
Optimizing Public-Key Encryption for Wireless Clients

Nachiketh R. Potlapallyy, Srivaths Raviy, Anand Raghunathany
yC & C Research Labs, NEC USA, Princeton, NJ

Ganesh Lakshminarayanaz�

z Alphion Corporation, Eatontown, NJ

Abstract—Providing acceptable levels of security imposes signif-
icant computational requirements on wireless clients, servers, and
network elements. These requirements are often beyond the mod-
est processing capabilities and energy (battery) resources available
on wireless clients. The relatively small sizes of wireless data trans-
actions imply that public-key encryption algorithms dominate the
security processing requirements.

In this work, we propose techniques to improve the computa-
tional efficiency of public-key encryption algorithms. We focus
on modular exponentiation based encryption/decryption, which is
employed in many popular public key algorithms (e.g., RSA, El
Gamal, Diffie-Hellman etc.). We study an extensive suite of al-
gorithmic optimizations to the basic modular exponentiation al-
gorithm, including known optimizations such as Chinese Remain-
der Theorem, Montgomery Multiplication, etc., and new advanced
techniques such as input block size selection, computation re-use
through algorithm-level caching, etc. The proposed algorithmic
optimizations lead to an “algorithm design space”, across which
performance varies significantly (over an order-of-magnitude).

We evaluated the proposed algorithmic optimization techniques
by obtaining processing times for the SSL handshake protocol on
a state-of-the-art embedded processor, when using the optimal al-
gorithm configuration as well as a popular conventional algorithm
configuration. The results demonstrate that the optimum algo-
rithm configuration leads to a 5.7X improvement in SSL hand-
shake protocol processing times. The proposed techniques are
complementary to, and can be applied in conjunction with, im-
provements in security mechanisms and protocols, new hardware
architectures, and improvements in silicon technologies.

I. I NTRODUCTION

The ongoing and projected future explosion of the wireless
Internet promises to empower users with “anytime, anywhere,
anyform” information access, computation, and communica-
tion capabilities. Wireline Internet usage has clearly demon-
strated that many applications and services of interest involve
access to, and transmission of, sensitive information (e.g., e-
commerce, access to corporate data, virtual private networks,
online banking and trading, multimedia conferencing) [1], [2].
This has led to the development of various mechanisms to en-
sure the privacy and integrity of communicated data, and the
authenticity of the parties involved in a transaction [3]. The
deployment of wireless communications ushers in even greater
security challenges. Wireless communications relies on the use
of a public transmission medium, which makes the communi-
cated signals easily accessible to malicious people or entities.
This is in addition to security threats in the supporting wired
infrastructure networks themselves. Surveys of current and po-
tential users of mobile commerce (m-commerce) services have
indicated security concerns as the single largest bottleneck to

� Work done when the author was with NEC USA, C&C Research Labs

their adoption (52% of phone users and 47% of PDA users sur-
veyed cited security as their primary concern) [4].

Security enhancements to various layers of protocols (e.g.,
IPSec at the network layer, SSL/TLS at the transport layer, SET
at the application layer,etc.) have been developed, which pro-
vide satisfactory security if utilized appropriately [3]. How-
ever, there is a critical bottleneck that prevents their adoption
to address security concerns in wireless networks. Wireless
clients (e.g., smart phones, PDAs) are, and will always be, much
more resource (processing capability, battery) constrained than
their wired counterparts. On the other hand, security protocols
significantly increase computation requirements at the network
clients and servers [5], [6], placing them beyond the capabilities
of wireless handsets. For example, sample performance mea-
surements of thepilotSSLeay security libraries running on
a Palm IIIx [7] indicate that [8] (i) 512-bit RSA key generation,
digital signature generation, and signature verification require
3.4 minutes, 7.028 seconds, and 1.376 seconds, respectively,
and (ii) DES encryption/decryption can be performed at a max-
imum data rate of around 13 kbps, assuming that the CPU is
completely dedicated to security processing. Further, security
operations are reported to quickly drain the Palm’s batteries [8].

New wireless security mechanisms and protocols, hardware
architectures optimized for security processing, and improve-
ments in silicon technologies, will enable higher performance
and battery efficiency. However, increasing data rates due to ad-
vances in wireless communications technologies (e.g., 3G cel-
lular and advanced wireless LAN systems), the accompanying
deployment of multimedia data services and real-time applica-
tions, and the need for increased security levels (as hardware
improvements increase the reach of crackers and malicious en-
tities), imply that the performance and energy requirements for
secure wireless communications will outstrip availability, keep-
ing the “performance gap” and “battery gap” alive for the fore-
seeable future.

A. Related Work
Various specialized wireless security mechanisms and proto-

cols exist to address some of the concerns specific to wireless
networks. Current cellular standards, such as GSM, focus on
providing network access securityi.e., they protect data only on
the wireless link [9]. The emerging 3G standards also consider
network domain and user domain security [10]. Correspond-
ingly, wireless LAN protocols define link-layer security proto-
cols (e.g., WEP in the case of IEEE 802.11b [11]). Approaches
to transport and higher-layer security in wireless data handsets
can be broadly classified into end-to-end and gateway assisted
approaches. The wireless applications protocol (WAP) defines
a transport layer security mechanism (WTLS) that is optimized
for the modest data rate and computation resources of current

1050
0-7803-7400-2/02/$17.00 © 2002 IEEE

handsets [12]. This enables end-to-end transport layer security
between WAP clients and servers located across the wired In-
ternet. This approach suffers from a lack of inter-operability
with existing wired (non-WAP aware) secure websites and e-
commerce infrastructure. Other wireless data service providers,
such as Palm.Net, employ a gateway-assisted approach where
the wireless gateway server runs completely customized secu-
rity protocols to communicate with the wireless client, while
on the other hand it employs standard wired Internet security
protocols to connect to secure servers [13]. While this ap-
proach overcomes the inter-operability issue, it suffers from the
drawback that data exists un-encrypted for a short duration at
the wireless gateway, potentially making it vulnerable to at-
tacks [5].

The computational challenges of security processing in wired
and wireless networks have led to several efforts to address
these issues. However, most of the efforts towards improving
the efficiency of security processing have been targeted at ad-
dressing performance issues in e-commerce servers, network
routers, firewalls, and VPN gateways. Performance analysis of
SSL based security in web servers is presented in [6], [14], [15].
The use of session caching to alleviate SSL related processing
overheads is explored in [6], [16]. The fact that public key al-
gorithms often dominate security processing requirements has
driven the recent development of alternative public key algo-
rithms that offer reduced computational complexity [17], [18].

Various companies offer commercial security processor ICs
to improve the performance of transaction servers and network
routers [19], [20], [21], [22], [23], [24]. Architectural enhance-
ments to high-end microprocessor systems to improve their per-
formance in security processing have been investigated [14],
[15]. Embedded processor designers have also developed secu-
rity extensions to their products, typically based on the addition
of application-specific co-processors and/or peripherals [25],
[26]. Computer architects have researched domain specific in-
structions for security processing, with an aim to maximize ef-
ficiency without compromising programmability [27], [28].

Our work on exploration and tuning of the underlying cryp-
tographic algorithms is complementary to most of the above
efforts, since it can be applied to the algorithms underlying
any given security protocol, and running on any given pro-
grammable hardware platform. Hence, we believe such tech-
niques will be useful in bridging the performance and battery
gaps associated with secure wireless data communications.

B. Paper Overview and contributions

In this work, we present techniques to improve the efficiency
of security processing on wireless handsets. We focus on exten-
sive algorithmic exploration and tuning of public-key encryp-
tion algorithms as the mechanism to achieve these objectives.

For most secure wireless transactions, as illustrated in Sec-
tion II, the processing at the client is dominated by the public-
key algorithm [6], [14]. Hence, we focus on the encryp-
tion/decryption operation used in the most popular public key
algorithms, namely modular exponentiation [3], [29].

We present an extensive suite of algorithmic optimizations to
the basic modular exponentiation algorithm, including known
optimizations (e.g., Chinese Remainder Theorem, Montgomery
Multiplication) and new techniques that we have developed
(e.g., input block size selection, and computation re-use through
algorithm-level caching). We formulate the various techniques

as parametrizeable algorithmic optimizations, leading to a for-
mal “algorithm design space” that is defined by the various
possible algorithm configurations. We demonstrate that perfor-
mance varies significantly (over an order-of-magnitude) across
this space, motivating the need for systematic algorithm ex-
ploration. Further, we show that the optimum algorithm con-
figuration depends on input data characteristics, and the un-
derlying hardware processor architecture. In order to iden-
tify the optimum algorithm configuration, we employ a novel
performance estimation methodology that we recently devel-
oped [30], which is based on automatic performance character-
ization and macro-modeling of software functions that imple-
ment the various steps in the modular exponentiation algorithm.

The rest of the paper is organized as follows. Section II
motivates the need for efficient security processing, and dis-
cusses the distribution of computational effort among the var-
ious components of a security protocol. Section III briefly
presents some basic concepts in public-key cryptography. Sec-
tion IV describes a suite of optimizations to public-key encryp-
tion/decryption algorithms, discusses their individual impact on
performance, and the inter-dependencies between the various
optimizations. Section V presents the experimental methodol-
ogy used for algorithm exploration, and the results obtained,
and analyzes the results to give recommendations for imple-
menting security algorithms on wireless handsets.

II. M OTIVATION

In this section, we illustrate the need for improving the per-
formance of public-key algorithms with the help of statistics
collected from a commercial web server running secure HTTP
transactions.

A secure HTTP transaction is implemented using the Secure-
Sockets Layer (SSL), which is the most widely used security
protocol for online transactions [3]. SSL makes use of both
private-key algorithms (or symmetric algorithms) and public-
key algorithms (or asymmetric algorithms) to secure the data
transferred between a client and a server. In private-key algo-
rithms, both the sender and receiver are required to have knowl-
edge of the secret key used for encrypting the data, since the
same key is used for decryption. Thus, care has to be taken
to exchange the key using a very secure and trusted channel.
Public-key algorithms use different keys for encryption and de-
cryption, thereby avoiding the necessity to exchange a secret
key between the sender and the receiver. But, public-key al-
gorithms have very high computational complexity compared
to private-key algorithms, which makes them infeasible for
bulk data encryption and decryption. SSL achieves high secu-
rity with manageable computational complexity by first using
public-key algorithms to mutually authenticate the client and
server, and to safely exchange a session key between the client
and the server. Based on the exchanged session key, private-key
algorithms are then used for fast encryption and decryption of
transferred data.

Figure 1 shows the percentages of time occupied by public-
key (RSA [31]) and private-key algorithms for typical SSL
transactions on data of varying sizes (from 1K to 32K), run-
ning on a web server based on the Intel iA32 platform [14].
The percentage of the time spent by the web server in general
book-keeping operations is labeled as “miscellaneous”. For
typical wireless transactions (those in the 1-8K bytes range),
public-key algorithm computations on an average occupy 50 %

1051

Symmetric
algorithm

Miscellaneous

RSA algorithm

41 2 16 328

100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

R
el

at
iv

e
co

nt
rib

ut
io

n

1000s of bytes

Fig. 1. Breakup of typical SSL transactions [15]

of the total processing time, whereas, computation associated
with private-key algorithms consumes only about 9 % of the
time. The dominance of public-key algorithm computations is
even more marked on the client side when the client needs to
generate a 48-byte digital signature.

Thus, improvements in the public-key algorithm perfor-
mance will have a significant impact on improving the over-
all efficiency of e-commerce transactions. This performance
improvement also translates to reduced computation energy re-
quirements, and hence longer battery life in wireless clients.
This observation provides us with a strong motivation to thor-
oughly explore the design space of public-key algorithms in or-
der to discover the most efficient implementations.

III. PRELIMINARIES

This section describes some background material on public-
key algorithms for the sake of completeness. Further details are
available in the literature [32].

Public-key algorithms perform two basic tasks:key gener-
ation and encryption/decryption. Key generation consists of
generating the “private key” and the “public key”, which are
used in the encryption and decryption of input data. The “pub-
lic key” is disclosed to the world, whereas the “private key” is
kept secret by the legitimate owner of the keys.

The key generation step is typically performed quite infre-
quently (e.g., when generating a digital signature). Encryp-
tion/decryption constitutes bulk of the work done by a public-
key cryptographic algorithm. Thus, any attempts to improve
public-key algorithm performance should target this stage. In
most public key algorithms (e.g., RSA, El Gamal, Diffie-
Hellman,etc.), encryption/decryption is performed using mod-
ular exponentiation (using the private key or the public key).
Therefore, an optimization targeting modular exponentiation
becomes applicable to a wide range of public-key algorithms.

Key generation consists of determining three quantities: the
modulus (n), the public exponent (e) and the private exponent
(d). The two tuples (e,n) and (d,n) constitute the public and
the private key, respectively. To encrypt a messagem (plain-
text), we dividem into blocksm�� � � � �mp. Then, encryption
is performed through modular exponentiation, defined by

ci � me
i modn� for i � � to p

whereci is the ciphertext block corresponding tom i. To de-
crypt a message, we take each encrypted blockc i, and compute

mi � cdi modn� � for i � � to p

IV. PUBLIC-KEY ALGORITHM OPTIMIZATIONS

The most significant factors that control the performance of
a public-key algorithm include the size of the input block, the
algorithms used for performing modular exponentiation and
modular multiplication and the use of special-purpose enhance-
ments like the Chinese Remainder Theorem. In addition, soft-
ware engineering techniques can also speed up the implemen-
tation of an algorithm. We look at a specific optimization (soft-
ware caches) relevant to this work. Each of these optimiza-
tions can lead to several different alternative implementations
of the public-key encryption algorithm. Many optimized im-
plementations of public-key algorithms exist, however, to our
knowledge, none of them consider all the algorithm optimiza-
tions in systematic manner. In order to provide a global view of
the space of all possible algorithm configurations, we represent
each of the optimizations as analgorithmic parameter. The
different parameters controlling the implementation of an algo-
rithm define thealgorithm design space. The purpose of our
study is to first identify the various algorithm parameters that
control the implementation of modular exponentiation. With
the algorithm design space defined, we not only want to iden-
tify the best value for each parameter (for a particular underly-
ing hardware platform), but also to examine if there is an inter-
play, among the various parameters, which can be exploited to
improve the overall performance of the algorithm.

Each of the optimizations considered in this work is detailed
in the following subsections, following which we comment on
inter-dependencies between the various optimizations.

A. Input Block Size

As mentioned in Section III, a plaintext message is typically
divided into several input blocks before encryption. A smaller
input block size would reduce the size of the input value to
each modular exponentiation step (simplifying its complexity),
while increasing the number of calls to modular exponentia-
tion. The effect of input block size on performance, was stud-
ied by performing encryption and decryption for varying input
block sizes,i.e., 32, 64, 128, 256 and 512 (on the same input).
The number of Kilo cycles per byte of input data (Kcycles per
byte) consumed for encryption and decryption on an embedded
processor (see Section V for details of the target processor),
was used to quantify performance. The results, plotted in Fig-
ure 2(a), were obtained by adding the kilo cycles consumed by
RSA encryption and decryption, for various input block sizes.
Figure 2(a) shows that the greater the block size, the better the
performance. But, the performance obtained for block sizes
greater than 512 were not significantly greater than that ob-
tained by a block size of 512. Note that the block size cannot
be increased beyond the “modulus” (1024-bits in this case) of
the public-key algorithm in order to ensure lossless encryption.

B. Modular Exponentiation (ME) Algorithms

There are two ways of performing modular exponentia-
tion [33], depending on how the bits in the exponent are
scanned, namely:left-to-right (LR) andright-to-left (RL). Sup-
pose that the exponente can be represented in binary form
as,�ek��ek�� � � � e���. In encryption, the ciphertextC corre-
sponding to the input blockM (or vice-versa for decryption) is
obtained as follows:

1052

K
C

Y
C

LE
S

 P
E

R
 B

Y
T

E

INPUT BLOCK SIZE
100 200 300 400 500

10

20

30

40

(
*

10
00

)

500400300200

* *

*

*

*

*

*

INPUT BLOCK SIZE

100

No CRT

CRT

K
C

Y
C

LE
S

 P
E

R
 B

Y
T

E
(

*
10

00
)

40

30

20

10

(a) (b)

1 2 3 4 5
MM ALGORITHMS

4

8

12

14

K
C

Y
C

LE
S

 P
E

R
 B

Y
T

E
(

*
10

00
)

4

8

*

*

*
*

* * *

RADIX
100 200 300 400 500

K
C

Y
C

LE
S

 P
E

R
 B

Y
T

E

16

12

(
*

10
00

)
(c) (d)

Fig. 2. Effect of (a) input block size, (b) CRT, (c) MM algorithm, and (d) radix size

� Left-to-Right (LR) Algorithm : Initially setC � �. For
i from k � � down to�, setC toC � �modn�. In addition,
if �ei �� ��, setC toC�M �modN�.

� Right-to-Left (RL) Algorithm : Initially setC � �. For
i from � up tok � �, setC toC�M �modN�. In addition,
if �ei �� ��, setM toM� �modN�.

Unlike in the LR algorithm, the operations in every iteration
of the RL algorithm are independent of each other. Thus, the
RL algorithm can potentially result in a speedup over the LR
algorithm. However, the speedup obtained in practice depends
on whether sufficient parallelism (e.g., parallel MM units) is
available in the target processor.
C. Chinese Remainder Theorem

The exponent size (of ME) in decryption (usually, 1024 bits)
is much larger than in encryption (normally, 16 bits or less).
Therefore, decryption is much more computationally intensive
and time consuming than encryption. The Chinese remainder
theorem (CRT) [34] is employed for reducing decryption times.
Using CRT, intermediate values are obtained by performing ME
using a reduced exponent size, and these values are combined
to obtain the final decrypted result. This is made possible by
the knowledge of the secret primesp and q (used to obtain
the modulusn). There are two ways of implementing CRT,
namely: single-radix conversion (SRC) and mixed-radix con-
version (MRC) [33]. We describe the MRC method here. The
decryption operation,M � C d �modN� (M , C and d are
the plaintext, ciphertext and private key respectively) is broken
down toM � M� � M���p, where,

M� � Cd� �mod p� (1)

M� � Cd� �mod q� (2)

M�� � �M� � M���p
��mod q� �mod q� (3)

The values,d� � d �mod �p� ��� andd� � d �mod �q � ���,
are pre-computed for a given private keyd. Note thatd � and
d� are half the size of the private key,d, which explains the
improvement obtained by CRT. Figure 2(b) illustrates the supe-
riority of decryption using CRT (lower curve) over decryption
without CRT (upper curve).
D. Modular Multiplication (MM) Algorithms

Each modular exponentiation (ME) operation is imple-
mented as a sequence of modular multiplication (MM) oper-
ations. Each ME operation involves roughly���k MM opera-
tions, wherek is the bit-size of the exponent [35]. For exam-
ple, when the exponent in ME is 1024 bits, the MM operation
is invoked 1500 times, on an average, by each ME operation.
Thus, the performance of the MM operation can have a major
influence on that of the ME operation (and thereby on the en-
cryption/decryption performance). There are as many ways of
performing MM, as there are of performing multiplication and
mod operations. Depending on the constituent operations, each
MM technique has a varying impact on the performance of the
encryption/decryption operations. The main trade-off among
the various MM algorithms is between the speed and storage
required (to hold intermediate values). In our study, five dif-
ferent MM algorithms were analyzed, whose details are as fol-
lows:

� Montgomery MM (MM-Algo 1) : This algorithm [36]
implements the mod operation (reduction of the prod-
uct) as divisions by a power of�. However, there is an
overhead incurred in the form of mapping the given in-
puts to Montgomery residue space before starting the MM
computation(pre-processing), and then mapping the result
back to the normal space (post-processing).

� Radix-r, Separate Montgomery MM (MM-Algo 2) : In
this variation of Montgomery MM, the reduction of the

1053

*

*

*

*

*

* * PRE-MM CACHE
INTRA-MM CACHE

300 400100 200 500
INPUT BLOCK SIZE

10

20

30

40

50

60

70

80

90

100

H
IT

-R
A

T
IO

200 400 600 800

*

*

*

*

*

64

128

256

512

IDEAL HIT-RATIO

1000

10

20

30

40

50

60

70

80

90

100

CACHE SIZE

H
IT

-R
A

T
IO

1K ASSOCIATIVE
CACHE

(a) (b)

Fig. 3. Effect of caching (pre-ME and intra-MM)

product is broken into a series of atomic steps, where each
atomic step operates on a part (determined by radixr) of
the product [37],i.e., instead of reducing the whole prod-
uct at once (as in MM-Algo 1), it is broken into chunks
(determined by radixr), each of which is successively re-
duced. The complexity of individual operations in the al-
gorithm is reduced, but the number of operations required
increases (compared to MM-Algo 1).

� Radix-r, Interleaved Montgomery MM (MM-Algo 3) :
In this Montgomery MM implementation, the product is
accumulated in discrete steps (compared to MM-Algo 2)
and successively reduced, and this process proceeds until
the entire product is computed (and reduced) [37]. This
implementation reduces the storage requirements (because
of the partial product accumulation and reduction). The
storage and computational complexity of the algorithm are
reduced, but the number of steps increases (compared to
MM-Algo 1).

� Normalization based MM (MM-Algo 4) : This algorithm
involves obtaining the product using Karatsuba-Ofman
method [33], and then reducing the result using the op-
timized normalization method [38]. Due to the absence
of pre- and post-processing operations, this technique has
fewer number of operations than the previous implemen-
tations (Algo’s 1,2 and 3).

� Binary Montgomery MM (MM-Algo 5) : This is a spe-
cial case ofMM-Algo 3 , where the radix is 2,i.e.,, r � �.
This particular value of the radix drastically simplifies the
operations in Montgomery MM algorithm through the use
of very simple and fast bitwise operations. However, the
number of bitwise operations required is large.

Figure 2(c) shows the performance of encryption/decryptionus-
ing the the above mentioned MM algorithms in sample ME op-
erations. MM-Algo 5 turns out to be very costly. This can be
explained by the large number of bitwise operations the algo-
rithm has to perform, together with the poor efficiency of gen-
eral purpose processors in executing bit-level operations. MM-
Algo 4 performs the best.
E. Radix in MM Algorithms

The performance of MM algorithms (MM-Algos 2 and 3) is
affected by the choice of the radix. Figure 2(d) shows the cu-
mulative performance of encryption and decryption using MM-
Algo 3 (in ME), as the radix is varied from	 to ���. The plot
shows that minimum cost is obtained by using a radix of size
��
 in MM algorithms. MM-Algo 2 exhibits similar behavior.

F. Caching
Modular exponentiation is a very costly operation and appre-

ciable time savings can be obtained, if the ME operation can be
avoided for repeated input blocks (using the previously com-
puted ciphertext instead). This observation prompted us to ex-
amine the usage of software caches before the ME operation.
The encryption process in the presence of caches can be de-
scribed as:if (Mi present in cache)then useCi from the cache,
elseCi � Me

i �modN�. Decryption can be implemented in
the same way. This kind of cache is referred to as thepre-ME
cache.

As mentioned earlier, a typical 1024-bit exponent ME opera-
tion results in 1500 MM operations on average. This increases
the chances of inputs, to the costly multiplication and mod oper-
ations in the MM operation, being repeated. This motivates the
use of software caches inside the MM units. Although, multiply
and mod operations are not as costly as the ME operation, ap-
preciable savings can still be obtained for a moderate hit-ratio.
For example, MM-Algo� has a stepM � T�N � �modR�, in
which N’ and R are fixed for the entire duration of encryption
(or decryption). We use a cache in the following manner:if (T
is present in the cache)thenassign the corresponding computed
value from the cache toM , elsecomputeM � T�N � �modR�.
This type of cache is calledintra-MM cache.

Figure 3(a) shows the variation in the hit ratios of pre-ME
(lower curve) and intra-MM (upper curve) caches as a function
of the input block size. Intra-MM caches exhibit better perfor-
mance scaling compared to pre-ME caches, as the input block
size is increased. For this experiment, we assumed unlimited
cache sizes,i.e., the modular exponentiation result computed on
each unique input block is added to the cache. Due to the over-
heads associated with maintaining a software cache, in practice,
it is necessary to limit the cache size and consequently use a re-
placement policy.

In order to evaluate the cache size necessary for a good hit
ratio, we performed experiments with associative cache sizes
of varying sizes. The results indicate that a 1K cache results in
a hit-ratio almost equal to the “ideal” hit-ratio (Figure 3(a)) for
pre-ME caches (Figure 3(b)). The same behavior is observed
for intra-MM caches also. Thus, 1K associative caches were
used for pre-ME and intra-MM caches.
G. Inter-dependences and trade-offs

The different combinations of the parameters seen above re-
sult in a very large design space. Such a design space needs

1054

to be explored completely in order to determine the optimal
choice of parameter values. This is necessary because the best-
performing value for one parameter does not necessarily fig-
ure in the overall best configuration (with other parameters in-
cluded) for the public-key algorithm.

For example, Figure 2(a) indicates that the input block size
of 512 bits is potentially a good choice for public-key encryp-
tion/decryption. With this block-size (along with 1024-bit RSA
modulus and “algo 1”), the cost of encrypting an example wire-
less data transaction is 64301.07 Kcycles on the target proces-
sor. On the other hand, the cost of encrypting the same transac-
tion with a 32-bit input block size and a pre-ME cache reduces
to 15714.5 Kcycles. This figure reflects a performance im-
provement of 75.5% (also includes the overhead introduced by
the cache). The above experiment demonstrates that perform-
ing each algorithmic optimization separately (independently)
can lead to significantly sub-optimal performance. Exploring
the large design space to determine the optimal configuration
of parameters, therefore, becomes inevitable.

V. PUBLIC-KEY ALGORITHMS: DESIGN SPACE

EXPLORATION, RESULTS AND ANALYSES

In this section, we tackle the task of determining an opti-
mum configuration in the public-key algorithm design space
for use in a popular handshake protocol (SSL). Section V-A
describes the SSL handshake protocol and its public-key com-
ponents. Section V-B outlines the implementation details of
the public-key algorithms, the configuration details of the pro-
cessing hardware and the performance evaluation strategy. Sec-
tion V-C describes the results of our experiments, including the
optimal algorithm identified therein.

Parameter Stage 1 Stage 2 Stage 3
Data Size 1024 bits 288 bits 384 bits
Key Size 16 bits 1024 bits 16 bits

TABLE I
SSL HANDSHAKE PROTOCOL: CHARACTERISTICS OF

PUBLIC-KEY FUNCTIONS USED

A. Public-Key Computations in SSL handshake

The SSL handshake constitutes the initialization part of the
SSL protocol. It is primarily used to securely exchange the key
(used subsequently for secure bulk data transfers) between the
client and the server, and is dominated by public-key algorithm
computations. The client is required to perform public-key op-
erations at three stages of the SSL handshake protocol, which
are:

� Stage 1: To verify the digital signature of the certificate
authority (CA) who has signed the server certificate. This
involves decryption using the public key of the CA.

� Stage 2: To prepare its (client) digital signature. This is
achieved by encrypting a piece of data using the private
key of the client.

� Stage 3: Encrypting thepre-master secret using the public
key of the server. The “pre-master secret” is used both by
the client and the server to derive the session key.

The sizes of the data handled (encrypted or decrypted) in
each stage and corresponding key sizes are given in Table I.

B. Experimental Methodology
The public-key algorithm candidates are highly modular, op-

timized C implementations and use library routines from two
well-known software libraries: (i) The GNU MP library [38]
provides a wide variety of C functions that can perform arbi-
trary precision arithmetic on integers, rationals and floats, and
(ii) a hash library which provides a reliable means for creat-
ing hash tables for use as software caches. Over 450 algo-
rithm candidates must be evaluated due to the permutations
arising from two ME algorithms, five MM algorithms, five in-
put block sizes, three CRT implementations (two distinct im-
plementations, in addition to the absence of CRT), and three
cache options (no cache, only pre-ME cache and only intra-MM
cache). The target is an Xtensa configurable processor running
at 214MHz generated, using Tensilica’s T1030.1 processor gen-
erator [39]. The processor configuration includes 4 KB direct-
mapped instruction and data caches and does not include any
special-purpose instructions or functional units. The instruc-
tion set simulator for the target processor runs on top of the
native development platform, which is a SUN Ultra 10 work-
station with 0.5GB memory, running at 440 MHz. Simulating a
single transaction of the SSL handshake protocol over a space
of over 450 RSA algorithm configurations requires nearly 38
days of CPU time. In order to identify the optimum algorithm
configuration, we have developed a software performance es-
timation methodology based on automatic characterization and
macro-modeling of the software library routines [30]. In this
framework, performance evaluation to compute the number of
cycles taken by each algorithm configuration completes in just
66 hours. Details of performance macromodeling based design
exploration are available in [30].

Parameter Stage 1 Stage 2 Stage 3
Input Block Size 512 512 512

Radix 256 256 256
MM Algorithm Algo 4 Algo 4 Algo 4

CRT SRC MRC SRC
Pre-ME Cache No No No

Intra-MM Cache Yes No Yes

Speedup 74.6 % 82.9 % 66.37 %

TABLE II
OPTIMAL STAGE-WISE PARAMETER VALUES AND

SPEEDUPS FOR THESSL HANDSHAKE PROTOCOL

C. SSL Handshake Protocol: Optimal Algorithm Choice
Table II summarizes the results of design space exploration

with the algorithm parameter values determined for optimal
performance of the three public-key stages in the SSL Hand-
shake protocol. The presence of CRT introduced a significant
performance gain in Stage 2, and to a lesser degree in Stages
1 and 3. But,single-radix conversion (SRC) implementation
of CRT results in better performance in Stages 1 and 3, while
mixed-radix conversion method of implementing CRT performs
better in Stage 2. The presence ofPre-ME cache did not con-
tribute to a performance gain in any of the stages, while the
Intra-MM cache resulted in modest gains only in Stages 1 and
3. MM-Algo 4 resulted in the best performing RSA encryption
and decryption, in all the stages. Likewise, an input block size
of 512 bits resulted in optimal performance across all the stages.

1055

Theradix value applies toMM-Algo 2, which was observed to
be the next best performing MM algorithm. The radix value
of 256 considerably improved the performance ofMM-Algo 2
over the conventional Montgomery implementations (MM-Algo
1). The last row in the table indicates the overall performance
gain of the optimal algorithmic configuration indicated for each
stage over the conventional choice (that uses Montgomery MM
algorithm, with 128 bit input block sizes [3], and radix size of
32 [37])

Table III illustrates the performance impact of replacing a
single design parameter in a conventional public-key algorith-
mic configuration with its corresponding optimal value (Ta-
ble II). We can see that by making only the input block size op-
timal (i.e., 512 bits), performance improves by 70.5 %, 63.1 %
and 62.08 % in Stages 1,2 and 3, respectively. The presence of
CRT improves the performance of Stage 2 by 63 % (using MRC
method), and by 32 % and 30.2 % in Stages 1 and 3 (by using
SRC method). The presence of the Intra-MM cache enhances
the performance of Stages 1 and 3 only.

Parameter Stage 1 Stage 2 Stage 3
Input Block Size 70.5 % 63.1 % 62.1 %

Radix 10.6 % 11.8 % 10.5 %
MM Algorithm 43.7 % 43.2 % 45.2 %

CRT 32.0% 63.0% 30.2 %
Pre-ME Cache - - -

Intra-MM Cache 5.1 % - 4.6 %

TABLE III
EFFECT OF OPTIMAL PARAMETER VALUES ON

PERFORMANCE

From Table II, we also note that a particular set of values re-
sult in optimal performance in Stages 1 and 3, while a different
set of values yield the best performance in Stage 2 (especially
with respect to using the Intra-MM cache and the CRT algo-
rithm). Table IV gives the cost of a SSL handshake session on
a wireless client using the conventional configuration, only the
optimal configuration determined forStage 1 for all the three
stages (fixed solution) and the optimal configuration for each
stage (adaptive). SSL handshake incorporating optimal param-
eter assignment (fixed and adaptive) demonstrates nearly a�X
speedup over SSL handshake using the conventional public-key
parameters. We can also see that while the difference in perfor-
mances from using theadaptive andfixed solutions is not large,
the adaptive solution comes at practically no extra cost. This
observation justifies the use of theadaptive solution for effec-
tive execution of public-key operations in the SSL handshake
protocol.

Parameter Assignment Total Cost (Kilo Cycles)

Conventional 562115.54
Fixed 98968.86

Adaptive 98744.42

TABLE IV
PERFORMANCE OF CONVENTIONAL, FIXED AND ADAPTIVE

PUBLIC-KEY SOLUTIONS TOSSL HANDHAKE PROTOCOL

REFERENCES

[1] U. S. Dept. of Commerce,The Emerging Digital Economy II.
http://www.ecommerce.gov/ede/report.html, 1999.

[2] W. W. W. Consortium, The World Wide Web Security FAQ.
http://www.w3.org/Security/faq/www-security-faq.html, 1998.

[3] W. Stallings,Cryptography and Network Security: Principles and Prac-
tice. Prentice Hall, 1998.

[4] ePaynews. http://www.epaynews.com/statistics/ecappstats.html.
[5] S. K. Miller, “Facing the Challenges of Wireless Security,” inIEEE Com-

puter, pp. 46–48, July 2001.
[6] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing Elec-

tronic Commerce: Reducing SSL Overhead,” inIEEE Network, pp. 8–16,
July 2000.

[7] Palm Inc. http://www.palm.com.
[8] D. Boneh and N. Daswani, “Experimenting with Electronic Commerce

on the PalmPilot,” inProc. Financial Cryptography, pp. 1–16, 1999.
[9] European Telecommunication Standard GSM 02.09, http://www.etsi.org

/getastandard/home.htm.
[10] 3GPP Draft Tech. Spec. 33.102, http://www.3gpp.org/specs/specs.htm.
[11] LAN MAN Standards Committee of the IEEE Computer So-

ciety. Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specification: IEEE standard 802.11,
http://grouper.ieee.org/groups/802/11/main.html, 1990.

[12] WAP Forum Ltd,Official Wireless Application Protocol. John Wiley and
Sons, 2000.

[13] Palm Net. http://www.palm.com/pr/palmvii/7whitepaper.pdf, 2000.
[14] Intel, Enhancing Security Performance through IA-64 Architecture.

http://developer.intel.com/design/security/rsa2000/itanium.pdf, 2000.
[15] K. Kant, R. Iyer, and P. Mohapatra, “Architectural Impact of Secure

Sockets Layer on Internet Servers,” inProc. Int. Conf. Computer Design,
pp. 7–14, Oct. 2000.

[16] A. Goldberg, R. Buff, and A. Schmitt, “Secure Server Performance Dra-
matically Improved by Caching SSL Session Keys,” inACM Wksp. Inter-
net Server Performance, June 1998.

[17] N. Koblitz, A Course in Number Theory and Cryptography. Springer-
Verlag, 1987.

[18] NTRU Communications and Content Security. http://www.ntru.com.
[19] Broadcom Corporation, BCM5840 Gigabit Security Processor.

http://www.broadcom.com.
[20] Corrent Inc. http://www.corrent.com.
[21] HIFN Inc. http://www.hifn.com.
[22] Motorola Inc., MC190:Security Processor. http://www.motorola.com.
[23] NetOctave Inc. http://www.netoctave.com.
[24] Securealink USA Inc. http://www.securealink.com.
[25] ARM SecurCore. http://www.arm.com.
[26] SmartMIPS. http://www.mips.com.
[27] Z. Shi and R. Lee, “Bit Permutation Instructions for Accelerating Soft-

ware Cryptography,” inProc. IEEE Intl. Conf Application-specific Sys-
tems, Architectures and Processors, pp. 138–148, 2000.

[28] J. Burke, J. McDonald, and T. Austin, “Architectural Support for Fast
Symmetric-Key Cryptography,” inProc. ASPLOS, pp. 178–189, Nov.
2000.

[29] RSA Security Inc. http://www.rsa.com.
[30] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Algo-

rithm exploration for efficient public-key security processing on wireless
handsets,” inProc. Design and Test in Europe, Mar. 2002.

[31] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for Obtaining
Digital Signatures and Public-key Cryptosystems,” inComm. of the ACM,
pp. 120–126, Feb. 1978.

[32] B. Schneier,Applied Cryptography: Protocols, Algorithms and Source
Code in C. John Wiley and Sons, 1996.

[33] D. E. Knuth, The Art of Computer Programming: Seminumerial Algo-
rithms. Addison Wesley, 1981.

[34] J. J. Quisquater and C. Couvreur, “Fast Decipherment algorithm for RSA
public-key cryptosystems,” inElectronic Letters, pp. 905–907, Oct. 1982.

[35] R. L. Rivest, “Rsa chips (past/present/future),” inProc. EUROCRYPT,
1984.

[36] P. L. Montgomery, “Modular multiplication without trial division,” in
Mathematics of Computation, pp. 519–521, 1985.

[37] S. R. Dusse and B. S. Kaliski, “A Cryptographic Library for the Motorola
DSP 5600,” inProc. EUROCRYPT, pp. 230–244, 1991.

[38] T. Granlund, The GNU Multiple Precision Arithmetic Library.
http://www.gnu.org, 2000.

[39] Tensilica, Xtensa application specific microprocessor solutions -
Overview handbook. http://www.tensilica.com, 2001.

1056

