
Optimizing Queries across Diverse Data Sources

Laura M. Haas Donald Kossmann* Edward L. Wimmers
IBM Almaden Research Center

San Jose, CA 95120

Jun Yang+

Abstract

Businesses today need to interrelate data stored in diverse systems

with differing capabilities, ideally via a single high-level query

interface. We present the design of a query optimizer for Gar-

lic [c’95], a middleware system designed to integrate dotafrom a

broad range of data sources with very different query capabilities.

Garlic’s optimizer extends the rule-based approach of [L&88] to

work in a heterogeneous environment, by defining generic rules for

the middleware and using wrapper-provided rules to encapsulate

the capabilities of each data source. This approach offers great

advantages in terms of plan quality, extensibility to new sources,

incremental implementation of rules for new sources, and the abil-

ity to express the capabilities of a diverse set of sources. We de-

scribe the design and implementation of this optimizel; and illus-

trate its actions through an example.

1 Introduction

Businesses today rely on data stored in diverse systems with
differing capabilities. Some data are in traditional database
systems with a powerful query language and efficient in-
dices for parametric data. Others are in spreadsheets and
file systems with limited query capabilities, or in legacy ap-
plication systems which provide specialized ways to access
and manipulate data. The emergence of protocols such as
CORBA, OLE DB and Java/JDBC makes it easier to access
this range of sources, while database middleware systems
or mediators [Wie93] offer the possibility of interrelating
their data via a single high-level query interface. The first
generation of commercial middleware systems has gained
rapid acceptance in the marketplace. However, these prod-
ucts typically connect only a limited set of data sources, pre-
dominantly relational, and generally model all data sources
as relational systems. This simplifies the middleware con-
siderably, as it can assume that all the data sources have

‘Current address: University of Passau, 94030 Passau, Germany
t Current address: Stanford University, Stanford, CA 94305

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VL.DB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,

requires a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference

Athens, Greece, 19!J7

similar capabilities. The price of this simplification is that
any specialized search or data manipulation capabilities of
the underlying systems cannot be exploited when they are
accessed through the middleware. Thus this first genera-
tion of middleware is not extensible to the arbitrary systems
which may exist in a given business.

Several projects are addressing the problem of mid-
dleware for increasingly diverse systems [Day83, S”94,
PGMW95, TRV96, LRO96]. Many of the data sources
these systems integrate have limited or specialized query
processing capabilities. Queries in this environment vary
widely in performance depending on how and where their
operations are executed. One key challenge for these sys-
tems is thus to develop a general-purpose query optimizer

which can use information about the capabilities of a new
data source to produce correct plans that efficiently answer
queries ranging over data in multiple sources, with differing
query capabilities. This paper takes up that challenge.

In this paper we present the design of a cost-based op-
timizer for heterogeneous middleware systems. We have
implemented our approach in Garlic [C+95], a middleware
system designed to integrate data from a broad range of
data sources, with very different query capabilities. Our
approach extends Lohman’s [Loh@] grammar-like rules to
work in a heterogeneous environment. Data sources are
connected to the middleware engine via wrappers. The
optimizer is given a set of rules that capture the engine’s
query execution strategies. Among these are several generic
rules, which produce source-specific plans using matching
wrapper-provided rules that encapsulate the capabilities of
a particular data source. A normal dynamic-programming
enumerator fires rules to generate all possible alternative ex-
ecution plans for a query.

We have pursued and implemented our approach be-
cause it has several crucial advantages. First, since our op-
timizer is an extension of a standard optimizer we get all
the benefits of advances in optimizer technology, as well
as the benefits of considering the entire search space, lead-
ing to high quality, efficient plans. We believe ours is the
first solution based on traditional dynamic-programming
techniques. Second, the system is extensible. Regardless
of their data model and query processing capabilities, new
wrappers can be integrated without affecting other wrappers
or the middleware. Third, wrappers can evolve gracefully.

276

Garlic Quety Services

Figure 1: Garlic System Architecture

At any time, it is possible to refine or add wrapper rules to
improve the performance of queries over the wrapper’s data
sources. Finally, this approach is extremely flexible, mak-
ing it possible to integrate wrappers of strange data sources
with unusual query processing capabilities.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the Garlic architecture. Section 3 presents
the Garlic query optimizer and its built-in rules. Section 4
shows how easy it is to model the query behavior of diverse
sources. Section 5 shows by example how the Garlic op-
timizer uses Garlic and wrapper rules to optimize a query
across very different sources. Section 6 discusses related
work, and Section 7 concludes the paper.

2 The Garlic System

Figure 1 shows the architecture of Garlic [C+95]. The ar-
chitecture is typical of many heterogeneous database sys-
tems, e.g., [Day83, PGMW95, TRV96]. At the bottom
are data sources, which store, access and manipulate data.
Above every data source is a wrapper. A wrapper hides the
details of the data source’s interface and enables access to
the data source using Garlic’s internal protocols. The wrap-
per describes the data stored in the source using Garlic’s
data model, an object-oriented model based on the ODMG
standard [Cat96, C+95]. Data in the source are viewed as
objects, and Garlic refers to these objects using an OID it
manufactures based on the source, the object’s type, and a
unique key determined by the wrapper. This OID allows
Garlic to apply methods on objects; from the OID, Garlic
can determine the appropriate wrapper, and the wrapper can
locate the necessary data and apply the method. Wrappers
provide methods to get the value of each attribute of an ob-
ject, and to encapsulate any specialized search capabilities
of the source. (These methods are typically implemented as
commands in the native language or programming interface
of the underlying source.) The wrapper also defines object
collections which are the targets of queries in Garlic.

The wrapper further provides a description of its query
processing capabilities in the form of a set of rules (en-
capsulated as planning methods [RS97]). Different sources
may vary greatly in their query processing capabilities, and
thus will provide different rules. A wrapper does not have to
reflect the full query functionality of its data sources. How-
ever, in order for the data in that data source to be accessible
through queries, some minimum functionality must be pro-

vided, i.e., at least one access rule. We will discuss wrapper
rules in Section 4.

A system catalog records the global schema. When a
new data source is added to a Garlic system, it is associ-
ated with a wrapper. This association, as well as the data
source’s local schema and any available statistics for its
data, is recorded in the catalog as part of the registration
process for a data source. The catalog also contains infor-
mation such as view definitions and information about the
system configuration needed as input to the cost model dur-
ing query optimization.

At the heart of Garlic are its query services, which play
the same role as a mediator in the architecture of other
systems [Wie93]. Garlic’s query services have two ma-
jor components: a query language processor, and a dis-
tributed query execution engine. The query language pro-
cessor takes a query as input and obtains an execution plan
for the query through parsing, semantic checking, query
rewrite, and query optimization (as in Starburst [H+89]).
The job of the optimizer is to construct and select an “opti-
mal” plan for a given query, based on a cost model. Tradi-
tional query optimizers build plans based on detailed, built-
in knowledge of the full set of execution strategies available
and their costs. This is true even in distributed systems;
the optimizer must know the capabilities and costs for each
remote data source to decide which operations to execute
at a source and which at the query site [FJK96]. Garlic,
however, must be able to find good plans without built-in
knowledge of data sources’ capabilities and costs; how it
accomplishes this is the subject of this paper.

Once the plan has been determined by the optimizer, its
execution is coordinated by Garlic’s query execution en-
gine, which passes subqueries to the wrappers and assem-
bles the final query result. Garlic’s execution engine is a
powerful system able to perform joins, apply predicates, in-
voke methods, sort, aggregate, and so on. This allows Gar-
lic to compensate for functionality not present in the data
sources or not reflected by their wrappers, and to execute
itself those operations it can do more efficiently.

3 Query Optimization in Garlic ’

To optimize a query, Garlic uses a set of STrategy Altema-
tive Rules, or STARS [Loh88], which construct plans that
can be handled by Garlic’s query engine. Garlic’s enumera-
tor fires appropriate STARS, following a dynamic program-
ming model, to build plans for the query bottom-up. Garlic
differs from [Loh88] in that some of Garlic’s STARS are
genetic. These STARS are fired during enumeration when
a piece of work is found that can or must be done by a
wrapper. Generic STARS consult the appropriate wrapper
to build their piece of the plan. From the resulting set of
complete plans for the query, the optimizer selects the win-
ning plan based on cost. This plan will then be translated
into an executable (or interpretable) format.

277

Property Description

Tables set of tables that have been accessed and joined
COllUtlnS set of columns of the output of the plan

Predr set of medicates that have been annlied in the ulan

Source where the output is produced; i.e., the id where the output is produced; i.e., the id
of a data source or Garlic’s execution engine of a data source or Garlic’s execution engine
TFUJE if the output of the plan is materialized TFUJE if the output of the plan is materialized,
FALSE otherwise
a sort expr. if the tuples of the output are ordered, a sort expr. if the tuples of the output are ordered,
NIL otherwise

Order

cost 1 estimated cost of the plan
Card 1 estimated number of tuples of the output of the plan

Figure 2: Garlic Plan Properties

3.1 Plans in Garlic

Plans in Garlic are trees of operators, or POPS (Plan OPera-

tors). Each POP works on one or more inputs, and produces
some output (usually a stream of tuples). The input to a POP
may include one or more streams of tuples. In a plan, these
are produced by other POPS. Garlic’s POPS include oper-
ators for join, sort, filter (to apply predicates), fetch (to re-
trieve data from a data source), temp (to make a temporary
collection) and scan (to retrieve locally stored data). Gar-
lic also provides a generic POP, called PushDown, which
encapsulates work to be done at a data source.

Plans are characterized by a set of plan properties. Prop-
erties are a common way to track the work that is done in
a plan [GD87, Loh88, M+96]. It is particularly important
to characterize plans with a fixed set of properties in Gar-
lic, because Garlic plans are (in part) composed of generic
PushDown POPS. The actual work being done by these
POPS depends on the wrapper where the work takes place
and the query, and is not understood by Garlic or any other
wrapper in the system. However, the properties provide suf-
ficient information about what is done to allow Garlic to
properly incorporate the PushDown POP in a plan.

We characterize plans and their output by the eight prop-
erties described in Table 2. The properties of one POP are
typically a function of the properties of its input POP(s), if
any. Properties are computed as the POPS are created, by
STARS. The properties assigned to a plan are the proper-
ties of the topmost POP of the plan. Most of these proper-
ties are equivalent to those used by optimizers of traditional
database systems. An exception is the Source property. It is
used to record where the output stream comes from (Garlic
or a particular dam source); the Source property is compa-
rable to the Site property used by R* [Loh88].

For example, Figure 3 shows one possible plan for ex-
ecuting the query “select m.Body from Inbox m, Classes c
where m.Subject = c.Course and c.Prof = ‘Aho’ “, assum-
ing Inbox is defined by a simple mail wrapper that only an-
swers queries of the form “select OID from Inbox”, and
that Classes comes from a DB2 database. The leaves of
the plan are both PushDown POPS, but with quite different
properties. A Fetch POP retrieves from Mail the attributes

Project

Tables: {Inbox m, Classes c}
Columns: { m.Body}
Preds: {c.Prof=‘Aho’, m.Subject=c.Course}

Join

Columns: {m.OID,m.Subject,m.Body,c.OID,c.Course}

Fetch(m, {Subject, Body))

Tables: {Inbox m}
Columns: {m.OID,m.Subject,m.Body}
Preds: {}
Source: {Garlic}
Mat: false
Order: NIL

PushDown(Mai1) PushDown(DB2

Tables: {Classes c}
Columns: {c.OID,c.Course}
Preds: {c.Prof=‘Aho’}
Source: { DB2}
Mat: false
Order: NIL

Figure 3: One Possible Query Plan for:
SELECT m.Body FROM Inbox m,Classes c

WHERE m.Subject=c.Course AND c.Prof='Aho'

Subject and Body for each OID returned by the first Push-
Down POP, compensating for the inability of Mail to return
these values directly’. Hence, Fetch’s properties include
these two additional columns. Note that it has Source =
‘Garlic’, reflecting the fact that it will be executed by Gar-
lic. The Join POP’s properties reflect the two tables of its
input streams, the union of the columns from those streams,
and the predicate applied by its (second) input, as well as
the join predicate. The final Project POP ensures that only
the Body column is returned as specified in the query.

Once the optimizer chooses a winning plan for the query,
the plan is translated into an executable form. Garlic POPS
are translated into operators that can be directly executed by
the Garlic execution engine. Typically each Garlic POP is
translated into a single executable operator. A PushDown
POP is usually translated into a query or set of API calls to

1 This is possible because (1) the assignment (and retrieval during query
processing) of Garlic OIDs allows Garlic to go back to the data source to
retrieve missing information and (2) wrappers must provide “‘get” methods
for any attribute they define.

278

the wrapper’s underlying data source. Wrappers are, how-

ever, free to translate the PushDown POPS in whatever way

is appropriate for their system.

3.2 Using STARS to Produce Plans

Garlic’s STARS are closely based on the work of [Loh88];
in fact, we have implemented the Garlic optimizer as an
extension of the DB2 CS [G+93] version of STARS. We

begin this section with a review of this work, and then focus
on how we have extended STARS to meet Garlic’s needs.

STARS can be seen as the production rules of a grammar
that generates plans. We call the topmost non-terminal sym-
bols of the grammar roots. A STAR determines how POPS
can be combined in a plan. A simple STAR may build only
a single POP, by invoking its constructor. The constructor
allocates space for the POP, initializes various fields, and

calls the property function to compute the properties of the
new POP (including Curdinality and Cost).

Of course, few STARS are that simple. Most include a
condition function; if the condition is true, then the STAR
builds its plan, otherwise, no plan is built. Also, a single
STAR may construct multiple POPS, and multiple plans.
Multiple POPS are built by calling the POPS’ constructors
in sequence. Multiple plans result when the STAR is instan-
tiated with a set parameter, and creates a plan for each ele-
ment of the set-in this case, the condition (if any) is evalu-
ated for every element of the set separately. Finally, STARS
can also invoke other STARS. Thus, STARS are rules of the
following form (where fi is the name of a STAR or a POP):

STAR(params) ::= t/e E set : fi(fi(. . .), fs(. . .),other args)

[if condition(args)] (1)

Note that when a STAR is instantiated, all properties of
all the resulting plans are computed automatically, as the

various POP constructors are called.
For example, the following STAR can be used to retrieve

columns that are needed by some other STAR, but which
have not yet been retrieved from the relevant wrapper.

FetchCols(T, C,Plan) ::= Fetch(T, C',Plan)

if C' # 0, C' = C - Plan.Columns (2)

This STAR constructs a Fetch POP, if there are columns
needed that are not already present in the properties of the
input plan. It builds at most one plan, depending on the
value of the condition function. In the following example,
multiple plans may be returned (depending on the cardinal-
ity of the set of input plans), and multiple POPS are uncon-
ditionally constructed.

DamStream({Plan}) ::= Vp E {Plan} : Scan(Temp(p)) (3)

DamStream is called when an intermediate result must be
stored. It is given a set of plans which produce that result,

and adds Scan and Temp POPS to each. Examples of more
complex STARS for a single-source DBMS can be found
in [Loh88]. We will look at some of Garlic’s more complex

STARS in Section 3.5 below.

Garlic defines a fixed set of roots with fixed interfaces,
corresponding to the different language functions it sup-
ports. There are roots for select, group-by, insert, delete,

and update, which are invoked by the plan enumerator de-
pending on the kind of query. In this paper we focus
on select-project-join queries. These queries involve three
kinds of roots: AccessRoot (STARS for single-collection
accesses), JoinRoot (for joins) and FinishRoot (for
ensuring that the plan is complete).

To allow the Garlic optimizer to plan queries when data
comes from sources with differing query capabilities, Gar-
lic includes several generic STARS. These STARS construct
the generic PushDown POP described above. We will pre-

fix the names of these generic STARS with Repo to remind
us that they represent work that will take place in a data

source (repository). There is a generic STAR correspond-
ing to each root STAR (except FinishRoot, which is a
purely Garlic function). Thus, there is a RepoAccess
STAR and a RepoJoin STAR. When these STARS are
instantiated, they invoke rules the wrapper may have pro-

vided, then use the results to build a PushDown POP and

compute its properties. If there is no appropriate wrapper
STAR, they simply return no plan. In many cases, Garlic
will find other ways of accomplishing the same function.

We illustrate this using Garlic’s RepoAccess STAR,
shown in Figure 4. This STAR invokes the plan-access
rule, if any, defined by the wrapper of the data source that
contains the collection to be accessed. That rule returns a
list of zero or more “wrapper plans”. These are simply data
structures, uninterpreted by Garlic, that provide information
the wrapper needs to execute the access if Garlic requests
it later. Also returned are the properties for each wrapper

plan; these will typically be (a subset of) the properties re-
quested when the STAR was instantiated. The Source prop-

erty will be computed by the ds function provided by Gar-
lic. The Garlic RepoAccess STAR uses these properties
to set the properties of the PushDown POPS that it creates.

For purposes of this paper, we assume that wrappers con-
struct their plans using STARS. Note, however, that since

Garlic does not interpret the wrapper plans (only their prop-
erties), wrappers are actually free to construct their plans
however they wish, as long as the interface to Garlic is
STAR-like. Interested readers may consult [RS97] for the

wrapper’s perspective on this process. STARS provide a

useful means of capturing the wrappers’ query capabilities,
regardless of implementation. Thus, when we need to char-

acterize the work done in a plan by a wrapper, we will use
“wrapper STARS” and “wrapper POPS” to do so. We will

use wrapper STAR names that start with plan- and are all
lower case in order to distinguish wrapper STARS from Gar-
lit STARS.

279

RepoAccess(T, C, P) ::= Vp E plan-access(T, C, P) : PushDown

Condition: plan-access(T,C,P) has beendefinedbythe wrapper of thedata sourcethatstoresT.
Functions: none

Figure 4: Garlic’s RepoAccess STAR
T a table; C columns of T used in the query; P restrictions on T defined in the query

3.3 Plan Enumeration and Dynamic Programming

Garlic’s cost-based [S+79] optimizer enumerates plans by
invoking the appropriate root STARS of Section 3.2. Plans
for select queries are enumerated bottom up in three phases.
In the first phase, the enumerator applies the AccessRoot
STAR to every collection used in the query. Since at this
time Garlic stores no data, AccessRoot basically serves
tocall RepoAccess.

In the second phase, the enumerator applies the
JoinRoot STAR, which invokes the RepoJoin STAR
as well as various other join STARS, each of which rep-
resents one Garlic join method. It applies the JoinRoot
STAR iteratively, passing it two plans and a join predicate
each time. Initially, each plan is one of those enumerated in
phase one for a single table access. When all possible two-
way join plans have been examined, the enumerator invokes
the JoinRoot STAR to combine single table access plans
with two-way join plans to create the three-way joins, and
so on, until plans which join all the collections of the query
have been created. The enumerator considers all bushy join
orders. Since Garlic is a distributed system, bushy plans are
particularly efficient in many situations.

Garlic’s optimizer employs dynamic programming in or-
der to find the best plan with reasonable effort [S+79]. In
every step of plan enumeration, Garlic’s optimizer applies
pruning; that is, the optimizer does not use plan A as a build-
ing block for other, more complex plans if A has higher
cost than another plan and A’s properties are a subset of
that plan’s Only plans whose properties are included in a
cheaper plan’s are pruned; for example, if Plan 1 has higher
cost than Plan 2, but the Source of Plan 1 is Garlic (i.e.,
Source property is “Garlic”) and the Source of Plan 2 is
some data source, then Plan 1 may not be pruned because it
might be a building block for a winning plan that executes
most operators of the query in Garlic’s query engine.

In the third phase, the enumerator applies Garlic’s
FinishRoot STAR to get a final query plan that includes
all projections, selections and orderings specified in the
query and not so far achieved. When this rule completes,
all remaining plans will have the same properties, and the
least cost plan is chosen for execution.

3.4 Costing Plans

In Garlic, the cost of a plan is the sum of local process-
ing costs, communications costs, and the costs to initiate
subqueries and methods. The communication costs and the
costs to initiate subqueries and methods are estimated by

Garlic functions using constants stored in Garlic’s catalog.
The local processing costs of the operators of Garlic’s query
engine are estimated by a cost model provided by Garlic.
This model includes CPU and I/O costs, and models fairly
closely the actions of the Garlic execution engine. The local
processing costs of wrappers and their data sources, how-
ever, must be estimated by cost models that are defined
for each wrapper individually because there is no univer-
sal, generic cost model that is valid for all wrappers and
all data sources. We are working on a framework to help
wrapper writers create these models. Today, they must be
hand-written and hand-calibrated.

An important parameter of any kind of cost model is the
Curdinality of input and output collections. As with other
properties, Cardinality is computed after every application
of a STAR. Cardinality depends on logical operations of the
query, so wrapper writers need not implement functions that
compute this property. However, they must provide ways to
gather statistics on the cardinality of the stored collections,
and on values of their attributes.

3.5 More Complex Garlic STARS

We now describe the Garlic join STARS. Garlic’s
JoinRoot STAR, which is applied in the second phase
of plan enumeration, is defined in Figure 5. It specifies that
joins can be evaluated in Garlic in one of three ways: (1) by
pushing the join down to a data source, (2) via a nested-loop
join in Garlic, or (3) by means of a bind join (defined be-
low). For each of these three join methods, Garlic defines
a separate STAR which is called by Garlic’s JoinRoot
STAR in order to produce the corresponding join plan.

The simplest of the actual join STARS is RepoJoin
(Figure 6). This STAR produces plans in which the join
is done by a data source if that source’s wrapper has a
plan-join STAR and if both the outer and inner of the
join are available at the data source. Like the RepoAccess
STAR, Garlic’s RepoJoin STAR creates a generic Push-
Down POP to track the properties of the wrapper plan.

Garlic’s NestedLoopJoin STAR is shown in Fig-
ure 7. Using a plan for the outer (2’1) and a plan for the
inner (Ts) as building blocks, it constructs a new plan with
a NLJ POP at the root and a Scan POP to iteratively read
the inner, which is materialized via a Temp POP. The third
parameter of NLJ is the set of join predicates. For the NLJ
POP to function, all the attributes needed to evaluate those
predicates must have been retrieved. To ensure this, we use
a variant of the FetchCols STAR defined in Section 3.2,

280

JoinRoot(T1, T2, P) ::= RepoJoin(T1, T2, P)
JoinRoot(Tl,T2,P) ::=NestedLoopJoin(T~,Tz,P)
JoinRoot(T1, T2, P) ::= BindJoin(T1, Tz, P)

Conditions: none
Functions: none

Figure 5: Garlic’s JoinRoot STARS

Vp E plan-j:i$Tl, K, P) : PushDon
~;;W’-‘l= , .,. ,

C.: T~.Source = Tz.Source; Tl Source # Garhc ,
plan-join(T~,Tz,P) defined by the wrapper of Tl.Source

Figure 6: Garlic’s RepoJoin STAR

NestedLoopJoin(Tl,Tz,P) ::=
NLJ(FetchCols(T~,NeedAttr(T~, P)),

SPc)an(Temp(FetchCols(T2,NeedAttr(T2,P)))),

C.: none
E: NeedAttr(Plm, Predr) computes the attributes of collections

of Plan that are needed to compute the predicates in Preds.

Figure 7: Garlic’s NestedLoopJoin STAR

BindJoin(Tl,Tz,P) ::= Vp E plan-bind(T2,P) :

Bind(FetchCols(T~,NeedAttr(T~,P)),PushDown(p))

C.: Tz.Source # ‘Garlic’
planbind(T, P) defined by the wrapper of Tz.Source

E: NeedAttr as in Figure 7.

Figure 8: Garlic’s BindJoin STAR
TI, T2 p1a11s for outer and inner; P potential join predicates

which returns the Plan without an attached Fetch POP if
no columns are missing. The ability to invoke other STARS
to enforce certain properties is powerful; it allows Garlic to
detect discrepancies between what a plan provides and what
is needed, and to compensate. Thus, Garlic can provide
powerful queries against even very limited data sources.

The third Garlic join rule, the one for bind joins, is
shown in Figure 8. A bind join is a nested loop join in
which Garlic passes intermediate results (e.g., values for
the join predicate) from the outer objects to the wrapper
for the inner, which uses these results to filter the data it re-
turns. If the intermediate results are small and indexes are
available at data sources, bindings can significantly reduce
the amount of work done by a data source. Furthermore,
bindings can reduce communication cost in the same way
that a semi-join does in distributed databases. On the other
hand, bindings result in poor plans if intermediate results
are large: high processing costs at Garlic’s query engine,
the wrapper and the data source, plus high communication

costs to ship intermediate results. Therefore, binding plans
should be enumerated and costs evaluated in addition to the
other two alternatives. The BindJoin STAR checks that
the wrapper for the data source which produces the inner
plan accepts bindings (provides a planbind STAR), and
if so, asks the wrapper to re-plan the inner with the addi-
tional bind predicates. For each resulting wrapper plan, the
BindJoin STAR produces a new PushDown POP as the
inner. Using our variant of FetchCols, BindJoin en-
sures that all the attribute values needed from the outer for
the join predicates are retrieved, so that the Bind POP can
pass them to the inner.

3.6 Discussion

We have implemented the STAR framework, and STARS
and cost models for wrappers of several data sources, in-
cluding DB2, Oracle, ObjectStore, an image processing
system called QBIC [N+93], two Lotus Notes databases,

and two Web sources. Our implementation extends the
DB2 CS V2 optimizer with the STARS and POPS described
above. During plan enumeration, the RepoAccess STAR
is invoked once for each collection in the query, and in-
vokes the appropriate wrapper’s plan-access STAR. All
of Garlic’s join STARS are applied in every step of the
second phase of plan enumeration to ensure that all pos-
sibilities are considered. However, the conditions on the
RepoJoin and BindJoin rules ensure that they will re-
turn plans only when such plans are possible.

In the current system, all STARS and POPS are imple-
mented in C++. An alternative would be to implement
STARS as declarative rules and interpret the STARS as pro-
posed in [LFL88]. This might simplify the implementation
of STARS, especially for wrapper writers; hard-coding all
STARS in C++, however, provides significantly better per-
formance during plan enumeration.

Our approach to optimization has several key advan-
tages. It is a simple extension of traditional optimizer tech-
nology, allowing us to both enumerate a full set of plans and
to take advantage of any and all advances in optimization
and execution strategies. Since we enumerate all possible

plans, we are guaranteed to find the optimal plan as defined
by our cost model; as with all optimizers, however, this may
not be the actual best execution plan if the cost model used
by the optimizer is not sufficiently accurate. The extensions
we make are isolated and few in number, consisting of one
generic PushDown POP and a few generic STARS.

As a further consequence of this design, our system is
extremely flexible. Wrappers for new data sources can be
added at any time without considering the capabilities of
other wrappers, and without changing the optimizer code.
Because Garlic does not have to understand the wrapper
plans, relying only on a fixed set of properties to describe
them, a wide range of data sources can be wrapped. These
sources may differ in data model and vary widely in query

281

processing abilities, yet no special properties have been
added to deal with heterogeneity.

Finally, STARS are a powerful construct for a distributed
system. In addition to standard relational function, Garlic’s
STARS can handle approximate search, replicated collec-
tions, and gateways [K+96]. An example involving approx-
imate search is given in Section 4.

4 Modeling Wrapper Query Capabilities
Using STARS

In addition to making optimization simple for Garlic, the
STAR framework makes it easy to describe wrapper query
capabilities, and allows wrappers to start simply, and evolve
over time. While Garlic STARS may be complicated, due in
part to their use of other STARS to enforce needed proper-
ties, wrapper STARS tend to be simple. Indeed, we have
found no need for wrapper STARS to invoke other STARS,
or even to build multiple wrapper POPS. In this section, we
demonstrate the power and simplicity of the STAR frame-
work for heterogeneous systems, by means of an example
involving three very different data sources. In the next sec-
tion, we extend our example to show how the Garlic opti-
mizer would optimize a query involving these three sources.

Consider a university with a relational database stor-
ing basic information on each course offered, course de-
scriptions in a special text store, and an on-line complaint
mechanism that sends mail to an ombudsman. These three
sources (relational, text, and mail) are integrated using Gar-
lic. In the following, we provide relevant details of these
wrappers and define STARS for them.

The mail wrapper exports a Complaints collection of ob-
jects of type Message. Messages each have Sendeq Date,
Body and Subject attributes. The wrapper provides only the
ability to iterate through a collection, retrieving the OIDs.
To model this ability, it defines the simple plan-access
STAR shown in Figure 9. Like every plan-access
STAR, this STAR takes as parameters the identifier of a
collection (T), a set of attributes (C), and a set of predi-
cates (P) that are used in the query. Regardless of C and
P, this STAR always returns one plan consisting of a sin-
gle Quantifier POP. The Quantifier POP models the exe-
cution of the query “select OID from T” in the data source
that stores T. The values of the properties (except cost and
cardinulity) of the Quantifier POP are defined in Table 1;
the RepoAccess STAR would get these values from the
wrapper plan to create its PushDown POP. Query plans
generated using this STAR are executed as follows: the
OIDs of all messages of a collection are passed from the
wrapper to Garlic’s execution engine, which uses method
calls to the wrapper to get the attributes of the messages.

The simple STAR of Figure 9 could be used as a start-
ing point for wrappers of many different sources. (There
is nothing Mail-specific about it.) This STAR guarantees
that any query that accesses data from one of a wrapper’s

plan-access(T, C, P) = Quantifier(T, U%(T))

C.: none
E: ds(T) returns the id of the data source that stores T. I

Figure 9: Mail Wrapper STAR

plan-access(T, C, P) = RScan(T, C, P, h(T))

C.: none
E: h(T) returns the id of the rel. data source that stores T.

--------------_______

planbind(T, C, P,plon) =

RScan(T, C, P Uplan.Preds, ds(T))

C. : none
E: ds as defined above.

---------_-_______
plaLjoin(Tl,Tz, P) = RJoin(Tl,Tz, P)

C. : TI Source = T2Source

E: none

Figure 10: Relational Wrapper STARS

sources can be processed, but it does not model a wrap-
per’s query processing capability, and therefore, plans gen-
erated by this STAR often show poor performance. Initially
a wrapper writer might define only this STAR to integrate a
source quickly; later (s)he could add more powerful STARS
to improve performance. For example, we could initially
use this STAR to integrate the relational database, and then,
once we had made the relational data accessible, replace it
with the STARS of Figure 10 to exploit the relational en-
gine’s query processing power, improving performance.

The relational wrapper exports a Classes collection.
Class objects have attributes Course, Professes etc. The
relational data source supports the usual relational opera-
tions, and the wrapper provides STARS for access, bind and
join. These STARS are shown in Figure 10. They construct
a set of POPS which model the relational source’s opera-
tions. Their properties are given in Table 1. plan-access
generates an R&an POP which models the execution of a
single-table query, aggressively applying all predicates and
retrieving all necessary columns. planbind also builds
an R&an POP, adding the binding predicates to the set. Fi-
nally, plan-j oin constructs an RJoin POP, which mod-
els the relational source’s ability to join two tables, again
applying all predicates and fetching all columns.

The text wrapper exports a single collection, Descrs,

which contains objects of type Blurb, with attributes
Name and Description. The text data source supports
single-collection queries with methods of the form con-

tains(string) or is-about(string) modeling its search capa-
bilities. contains returns a boolean value, depending on
whether the document it is applied to contains the words
in the string. isabout(string) returns a rank between 0 and

282

Quantifier(T, S)
T-Rank(T, C, e, P, S)

T-S&T, C, P, S)
R-Scan(T. C. P. Sj

--------._ \-, - .-- VI -.--, \.?, .

T oid 0 NIL
T CU score(e) P score(e)
T c P NIL
T c P NT1

\ ,-. I-, I 1 - .-- , FALSE S
RJoin(T1, T2, P) 1 T1.t U T2.t 1 Tl.cU T2.c 1 Tl.pU Tz.pU P 1 NIL 1 FALSE T1.s

Table 1: Properties (except cost and cardinality) of POPS used in Wrapper STARS
T a collection; S an id of a data source; e an isabout oredicate; C a set of attributes; P a set of preds; TI, T2 plans

plan-access(T, C, P) = TScan(T, C, Pt, h(T))

C.: Pt c P are all predicates of the form
contains(string) or Name = string.

R: ds(T) returns the id of the text data source that stores T.

----__---------------

plan-access(T, C, P) =
t/e E C : T-Rank(T, C, e, Pt, ds(T))

C.: e is an isabout expression on T. Pt c P as above.
E: a% as above.

Figure 11: Text Wrapper STARS

1 indicating how closely the document matches the terms in
the argument string. STARS defining this wrapper’s plans
are found in Figure 11. The POPS for these STARS are also
described in Table 1. Note that this wrapper provides two
plan-access rules: one, which produces a TScan POP,
simply scans the documents, returning whatever attributes

are asked for, and applying any “contains” or other String
predicates, and the other, which produces the T-Runk POP,
returns the results in order of rank computed as a result of

an isabout method in the order by clause.
iFrom these three examples, we can see that the ba-

sic query power of wrappers and data sources with vastly
different querying abilities can be modeled easily with a

handful of simple, single-POP STARS. There are two rea-
sons why wrapper STARS can be so simple. First, Garlic
provides a powerful query engine which can make up for

missing query function in the wrappers. Second, wrapper
STARS model “what” can be executed by a wrapper, not
“how”. For example, the relational wrapper exported a sim-
ple plan-j oin STAR to model that joins can be executed
by its data sources; it did not need to enumerate altema-

tive plans with different join methods because plans with

an RJoin POP are translated into a multi-table (SQL) query,
and the optimizer of the relational data source automatically

determines the most efficient join methods. Precise model-
ing of join methods may be required in the wrapper’s cost
model in order to estimate the cost of join processing in the
data source, but it is not required in the wrapper’s STARS.

These examples also demonstrate three further advan-
tages of our approach. First, we defined a simple minimal
STAR that might be the first STAR a wrapper would export.
This makes it easy to get a wrapper up and running. Sec-
ond, wrapper writers can add STARS or alternatives for an
existing STAR at any time, to expose more wrapper query

functionality to Garlic. This makes it easy to modify and
evolve wrappers. Third, each wrapper’s STARS were de-
fined independently of the others’, and without affecting
Garlic STARS or Garlic’s query services, making it easy
to add new wrappers to the system. Modeling power, low
“entry-cost” for writing wrappers, evolvability, and extensi-
bility are key advantages of our approach.

5 Optimizing a Query

To see how the whole framework works, we now describe
how a query against the sources of Section 4 would be
processed by the Garlic optimizer using Garlic’s built-in
STARS (Section 3) and the wrapper STARS defined above.
Suppose that the ombudsman has just received a complaint
about an Ancient Studies course. She remembers receiv-
ing a number of complaints about courses concerning the
ancient world recently, and wants to see what faculty are
involved. She poses the following query:

SELECT C.Course, C.Prof
FROM Classes C, Descrs D, Complaints P
WHERE D.Name = CCourse AND

C.Course = PSubject
ORDER BY D.is-about(“ancient world, Greece, Rome”)

In phase one of optimization, Garlic’s AccessRoot
STAR is invoked once for each collection of the query.
In each case, it invokes the appropriate wrapper’s
plan-access STAR, and then creates a PushDown POP.

This results in four plans, shown in Figure 12, one from
each of the Mail and Relational wrappers, and two from the
Text Wrapper. Their properties will be those of the wrapper
POPS in Table 1.

In phase two, Garlic’s JoinRoot STAR is fired, first
to make all possible two-collection joins, and then to look

at all three-collection plans. This entails four calls to
JoinRoot to join Classes and Descrs (one with each of
the plans for Descrs as the outer, and two with Classes as

the outer, using the different plans for Descrs as the in-
ners), four more for Descrs and Complaints, and two for
joining Classes and Complaints. Each time it is called,

Pl: PushDown(R&an(Classes,{Course,Prof}, 0, RDB))
P2: PushDown(Quantifier(Complaints, Mail))
P3: PushDown(T-Scan(Descrs, {Name,score}, 8, Text))
P4: PushDown(T_Rank(Descrs, {Name,score}, 0, Text))

Figure 12: Plans from Phase 1 of Optimization

283

P5: NLJ(P1, Scan(Temp(P3)), {Course = Name})

Figure 13: Two-Way Join Plans Surviving Pruning

PIO: NLJ(P5, Scan(Temp(Fetch(P2,Subject))),
{ Subject=Course})

Pll: NLJ(P4, Scan(Temp(P9)). {Name = Course})

Figure 14: Three-Way Join Plans Surviving Pruning

JoinRoot instantiates all three Garlic join rules. For this
query, RepoJoin never returns any plans, as no two col-
lections are co-located. Nes tedLoopJoin always re-
turns a plan, as Garlic can always perform the join, so
ten nested loop plans are returned. Since only the rela-
tional wrapper defines a planbind STAR, BindJoin
returns a plan only when Classes is the inner. This occurs in
three plans, so in total, thirteen join plans are considered in
this phase. However, only five plans survive pruning (Fig-
ure 13). The others are eliminated because they have the
same properties as another plan, and cost at least as much.

Note that each plan of Figure 13 builds on the plans of
Figure 12. For example, plan PS combines plans Pl and P3,
storing the results of P3, and adding the join operator with
a scan of the new collection. Plan P8 similarly builds on
plans P4 and P2, but discovers that it needs to add a fetch of
subject before making the temporary collection, in order to
apply the join predicate during join processing.

Plans P7 and P8 demonstrate the benefits of extending
well-known optimizer technology. Both plans apply a join
predicate that did not appear in the query, but could be de-
duced from it by taking the transitive closure of the predi-
cates [G+93]. These plans required no new rules, nor did
the new, generic Garlic rules disturb them; the existing op-
timizer computed transitive closures of predicates, and the
Garlic optimizer therefore (automatically) does so.

In the next step of phase two, these two-way join plans
will be combined with the single-table access plans from
phase one to generate the three-way joins. In this phase,
fourteen plans are created, but only two survive pruning,
one ordered by isabout (Pl 1) and one not ordered (PlO).
These two plans, shown in Figure 14, are the input to phase
three. In this phase, the FinishRoot STAR is invoked
to complete both plans. Pll is already complete, so it is
returned as is, but FinishRoot adds a Sort POP to PlO to
complete it. As both plans now have the same properties, a
winner is chosen on the basis of cost.

6 Related Work

Despite its importance, there is little related work on opti-
mization and decomposition of queries across data sources
with different query capabilities. Some systems use query

rewrite rules to decompose a query, but have no cost model
to evaluate alternative plans (e.g., [FRV95]). [CS93] uses
rewrite rules to generate alternative versions of a query in-
volving foreign tables and functions. Each version can
then be optimized, and the least cost plan overall is cho-
sen. Most work on cost-based query optimization in het-
erogeneous systems is limited to specific classes of data
sources [DKS92, GST96]. The works most closely related
to ours are [TRV96] (DISCO) and [PGH96]. These two ap-
proaches also use grammars to describe the capabilities of
wrappers; however, the types of grammars used and how
they are used are significantly different.

DISCO addresses problems beyond the scope of Garlic,
with an emphasis on operating when not all data sources
are available. DISCO uses a wrapper grammar to match
queries. The DISCO optimizer enumerates query plans as
if wrappers could handle any kind of query, then uses the
wrapper grammar to parse each plan to determine whether
it can be handled by the wrapper. Thus, DISCO enumer-
ates all plans, including many invalid ones. The Garlic op-
timizer, by contrast, constructs only valid plans, and it is
quicker to construct a plan using STARS than to parse a plan
using a grammar.

[PGH96] proposes a set of algorithms that decompose
a query based on a novel relational query description lan-
guage that describes the capabilities of wrappers. Their al-
gorithms push down as much work as possible to wrappers
to minimize the amount of processing in the middleware
system’s query engine. However, this work gives no guid-
ance on how to execute the remaining query pieces in the
middleware, or how to choose between alternative plans.

Recently, other ways to describe capabilities of het-
erogeneous wrappers or data sources have been proposed.
In [LRO96], capability records are used to describe which
bindings can be passed to a source. However, the capability
record mechanism is not powerful enough to describe the
capabilities of, say, Garlic’s relational or image wrappers.
In other work, views are used to describe which queries can
be handled by a wrapper/data source; e.g., [Qia96, LRU961.
While flexible, decomposing a query using views requires
solving the query subsumption problem. Thus, these ap-
proaches are typically limited to simple conjunctive queries
and cannot easily be extended to handle ordering, grouping,
or aggregate functions.

7 Conclusion

In this paper, we presented the design of a query opti-
mizer for heterogeneous middleware systems designed to
integrate data sources with different data models and query
processing capabilities. A query optimizer is a critical
component of any such middleware system, because dif-
ferences in cost between alternative plans for executing a
query can easily be several orders of magnitude, and there
are generally many possible plans. Our optimizer is based

284

on dynamic programming and Lohman’s STrategy Alter-

native Rules, or STARS. We have extended Lohman’s ap-
proach to encompass generic and wrapper STARS, and im-

plemented this in the Garlic middleware system. Garlic
uses STARS to construct its query execution plans, in which
a generic PushDown POP represents work done by a data
source. Garlic’s generic STARS construct PushDown POPS
and invoke wrapper-provided STARS to construct the wrap-
per portion of the plan. We illustrated our approach with
both Garlic and wrapper STARS, and described how they

would be used to optimize a query. In a small set of experi-
ments [K+96], we have further shown the importance of op-
timization in this environment, and how alternative wrapper

STARS impact query processing in Garlic.
The advantages of our approach lie in its extensibility

and evolvability, the expressiveness of the powerful STAR
syntax, the simplicity of wrapper STARS, and the fact that
it can be implemented as an extension of an existing opti-
mizer, leading to high quality plans. Tbe approach is exten-
sible, as new wrappers and their STARS can be integrated

without affecting other wrappers or Garlic’s query engine.
The STAR syntax is powerful, as it enables wrapper writers

to precisely model the capabilities of wrappers even for very
unusual data sources. It is typically easy to define STARS
because STARS simply model “what” kind of queries can
be handled by a wrapper rather than specifying precisely
“how” these queries are executed by the data sources. The
approach is efficient, as it employs well-known optimiza-

tion techniques such as dynamic programming with pruning
to find good plans with reasonable effort.

In the future, we want to continue to integrate and exper-

iment with new kinds of data sources in order to get more
general insight into the design tradeoffs for wrapper STARS.
We are considering wrappers for a digital library product,
and for OLE automation servers. We are also examining
whether we can develop cost models for broad classes of
data sources, so that modeling the cost of wrapper plans

can be simplified for the wrapper writer.

8 Acknowledgments

We thank Guy Lohman, Yannis Papakonstantinou and An-
thony Tomasic for their helpful comments, and our Garlic

teammates for their support and assistance.

References

[C+95] M. Carey et al. Towards heterogeneous multimedia in-
formation systems. In IEEE RIDE Workshop, Taipeh, 1995.

[Cat961 R. G. G. Cattell. The Object Database Standard -

ODMG-93. Morgan-Kaufmamr Publishers, San Mateo, 1996.

[CS93] S. Chaudhuri and K. Shim. Query optimization in the
presence of foreign functions. In VLDB Con& Dublin, 1993.

[Day831 U. Dayal. Processing queries over generalization hier-
archies in a multiclatabase system. In VLDB Conf.‘, Florence,
1983.

[DKS92] W. Du, R. Krishnamurthy, and M.-C. Shan. Query opti-
mization in heterogeneous DBMS. In VLDB ConJ, Vancouver,
1992.

[FJK96] M. Franklin, B. J6nsson, and D. Kossmann. Perfor-
mance tradeoffs for client-server query processing. In ACM
SIGMOD Conf,, Montreal, 1996.

[FRV95] D. Florescu, L. Raschid, and P Valduriez. Using het-
erogeneous equivalences for query rewriting in multidatabase
systems. In CoopIS Con$, 1995.

[GD87] G. Graefe and D. Dewitt. The EXODUS optimizer gen-
erator. In ACM SIGMOD Con., San Francisco, 1987.

[G+93] l? Gassner et al. Query optimization in the IBM DB2
family. IEEE Data Engineering Bulletin, 16(3), 1993.

[GS’l96] G. Gardarin, E Sha, and Z.-H. Tang. Calibrating the
query optimizer cost model of IRO-DB, an object-oriented fed-
erated database system. In VLDB Con&, Bombay, 1996.

[H+89] L. Haas et al. Extensible query processing in starburst.
In ACM SIGMOD Con$, Portland, 1989.

[K+96] D. Kossmann et al. I can do that! using wrapper input
for query optimization in heterogeneous middleware systems.
Technical report, IBM Almaden, 1996.

[LFL88] M. Lee, J. Freytag, and G. Lohman. Implementing an
interpreter for functional rules in a query optimizer. In VLDB
Con., Los Angeles, 1988.

[Loh88] G. Lohman. Grammar-like functional rules for repre-
senting query optimization alternatives. In ACM SIGMOD

Con$, Chicago, 1988.
[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying het-

erogeneous information sources using source descriptions. In

VLDB Con&, Bombay, 1996.
[LRU96] A. Levy, A. Rajaramsn, and J. Ullman. Answering

queries using limited external query processors. In ACM PODS

Con$, Montreal, 1996.
[M+96] W. McKenna et al. EROC: a toolkit for building NEAT0

query optimizers. In VLDB Con$, Bombay, 1996.
[N+93] W. Niblack et al. The QBIC project: Querying images by

content using color, texture and shap. In SPIE, San Jose, 1993.
[PGH96] Y. Papakonstantinou, A. Gupta, and L. Haas.

Capabilities-based query rewriting in mediator systems. In

IEEE PDIS ConJ, Miami, 1996.
[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and

J. Widom. Object exchange across heterogeneous information
sources. In IEEE ICDE Conf.‘, Taipeh, 1995.

[Qia96] X. Qian. Query folding. In IEEE ICDE Con& New Or-
leans, 1996.

[RS97] M. Tork Roth and P. Schwarz. Don’t scrap it, wrap it! A
wrapper architecture for legacy data sources. In VLDB Conf.‘,

Athens, 1997.
[S+79] P Selinger et al. Access path selection in a rela-

tional database management system. In ACM SIGMOD Con&

Boston, 1979.
[S+94] M.-C. Shari et al. Pegasus: A heterogeneous information

management system. In W. Kim, editor, Modern Database Sys-

tems, chapter 32. ACM Press, Reading, 1994.
[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. A data model

and query processing techniques for scaling acccess to dis-

tributed heterogeneous databases in DISCO, 1996. Submitted
for publication.

[Wie93] G. Wieclerhold. Intelligent integration of information. In
ACM SIGMOD ConJ, Washington, DC, 1993.

285

