) is the sum of three 
components: procurement cost, transaction 
overhead cost and manufacturing costs. Let t1, 
. . ., tn be the sub-transactions of t.

1.  Procurement cost: price(t1), . . ., price(tn). 
This is the amount paid by m (as a client) 
to each of its suppliers to obtain the n 
component products necessary to satisfy 
the transaction t.

2.  Transaction overhead cost: overhead(t1), 
. . ., overhead(tn). This is the cost as-

sociated with the execution of each sub-
transaction and borne by m (the client of 
the sub-transactions).

3.  Manufacturing cost: manufacture(t). This 
is the cost of manufacturing the product 
from its n components (it incorporates the 
manufacturer’s profit).

Altogether:

price t manufacture t

price t overhead t
i

i

n

i

( ) ( )

( ( ) ( ))

=

+ +
=

∑
1

 (1)

Let t0 denote the root of a transaction initi-
ated by an external client, then price(t0) is the 
amount the external client pays for the ultimate 
product. As price is always a recursive sum-
mation of manufacturing costs and transaction 
overhead costs, it is sufficient to store the latter 
two. Hence, we label each node of a transaction 
tree with the associated manufacturing cost, 
and we label each edge with the associated 
overhead cost.

We illustrate the concept of transaction trees 
and their costs with the example of Figure 1, 
shown in Figure 2 with example costs. In Figure 
2, node labels denote the transaction identifiers 
and the manufacturing costs, and edge labels 

Figure	1.	A	transaction	tree
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denote the transaction overhead costs. The 
derived transaction prices are then: price(t1) = 
10, price(t3) = 20, price(t4) = 15, price(t2) = 70, 
and price(t0) = 110.

Risk

In addition to price, each member also associ-
ates a risk with each of its production plans 
(product versions). This is the probability that 
the supplier will fail to fulfill a request for this 
product version. Like price, risk may also be 
associated with the transactions that order this 
product version. Let t be a transaction that or-
ders part p from member m, and let s(m, p) be 
the corresponding production plan. We denote 
risk(t) the probability that t will fail; that is, 
the probability that m will not complete the 
associated production plan.

risk(t) = P(t fails) = P(m does not complete  
the production plan for product p) 

We assume that risk(t) combines two dif-
ferent components (both can be obtained by 
tracking the performance of the enterprise):
Manufacturing risk measures the risk (the 
probability of failure) associated with the 
particular member m in the particular manu-
facturing task:

mrisk(m) = P(m fails) 

Product risk measures the risk associated 
with the execution of a particular production 
plan s(m, p). We interpret this risk as the prob-
ability that at least one of the subtransactions 
to procure components for p fails:

prisk(p) = P(at least one subtransaction to  
procure components for p fails) 

With this definition, product risk increases 
with the complexity of the product (its number 
of components): If a product is changed to 
require an additional component, product risk 
will increase.

Altogether:

risk(t) = P({m fails} ∪{ at least one  
subtransaction to procure components   
for p fails}) 

Assume that, to procure components for 
p, m initiates subtransactions t1, . . ., tn. Then

risk(t) = P({m fails} ∪ {t1 fails}∪. . .  
∪ {tn fails})  (2)

For a transaction t that orders an import-
free product from supplier m (i.e., m does not 

Figure	2.	A	transaction	tree	with	its	associated	costs
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initiate any subtransactions), the risk is simply 
that m fails; that is, mrisk(m).

It is convenient to view mrisk(m) as the 
probability of node failure, and risk(t) as the 
probability of edge failure.

If we assume that the n + 1 events in Equa-
tion 2 are mutually exclusive (i.e., there is at 
most one failure), then

risk(t) = mrisk(m) + risk t
i

i

n

( )
=

∑
1

 (3)

In general, however, we may not make 
this assumption, and risk(t) must be calculated 
according to De Moivre’ inclusion-exclusion	
principle (De Moivre, 1718):

P (
i

n

=1
 Ai) =

i

n

=

∑
1

P(Ai) - 
i j<

∑ P (Ai ∩ Aj)  

+ 
i j k< <

∑ P (Ai ∩ Aj ∩ Ak) - . . .  

+ (-1)n-1P (
i

n

=1
 Ai) 

This formula expresses the probability 
of the union of events with n terms that are 
alternately added and subtracted. (The parity 
of n determines whether the final term is added 
or subtracted.) The first term totals the prob-
abilities of the n events; the second term totals 
the probabilities of the intersections of two 
events; the third term totals the probabilities of 
the intersections of three events, and so on; the 
final term is the probability of the intersection 
of all n events.

Unless n is small, it is normally impossible 
to calculate the joint probabilities, and the usual 
approach is to provide lower and upper bounds, 
such as the Bonferroni inequalities (Bonferroni, 
1936). In their simplest form, these inequalities 
provide the first term as a higher bound and 
the difference between the first two terms as 
a lower bound.

If we assume that the n+1 events are in-
dependent (i.e., the failure of a node and the 
failure of each incoming edge are unrelated), 
then a simplified inclusion-exclusion formula 

may be used that is derived from probabilities 
of simple events only:

P (
i

n

=1
 Ai) =

i

n

=

∑
1

P(Ai) - 
i j<

∑ P (Ai) ∙P(Aj)  

+
i j k< <

∑ P (Ai) P(Aj) P(Ak) - . . . + (-1)n-1

i

n

=

∏
1

 

P (Ai) 

With this assumption of independence, 
risk(t) may be calculated from mrisk values 
rather simply, in a propagation process from 
the leaves of the transaction tree to its root. As 
an example, consider the previous transaction 
tree and assume that the risks of member fail-
ure are 0.01 for manufacturing of import-free 
products, and 0.03 for the others. (In general, 
it should not be that manufacturers are divided 
into these two classifications.) Then, in three 
phases of propagation (Figure 3), we derive that 
the risk of the external transaction is risk(t0) 
= 0.29197. As the example demonstrates, the 
risk increases with the number of component 
products (in this example, 10), and the number 
of intermediate suppliers (in this example, 8).

Optimization

The prices and risks of products bear obvious 
structural similarities: (1) Both are defined in 
recursive processes that terminate at import-free 
products; (2) both have components that are 
determined by the manufacturing member: In 
the case of price — transaction overhead cost 
and manufacturing cost, and in the case of risk 
— manufacturer risk; and (3) both have compo-
nents that are determined by this manufacturer’s 
suppliers: In the case of price — procurement 
cost, and in the case of risk — product risk.

Roughly, the behavior of each member 
follows this paradigm. First, the member 
considers which products it could offer. Next, 
it examines various possible bills of materials 
for each product. For each bill of materials, it 
then investigates possible suppliers. Finally, 
it determines which products to offer and the 
associated prices and risks. In making these 
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decisions, it considers information made avail-
able by other members regarding the products 
they offer, and the associated prices and risks. 
It then adheres to its own business goals and 
selects those production plans that optimize 
these goals.

Optimization goals may vary. We assume 
optimization goals that are based on prices and 
risks. Thus, members can choose to maximize 
expected revenue, or to minimize expected 
procurement costs, or to minimize risk. In the 
following we focus on the maximization	 of	
expected	profit (an exact definition is provided 
later).

Thus, decisions are done ahead of orders. 
When receiving an order for a particular prod-
uct (at a particular price and risk), the member 
simply executes the associated production plan.

Obviously, members must reconsider their 
decisions periodically, to reflect changes made 
by other members, or to incorporate changes in 
their own operation.

Failure

Of the three steps of transactions, we assume that 
manufacturing is the only step prone to failure; 
i.e., order never fails, and (if manufacturing is 
successful) fulfillment never fails. Failure could 
be due to a variety of different reasons: a com-
munication failure, sudden withdrawal from the 
enterprise, refusal to honor prior commitments, 
and so on. Failure can be modeled as a discon-
nection of an edge in the transaction tree.

To analyze the cost of transaction failure, 
we make several assumptions. First, payment 
is part of fulfillment. Second, all the sub-
transactions of a given transaction are placed 
simultaneously, and it is not possible to cancel 
orders that have already been placed. Finally, 
transactions cannot be reversed; i.e., it is not 
possible to return the goods and obtain a refund.

Under these assumptions, the client of a 
failed transaction does not pay for the cost of 
the product (as fulfillment never took place), 

Figure	3.	The	propagation	of	risk
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and it bears only the cost of the transaction 
overhead (as this cost was already invested). 
The client, however still pays for all the other 
component products that have been delivered, 
and for the cost of manufacturing (although 
manufacturing was not completed). Assuming 
the supplier of the failed transaction completed 
all its subtransactions promptly (if not, there 
had been earlier failure), it bears the complete 
cost of the product it was committed to produce.

Consider the transaction tree in Figure 4. 
For simplicity, assume that all manufacturing 
costs are 5, and all transaction overhead costs 
are 1. The overall price is then 107. Assume now 
two failures: in t7 and in t11. The former failure 
propagates to t2, and the latter propagates to t5 
and t1, and consequently t0 fails. The external 
client does not pay the virtual enterprise the price 
of 107, and this loss is distributed as follows: 
t11: 5, t5: 12, t1: 12, t7: 17, t2: 24, and t0: 37. Thus, 
only members on a failure path bear the price 
of failure (t0, t1, t5, and t11 are on the path of the 
first failure, and t0, t2, and t7 are on the path of 

the second failure). Essentially, the price they 
pay is their overhead for the subtransactions 
they launched, and the price of products that 
were delivered but proved unnecessary because 
the product for which they were intended was 
not manufactured.

Proposition: The losses borne by the participat-
ing members add up to the price of the 
ultimate product.

The proof is straightforward. The price of 
the ultimate product is the sum of all node costs 
and all edge costs, and our distribution of the 
cost assigned each of these costs to exactly one 
member. One obvious conclusion is that because 
the price of products increases along the sup-
ply chain, “high level” suppliers tend to pay a 
higher share of the loss. Although this higher 
risk would normally be mitigated by higher 
profit margins, it is important to minimize the 
risk of failure.

Figure	4.	The	distribution	of	failure	costs
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COORDINATED AND 
AUTONOMOUS ENTERPRISES

So far, we outlined the basic concepts that are 
shared by all virtual enterprises. We now turn 
our attention to the specific variants discussed 
earlier: coordinated and autonomous virtual en-
terprises. The distinction between coordinated 
and autonomous enterprises stems from their 
approach to information sharing and strategic 
decisions (i.e., optimization).

More specifically, we assume that in co-
ordinated enterprises

1.  Information: Each member shares its 
production capabilities (products it can 
manufacture), the components it needs for 
each product, and its operational costs and 
risks.

2.  Optimization: The member who receives 
the external order chooses the optimization 
target, and constructs a complete transac-
tion tree that achieves the optimum; each 
participating member is thus instructed 
as to which production plan to use for the 
component that it is required to supply, and 
whom to order from.

whereas in autonomous enterprises

1.  Information: The only information shared 
by members is the products they manufac-
ture, and, for each product, the associated 
price and risk.

2.  Optimization: Each member conducts 
its operation according to its own inter-
ests, choosing its individual optimization 
targets.

OPTIMIZING TRANSACTIONS 
WITH DGQL

In both the coordinated and autonomous cases, 
we choose to optimize the expected	profit from 
offering a product, which we define. We note 
that other optimization targets are possible.

Let m be a member who considers offering 
a product with the following parameters: The 
manufacturing cost at m is p and the manufactur-
ing risk is r, and the product requires procuring 
n component products, each involving price pi, 
risk ri and transaction cost ti.

The transaction costs add up to t
ii

n

=∑ 1
 

and the component costs add up to p
ii

n

=∑ 1
. 

After adding the local manufacturing cost 
(recall that it incorporates the profit), the over-
all price of this product is
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i i

i

n

= + +
=
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1
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The procurement risk of this product is 
1 1

1
− −
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ii

n . After factoring-in the 
manufacturing risk, the overall risk of this 
product is
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Altogether, the expected revenue to m from 
this transaction is

expected revenue risk price = − ×( )1  
(6)

While m bears the entire transaction costs, 
it only bears the cost of components that were 
delivered (and the manufacturing cost). Alto-
gether, the expected cost to m is

expected cost p t r p
i i i

i

n

 = + + − ×
=

∑( ( ) )1
1

 

(7)

Finally, the expected profit to m is defines as

expected	profit = expected	revenue	
–expected	cost (8)



International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012   55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

COORDINATED ENTERPRISES

We now describe the optimization of expected 
profit in coordinated enterprises. Our descrip-
tion refers to the SQL/DGQL program in Ap-
pendix A. In this type of enterprise, the enterprise 
member receiving the external order is optimiz-
ing the overall execution of the order using 
data provided by every enterprise member. In 
relational database terms, all enterprise informa-
tion is stored in three tables (the corresponding 
program statements are numbered 1-3):

Manufacturing	
=(Plan,	Manufacturer,	Product,	Mcost,	 	
Mrisk)	

Transaction	
=(Client,	Product,	Supplier,	Tcost)	

Components=(Plan,	Component_Product)	

Manufacturing describes production plans. 
For each product plan, it stores the manufactur-
ing member, the product it manufactures and 
the associated (add-on) manufacturing cost 
and risk. Transaction specifies the overhead 
of a transaction in which a client member 
purchases a product from a supplier member. 
Finally, Component describes production plans 
(bills-of-materials): The set of component parts 
that comprise a production plan is described in 
a corresponding set of rows, each associating 
the production plan with a product. Note that 
Plan, Manufacturer (or Client or Supplier), and 
Product (or Component_Product) are identifiers 
unique to the entire enterprise. The output of 
the process is two tables defined by augmenta-
tion. These tables would contain eventually the 
optimal solution (statements 4-5):

Procurement	
=(Plan,	Component_Product,	Component_	
Plan)	

Catalog	
=(Plan,	Manufacturer,	Product,	Mcost,		
Mrisk,	Price,	Risk)	

Procurement is an augmentation of Com-
ponents with the field Component_Plan which 
indicates which production plan to order when 
procuring a product for use in a production plan. 
Catalog is an augmentation of Manufacturing 
with two fields: Price, which is the overall price 
of the product manufactured by this production 
plan, and Risk, which is the overall risk associ-
ated with ordering the product manufactured 
by this production plan. These two values 
are outcome of the procurement decisions. A 
sequence of three SQL views is now created to 
define the objective of the optimization (state-
ments 6-8). First,

Procurement_Metrics	
=(Client,	Possible_Plan,	Price,	Risk,	Tcost)	

describes the product price, product risk, and 
transaction overhead incurred when a client 
member initiates a transaction to procure a 
particular plan (product version) from its 
manufacturer. Next,

Catalog_Metrics	
=(Plan,	Price,	Computed_Price,	Risk,	 		
Computed_Risk)	

describes, for each production plan (product ver-
sion), its overall price and risk (corresponding 
to Equations 4 and 5). This view also extracts 
the assigned price and risk from Catalog, and 
is used to express	constraints	that	the	assigned	
values	must	be	equal	to	the	computed	values.	
The	final	view,

Plan_Expected_Profit	
=(Plan,	Expected_Profit)	

specifies, for a given production plan, the 
expected profit it generates (corresponding 
to Equations 6, 7 and 8). Finally, a maximize 
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statement is used to specify Expected_Profit as 
the objective of the optimization (statement 9).

AUTONOMOUS ENTERPRISES

We now turn to the optimization of expected	
profit in autonomous enterprises. Our descrip-
tion refers to the SQL/DGQL Appendix B. In 
this type of enterprise, each enterprise member 
assembles its catalog of offerings as follows. 
For each of its product versions (production 
plans) it chooses the suppliers to optimize 
its expect profit from that production plan. It 
then calculates the overall price and risk and 
publishes them.

The information available to each member 
is stored in three tables as well:

Catalog	
=Plan,	Manufacturer,	Product,	Price,	Risk)	

Transaction	 	
=(Client,	Product,	Supplier,	Tcost)	

Components=(Plan,	Component_Product)	

Catalog describes available production 
plans. For each production plan it stores the 
manufacturing member, the product it manu-
factures and the associated (total) price and risk. 
This is the only “outside” information available 
to each member (note the difference in the 
last two fields from the earlier Manufacturing 
table). Transaction specifies the overhead of a 
transaction in which a client member purchases 
a product from a supplier member. However, 
the field Client is always the local member. 
Finally, Component describes production plans 
(bills-of materials): The set of component parts 
that comprise a production plan is described in 
a corresponding set of rows, each associating 
the production plan with a product. Again, the 
plans described are only those offered by the 
local member. The output of the process is 
one table defined by augmentation. This table 
would contain eventually the optimal solution.

Procurement	
=(Plan,	Component_Product,	Component_	
Plan)	

Procurement is an augmentation of Com-
ponents with the field Component_Plan which 
indicates which production plan to order when 
procuring a product for use in a production plan. 
A sequence of three SQL views is now created 
to define the objective of the optimization 
(statements 5-7). First,

Procurement_Metrics	
=(Client,	Possible_Plan,	Price,	Risk,	Tcost)	

describes the product price, product risk, and 
transaction overhead incurred when the lo-
cal member initiates a transaction to procure 
a particular plan (product version) from its 
manufacturer. Next,

Catalog_Metrics	
=(Plan,	Manufacturer,	Price,	Risk)	

describes, for each production plan (product ver-
sion), its overall price and risk (corresponding 
to Equations 4 and 5). The final view,

Plan_Expected_Profit	
=(Plan,	Expected_Profit)	

specifies, for a given production plan, the 
expected profit it generates (corresponding 
to Equations 6, 7 and 8). Finally, a maximize 
statement is used to specify Expected_Profit 
as the object of the optimization (statement 8).

EXPERIMENT EVALUATION

In previous sections we described a model for 
transactions in virtual enterprises and its associ-
ated optimization problems, and we showed how 
these problems can be concisely modeled and 
solved using DGQL in a production database 
setting. We now describe a system that imple-
ments (compiles and executes) DGQL programs 
of the type given earlier, and provide details 
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on various experiments with specific virtual 
organization examples.

Our experimental study addresses four 
basic questions: (1) Does DGQL correctly solve 
the virtual enterprise problem as modeled, (2) 
how to classify the virtual enterprise optimiza-
tion problem both in size and complexity, (3) 
is the implementation efficient with respect to 
the size of the input problem, and (4) are solv-
able virtual enterprises of sufficient size to be 
interesting in real world applications.

In presenting our results, we consider 
the problems of autonomous and coordinated 
enterprises separately. While any autonomous 
enterprise can be correctly modeled and solved 
as a coordinated enterprise, where each com-
ponent product has only atomic plans for that 
product, our implementation showed that the 
simpler autonomous model had a significantly 
faster running time for the same virtual enter-
prise problems. This is discussed further in the 
upcoming sections

In both experiments the test platform used 
was a quad-core Xeon X3430 with 4GB DDR3 
RAM running 64-bit Linux. The prototype 
DGQL implementation uses PostgreSQL 8.4 as 
the database backend and is written in Java. This 
setup is typical of how we expect DGQL will 
be used in a production environment. For these 
experiments, we have disabled multi-threading 
in our DGQL implementation to present an 
accurate and easily comparable performance 
profile of each problem. The algorithms pre-
sented use a form of stochastic search and are 
easily parallelized across multiple cores in a 
cooperative fashion.

DGQL ALGORITHM

As described earlier, at optimization time 
DGQL translates a database program into an 
algebraic model and invokes an external solver. 
Matching the appropriate solver to a particular 
model greatly impacts the performance of 
DGQL. Based on problem features, DGQL can 
automatically detect and translate an algebraic 
model into the appropriate solver API.

Both the autonomous and coordinated vir-
tual enterprises are concerned with maximizing 
expected profit. The computations for expected 
profit involve computing the joint probability of 
an event (plan failure) and are inherently non-
linear. Additionally, the contribution of each 
component choice to both expected	 revenue 
and expected	cost means that optimal choices 
for individual components cannot be made 
independently and later combined to give an 
optimal overall result. Hence these optimization 
problems are not decomposable. Finally, our 
decision variables indicate which production 
plan to select for each component product and 
are over a finite or enumerated domain.

For these reasons, the virtual enterprise 
problem is best suited to a constraint program-
ming (CP) solver. In our experimentation we 
use ILOG CP Optimizer 2.3 as the underlying 
solver technology. This solver uses automati-
cally computed heuristics to steer its search 
path through the solution space. This increases 
the likelihood that an optimal solution will be 
found early on. However, ultimately the entire 
solution space must be considered to prove that 
a solution is, in fact, optimal. Although this 
optimal solution may be found early on, our 
experiments will measure total solution time. 
Future work on DGQL will look at estimating 
a solver cutoff time to capture this solution 
without exploring the entire space.

AUTONOMOUS ENTERPRISES

In an autonomous virtual enterprise, the com-
ponent products for a particular plan are se-
lected based only on their published price and 
risk. In a plan that requires n components where 
each component has pi alternative plans, the 
total number of alternative production plans is 
T p

ii

n

=
=∏ 1

. When each component has the 
same number of alternative plans p, this equa-
tion becomes T = pn. Hence, T is the number 
of procurement “vectors” that a member of the 
enterprise must consider when attempting to 
satisfy a production plan, and is a good measure 
of the complexity of the problem. To show how 
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the values of n and p impact the performance 
of DGQL, our experimentation makes use of a 
simplifying assumption that all component 
products have the same number of alternative 
plans.

For this experiment, we generated random 
problems based on two parameters, the number 
of component products n and the number of 
alternative plans for each component product 
p. Each of these random problems was instan-
tiated in the database and DGQL’s maximize 
Expected_Profit command invoked. The values 
of n and p were chosen with the following algo-
rithm that gives a good sampling of reasonably 
sized problems:

Input for the experiment of autonomous 
enterprises was generated using Algorithm 1 
with values M = 50 and K = 500. These experi-
ments took about 12 hours to run on the test 
platform. The results can be found in Figure 5. 
As expected, solution time is clearly linear in pn. 
This is because we intentionally let the solver 
run to optimality and this requires considering 
all pn production alternatives. An attractive 
result is that our implementation appears to 
scale well. Even when the number of produc-
tion alternatives is in the tens of billions, it still 
takes only minutes to solve.

Another interesting result is that the data 
all fall between two linear bounds. This is due 
to the fact that for the same overall procurement 
space size pn, the computation expected profit 
takes fewer multiplications when the number 
of component products n is smaller than when 
it is larger.

Consider the sample output from the au-
tonomous experiment in Table 1. When n = 24 
it took nearly 4× the time to walk the solution 
space as when n = 6. We can thus conclude that 
solution time is linear in pn with a coefficient 
linear in n.

COORDINATED ENTERPRISES

In a coordinated virtual enterprise, the con-
tracting member can choose not only which 
production plans to use for immediate compo-
nent products, but also which production plans 
to use to construct those component products, 
and so on. The idea is that by controlling the 
entire transaction tree that goes into a particular 
product plan, the member can maximize its 
expected profit even if it means sacrificing the 
expected profit of other members. Here we must 

Figure	5.	Solution	time	vs.	procurement	space	size	for	autonomous	enterprises
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consider the depth of the production tree when 
computing the solution space.

Similar to the autonomous case, we make 
a few simplifying assumptions for the purpose 
of experimentation. In addition to assuming 
that all component products n have the same 
number of production plans p, we also assume 
that every production plan has the same depth 
d. The solution space thus forms a balanced and 
complete tree and we can compute the number 
of alternative production plans T as:

T f n p d

p when n
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Clearly fT grows fast with d. Despite this 
fact, using these simplifying assumptions is 
convenient for our experimentation as it allows 
us to use a similar problem generation technique 
as the autonomous case. In the coordinated 
experiment, we generated problems based on 
three parameters, the number of component 
products n, the number of alternative plans p 
and the production plan depth d. These random 
problems were inserted into the database and 
the solution time from invoking maximize 

Expected_Profit was measured. The values of 
n, p and d were chosen with Algorithm 2 to give 
a reasonable sampling of coordinated virtual 
enterprise problems.

Input for experiment of coordinated enter-
prises where generated using Algorithm 2 with 
values M = 15, D = 5 and K = 350. These ex-
periments took about 16 hours to run on the 
test platform. The results can be found in Fig-
ure 6. Similar to our experience with the au-
tonomous problem, we expected solution time 
to be linear in size of the procurement space. 
Again, this is due to the fact that we let the 
underlying CP solver run to optimality. Unlike 
the results from the autonomous experiment, 
the coordinated data suggests that there is a 
much tighter linear range that the data fall into. 
While not demonstrated by this data, we would 
expect the variation in linear bounds on solution 
time is due to the coefficient being a function 
of n and d.

Another interesting result is that the DGQL 
formulation of coordinated enterprises is notice-
ably more expensive than the formulation of 
autonomous enterprises of d = 1. Figure 7 shows 
both sets of data on the same scale. Initial in-
vestigation suggests this is due to the extra 
decision variables and constraints introduced 

Algorithm	1.	Selecting	input	parameters	for	the	“autonomous”	experiment

Input: Max components and plan alternatives M, desired experimental runs K
Output: List of experiment parameters (n1, p1), (n2, p2), …, (nK, pK)
Method: 
    1:  Let L= ∅

    2:  for i  = 1 to M,  j  = 1 to M do
    3:      Add (i, j) to L
    4:  end for
    5:  Sort L = {(n1, p1), …} based on pi

n
i  ascending

    6:  Return first K elements of L

Table	1.	Comparison	of	solution	time	for	experimental	runs	with	the	same	procurement	space	size	

Components n Plans p Space size pn Solution time (seconds)

6 
8 
12 
24

16 
8 
4 
2

16777216 
16777216 
16777216 
16777216

0.567 
0.701 
0.941 
1.858
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by the coordinated formulation to restrict the 
values of Price and Risk. Future work with 
DGQL will consider query optimization and 
rewriting using an optimization algebra similar 
to the relational algebra used in SQL query 
analysis. This will allow redundant algebraic 
information to be removed before translating 
the problem into a solver specific model.

CONCLUSION

We described a simple yet powerful cost model 
for transactions in virtual enterprises. Simplicity 
is maintained with several assumptions, includ-
ing: (1) Transactions involve only three phases: 
ordering, manufacturing and fulfillment; (2) 
all subtransactions are placed simultaneously 
(e.g., it is not possible to choose the second sub-
transaction after the first has been completed); 
(3) orders may not be cancelled or reversed 
(no refunds); (4) transaction cost is the sum of 
external procurement, transaction overhead, 
and internal manufacturing; (5) transaction 
risk is the combination of manufacturer risk 
and product risk, where the latter is the risk in 
procuring the product components; and (6) the 
failure of a node (a manufacturer) and any of its 
incoming edges (the subtransactions it issued) 
are independent events, allowing for simple 
calculation of risk based on probabilities of 
individual events only. With the exception of 
(6), the other assumptions can be relaxed at the 
cost of a more complex model, but DGQL should 
be able to manage this additional complexity. 
While the assumption on the independence of 
failures may sometimes be invalid, we maintain 

that the calculated risks and the outcome of the 
optimization would still be highly beneficial.
Yet, the power of this simple model is in its abil-
ity to represent appropriately many real-world 
situations and perform several optimizations, 
including: (1) Virtual enterprises of different 
types of autonomy; (2) the freedom to order 
parts from different sources, and to assemble 
parts according to different schemes; (3) the just 
distribution of the cost of a failed transaction 
among the suppliers on the failure path, with 
higher costs being borne by suppliers higher 
on the supply chain; (4) the positive correlation 
between product complexity and product risk; 
(5) the propagation of product risks upward 
the supply chain; and (6) the optimization of 
individual member operations to reduce costs, 
risks, or expected losses.

We then focused on this final feature of 
optimizability and we presented DGQL, a 
language for expressing and executing opti-
mization problems in a database setting. For 
enterprises already invested in database technol-
ogy (software and programmers), DGQL offers 
a convenient and efficient method to extend 
that technology to solve optimization problems. 
While the DGQL code we presented may ap-
pear to be non-trivial, it must be stressed that 
to experienced SQL programmers, acquiring 
proficiency in DGQL requires only moderate 
effort (considerably less than mastering the 
techniques of mathematical programming and 
the requisite new software tools).

Our experiment has demonstrated the 
viability of DGQL as an optimization tool. 
It is numerically stable and correctly solves 
problems of the autonomous and coordinated 

Algorithm	2.	Selecting	input	parameters	for	the	“coordinated”	experiment

Input: Max components and plan alternatives M, max depth D, experimental runs 
K
Output: List of experiment parameters (n1, p1,d1), …, (nK, pK,dK)
Method: 
    1:  Let L= ∅

    2:  for i  = 1 to M,  j  = 1 to M, k = 1 to D do
    3:      Add (i, j,k) to L
    4:  end for
    5:  Sort L = {(n1, p1,d1), …} based on fT(ni,pi,di) ascending
    6:  Return first K elements of L
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virtual enterprise. For both types of enterprise 
it parameterized the input size in terms of 
the number of component products n, plan 
alternatives p, and for coordinated enterprises, 
the depth of the production tree d, and these 
parameters were used to measure the problem 
complexity. Our implementation was shown 

to be efficient with respect to its complexity, 
with running time that is linear in the number 
of procurement alternatives.

Our work continues, with future work 
related to the transaction model includes: (1) 
Relax some the aforementioned model restric-
tions; (2) add delivery time as a third major 

Figure	6.	Solution	time	vs.	procurement	space	size	for	coordinated	enterprises

Figure	7.	Solution	time	of	autonomous	enterprises	vs.	coordinated	enterprises	of	depth	1
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parameter (paralleling risk and price). (3) allow 
members to maintain stock and thus benefit from 
economics of scale (for example, transaction 
overhead would be paid less frequently); and 
(4) allow members to place redundant orders 
to further improve some variables (e.g., reduce 
risk). With respect to optimization we plan to 
focus on two issues. (1) How to use heuristics to 
discover good approximate solutions that do not 
require examining the entire set of procurement 
alternatives. One promising approach involves 
a combination of constraint programming tech-
niques with an estimated solver cutoff time. (2) 
As our experiment showed, there is room for 
improvement in the preprocessing phase before 
DGQL is translated into the solver model. This 
will involve query optimization and rewriting 
and hopefully should close the performance 
gap between the autonomous case and the 
coordinated case with depth 1.
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APPENDIX A

DGQL Optimization for Coordinated Enterprises

1. 
create table Manufacturing (
    Plan integer,
    Manufacturer integer,
    Product integer,
    Mcost numeric,
    Mrisk numeric,
    primary key (Plan));
2. 
create table Transaction (
    Client integer,
    Product integer,
    Supplier integer,
    Tcost numeric,
    primary key (Client, Product, Supplier));
3. 
create table Components (
Plan integer,
Component_Product integer,
primary key (Plan, Component_Product));
4. 
create view Procurement as
augment Components C with tuple in
    select M.Plan as Component_Plan
    from Manufacturing M
    where M.Product = C.Component Product;
5. 
create view Catalog as
    augment Manufacturing with
    Price numeric,
    Cost numeric;
6. 
create view Procurement_Metrics as
    select T.Client, C.Plan as Possible_Plan, C.Price, C.Risk, T.Tcost
    from Transaction T, Catalog C
    where C.Product = T.Product and C.Manufacturer = T.Supplier;
7. 
create view Catalog_Metrics as
    select C.Plan,
        C.Price, 
        C.Mcost + sum(M.Price + M.Tcost) as Computed_Price,
        C.Risk, 
        1 - (1 - C.Mrisk) * prod(1 - M.Risk) as Computed_Risk
    from Catalog C
    left outer join ( 
        select * 
        from Procurement P, Procurement_Metrics PM
        where PM.Possible_Plan = P.Component_Plan
   ) as T
    on T.Client = C.Manufacturer and T.Plan = C.Plan
    group by C.Plan, C.Price, C.Mcost, C.Risk, C.Mrisk
    check Price = Computed_Price
    check Risk = Computed_Risk;



66   International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8. 
create view Plan_Expected_Profit as
    select C.Plan,
        (1 - C.Risk) * C.Price         /* expected revenue */
        - (C.Mcost + sum(PM.Tcost))      /* manufacturing and overhead 
costs paid*/ 
        - sum((1 - PM.Risk) * PM.Price)   /* expected components cost 
        */ 
    as Expected_Profit
    from Catalog C
        left outer join ( 
        select *
        from Procurement P, Procurement_Metrics PM
    where PM.Possible_Plan = P.Component_Plan
   ) as T
    on T.Client = C.Manufacturer and T.Plan = C.Plan
    where C.Plan=${Plan};
        /* substitute ${Plan} with the production plan specified in the exter-
nal transaction 
         */ 
9. 
maximize Plan_Expected_Profit.Expected_Profit;

APPENDIX B

DGQL Optimization for Autonomous Enterprises

1.
    create table Catalog (
    Plan integer,
    Manufacturer integer,
    Product integer,
    Price numeric,
    Risk numeric,
    primary key (Plan));
2. 
create table Transaction (
    Client integer,        /* Client is always the local member */
    Product integer,
    Supplier integer,
    Tcost numeric,
    primary key (Client, Product, Supplier));
3. 
create table Components (
Plan integer,           /* Plan is a production plan of the local member 
*/ 
    Component_Product integer,
    primary key (Plan, Component_Product));
4. 
create view Procurement as
augment Components C with tuple in
    select Plan as Component_Plan
    from Catalog CT
    where CT.Product = C.Component_Product;
5. 
create view Procurement_Metrics as
    select T.Client, M.Plan as Possible_Plan, M.Price, M.Risk, T.Tcost
    from Transaction T, Catalog C
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    where C.Product = T.Product and C.Manufacturer = T.Supplier;
6. 
create view Catalog_Metrics as
    select C.Plan, C.Manufacturer,
        ${Mcost}+ sum(PM.Price + PM.Tcost) as Price
            /* substitute ${Mcost} with the local manufacturing cost */
        1 - (1- ${Mrisk}) * prod(1 - PM.Risk) as Risk
            /* substitute ${Mrisk} with the local manufacturing risk */
    from Catalog C
    left outer join ( 
        select *
        from Procurement P, Procurement_Metrics PM
        where PM.Possible_Plan = P.Component_Plan
   ) as T
    on T.Client = C.Manufacturer and T.Plan = C.Plan
    group by C.Plan, C.Manufacturer;
7. 
create view Plan_Expected_Profit as
    select CM.Plan,
        (1 - CM.Risk) * CM.Price         /* expected revenue */
        - (CM.Price + sum(PM.Tcost))      /* manufacturing and overhead 
costs paid */ 
        - sum((1 - CM.Risk) * CM.Price)   /* expected components cost*/
    as Expected_Profit
    from Catalog_Metrics CM
    left outer join ( 
        select *
        from Procurement P, Procurement_Metrics PM
        where PM.Possible_Plan = P.Component_Plan
   ) as T
    on T.Client = CM.Manufacturer and T.Plan = CM.Plan
    where CM.Plan=${Plan};
            /* substitute ${Plan} with the production plan being optimized by 
the local 
             member */ 
8. 
maximize Plan_Expected_Profit.Expected_Profit;


