
International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 43

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Collaborative	Decision	Making,	Decision	Support,	Optimization,	Supply	Chain,	Transaction,	
Virtual	Enterprise

INTRODUCTION

A virtual	enterprise is a coalition of autonomous
business entities, usually of small or medium
scale, who collaborate on the manufacturing of

complex products, often with the intention of
competing with large, monolithic enterprises.
The members of a virtual enterprise often pos-
sess complementary skills and technologies
whose combination is deemed necessary for the
target product, and the collaboration is often ad

Optimizing Procurement
Decisions in Networked

Virtual Enterprises
Amihai	Motro,	George	Mason	University,	USA

Alexander	Brodsky,	George	Mason	University,	USA

Nathan	Egge,	George	Mason	University,	USA

Alessandro	D’Atri,	Luiss	Guido	Carli	University,	Italy

ABSTRACT
A	virtual	enterprise	is	an	ad	hoc	coalition	of	independent	business	entities	who	collaborate	on	the	manufac-
turing	of	complex	products	in	a	networked	environment.	This	collaboration	is	enabled	by	the	concept	of	a	
transaction,	a	mechanism	with	which	members	acquire	necessary	components	from	other	members.	An	exter-
nal	procurement	request	submitted	to	the	enterprise	launches	a	tree-structured	series	of	transactions	among	
its	members	(similar	to	supply	chains).	Each	such	transaction	is	associated	with	a	purchase	price,	but	also	
with	a	risk	of	failure.	That	members	have	the	option	to	procure	components	from	different	co-members,	each	
charging	its	individual	price	and	posing	its	specific	risk,	raises	challenging	optimization	problems	related	
to	the	fulfillment	of	business	objectives.	This	paper	defines	a	transaction	model	for	virtual	enterprises,	with	
formal	concepts	such	as	price,	risk,	and	business	objectives.	The	Decision	Guidance	Query	Language	(DGQL)	
is	presented,	a	language	for	modeling	and	solving	optimization	problems	in	a	database	setting,	and	shows	
how	DGQL	can	provide	intuitive	and	efficient	solutions	to	the	optimization	problems	raised	in	the	model.	
The	model,	the	optimization	programs,	and	the	experimentation	promote	strong	collaboration	and	common	
objectives	among	its	members,	and	one	in	which	collaboration	is	limited,	with	members	retaining	much	of	
their	autonomy	and	individual	objectives.

DOI: 10.4018/jdsst.2012070104

44 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

hoc, for a specific product only, after which the
virtual enterprise might dissolve.

Within this general framework, the level of
collaboration among enterprise members, and
the extent of sharing of information and strategic
decisions can vary substantially, creating virtual
enterprises of significantly different styles. In
one setup, enterprise members preserve their
independence to the greatest degree possible.
They share only a minimal amount of informa-
tion (e.g., the products they are willing to make
available to others and the prices they charge),
and they optimize their performance according
to their own interests and criteria. At the oppo-
site extreme, enterprise members share all their
information (e.g., manufacturing processes,
sources of supply, costs, and risks), and abide
by a global optimization process that instructs
them on their production steps. We refer to the
former setup as an autonomous enterprise, and
to the latter as a coordinated enterprise.

The primary means for enabling collabo-
rations in virtual enterprises are transactions:
bilateral exchanges between two enterprise
members in which goods are delivered in return
for payment. The fulfillment of a target prod-
uct may thus propagate into a tree-structured
set of transactions among the members of the
enterprise. Since the same product can often be
procured from multiple enterprise members, a
target product may be fulfilled with alternative
transaction trees. Since each procurement deci-
sion is associated with performance parameters
such as product price and the risk of non-
delivery, members must select their transaction
partners judiciously. This presents substantial
optimization challenges.

In this paper we explore issues of optimal
decision making in virtual enterprises using the
Decision Guidance Query Language (DGQL),
a language for solving decision optimization
problems. A brief overview of the language is
provided in the section The	Decision	Guidance	
Query	Language. The section that follows it
describes our formal model for virtual enterprise
transactions, including concepts such as transac-
tion cost, product price, and procurement risk.
Using expected profit as optimization target,

the subsequent section presents the DGQL
programs for two types of virtual enterprises:
autonomous and coordinated. A system that
implements (compiles and executes) such
DGQL programs is described in the next sec-
tion. This section also reports on experiments
with both autonomous and coordinated virtual
enterprises. The final section summarizes our
findings and suggests various directions for
future work. We begin with a brief review of
work related to this research.

BACKGROUND

To put this work in context, we review briefly
of related work in two areas: virtual enterprises
and optimization tools.

VIRTUAL ENTERPRISES

Cooperatives of independent entities that col-
laborate on the manufacturing of goods have
been around for decades. Often the members of
such cooperatives reside in the same industrial
district. This geographical proximity provides
advantages of common culture and mutual
trust (Brusco, 1992). The collaborating enti-
ties are often of small and medium size, and
their strategic approach is to focus on their
core business (i.e., excel in a limited section of
the “value chain”), and to seek collaborations
with neighboring entities to perform the other
requisite activities in the value chain.

Essentially, virtual enterprises (also re-
ferred to as virtual organizations or corpora-
tions) are modern versions of these cooperatives,
from which geographical constraints have
been removed. By means of communications
and information technology, the entities par-
ticipating in an alliance need not be confined
to a particular location. Virtual enterprises are
often characterized as agile, flexible, dynamic,
proactive, and unconstrained by predefined
structures. The essential principles of virtual en-
terprises may be summarized thus (Davidow &
Malone, 1992; Goldman, Nagel, & Preiss, 1995;
Camarinha-Matos, 2003; Barbini & D’Atri,

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 45

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2005): (1) Market-driven cooperation. Virtual
enterprises are set-up to exploit specific business
opportunities, and are therefore intensely result-
oriented. (2) Complementariness of skills. The
members of each virtual enterprise are chosen
to complement each other’s competencies. (3)
Dynamic participation. Members can join or
withdraw from an enterprise, according to their
own self-interests. (4) Coalition of peers. A
virtual enterprise is not dominated by individual
members; rather, it is a coalition of peers. (5)
Controlled sharing. Members work together,
integrating their processes and sharing their
resources; yet, sharing is not boundless, and
members may protect certain assets from their
peers. (6) Limited duration. Virtual enterprises
are not intended to be permanent, or even long-
term organizations; rather, they are aimed at
achieving short or medium term goals.

The interest of the information technol-
ogy research community in the area of virtual
enterprises dates to the mid-1990s, with much
of the work focusing on organizational issues,
communication processes and information
systems support (Mowshowitz, 1997; Monge
& DeSanctis, 1999). An overview of current
approaches towards the establishment of in-
frastructures for virtual enterprises is given in
Camarinha-Matos and Afsarmanesh (2004).

The concept of transaction has been dis-
cussed extensively in economics and related
disciplines (business, banking, etc.); and (with
a considerably different interpretation) in com-
puter applications such as database systems
(Elmagramid, 1992) or workflow systems
(Grefen, 2002). In the area of virtual enterprises,
the VirtuE model (D’Atri & Motro, 2008, 2010)
introduced a concept of transaction that com-
bines elements from both distributed database
systems and economics. In other words, it
used the structures of computer transactions to
implement concepts borrowed from economics.

The work here continues in this vein, with
the introduction of a cost model. This cost model,
which borrows concepts from transaction cost
theory (for example, search and information
cost) (Smith, Venkatraman & Dholakia, 1999),
enables us to discuss formally concepts such

as transaction cost, failure, risk, and revenue
in virtual enterprise environments.

OPTIMIZATION TOOLS

The problem of decision optimization deals
with finding values for control variables that
maximize or minimize an objective within given
constraints. It is used in many applications
such as deciding on optimal manufacturing
patterns and sourcing of virtual enterprises,
or more broadly, deciding on optimal busi-
ness transactions within supply chains. The
state-of-the-art implementation of decision
optimization applications involves mathemati-
cal and constraint programming (MP and CP),
using languages such as AMPL (Fourer, Gay, &
Kernighan, 2002) or GAMS (Boisvert, Howe,
& Kahaner, 1985).

While software developers find database
programming mostly intuitive, they typically
do not have the mathematical expertise neces-
sary for MP and CP. In contrast to MP and CP,
database management (DBMS) tools are more
intuitive and have been adopted in many appli-
cation domains. In addition, much investment
has already been spent on database applications.
Clearly, it is desirable to leverage this investment
when building decision optimization applica-
tions. However, DBMS query languages are
not designed for decision optimization as they
cannot express decision optimization problems,
notably over continuous variables. Indeed, in the
continuous variable case, there are potentially
infinite possibilities to choose from that cannot
be expressed as regular database queries. For
the discrete case, when potential choices are
from a large space, populating tables with all
possible choices and then ranking them with a
query can be rather inefficient. Although query
languages can handle some limited discrete
optimization computations, e.g., find a tuple
that has a minimal value over a finite set of
discrete choices (Ilyas, Beskales, & Soliman,
2008), even in the cases of expressible rank
queries, evaluation algorithms have not typically
taken advantage of MP and CP search strate-

46 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

gies to achieve potential efficiency and flexible
optimization goals. More importantly, the op-
timization query will look very different from
the reporting query, increasing the complexity
of system management.

Specialized optimization tools (e.g., for op-
timizing price-revenue, transportation, sourcing
or production planning) have been developed for
the benefit of end users, or for integration with
other systems (e.g., ERP/ERM), so that opera-
tions research expertise would not be necessary.
However, this approach is not extensible, and
does not support general decision-guidance
application development.

In this paper, we implement the problem
of optimizing virtual enterprise transactions
using the Decision Guidance Query Language
(DGQL) (Brodsky, Bhot, Chandrashekar, Egge,
& Wang, 2009), a language designed for mak-
ing decision optimization easier, especially in
applications where database technology is used
heavily. Roughly speaking, DGQL is to SQL
what the language CoJava (Brodsky & Nash,
2006) is to the object-oriented programming
language Java; i.e., a completely procedural
specification is translated into a declarative
optimization problem. The language Modelica
(Fritzson & Engelson 1998) also allows the
specification of constraints using a procedural-
like specification, although it is fundamentally
an equation specification language. In a nutshell,
DGQL provides query-like abstractions for
expressing decision optimization problems so
that database programmers would be able to
use it without prior experience in MP, and more
importantly, they would be able to reuse the
queries already built into existing applications.
An informal description of DGQL is given next.

THE DECISION GUIDANCE
QUERY LANGUAGE

A key observation that motivated the develop-
ment of DGQL is that database languages are
intuitive to use for computing business metrics,
e.g., for reporting purposes, while decision op-
timization in principle is often the “inverse” of

the reporting functionality already in place; that
is finding operational choices that optimize a
business metric, e.g., minimize cost. In addition,
code used in reporting functions often contains
business logic that is needed in the decision
optimization tasks. Based on this observation,
a decision optimization problem in DGQL is
written as a “regular” database program, i.e., a
sequence of relational views and accompanying
integrity constraints, together with annotation
of which database table column needs to be de-
cided by the system (i.e., variables) and toward
what goal (i.e., optimization objective). Here,
existing queries in the reporting software can be
used directly. Essentially, DGQL allows users
to write an optimization problem as if writing
a reporting query in a forward manner.

The challenge in the DGQL approach, how-
ever, is how to execute the “inverse” decision
optimization based on a “forwardly” expressed
code. This is done by encoding the DGQL que-
ries as an MP formulation, and by solving the
MP problem and then deriving the solution to
the DGQL optimization problem. A technical
question with two interrelated parts arises: (1)
Is it possible to encode a DGQL query as an
MP formulation such that (2) the solution can
be found efficiently? We answer this question
positively and therefore suggest that DGQL
has the potential to achieve both easy develop-
ment and efficiency for decision guidance. In
terms of efficiency, the overall performance
of intuitive DGQL queries compares squarely
with expert-generated MP problems, as will be
demonstrated in the experiments that follow.

In this section we informally describe
DGQL mainly borrowing from Brodsky et al.
(2009). To explain the DGQL approach and
its semantics intuitively, we consider a simple
example of sourcing optimization, i.e., finding
the best suppliers for a given demand of items
to be purchased. To begin, we consider an even
simpler database reporting application, in which
the following are stored in the database (key
fields are underlined):

Demand = (Item, Requested)
Supply = (Vendor, Item, Price)

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 47

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Orders = (Vendor, Item, Quantity)

Demand specifies the quantities that need to
be procured for each item, Supply specifies the
prices vendors charge for the items they provide,
and Orders lists the items ordered from vendors
and their desired quantities. With these tables,
a reporting application may use this query to
calculate the total cost of all orders (assuming
that all items ordered are indeed supplied):

create view Total_Cost as
select sum (S.Price x O.Quantity) as
Total
from Supply S, Orders O
where O.Vendor = S.Vendor and O.Item
= S.Item

To calculate the total quantity ordered and
the total quantity requested for each item in
Demand, the reporting application may use:

create view Requested_vs_Ordered as
select O.Item, sum (O.Quantity) as Or-
dered, D.Requested
from Demand D left outer join Orders O
 on D.Item = O.Item
group by O.Item, D.Requested

So far, the reporting application achieved its
goals with pure SQL statements. Assume now
that instead of having the table Orders stored
in the database, we would like the system to
compute it optimally. That is, the cost of the
order should be minimal while the demand
is satisfied (i.e., for every item, the ordered
quantity is at least as the quantity requested
in Demand). In DGQL, we reuse the existing
SQL statements of the reporting application,
with some additions. First, we use an augment
clause to indicate what we would like to find
in the Orders table:

create view Orders as
augment
 select S.Vendor, S.Item from Supply
with Quantity integer >= 0

This statement indicates that the attribute
quantity is not known, but needs to be de-

termined by the system. Second, we add the
following SQL integrity constraint, which is
self-explanatory:

constraint Order_Satisfies_Demand
on Requested_vs_Ordered
check Ordered >= Requested

Finally, we issue the minimize command:

minimize Total_Cost

Executing the program that consists of the
two original SQL statements and the three ad-
ditional statements results in an optimal Orders
table: Vendors and items (extracted from the
Supply table) are augmented with appropriate
quantities so that the requested quantities are
satisfied, while the total cost is minimized.

Note that the optimization here may be
viewed as the “inverse” of the reporting ap-
plication: The reporting application calculated
the total cost for a given set of orders, whereas
the optimization calculated the set of orders for
minimal total cost. While in this small example,
the optimal solution will designate a single ven-
dor for each item (the vendor with the lowest
cost), in general, such optimization problems
are non-trivial, as they might impose various
constraints (e.g., vendors may have limited
quantities on hand, or they should reside in a
particular vicinity).

To handle this optimization problem (i.e.,
find the optimal orders), state-of-the-art tools
require modeling the situation in a separate
decision optimization system. The DGQL ap-
proach is to extend the SQL statements of the
reporting application with SQL-like statements
for specifying the constraints and the objec-
tive − to automatically generate mathematical
programming models that will give the optimal
solution. The resulting set of statements is called
a DGQL query. For the purpose of explanation,
the problem we described was particularly
simple. The optimization problems discussed
or suggested in the following sections are con-
siderably more complex.

48 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

A TRANSACTION MODEL FOR
VIRTUAL ENTERPRISES

The model we describe was derived from the vir-
tual enterprise model VirtuE (D’Atri & Motro,
2008), which has been distilled to include only
the concepts essential to this work.

Basic Concepts

A virtual enterprise is a set of members	M and a
set of products	P. Each member manufactures
at least one product from the set P. For each
product p ∈ P that member m ∈ M manufac-
tures, there is at least one production	plan	s(m,	
p), which is the set of component products that
m must obtain from other enterprise members
to manufacture p (i.e., the bill of materials),
and for each component, the member from
which it will be obtained. A null production
plan (i.e., s(m,	p) = ∅) indicates that m does
not need to import any component products to
manufacture p.

Each production plan is associated with a
price and a risk. The price is the amount that
the member requests from a client in return for
this product. The risk is the probability that
this member will fail to deliver the requested
product. Note that members may charge differ-
ent prices for the same product, depending on
the production plan and the associated risk. For
example, a particular plan that reduces risk may
entail a higher price, possibly to compensate for
higher costs of procurement. Hence, members
can be thought as offering different versions
of the same product. The structure of price and
risk is discussed later in this section.

Transactions

A transaction is a bilateral exchange between
two parties in which goods are delivered in return
of payment. The party initiating the transaction,
requesting the goods and providing the pay-
ment is the client; the party responding to the
transaction, providing the goods and receiving
the payment is the supplier. Transactions are
usually divided into distinct steps, and in this
paper, we assume they comprise three steps:

(1) order is the request by the client to the
supplier that describes the goods needed; (2)
manufacturing is the phase in which the sup-
plier prepares the goods; and (3) fulfillment is
the delivery of the goods by the supplier to the
client. Thus, orders initiate transactions, and
fulfillments conclude them.

In a virtual enterprise environment, trans-
actions are the mechanism for providing target
products to enterprise clients. Such transactions
are termed external transactions. To fulfill an
external transaction, the enterprise member
may procure necessary products from other
members of the enterprise. These exchanges
are termed internal transactions. In an internal
transaction both the client and the supplier are
members of the enterprise. The supplier of an
internal transaction may, in turn, initiate other
internal transactions. Altogether, the execution
of an external transaction is a distributed effort
of a group of enterprise members.

Assume an external client initiates a trans-
action t that orders product p from member
m. Once this member receives the order, it
examines the production plan that corresponds
to this offer, and then launches a set of transac-
tions that procure the components. When these
transactions have been fulfilled, m can manu-
facture the product and deliver it to its client.
The satisfaction of an external transaction is
therefore a recursive process. We assume that
the process terminates with transactions that
procure products whose manufacturing does
not require importation.

Transactions can be illustrated with tree
diagrams, in which nodes represent manufactur-
ing of products by suppliers, and edges indicate
initiation of sub-transactions. In a transaction
tree, the root node models the manufacturing
of the ultimate product (the product ordered by
the external client), internal nodes model the
manufacturing of component products, and leaf
nodes model the manufacturing of import-free
products. Each transaction is assumed to have
a unique identifier, which is assigned to the
manufacturing node. A simple transaction tree
is shown Figure 1. In this example, an external
client submits a transaction t0 to order product

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 49

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

p0 from member m0. To fulfill this order, m0
submits two sub transactions: t1 orders product
p1 from member m1, and t2 orders p2 from m2. m1
fulfills t1 locally; but m2 submits two additional
sub-transactions: t3 orders p3 from m3, and t4
orders p4 from m4. Both m3 and m4 fulfill their
orders locally.

Price

As already mentioned, each member associ-
ates a price with each of its production plans
(product versions). Alternatively, this price may
be associated with the transactions that order
this product version. Let t be a transaction that
orders part p from member m, and let s(m,	p) be
the corresponding production plan. We denote
price(t) the amount charged by m for the product
p. We assume that price(t) is the sum of three
components: procurement cost, transaction
overhead cost and manufacturing costs. Let t1,
. . ., tn be the sub-transactions of t.

1. Procurement cost: price(t1), . . ., price(tn).
This is the amount paid by m (as a client)
to each of its suppliers to obtain the n
component products necessary to satisfy
the transaction t.

2. Transaction overhead cost: overhead(t1),
. . ., overhead(tn). This is the cost as-

sociated with the execution of each sub-
transaction and borne by m (the client of
the sub-transactions).

3. Manufacturing cost: manufacture(t). This
is the cost of manufacturing the product
from its n components (it incorporates the
manufacturer’s profit).

Altogether:

price t manufacture t

price t overhead t
i

i

n

i

() ()

(() ())

=

+ +
=

∑
1

 (1)

Let t0 denote the root of a transaction initi-
ated by an external client, then price(t0) is the
amount the external client pays for the ultimate
product. As price is always a recursive sum-
mation of manufacturing costs and transaction
overhead costs, it is sufficient to store the latter
two. Hence, we label each node of a transaction
tree with the associated manufacturing cost,
and we label each edge with the associated
overhead cost.

We illustrate the concept of transaction trees
and their costs with the example of Figure 1,
shown in Figure 2 with example costs. In Figure
2, node labels denote the transaction identifiers
and the manufacturing costs, and edge labels

Figure	1.	A	transaction	tree

50 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

denote the transaction overhead costs. The
derived transaction prices are then: price(t1) =
10, price(t3) = 20, price(t4) = 15, price(t2) = 70,
and price(t0) = 110.

Risk

In addition to price, each member also associ-
ates a risk with each of its production plans
(product versions). This is the probability that
the supplier will fail to fulfill a request for this
product version. Like price, risk may also be
associated with the transactions that order this
product version. Let t be a transaction that or-
ders part p from member m, and let s(m, p) be
the corresponding production plan. We denote
risk(t) the probability that t will fail; that is,
the probability that m will not complete the
associated production plan.

risk(t) = P(t fails) = P(m does not complete
the production plan for product p)

We assume that risk(t) combines two dif-
ferent components (both can be obtained by
tracking the performance of the enterprise):
Manufacturing risk measures the risk (the
probability of failure) associated with the
particular member m in the particular manu-
facturing task:

mrisk(m) = P(m fails)

Product risk measures the risk associated
with the execution of a particular production
plan s(m, p). We interpret this risk as the prob-
ability that at least one of the subtransactions
to procure components for p fails:

prisk(p) = P(at least one subtransaction to
procure components for p fails)

With this definition, product risk increases
with the complexity of the product (its number
of components): If a product is changed to
require an additional component, product risk
will increase.

Altogether:

risk(t) = P({m fails} ∪{ at least one
subtransaction to procure components
for p fails})

Assume that, to procure components for
p, m initiates subtransactions t1, . . ., tn. Then

risk(t) = P({m fails} ∪ {t1 fails}∪. . .
∪ {tn fails}) (2)

For a transaction t that orders an import-
free product from supplier m (i.e., m does not

Figure	2.	A	transaction	tree	with	its	associated	costs

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

initiate any subtransactions), the risk is simply
that m fails; that is, mrisk(m).

It is convenient to view mrisk(m) as the
probability of node failure, and risk(t) as the
probability of edge failure.

If we assume that the n + 1 events in Equa-
tion 2 are mutually exclusive (i.e., there is at
most one failure), then

risk(t) = mrisk(m) + risk t
i

i

n

()
=

∑
1

 (3)

In general, however, we may not make
this assumption, and risk(t) must be calculated
according to De Moivre’ inclusion-exclusion	
principle (De Moivre, 1718):

P (
i

n

=1
 Ai) =

i

n

=

∑
1

P(Ai) -
i j<

∑ P (Ai ∩ Aj)

+
i j k< <

∑ P (Ai ∩ Aj ∩ Ak) - . . .

+ (-1)n-1P (
i

n

=1
 Ai)

This formula expresses the probability
of the union of events with n terms that are
alternately added and subtracted. (The parity
of n determines whether the final term is added
or subtracted.) The first term totals the prob-
abilities of the n events; the second term totals
the probabilities of the intersections of two
events; the third term totals the probabilities of
the intersections of three events, and so on; the
final term is the probability of the intersection
of all n events.

Unless n is small, it is normally impossible
to calculate the joint probabilities, and the usual
approach is to provide lower and upper bounds,
such as the Bonferroni inequalities (Bonferroni,
1936). In their simplest form, these inequalities
provide the first term as a higher bound and
the difference between the first two terms as
a lower bound.

If we assume that the n+1 events are in-
dependent (i.e., the failure of a node and the
failure of each incoming edge are unrelated),
then a simplified inclusion-exclusion formula

may be used that is derived from probabilities
of simple events only:

P (
i

n

=1
 Ai) =

i

n

=

∑
1

P(Ai) -
i j<

∑ P (Ai) ∙P(Aj)

+
i j k< <

∑ P (Ai) P(Aj) P(Ak) - . . . + (-1)n-1

i

n

=

∏
1

P (Ai)

With this assumption of independence,
risk(t) may be calculated from mrisk values
rather simply, in a propagation process from
the leaves of the transaction tree to its root. As
an example, consider the previous transaction
tree and assume that the risks of member fail-
ure are 0.01 for manufacturing of import-free
products, and 0.03 for the others. (In general,
it should not be that manufacturers are divided
into these two classifications.) Then, in three
phases of propagation (Figure 3), we derive that
the risk of the external transaction is risk(t0)
= 0.29197. As the example demonstrates, the
risk increases with the number of component
products (in this example, 10), and the number
of intermediate suppliers (in this example, 8).

Optimization

The prices and risks of products bear obvious
structural similarities: (1) Both are defined in
recursive processes that terminate at import-free
products; (2) both have components that are
determined by the manufacturing member: In
the case of price — transaction overhead cost
and manufacturing cost, and in the case of risk
— manufacturer risk; and (3) both have compo-
nents that are determined by this manufacturer’s
suppliers: In the case of price — procurement
cost, and in the case of risk — product risk.

Roughly, the behavior of each member
follows this paradigm. First, the member
considers which products it could offer. Next,
it examines various possible bills of materials
for each product. For each bill of materials, it
then investigates possible suppliers. Finally,
it determines which products to offer and the
associated prices and risks. In making these

52 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

decisions, it considers information made avail-
able by other members regarding the products
they offer, and the associated prices and risks.
It then adheres to its own business goals and
selects those production plans that optimize
these goals.

Optimization goals may vary. We assume
optimization goals that are based on prices and
risks. Thus, members can choose to maximize
expected revenue, or to minimize expected
procurement costs, or to minimize risk. In the
following we focus on the maximization	 of	
expected	profit (an exact definition is provided
later).

Thus, decisions are done ahead of orders.
When receiving an order for a particular prod-
uct (at a particular price and risk), the member
simply executes the associated production plan.

Obviously, members must reconsider their
decisions periodically, to reflect changes made
by other members, or to incorporate changes in
their own operation.

Failure

Of the three steps of transactions, we assume that
manufacturing is the only step prone to failure;
i.e., order never fails, and (if manufacturing is
successful) fulfillment never fails. Failure could
be due to a variety of different reasons: a com-
munication failure, sudden withdrawal from the
enterprise, refusal to honor prior commitments,
and so on. Failure can be modeled as a discon-
nection of an edge in the transaction tree.

To analyze the cost of transaction failure,
we make several assumptions. First, payment
is part of fulfillment. Second, all the sub-
transactions of a given transaction are placed
simultaneously, and it is not possible to cancel
orders that have already been placed. Finally,
transactions cannot be reversed; i.e., it is not
possible to return the goods and obtain a refund.

Under these assumptions, the client of a
failed transaction does not pay for the cost of
the product (as fulfillment never took place),

Figure	3.	The	propagation	of	risk

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 53

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and it bears only the cost of the transaction
overhead (as this cost was already invested).
The client, however still pays for all the other
component products that have been delivered,
and for the cost of manufacturing (although
manufacturing was not completed). Assuming
the supplier of the failed transaction completed
all its subtransactions promptly (if not, there
had been earlier failure), it bears the complete
cost of the product it was committed to produce.

Consider the transaction tree in Figure 4.
For simplicity, assume that all manufacturing
costs are 5, and all transaction overhead costs
are 1. The overall price is then 107. Assume now
two failures: in t7 and in t11. The former failure
propagates to t2, and the latter propagates to t5
and t1, and consequently t0 fails. The external
client does not pay the virtual enterprise the price
of 107, and this loss is distributed as follows:
t11: 5, t5: 12, t1: 12, t7: 17, t2: 24, and t0: 37. Thus,
only members on a failure path bear the price
of failure (t0, t1, t5, and t11 are on the path of the
first failure, and t0, t2, and t7 are on the path of

the second failure). Essentially, the price they
pay is their overhead for the subtransactions
they launched, and the price of products that
were delivered but proved unnecessary because
the product for which they were intended was
not manufactured.

Proposition: The losses borne by the participat-
ing members add up to the price of the
ultimate product.

The proof is straightforward. The price of
the ultimate product is the sum of all node costs
and all edge costs, and our distribution of the
cost assigned each of these costs to exactly one
member. One obvious conclusion is that because
the price of products increases along the sup-
ply chain, “high level” suppliers tend to pay a
higher share of the loss. Although this higher
risk would normally be mitigated by higher
profit margins, it is important to minimize the
risk of failure.

Figure	4.	The	distribution	of	failure	costs

54 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

COORDINATED AND
AUTONOMOUS ENTERPRISES

So far, we outlined the basic concepts that are
shared by all virtual enterprises. We now turn
our attention to the specific variants discussed
earlier: coordinated and autonomous virtual en-
terprises. The distinction between coordinated
and autonomous enterprises stems from their
approach to information sharing and strategic
decisions (i.e., optimization).

More specifically, we assume that in co-
ordinated enterprises

1. Information: Each member shares its
production capabilities (products it can
manufacture), the components it needs for
each product, and its operational costs and
risks.

2. Optimization: The member who receives
the external order chooses the optimization
target, and constructs a complete transac-
tion tree that achieves the optimum; each
participating member is thus instructed
as to which production plan to use for the
component that it is required to supply, and
whom to order from.

whereas in autonomous enterprises

1. Information: The only information shared
by members is the products they manufac-
ture, and, for each product, the associated
price and risk.

2. Optimization: Each member conducts
its operation according to its own inter-
ests, choosing its individual optimization
targets.

OPTIMIZING TRANSACTIONS
WITH DGQL

In both the coordinated and autonomous cases,
we choose to optimize the expected	profit from
offering a product, which we define. We note
that other optimization targets are possible.

Let m be a member who considers offering
a product with the following parameters: The
manufacturing cost at m is p and the manufactur-
ing risk is r, and the product requires procuring
n component products, each involving price pi,
risk ri and transaction cost ti.

The transaction costs add up to t
ii

n

=∑ 1

and the component costs add up to p
ii

n

=∑ 1
.

After adding the local manufacturing cost
(recall that it incorporates the profit), the over-
all price of this product is

price p p t
i i

i

n

= + +
=

∑()
1

 (4)

The procurement risk of this product is
1 1

1
− −

=∏ ()r
ii

n . After factoring-in the
manufacturing risk, the overall risk of this
product is

risk r r
i

i

n

= − − × −
=

∏1 1 1
1

() () (5)

Altogether, the expected revenue to m from
this transaction is

expected revenue risk price = − ×()1
(6)

While m bears the entire transaction costs,
it only bears the cost of components that were
delivered (and the manufacturing cost). Alto-
gether, the expected cost to m is

expected cost p t r p
i i i

i

n

 = + + − ×
=

∑(())1
1

(7)

Finally, the expected profit to m is defines as

expected	profit = expected	revenue	
–expected	cost (8)

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

COORDINATED ENTERPRISES

We now describe the optimization of expected
profit in coordinated enterprises. Our descrip-
tion refers to the SQL/DGQL program in Ap-
pendix A. In this type of enterprise, the enterprise
member receiving the external order is optimiz-
ing the overall execution of the order using
data provided by every enterprise member. In
relational database terms, all enterprise informa-
tion is stored in three tables (the corresponding
program statements are numbered 1-3):

Manufacturing	
=(Plan,	Manufacturer,	Product,	Mcost,	 	
Mrisk)	

Transaction	
=(Client,	Product,	Supplier,	Tcost)	

Components=(Plan,	Component_Product)	

Manufacturing describes production plans.
For each product plan, it stores the manufactur-
ing member, the product it manufactures and
the associated (add-on) manufacturing cost
and risk. Transaction specifies the overhead
of a transaction in which a client member
purchases a product from a supplier member.
Finally, Component describes production plans
(bills-of-materials): The set of component parts
that comprise a production plan is described in
a corresponding set of rows, each associating
the production plan with a product. Note that
Plan, Manufacturer (or Client or Supplier), and
Product (or Component_Product) are identifiers
unique to the entire enterprise. The output of
the process is two tables defined by augmenta-
tion. These tables would contain eventually the
optimal solution (statements 4-5):

Procurement	
=(Plan,	Component_Product,	Component_	
Plan)	

Catalog	
=(Plan,	Manufacturer,	Product,	Mcost,		
Mrisk,	Price,	Risk)	

Procurement is an augmentation of Com-
ponents with the field Component_Plan which
indicates which production plan to order when
procuring a product for use in a production plan.
Catalog is an augmentation of Manufacturing
with two fields: Price, which is the overall price
of the product manufactured by this production
plan, and Risk, which is the overall risk associ-
ated with ordering the product manufactured
by this production plan. These two values
are outcome of the procurement decisions. A
sequence of three SQL views is now created to
define the objective of the optimization (state-
ments 6-8). First,

Procurement_Metrics	
=(Client,	Possible_Plan,	Price,	Risk,	Tcost)	

describes the product price, product risk, and
transaction overhead incurred when a client
member initiates a transaction to procure a
particular plan (product version) from its
manufacturer. Next,

Catalog_Metrics	
=(Plan,	Price,	Computed_Price,	Risk,	 		
Computed_Risk)	

describes, for each production plan (product ver-
sion), its overall price and risk (corresponding
to Equations 4 and 5). This view also extracts
the assigned price and risk from Catalog, and
is used to express	constraints	that	the	assigned	
values	must	be	equal	to	the	computed	values.	
The	final	view,

Plan_Expected_Profit	
=(Plan,	Expected_Profit)	

specifies, for a given production plan, the
expected profit it generates (corresponding
to Equations 6, 7 and 8). Finally, a maximize

56 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

statement is used to specify Expected_Profit as
the objective of the optimization (statement 9).

AUTONOMOUS ENTERPRISES

We now turn to the optimization of expected	
profit in autonomous enterprises. Our descrip-
tion refers to the SQL/DGQL Appendix B. In
this type of enterprise, each enterprise member
assembles its catalog of offerings as follows.
For each of its product versions (production
plans) it chooses the suppliers to optimize
its expect profit from that production plan. It
then calculates the overall price and risk and
publishes them.

The information available to each member
is stored in three tables as well:

Catalog	
=Plan,	Manufacturer,	Product,	Price,	Risk)	

Transaction	 	
=(Client,	Product,	Supplier,	Tcost)	

Components=(Plan,	Component_Product)	

Catalog describes available production
plans. For each production plan it stores the
manufacturing member, the product it manu-
factures and the associated (total) price and risk.
This is the only “outside” information available
to each member (note the difference in the
last two fields from the earlier Manufacturing
table). Transaction specifies the overhead of a
transaction in which a client member purchases
a product from a supplier member. However,
the field Client is always the local member.
Finally, Component describes production plans
(bills-of materials): The set of component parts
that comprise a production plan is described in
a corresponding set of rows, each associating
the production plan with a product. Again, the
plans described are only those offered by the
local member. The output of the process is
one table defined by augmentation. This table
would contain eventually the optimal solution.

Procurement	
=(Plan,	Component_Product,	Component_	
Plan)	

Procurement is an augmentation of Com-
ponents with the field Component_Plan which
indicates which production plan to order when
procuring a product for use in a production plan.
A sequence of three SQL views is now created
to define the objective of the optimization
(statements 5-7). First,

Procurement_Metrics	
=(Client,	Possible_Plan,	Price,	Risk,	Tcost)	

describes the product price, product risk, and
transaction overhead incurred when the lo-
cal member initiates a transaction to procure
a particular plan (product version) from its
manufacturer. Next,

Catalog_Metrics	
=(Plan,	Manufacturer,	Price,	Risk)	

describes, for each production plan (product ver-
sion), its overall price and risk (corresponding
to Equations 4 and 5). The final view,

Plan_Expected_Profit	
=(Plan,	Expected_Profit)	

specifies, for a given production plan, the
expected profit it generates (corresponding
to Equations 6, 7 and 8). Finally, a maximize
statement is used to specify Expected_Profit
as the object of the optimization (statement 8).

EXPERIMENT EVALUATION

In previous sections we described a model for
transactions in virtual enterprises and its associ-
ated optimization problems, and we showed how
these problems can be concisely modeled and
solved using DGQL in a production database
setting. We now describe a system that imple-
ments (compiles and executes) DGQL programs
of the type given earlier, and provide details

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 57

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

on various experiments with specific virtual
organization examples.

Our experimental study addresses four
basic questions: (1) Does DGQL correctly solve
the virtual enterprise problem as modeled, (2)
how to classify the virtual enterprise optimiza-
tion problem both in size and complexity, (3)
is the implementation efficient with respect to
the size of the input problem, and (4) are solv-
able virtual enterprises of sufficient size to be
interesting in real world applications.

In presenting our results, we consider
the problems of autonomous and coordinated
enterprises separately. While any autonomous
enterprise can be correctly modeled and solved
as a coordinated enterprise, where each com-
ponent product has only atomic plans for that
product, our implementation showed that the
simpler autonomous model had a significantly
faster running time for the same virtual enter-
prise problems. This is discussed further in the
upcoming sections

In both experiments the test platform used
was a quad-core Xeon X3430 with 4GB DDR3
RAM running 64-bit Linux. The prototype
DGQL implementation uses PostgreSQL 8.4 as
the database backend and is written in Java. This
setup is typical of how we expect DGQL will
be used in a production environment. For these
experiments, we have disabled multi-threading
in our DGQL implementation to present an
accurate and easily comparable performance
profile of each problem. The algorithms pre-
sented use a form of stochastic search and are
easily parallelized across multiple cores in a
cooperative fashion.

DGQL ALGORITHM

As described earlier, at optimization time
DGQL translates a database program into an
algebraic model and invokes an external solver.
Matching the appropriate solver to a particular
model greatly impacts the performance of
DGQL. Based on problem features, DGQL can
automatically detect and translate an algebraic
model into the appropriate solver API.

Both the autonomous and coordinated vir-
tual enterprises are concerned with maximizing
expected profit. The computations for expected
profit involve computing the joint probability of
an event (plan failure) and are inherently non-
linear. Additionally, the contribution of each
component choice to both expected	 revenue
and expected	cost means that optimal choices
for individual components cannot be made
independently and later combined to give an
optimal overall result. Hence these optimization
problems are not decomposable. Finally, our
decision variables indicate which production
plan to select for each component product and
are over a finite or enumerated domain.

For these reasons, the virtual enterprise
problem is best suited to a constraint program-
ming (CP) solver. In our experimentation we
use ILOG CP Optimizer 2.3 as the underlying
solver technology. This solver uses automati-
cally computed heuristics to steer its search
path through the solution space. This increases
the likelihood that an optimal solution will be
found early on. However, ultimately the entire
solution space must be considered to prove that
a solution is, in fact, optimal. Although this
optimal solution may be found early on, our
experiments will measure total solution time.
Future work on DGQL will look at estimating
a solver cutoff time to capture this solution
without exploring the entire space.

AUTONOMOUS ENTERPRISES

In an autonomous virtual enterprise, the com-
ponent products for a particular plan are se-
lected based only on their published price and
risk. In a plan that requires n components where
each component has pi alternative plans, the
total number of alternative production plans is
T p

ii

n

=
=∏ 1

. When each component has the
same number of alternative plans p, this equa-
tion becomes T = pn. Hence, T is the number
of procurement “vectors” that a member of the
enterprise must consider when attempting to
satisfy a production plan, and is a good measure
of the complexity of the problem. To show how

58 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the values of n and p impact the performance
of DGQL, our experimentation makes use of a
simplifying assumption that all component
products have the same number of alternative
plans.

For this experiment, we generated random
problems based on two parameters, the number
of component products n and the number of
alternative plans for each component product
p. Each of these random problems was instan-
tiated in the database and DGQL’s maximize
Expected_Profit command invoked. The values
of n and p were chosen with the following algo-
rithm that gives a good sampling of reasonably
sized problems:

Input for the experiment of autonomous
enterprises was generated using Algorithm 1
with values M = 50 and K = 500. These experi-
ments took about 12 hours to run on the test
platform. The results can be found in Figure 5.
As expected, solution time is clearly linear in pn.
This is because we intentionally let the solver
run to optimality and this requires considering
all pn production alternatives. An attractive
result is that our implementation appears to
scale well. Even when the number of produc-
tion alternatives is in the tens of billions, it still
takes only minutes to solve.

Another interesting result is that the data
all fall between two linear bounds. This is due
to the fact that for the same overall procurement
space size pn, the computation expected profit
takes fewer multiplications when the number
of component products n is smaller than when
it is larger.

Consider the sample output from the au-
tonomous experiment in Table 1. When n = 24
it took nearly 4× the time to walk the solution
space as when n = 6. We can thus conclude that
solution time is linear in pn with a coefficient
linear in n.

COORDINATED ENTERPRISES

In a coordinated virtual enterprise, the con-
tracting member can choose not only which
production plans to use for immediate compo-
nent products, but also which production plans
to use to construct those component products,
and so on. The idea is that by controlling the
entire transaction tree that goes into a particular
product plan, the member can maximize its
expected profit even if it means sacrificing the
expected profit of other members. Here we must

Figure	5.	Solution	time	vs.	procurement	space	size	for	autonomous	enterprises

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 59

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

consider the depth of the production tree when
computing the solution space.

Similar to the autonomous case, we make
a few simplifying assumptions for the purpose
of experimentation. In addition to assuming
that all component products n have the same
number of production plans p, we also assume
that every production plan has the same depth
d. The solution space thus forms a balanced and
complete tree and we can compute the number
of alternative production plans T as:

T f n p d

p when n

p when n
T

d

n
n

n

d= =

=

>















−

−

(, ,)

1

1
1

1

(9)

Clearly fT grows fast with d. Despite this
fact, using these simplifying assumptions is
convenient for our experimentation as it allows
us to use a similar problem generation technique
as the autonomous case. In the coordinated
experiment, we generated problems based on
three parameters, the number of component
products n, the number of alternative plans p
and the production plan depth d. These random
problems were inserted into the database and
the solution time from invoking maximize

Expected_Profit was measured. The values of
n, p and d were chosen with Algorithm 2 to give
a reasonable sampling of coordinated virtual
enterprise problems.

Input for experiment of coordinated enter-
prises where generated using Algorithm 2 with
values M = 15, D = 5 and K = 350. These ex-
periments took about 16 hours to run on the
test platform. The results can be found in Fig-
ure 6. Similar to our experience with the au-
tonomous problem, we expected solution time
to be linear in size of the procurement space.
Again, this is due to the fact that we let the
underlying CP solver run to optimality. Unlike
the results from the autonomous experiment,
the coordinated data suggests that there is a
much tighter linear range that the data fall into.
While not demonstrated by this data, we would
expect the variation in linear bounds on solution
time is due to the coefficient being a function
of n and d.

Another interesting result is that the DGQL
formulation of coordinated enterprises is notice-
ably more expensive than the formulation of
autonomous enterprises of d = 1. Figure 7 shows
both sets of data on the same scale. Initial in-
vestigation suggests this is due to the extra
decision variables and constraints introduced

Algorithm	1.	Selecting	input	parameters	for	the	“autonomous”	experiment

Input: Max components and plan alternatives M, desired experimental runs K
Output: List of experiment parameters (n1, p1), (n2, p2), …, (nK, pK)
Method:
 1: Let L= ∅

 2: for i = 1 to M, j = 1 to M do
 3: Add (i, j) to L
 4: end for
 5: Sort L = {(n1, p1), …} based on pi

n
i ascending

 6: Return first K elements of L

Table	1.	Comparison	of	solution	time	for	experimental	runs	with	the	same	procurement	space	size	

Components n Plans p Space size pn Solution time (seconds)

6
8
12
24

16
8
4
2

16777216
16777216
16777216
16777216

0.567
0.701
0.941
1.858

60 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

by the coordinated formulation to restrict the
values of Price and Risk. Future work with
DGQL will consider query optimization and
rewriting using an optimization algebra similar
to the relational algebra used in SQL query
analysis. This will allow redundant algebraic
information to be removed before translating
the problem into a solver specific model.

CONCLUSION

We described a simple yet powerful cost model
for transactions in virtual enterprises. Simplicity
is maintained with several assumptions, includ-
ing: (1) Transactions involve only three phases:
ordering, manufacturing and fulfillment; (2)
all subtransactions are placed simultaneously
(e.g., it is not possible to choose the second sub-
transaction after the first has been completed);
(3) orders may not be cancelled or reversed
(no refunds); (4) transaction cost is the sum of
external procurement, transaction overhead,
and internal manufacturing; (5) transaction
risk is the combination of manufacturer risk
and product risk, where the latter is the risk in
procuring the product components; and (6) the
failure of a node (a manufacturer) and any of its
incoming edges (the subtransactions it issued)
are independent events, allowing for simple
calculation of risk based on probabilities of
individual events only. With the exception of
(6), the other assumptions can be relaxed at the
cost of a more complex model, but DGQL should
be able to manage this additional complexity.
While the assumption on the independence of
failures may sometimes be invalid, we maintain

that the calculated risks and the outcome of the
optimization would still be highly beneficial.
Yet, the power of this simple model is in its abil-
ity to represent appropriately many real-world
situations and perform several optimizations,
including: (1) Virtual enterprises of different
types of autonomy; (2) the freedom to order
parts from different sources, and to assemble
parts according to different schemes; (3) the just
distribution of the cost of a failed transaction
among the suppliers on the failure path, with
higher costs being borne by suppliers higher
on the supply chain; (4) the positive correlation
between product complexity and product risk;
(5) the propagation of product risks upward
the supply chain; and (6) the optimization of
individual member operations to reduce costs,
risks, or expected losses.

We then focused on this final feature of
optimizability and we presented DGQL, a
language for expressing and executing opti-
mization problems in a database setting. For
enterprises already invested in database technol-
ogy (software and programmers), DGQL offers
a convenient and efficient method to extend
that technology to solve optimization problems.
While the DGQL code we presented may ap-
pear to be non-trivial, it must be stressed that
to experienced SQL programmers, acquiring
proficiency in DGQL requires only moderate
effort (considerably less than mastering the
techniques of mathematical programming and
the requisite new software tools).

Our experiment has demonstrated the
viability of DGQL as an optimization tool.
It is numerically stable and correctly solves
problems of the autonomous and coordinated

Algorithm	2.	Selecting	input	parameters	for	the	“coordinated”	experiment

Input: Max components and plan alternatives M, max depth D, experimental runs
K
Output: List of experiment parameters (n1, p1,d1), …, (nK, pK,dK)
Method:
 1: Let L= ∅

 2: for i = 1 to M, j = 1 to M, k = 1 to D do
 3: Add (i, j,k) to L
 4: end for
 5: Sort L = {(n1, p1,d1), …} based on fT(ni,pi,di) ascending
 6: Return first K elements of L

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 61

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

virtual enterprise. For both types of enterprise
it parameterized the input size in terms of
the number of component products n, plan
alternatives p, and for coordinated enterprises,
the depth of the production tree d, and these
parameters were used to measure the problem
complexity. Our implementation was shown

to be efficient with respect to its complexity,
with running time that is linear in the number
of procurement alternatives.

Our work continues, with future work
related to the transaction model includes: (1)
Relax some the aforementioned model restric-
tions; (2) add delivery time as a third major

Figure	6.	Solution	time	vs.	procurement	space	size	for	coordinated	enterprises

Figure	7.	Solution	time	of	autonomous	enterprises	vs.	coordinated	enterprises	of	depth	1

62 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

parameter (paralleling risk and price). (3) allow
members to maintain stock and thus benefit from
economics of scale (for example, transaction
overhead would be paid less frequently); and
(4) allow members to place redundant orders
to further improve some variables (e.g., reduce
risk). With respect to optimization we plan to
focus on two issues. (1) How to use heuristics to
discover good approximate solutions that do not
require examining the entire set of procurement
alternatives. One promising approach involves
a combination of constraint programming tech-
niques with an estimated solver cutoff time. (2)
As our experiment showed, there is room for
improvement in the preprocessing phase before
DGQL is translated into the solver model. This
will involve query optimization and rewriting
and hopefully should close the performance
gap between the autonomous case and the
coordinated case with depth 1.

REFERENCES

Barbini, F. M., & D’Atri, A. (2005). How innovative
are virtual enterprises? In Proceedings	of	the	13th	
European	Conference	on	Information	Systems (pp.
1091-1102).

Boisvert, R. F., Howe, S. E., & Kahaner, D. K. (1985).
GAMS: A framework for the management of scien-
tific software. ACM	Transactions	on	Mathematical	
Software, 11(4), 313–355.

Bonferroni, C. E. (1936). Teoria statistica delle classi
e calcolo delle probabilità. Istituto	Superiore	di	Sci-
enze	Economiche	e	Commerciali	di	Firenze, 8, 1–62.

Brodsky, A., Bhot, M. M., Chandrashekar, M., Egge,
N. E., & Wang, X. S. (2009). A decisions query lan-
guage (DQL): High-level abstraction for mathemati-
cal programming over databases. In Proceedings	of	
the	 ACM	 SIGMOD	 International	 Conference	 on	
Management	of	Data (pp. 1059-1062).

Brodsky, A., & Nash, H. (2006). CoJava: Optimiza-
tion modeling by nondeterministic simulation. In
F. Benhamou (Eds.), Proceedings	of	the	12th	Inter-
national	Conference	on	Principles	and	Practice	of	
Constraint	Programming (LNCS 4204, pp. 91-106).

Brusco, S. (1992). The idea of industrial districts: Its
genesis. In Industrial	districts	and	inter-firm	coop-
eration	in	Italy (pp. 10–19). Geneva, Switzerland:
International Institute of Labour Studies.

Camarinha-Matos, L. M. (2003). New collaborative
organizations and their research needs. In Proceed-
ings	of	the	Fourth	Working	Conference	on	Virtual	
Enterprises:	Processes	and	Foundations	for	Virtual	
Organizations (pp. 3-14).

Camarinha-Matos, L. M., & Afsarmanesh, H. (2004).
Elements of base VE infrastructure. Journal	 of	
Computers	in	Industry, 51(2), 139–163.

D’Atri, A., & Motro, A. (2008). VirtuE: A formal
model of virtual enterprises for information mar-
kets. Journal	 of	 Intelligent	 Information	 Systems,
30(1), 33–53.

D’Atri, A., & Motro, A. (2010). Virtual enterprise
transactions: A cost model. In D’Atri, A., & Saccà,
D. (Eds.), Information	systems:	People,	organiza-
tions,	institutions,	and	technologies (pp. 165–174).
Berlin, Germany: Physica-Verlag.

Davidow, W. H., & Malone, M. S. (1992). The	vir-
tual	 corporation:	 Structuring	and	 revitalizing	 the	
corporation	 for	 the	21st	 century. New York, NY:
HarperCollins.

De Moivre, A. (1718). Doctrine	of	chances	-	A	method	
for	calculating	the	probabilities	of	events	in	plays.
London, UK: Pearson.

Elmagramid, A. K. (1991). Database	 transaction	
models	for	advanced	applications. San Francisco,
CA: Morgan Kaufmann.

Fourer, R., Gay, D. M., & Kernighan, B. W. (2002).
AMPL:	A	modeling	language	for	mathematical	pro-
gramming (2nd ed.). Pacific Grove, CA: Brooks/Cole.

Fritzson, P., & Engelson, V. (1998). Modelica - A
unified object-oriented language for system mod-
elling and simulation. In Proceedings	of	 the	12th	
European	Conference	on	Object-Oriented	Program-
ming (pp. 67-90).

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995).
Agile	competitors	and	virtual	organizations:	Strat-
egies	 for	enriching	 the	customer. New York, NY:
Van Nostrand.

Grefen, P. (2002). Transactional workflows or work-
flow transactions? In A. Hameurlain, R. Cicchetti,
& R. Traunmüller (Eds.), Proceedings	of	the	13th	
International	Conference	on	Database	and	Expert	
Systems	Applications (LNCS 2453, pp. 60-69).

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 63

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Ilyas, I. F., Beskales, G., & Soliman, M. A. (2008).
A survey of top-k query processing techniques
in relational database systems. ACM	 Computing	
Surveys, 40(4), 11.

Monge, P., & DeSanctis, G. (Eds.). (1999). Special
issue on virtual organizations. Organization	 Sci-
ence, 10(6).

Mowshowitz, A. (Ed.). (1997). Special section on
virtual organizations. Communications	of	the	ACM,
40(9), 30–64.

Smith, G. E., Venkatraman, M. P., & Dholakia, R. R.
(1999). Diagnosing the search cost effect: Waiting
time and the moderating impact of prior category
knowledge. Journal	of	Economic	Psychology, 20,
285–314.

Amihai	Motro	 is	a	Professor	of	Computer	Science	at	George	Mason	University.	He	holds	a	
BSc	degree	in	mathematics	from	Tel	Aviv	University,	an	MSc	degree	in	computer	science	from	
the	Hebrew	University	of	Jerusalem,	and	a	PhD	degree	in	computer	and	information	science	
from	the	University	of	Pennsylvania.	He	was	previously	on	the	faculty	of	the	Computer	Science	
Department	at	the	University	of	Southern	California.	Dr.	Motro's	main	areas	of	research	are	
database	management,	 information	 systems,	 information	 retrieval,	 and	 collaborative	 enter-
prises;	specializing	in	subjects	such	as	intelligent	integration	of	information,	cooperative	user	
interfaces,	information	uncertainty,	information	quality	and	integrity,	and	service	composition	
models.	In	these	areas,	Dr.	Motro	has	designed	and	implemented	several	innovative	systems,	
including	Multiplex,	Fusionplex,	Autoplex	and	Retroplex,	for	integrating	multiple,	heterogeneous	
and	inconsistent	information	sources;	and	Vague,	Flex,	Baroque	and	ViewFinder	which	imple-
mented	novel	methods	for	accessing	information	in	databases.	Dr.	Motro	has	published	over	100	
research	papers	in	professional	journals	and	international	conferences,	and	has	edited	several	
books	and	journal	issues.	He	organized	several	conferences	and	workshops,	has	been	on	the	
editorial	board	of	the	Journal of Intelligent Information Systems and	the	Journal of Data Mining
and Knowledge Discovery,	and	was	the	principal	investigator	on	research	projects	funded	by	
agencies	such	as	the	National	Science	Foundation,	DARPA,	and	AT&T.

Alexander	Brodsky	is	Associate	Professor	of	Computer	Science	at	George	Mason	University.	His	
current	research	interests	include	decision-guidance	and	support	systems,	decision	optimiza-
tion,	and	their	applications	to	energy	and	smart	power	grids.	Dr.	Brodsky	has	over	20	years	of	
experience	in	leading	R&D	projects	in	private	industry,	defense,	and	academia.	For	his	research	
work	on	Constraint	Databases	and	Programming,	Dr.	Brodsky	 received	a	National	Science	
Foundation	(NSF)	CAREER	Award,	NSF	Research	Initiation	Award,	and	grants	from	the	Office	
of	Naval	Research	and	NASA.	He	has	authored	or	co-authored	over	seventy	scholarly	peer-
reviewed	journal	and	conference	papers	and	co-edited	a	LNCS	volume	on	constraint	databases	
and	programming.	Dr.	Brodsky	recently	served	as	a	program	committee	co-chair	of	the	IEEE	
ICDE	 (International	Conference	 on	Data	Engineering)	workshop	 on	Data-Driven	Decision	
Guidance	and	Support	Systems	(DGSS	2012),	and	as	a	general	vice	co-chair	of	ICDE	2012.	In	
the	past,	he	served	as	conference	chairman	of	the	fifth	International	Conference	on	Principles	
and	 Practice	 of	 Constraint	 Programming,	 and	 PC	 co-chairman	 and/or	 organizer	 of	 a	 CP	
workshop	on	Constraints	and	Databases,	of	CDB98,	and	of	an	ILPS	workshop	on	Constraints,	
Databases	and	Logic	Programming.	Prior	to	George	Mason	University,	Dr.	Brodsky	worked	
at	IBM's	T.J.	Watson	Research	Center,	at	Israel	Aircraft	Industries	and	was	an	R&D	officer	in	
the	Computer	Division	of	Communications,	Electronics	and	Computer	Corps,	Israel	Defense	
Forces.	He	earned	his	PhD	and	prior	degrees	in	Computer	Science	and/or	Mathematics	from	
the	Hebrew	University	of	Jerusalem.

64 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Nathan	Egge	is	a	PhD	candidate	at	George	Mason	University	working	on	a	dissertation	on	the	
decision-guidance	query	language.	He	holds	dual	master’s	degrees	in	mathematics	and	com-
puter	science	from	Virginia	Tech.	His	research	interests	include	decision-guidance	and	support	
systems,	database	management	systems,	constraint	and	mathematical	programming,	distributed	
computing,	and	enterprise	software	architecture.	He	has	over	10	years	experience	in	the	industry,	
designing	and	building	enterprise	applications	for	Fortune	500/Global	1000	companies.

Alessandro	D'Atri	was	a	Professor	of	Business	Organization	and	the	founder	and	director	of	
the	Center	for	Research	on	Information	Systems	(CeRSI)	at	LUISS	“Guido	Carli”	University	in	
Rome.	His	doctoral	degree	and	his	post-doctoral	specialization	were,	respectively,	in	Electronic	
Engineering	and	in	Computer	and	Control	Engineering,	both	from	“La	Sapienza”	University	in	
Rome.	His	previous	academic	positions	include	an	Associate	Professor	in	the	Faculty	of	Engi-
neering	at	“La	Sapienza”	University,	and	a	Professor	in	Computer	Engineering	and	Dean	of	the	
School	of	Electronics	at	the	Faculty	of	Engineering	of	L’Aquila	University.	Professor	D'Atri	was	
the	founder	and	president	of	the	Italian	Association	for	Information	Systems	(the	Italian	chapter	
of	the	Association	of	Information	Systems),	and	a	scientific	consultant	to	the	European	Commis-
sion	and	to	the	Italian	Ministry	of	Research.	His	research	and	teaching	career	spanned	a	large	
number	of	different	areas,	including	graph	theory,	computational	complexity,	database	theory,	
cooperative	user	 interfaces	 to	databases,	human-computer	 interaction,	 information	systems,	
medical	informatics,	multi-media	systems,	telematics,	e-commerce,	e-learning,	e-government,	
and	virtual	enterprises.	Professor	D'Atri	published	more	than	150	scholarly	articles	in	journals	
and	conferences,	he	led	and	participated	in	over	thirty	sponsored	research	projects,	and	was	
involved	in	the	organization	of	over	fifty	conferences	and	workshops.	Professor	D'Atri	passed	
away	in	April	2011	at	the	age	of	60.

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 65

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX A

DGQL Optimization for Coordinated Enterprises

1.
create table Manufacturing (
 Plan integer,
 Manufacturer integer,
 Product integer,
 Mcost numeric,
 Mrisk numeric,
 primary key (Plan));
2.
create table Transaction (
 Client integer,
 Product integer,
 Supplier integer,
 Tcost numeric,
 primary key (Client, Product, Supplier));
3.
create table Components (
Plan integer,
Component_Product integer,
primary key (Plan, Component_Product));
4.
create view Procurement as
augment Components C with tuple in
 select M.Plan as Component_Plan
 from Manufacturing M
 where M.Product = C.Component Product;
5.
create view Catalog as
 augment Manufacturing with
 Price numeric,
 Cost numeric;
6.
create view Procurement_Metrics as
 select T.Client, C.Plan as Possible_Plan, C.Price, C.Risk, T.Tcost
 from Transaction T, Catalog C
 where C.Product = T.Product and C.Manufacturer = T.Supplier;
7.
create view Catalog_Metrics as
 select C.Plan,
 C.Price,
 C.Mcost + sum(M.Price + M.Tcost) as Computed_Price,
 C.Risk,
 1 - (1 - C.Mrisk) * prod(1 - M.Risk) as Computed_Risk
 from Catalog C
 left outer join (
 select *
 from Procurement P, Procurement_Metrics PM
 where PM.Possible_Plan = P.Component_Plan
) as T
 on T.Client = C.Manufacturer and T.Plan = C.Plan
 group by C.Plan, C.Price, C.Mcost, C.Risk, C.Mrisk
 check Price = Computed_Price
 check Risk = Computed_Risk;

66 International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8.
create view Plan_Expected_Profit as
 select C.Plan,
 (1 - C.Risk) * C.Price /* expected revenue */
 - (C.Mcost + sum(PM.Tcost)) /* manufacturing and overhead
costs paid*/
 - sum((1 - PM.Risk) * PM.Price) /* expected components cost
 */
 as Expected_Profit
 from Catalog C
 left outer join (
 select *
 from Procurement P, Procurement_Metrics PM
 where PM.Possible_Plan = P.Component_Plan
) as T
 on T.Client = C.Manufacturer and T.Plan = C.Plan
 where C.Plan=${Plan};
 /* substitute ${Plan} with the production plan specified in the exter-
nal transaction
 */
9.
maximize Plan_Expected_Profit.Expected_Profit;

APPENDIX B

DGQL Optimization for Autonomous Enterprises

1.
 create table Catalog (
 Plan integer,
 Manufacturer integer,
 Product integer,
 Price numeric,
 Risk numeric,
 primary key (Plan));
2.
create table Transaction (
 Client integer, /* Client is always the local member */
 Product integer,
 Supplier integer,
 Tcost numeric,
 primary key (Client, Product, Supplier));
3.
create table Components (
Plan integer, /* Plan is a production plan of the local member
*/
 Component_Product integer,
 primary key (Plan, Component_Product));
4.
create view Procurement as
augment Components C with tuple in
 select Plan as Component_Plan
 from Catalog CT
 where CT.Product = C.Component_Product;
5.
create view Procurement_Metrics as
 select T.Client, M.Plan as Possible_Plan, M.Price, M.Risk, T.Tcost
 from Transaction T, Catalog C

International Journal of Decision Support System Technology, 4(3), 43-67, July-September 2012 67

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

 where C.Product = T.Product and C.Manufacturer = T.Supplier;
6.
create view Catalog_Metrics as
 select C.Plan, C.Manufacturer,
 ${Mcost}+ sum(PM.Price + PM.Tcost) as Price
 /* substitute ${Mcost} with the local manufacturing cost */
 1 - (1- ${Mrisk}) * prod(1 - PM.Risk) as Risk
 /* substitute ${Mrisk} with the local manufacturing risk */
 from Catalog C
 left outer join (
 select *
 from Procurement P, Procurement_Metrics PM
 where PM.Possible_Plan = P.Component_Plan
) as T
 on T.Client = C.Manufacturer and T.Plan = C.Plan
 group by C.Plan, C.Manufacturer;
7.
create view Plan_Expected_Profit as
 select CM.Plan,
 (1 - CM.Risk) * CM.Price /* expected revenue */
 - (CM.Price + sum(PM.Tcost)) /* manufacturing and overhead
costs paid */
 - sum((1 - CM.Risk) * CM.Price) /* expected components cost*/
 as Expected_Profit
 from Catalog_Metrics CM
 left outer join (
 select *
 from Procurement P, Procurement_Metrics PM
 where PM.Possible_Plan = P.Component_Plan
) as T
 on T.Client = CM.Manufacturer and T.Plan = CM.Plan
 where CM.Plan=${Plan};
 /* substitute ${Plan} with the production plan being optimized by
the local
 member */
8.
maximize Plan_Expected_Profit.Expected_Profit;

