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Abstract 

Businesses today need to interrelate data stored in diverse systems 

with differing capabilities, ideally via a single high-level query 

interface. We present the design of a query optimizer for Gar- 

lic [c’95], a middleware system designed to integrate dotafrom a 

broad range of data sources with very different query capabilities. 

Garlic’s optimizer extends the rule-based approach of [L&88] to 

work in a heterogeneous environment, by defining generic rules for 

the middleware and using wrapper-provided rules to encapsulate 

the capabilities of each data source. This approach offers great 

advantages in terms of plan quality, extensibility to new sources, 

incremental implementation of rules for new sources, and the abil- 

ity to express the capabilities of a diverse set of sources. We de- 

scribe the design and implementation of this optimizel; and illus- 

trate its actions through an example. 

1 Introduction 

Businesses today rely on data stored in diverse systems with 
differing capabilities. Some data are in traditional database 
systems with a powerful query language and efficient in- 
dices for parametric data. Others are in spreadsheets and 
file systems with limited query capabilities, or in legacy ap- 
plication systems which provide specialized ways to access 
and manipulate data. The emergence of protocols such as 
CORBA, OLE DB and Java/JDBC makes it easier to access 
this range of sources, while database middleware systems 
or mediators [Wie93] offer the possibility of interrelating 
their data via a single high-level query interface. The first 
generation of commercial middleware systems has gained 
rapid acceptance in the marketplace. However, these prod- 
ucts typically connect only a limited set of data sources, pre- 
dominantly relational, and generally model all data sources 
as relational systems. This simplifies the middleware con- 
siderably, as it can assume that all the data sources have 
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similar capabilities. The price of this simplification is that 
any specialized search or data manipulation capabilities of 
the underlying systems cannot be exploited when they are 
accessed through the middleware. Thus this first genera- 
tion of middleware is not extensible to the arbitrary systems 
which may exist in a given business. 

Several projects are addressing the problem of mid- 
dleware for increasingly diverse systems [Day83, S”94, 
PGMW95, TRV96, LRO96]. Many of the data sources 
these systems integrate have limited or specialized query 
processing capabilities. Queries in this environment vary 
widely in performance depending on how and where their 
operations are executed. One key challenge for these sys- 
tems is thus to develop a general-purpose query optimizer 

which can use information about the capabilities of a new 
data source to produce correct plans that efficiently answer 
queries ranging over data in multiple sources, with differing 
query capabilities. This paper takes up that challenge. 

In this paper we present the design of a cost-based op- 
timizer for heterogeneous middleware systems. We have 
implemented our approach in Garlic [C+95], a middleware 
system designed to integrate data from a broad range of 
data sources, with very different query capabilities. Our 
approach extends Lohman’s [Loh@] grammar-like rules to 
work in a heterogeneous environment. Data sources are 
connected to the middleware engine via wrappers. The 
optimizer is given a set of rules that capture the engine’s 
query execution strategies. Among these are several generic 
rules, which produce source-specific plans using matching 
wrapper-provided rules that encapsulate the capabilities of 
a particular data source. A normal dynamic-programming 
enumerator fires rules to generate all possible alternative ex- 
ecution plans for a query. 

We have pursued and implemented our approach be- 
cause it has several crucial advantages. First, since our op- 
timizer is an extension of a standard optimizer we get all 
the benefits of advances in optimizer technology, as well 
as the benefits of considering the entire search space, lead- 
ing to high quality, efficient plans. We believe ours is the 
first solution based on traditional dynamic-programming 
techniques. Second, the system is extensible. Regardless 
of their data model and query processing capabilities, new 
wrappers can be integrated without affecting other wrappers 
or the middleware. Third, wrappers can evolve gracefully. 
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Garlic Quety Services 

Figure 1: Garlic System Architecture 

At any time, it is possible to refine or add wrapper rules to 
improve the performance of queries over the wrapper’s data 
sources. Finally, this approach is extremely flexible, mak- 
ing it possible to integrate wrappers of strange data sources 
with unusual query processing capabilities. 

The remainder of this paper is structured as follows: Sec- 
tion 2 describes the Garlic architecture. Section 3 presents 
the Garlic query optimizer and its built-in rules. Section 4 
shows how easy it is to model the query behavior of diverse 
sources. Section 5 shows by example how the Garlic op- 
timizer uses Garlic and wrapper rules to optimize a query 
across very different sources. Section 6 discusses related 
work, and Section 7 concludes the paper. 

2 The Garlic System 

Figure 1 shows the architecture of Garlic [C+95]. The ar- 
chitecture is typical of many heterogeneous database sys- 
tems, e.g., [Day83, PGMW95, TRV96]. At the bottom 
are data sources, which store, access and manipulate data. 
Above every data source is a wrapper. A wrapper hides the 
details of the data source’s interface and enables access to 
the data source using Garlic’s internal protocols. The wrap- 
per describes the data stored in the source using Garlic’s 
data model, an object-oriented model based on the ODMG 
standard [Cat96, C+95]. Data in the source are viewed as 
objects, and Garlic refers to these objects using an OID it 
manufactures based on the source, the object’s type, and a 
unique key determined by the wrapper. This OID allows 
Garlic to apply methods on objects; from the OID, Garlic 
can determine the appropriate wrapper, and the wrapper can 
locate the necessary data and apply the method. Wrappers 
provide methods to get the value of each attribute of an ob- 
ject, and to encapsulate any specialized search capabilities 
of the source. (These methods are typically implemented as 
commands in the native language or programming interface 
of the underlying source.) The wrapper also defines object 
collections which are the targets of queries in Garlic. 

The wrapper further provides a description of its query 
processing capabilities in the form of a set of rules (en- 
capsulated as planning methods [RS97]). Different sources 
may vary greatly in their query processing capabilities, and 
thus will provide different rules. A wrapper does not have to 
reflect the full query functionality of its data sources. How- 
ever, in order for the data in that data source to be accessible 
through queries, some minimum functionality must be pro- 

vided, i.e., at least one access rule. We will discuss wrapper 
rules in Section 4. 

A system catalog records the global schema. When a 
new data source is added to a Garlic system, it is associ- 
ated with a wrapper. This association, as well as the data 
source’s local schema and any available statistics for its 
data, is recorded in the catalog as part of the registration 
process for a data source. The catalog also contains infor- 
mation such as view definitions and information about the 
system configuration needed as input to the cost model dur- 
ing query optimization. 

At the heart of Garlic are its query services, which play 
the same role as a mediator in the architecture of other 
systems [Wie93]. Garlic’s query services have two ma- 
jor components: a query language processor, and a dis- 
tributed query execution engine. The query language pro- 
cessor takes a query as input and obtains an execution plan 
for the query through parsing, semantic checking, query 
rewrite, and query optimization (as in Starburst [H+89]). 
The job of the optimizer is to construct and select an “opti- 
mal” plan for a given query, based on a cost model. Tradi- 
tional query optimizers build plans based on detailed, built- 
in knowledge of the full set of execution strategies available 
and their costs. This is true even in distributed systems; 
the optimizer must know the capabilities and costs for each 
remote data source to decide which operations to execute 
at a source and which at the query site [FJK96]. Garlic, 
however, must be able to find good plans without built-in 
knowledge of data sources’ capabilities and costs; how it 
accomplishes this is the subject of this paper. 

Once the plan has been determined by the optimizer, its 
execution is coordinated by Garlic’s query execution en- 
gine, which passes subqueries to the wrappers and assem- 
bles the final query result. Garlic’s execution engine is a 
powerful system able to perform joins, apply predicates, in- 
voke methods, sort, aggregate, and so on. This allows Gar- 
lic to compensate for functionality not present in the data 
sources or not reflected by their wrappers, and to execute 
itself those operations it can do more efficiently. 

3 Query Optimization in Garlic ’ 

To optimize a query, Garlic uses a set of STrategy Altema- 
tive Rules, or STARS [Loh88], which construct plans that 
can be handled by Garlic’s query engine. Garlic’s enumera- 
tor fires appropriate STARS, following a dynamic program- 
ming model, to build plans for the query bottom-up. Garlic 
differs from [Loh88] in that some of Garlic’s STARS are 
genetic. These STARS are fired during enumeration when 
a piece of work is found that can or must be done by a 
wrapper. Generic STARS consult the appropriate wrapper 
to build their piece of the plan. From the resulting set of 
complete plans for the query, the optimizer selects the win- 
ning plan based on cost. This plan will then be translated 
into an executable (or interpretable) format. 
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Property Description 

Tables set of tables that have been accessed and joined 
COllUtlnS set of columns of the output of the plan 

Predr set of medicates that have been annlied in the ulan 

Source where the output is produced; i.e., the id where the output is produced; i.e., the id 
of a data source or Garlic’s execution engine of a data source or Garlic’s execution engine 
TFUJE if the output of the plan is materialized TFUJE if the output of the plan is materialized, 
FALSE otherwise 
a sort expr. if the tuples of the output are ordered, a sort expr. if the tuples of the output are ordered, 
NIL otherwise 

Order 

cost 1 estimated cost of the plan 
Card 1 estimated number of tuples of the output of the plan 

Figure 2: Garlic Plan Properties 

3.1 Plans in Garlic 

Plans in Garlic are trees of operators, or POPS (Plan OPera- 

tors). Each POP works on one or more inputs, and produces 
some output (usually a stream of tuples). The input to a POP 
may include one or more streams of tuples. In a plan, these 
are produced by other POPS. Garlic’s POPS include oper- 
ators for join, sort, filter (to apply predicates), fetch (to re- 
trieve data from a data source), temp (to make a temporary 
collection) and scan (to retrieve locally stored data). Gar- 
lic also provides a generic POP, called PushDown, which 
encapsulates work to be done at a data source. 

Plans are characterized by a set of plan properties. Prop- 
erties are a common way to track the work that is done in 
a plan [GD87, Loh88, M+96]. It is particularly important 
to characterize plans with a fixed set of properties in Gar- 
lic, because Garlic plans are (in part) composed of generic 
PushDown POPS. The actual work being done by these 
POPS depends on the wrapper where the work takes place 
and the query, and is not understood by Garlic or any other 
wrapper in the system. However, the properties provide suf- 
ficient information about what is done to allow Garlic to 
properly incorporate the PushDown POP in a plan. 

We characterize plans and their output by the eight prop- 
erties described in Table 2. The properties of one POP are 
typically a function of the properties of its input POP(s), if 
any. Properties are computed as the POPS are created, by 
STARS. The properties assigned to a plan are the proper- 
ties of the topmost POP of the plan. Most of these proper- 
ties are equivalent to those used by optimizers of traditional 
database systems. An exception is the Source property. It is 
used to record where the output stream comes from (Garlic 
or a particular dam source); the Source property is compa- 
rable to the Site property used by R* [Loh88]. 

For example, Figure 3 shows one possible plan for ex- 
ecuting the query “select m.Body from Inbox m, Classes c 
where m.Subject = c.Course and c.Prof = ‘Aho’ “, assum- 
ing Inbox is defined by a simple mail wrapper that only an- 
swers queries of the form “select OID from Inbox”, and 
that Classes comes from a DB2 database. The leaves of 
the plan are both PushDown POPS, but with quite different 
properties. A Fetch POP retrieves from Mail the attributes 

Project 

Tables: {Inbox m, Classes c} 
Columns: { m.Body} 
Preds: {c.Prof=‘Aho’, m.Subject=c.Course} 

Join 

Columns: {m.OID,m.Subject,m.Body,c.OID,c.Course} 

Fetch(m, {Subject, Body)) 

Tables: {Inbox m} 
Columns: {m.OID,m.Subject,m.Body} 
Preds: {} 
Source: {Garlic} 
Mat: false 
Order: NIL 

PushDown(Mai1) PushDown(DB2 

Tables: {Classes c} 
Columns: {c.OID,c.Course} 
Preds: {c.Prof=‘Aho’} 
Source: { DB2} 
Mat: false 
Order: NIL 

Figure 3: One Possible Query Plan for: 
SELECT m.Body FROM Inbox m,Classes c 

WHERE m.Subject=c.Course AND c.Prof='Aho' 

Subject and Body for each OID returned by the first Push- 
Down POP, compensating for the inability of Mail to return 
these values directly’. Hence, Fetch’s properties include 
these two additional columns. Note that it has Source = 
‘Garlic’, reflecting the fact that it will be executed by Gar- 
lic. The Join POP’s properties reflect the two tables of its 
input streams, the union of the columns from those streams, 
and the predicate applied by its (second) input, as well as 
the join predicate. The final Project POP ensures that only 
the Body column is returned as specified in the query. 

Once the optimizer chooses a winning plan for the query, 
the plan is translated into an executable form. Garlic POPS 
are translated into operators that can be directly executed by 
the Garlic execution engine. Typically each Garlic POP is 
translated into a single executable operator. A PushDown 
POP is usually translated into a query or set of API calls to 

1 This is possible because (1) the assignment (and retrieval during query 
processing) of Garlic OIDs allows Garlic to go back to the data source to 
retrieve missing information and (2) wrappers must provide “‘get” methods 
for any attribute they define. 
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the wrapper’s underlying data source. Wrappers are, how- 

ever, free to translate the PushDown POPS in whatever way 

is appropriate for their system. 

3.2 Using STARS to Produce Plans 

Garlic’s STARS are closely based on the work of [Loh88]; 
in fact, we have implemented the Garlic optimizer as an 
extension of the DB2 CS [G+93] version of STARS. We 

begin this section with a review of this work, and then focus 
on how we have extended STARS to meet Garlic’s needs. 

STARS can be seen as the production rules of a grammar 
that generates plans. We call the topmost non-terminal sym- 
bols of the grammar roots. A STAR determines how POPS 
can be combined in a plan. A simple STAR may build only 
a single POP, by invoking its constructor. The constructor 
allocates space for the POP, initializes various fields, and 

calls the property function to compute the properties of the 
new POP (including Curdinality and Cost). 

Of course, few STARS are that simple. Most include a 
condition function; if the condition is true, then the STAR 
builds its plan, otherwise, no plan is built. Also, a single 
STAR may construct multiple POPS, and multiple plans. 
Multiple POPS are built by calling the POPS’ constructors 
in sequence. Multiple plans result when the STAR is instan- 
tiated with a set parameter, and creates a plan for each ele- 
ment of the set-in this case, the condition (if any) is evalu- 
ated for every element of the set separately. Finally, STARS 
can also invoke other STARS. Thus, STARS are rules of the 
following form (where fi is the name of a STAR or a POP): 

STAR(params) ::= t/e E set : fi(fi(. . .), fs(. . .),other args) 

[if condition(args)] (1) 

Note that when a STAR is instantiated, all properties of 
all the resulting plans are computed automatically, as the 

various POP constructors are called. 
For example, the following STAR can be used to retrieve 

columns that are needed by some other STAR, but which 
have not yet been retrieved from the relevant wrapper. 

FetchCols(T, C,Plan) ::= Fetch(T, C',Plan) 

if C' # 0, C' = C - Plan.Columns (2) 

This STAR constructs a Fetch POP, if there are columns 
needed that are not already present in the properties of the 
input plan. It builds at most one plan, depending on the 
value of the condition function. In the following example, 
multiple plans may be returned (depending on the cardinal- 
ity of the set of input plans), and multiple POPS are uncon- 
ditionally constructed. 

DamStream({Plan}) ::= Vp E {Plan} : Scan(Temp(p)) (3) 

DamStream is called when an intermediate result must be 
stored. It is given a set of plans which produce that result, 

and adds Scan and Temp POPS to each. Examples of more 
complex STARS for a single-source DBMS can be found 
in [Loh88]. We will look at some of Garlic’s more complex 

STARS in Section 3.5 below. 

Garlic defines a fixed set of roots with fixed interfaces, 
corresponding to the different language functions it sup- 
ports. There are roots for select, group-by, insert, delete, 

and update, which are invoked by the plan enumerator de- 
pending on the kind of query. In this paper we focus 
on select-project-join queries. These queries involve three 
kinds of roots: AccessRoot (STARS for single-collection 
accesses), JoinRoot (for joins) and FinishRoot (for 
ensuring that the plan is complete). 

To allow the Garlic optimizer to plan queries when data 
comes from sources with differing query capabilities, Gar- 
lic includes several generic STARS. These STARS construct 
the generic PushDown POP described above. We will pre- 

fix the names of these generic STARS with Repo to remind 
us that they represent work that will take place in a data 

source (repository). There is a generic STAR correspond- 
ing to each root STAR (except FinishRoot, which is a 
purely Garlic function). Thus, there is a RepoAccess 
STAR and a RepoJoin STAR. When these STARS are 
instantiated, they invoke rules the wrapper may have pro- 

vided, then use the results to build a PushDown POP and 

compute its properties. If there is no appropriate wrapper 
STAR, they simply return no plan. In many cases, Garlic 
will find other ways of accomplishing the same function. 

We illustrate this using Garlic’s RepoAccess STAR, 
shown in Figure 4. This STAR invokes the plan-access 
rule, if any, defined by the wrapper of the data source that 
contains the collection to be accessed. That rule returns a 
list of zero or more “wrapper plans”. These are simply data 
structures, uninterpreted by Garlic, that provide information 
the wrapper needs to execute the access if Garlic requests 
it later. Also returned are the properties for each wrapper 

plan; these will typically be (a subset of) the properties re- 
quested when the STAR was instantiated. The Source prop- 

erty will be computed by the ds function provided by Gar- 
lic. The Garlic RepoAccess STAR uses these properties 
to set the properties of the PushDown POPS that it creates. 

For purposes of this paper, we assume that wrappers con- 
struct their plans using STARS. Note, however, that since 

Garlic does not interpret the wrapper plans (only their prop- 
erties), wrappers are actually free to construct their plans 
however they wish, as long as the interface to Garlic is 
STAR-like. Interested readers may consult [RS97] for the 

wrapper’s perspective on this process. STARS provide a 

useful means of capturing the wrappers’ query capabilities, 
regardless of implementation. Thus, when we need to char- 

acterize the work done in a plan by a wrapper, we will use 
“wrapper STARS” and “wrapper POPS” to do so. We will 

use wrapper STAR names that start with plan- and are all 
lower case in order to distinguish wrapper STARS from Gar- 
lit STARS. 
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RepoAccess(T, C, P) ::= Vp E plan-access(T, C, P) : PushDown 

Condition: plan-access(T,C,P) has beendefinedbythe wrapper of thedata sourcethatstoresT. 
Functions: none 

Figure 4: Garlic’s RepoAccess STAR 
T a table; C columns of T used in the query; P restrictions on T defined in the query 

3.3 Plan Enumeration and Dynamic Programming 

Garlic’s cost-based [S+79] optimizer enumerates plans by 
invoking the appropriate root STARS of Section 3.2. Plans 
for select queries are enumerated bottom up in three phases. 
In the first phase, the enumerator applies the AccessRoot 
STAR to every collection used in the query. Since at this 
time Garlic stores no data, AccessRoot basically serves 
tocall RepoAccess. 

In the second phase, the enumerator applies the 
JoinRoot STAR, which invokes the RepoJoin STAR 
as well as various other join STARS, each of which rep- 
resents one Garlic join method. It applies the JoinRoot 
STAR iteratively, passing it two plans and a join predicate 
each time. Initially, each plan is one of those enumerated in 
phase one for a single table access. When all possible two- 
way join plans have been examined, the enumerator invokes 
the JoinRoot STAR to combine single table access plans 
with two-way join plans to create the three-way joins, and 
so on, until plans which join all the collections of the query 
have been created. The enumerator considers all bushy join 
orders. Since Garlic is a distributed system, bushy plans are 
particularly efficient in many situations. 

Garlic’s optimizer employs dynamic programming in or- 
der to find the best plan with reasonable effort [S+79]. In 
every step of plan enumeration, Garlic’s optimizer applies 
pruning; that is, the optimizer does not use plan A as a build- 
ing block for other, more complex plans if A has higher 
cost than another plan and A’s properties are a subset of 
that plan’s Only plans whose properties are included in a 
cheaper plan’s are pruned; for example, if Plan 1 has higher 
cost than Plan 2, but the Source of Plan 1 is Garlic (i.e., 
Source property is “Garlic”) and the Source of Plan 2 is 
some data source, then Plan 1 may not be pruned because it 
might be a building block for a winning plan that executes 
most operators of the query in Garlic’s query engine. 

In the third phase, the enumerator applies Garlic’s 
FinishRoot STAR to get a final query plan that includes 
all projections, selections and orderings specified in the 
query and not so far achieved. When this rule completes, 
all remaining plans will have the same properties, and the 
least cost plan is chosen for execution. 

3.4 Costing Plans 

In Garlic, the cost of a plan is the sum of local process- 
ing costs, communications costs, and the costs to initiate 
subqueries and methods. The communication costs and the 
costs to initiate subqueries and methods are estimated by 

Garlic functions using constants stored in Garlic’s catalog. 
The local processing costs of the operators of Garlic’s query 
engine are estimated by a cost model provided by Garlic. 
This model includes CPU and I/O costs, and models fairly 
closely the actions of the Garlic execution engine. The local 
processing costs of wrappers and their data sources, how- 
ever, must be estimated by cost models that are defined 
for each wrapper individually because there is no univer- 
sal, generic cost model that is valid for all wrappers and 
all data sources. We are working on a framework to help 
wrapper writers create these models. Today, they must be 
hand-written and hand-calibrated. 

An important parameter of any kind of cost model is the 
Curdinality of input and output collections. As with other 
properties, Cardinality is computed after every application 
of a STAR. Cardinality depends on logical operations of the 
query, so wrapper writers need not implement functions that 
compute this property. However, they must provide ways to 
gather statistics on the cardinality of the stored collections, 
and on values of their attributes. 

3.5 More Complex Garlic STARS 

We now describe the Garlic join STARS. Garlic’s 
JoinRoot STAR, which is applied in the second phase 
of plan enumeration, is defined in Figure 5. It specifies that 
joins can be evaluated in Garlic in one of three ways: (1) by 
pushing the join down to a data source, (2) via a nested-loop 
join in Garlic, or (3) by means of a bind join (defined be- 
low). For each of these three join methods, Garlic defines 
a separate STAR which is called by Garlic’s JoinRoot 
STAR in order to produce the corresponding join plan. 

The simplest of the actual join STARS is RepoJoin 
(Figure 6). This STAR produces plans in which the join 
is done by a data source if that source’s wrapper has a 
plan-join STAR and if both the outer and inner of the 
join are available at the data source. Like the RepoAccess 
STAR, Garlic’s RepoJoin STAR creates a generic Push- 
Down POP to track the properties of the wrapper plan. 

Garlic’s NestedLoopJoin STAR is shown in Fig- 
ure 7. Using a plan for the outer (2’1) and a plan for the 
inner (Ts) as building blocks, it constructs a new plan with 
a NLJ POP at the root and a Scan POP to iteratively read 
the inner, which is materialized via a Temp POP. The third 
parameter of NLJ is the set of join predicates. For the NLJ 
POP to function, all the attributes needed to evaluate those 
predicates must have been retrieved. To ensure this, we use 
a variant of the FetchCols STAR defined in Section 3.2, 
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JoinRoot(T1, T2, P) ::= RepoJoin(T1, T2, P) 
JoinRoot(Tl,T2,P) ::=NestedLoopJoin(T~,Tz,P) 
JoinRoot(T1, T2, P) ::= BindJoin(T1, Tz, P) 

Conditions: none 
Functions: none 

Figure 5: Garlic’s JoinRoot STARS 

Vp E plan-j:i$Tl, K, P) : PushDon 
~;;W’-‘l= , .,. , 

C.: T~.Source = Tz.Source; Tl Source # Garhc , 
plan-join(T~,Tz,P) defined by the wrapper of Tl.Source 

Figure 6: Garlic’s RepoJoin STAR 

NestedLoopJoin(Tl,Tz,P) ::= 
NLJ(FetchCols(T~,NeedAttr(T~, P)), 

SPc)an(Temp(FetchCols(T2,NeedAttr(T2,P)))), 

C.: none 
E: NeedAttr(Plm, Predr) computes the attributes of collections 

of Plan that are needed to compute the predicates in Preds. 

Figure 7: Garlic’s NestedLoopJoin STAR 

BindJoin(Tl,Tz,P) ::= Vp E plan-bind(T2,P) : 

Bind(FetchCols(T~,NeedAttr(T~,P)),PushDown(p)) 

C.: Tz.Source # ‘Garlic’ 
planbind(T, P) defined by the wrapper of Tz.Source 

E: NeedAttr as in Figure 7. 

Figure 8: Garlic’s BindJoin STAR 
TI, T2 p1a11s for outer and inner; P potential join predicates 

which returns the Plan without an attached Fetch POP if 
no columns are missing. The ability to invoke other STARS 
to enforce certain properties is powerful; it allows Garlic to 
detect discrepancies between what a plan provides and what 
is needed, and to compensate. Thus, Garlic can provide 
powerful queries against even very limited data sources. 

The third Garlic join rule, the one for bind joins, is 
shown in Figure 8. A bind join is a nested loop join in 
which Garlic passes intermediate results (e.g., values for 
the join predicate) from the outer objects to the wrapper 
for the inner, which uses these results to filter the data it re- 
turns. If the intermediate results are small and indexes are 
available at data sources, bindings can significantly reduce 
the amount of work done by a data source. Furthermore, 
bindings can reduce communication cost in the same way 
that a semi-join does in distributed databases. On the other 
hand, bindings result in poor plans if intermediate results 
are large: high processing costs at Garlic’s query engine, 
the wrapper and the data source, plus high communication 

costs to ship intermediate results. Therefore, binding plans 
should be enumerated and costs evaluated in addition to the 
other two alternatives. The BindJoin STAR checks that 
the wrapper for the data source which produces the inner 
plan accepts bindings (provides a planbind STAR), and 
if so, asks the wrapper to re-plan the inner with the addi- 
tional bind predicates. For each resulting wrapper plan, the 
BindJoin STAR produces a new PushDown POP as the 
inner. Using our variant of FetchCols, BindJoin en- 
sures that all the attribute values needed from the outer for 
the join predicates are retrieved, so that the Bind POP can 
pass them to the inner. 

3.6 Discussion 

We have implemented the STAR framework, and STARS 
and cost models for wrappers of several data sources, in- 
cluding DB2, Oracle, ObjectStore, an image processing 
system called QBIC [N+93], two Lotus Notes databases, 

and two Web sources. Our implementation extends the 
DB2 CS V2 optimizer with the STARS and POPS described 
above. During plan enumeration, the RepoAccess STAR 
is invoked once for each collection in the query, and in- 
vokes the appropriate wrapper’s plan-access STAR. All 
of Garlic’s join STARS are applied in every step of the 
second phase of plan enumeration to ensure that all pos- 
sibilities are considered. However, the conditions on the 
RepoJoin and BindJoin rules ensure that they will re- 
turn plans only when such plans are possible. 

In the current system, all STARS and POPS are imple- 
mented in C++. An alternative would be to implement 
STARS as declarative rules and interpret the STARS as pro- 
posed in [LFL88]. This might simplify the implementation 
of STARS, especially for wrapper writers; hard-coding all 
STARS in C++, however, provides significantly better per- 
formance during plan enumeration. 

Our approach to optimization has several key advan- 
tages. It is a simple extension of traditional optimizer tech- 
nology, allowing us to both enumerate a full set of plans and 
to take advantage of any and all advances in optimization 
and execution strategies. Since we enumerate all possible 

plans, we are guaranteed to find the optimal plan as defined 
by our cost model; as with all optimizers, however, this may 
not be the actual best execution plan if the cost model used 
by the optimizer is not sufficiently accurate. The extensions 
we make are isolated and few in number, consisting of one 
generic PushDown POP and a few generic STARS. 

As a further consequence of this design, our system is 
extremely flexible. Wrappers for new data sources can be 
added at any time without considering the capabilities of 
other wrappers, and without changing the optimizer code. 
Because Garlic does not have to understand the wrapper 
plans, relying only on a fixed set of properties to describe 
them, a wide range of data sources can be wrapped. These 
sources may differ in data model and vary widely in query 
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processing abilities, yet no special properties have been 
added to deal with heterogeneity. 

Finally, STARS are a powerful construct for a distributed 
system. In addition to standard relational function, Garlic’s 
STARS can handle approximate search, replicated collec- 
tions, and gateways [K+96]. An example involving approx- 
imate search is given in Section 4. 

4 Modeling Wrapper Query Capabilities 
Using STARS 

In addition to making optimization simple for Garlic, the 
STAR framework makes it easy to describe wrapper query 
capabilities, and allows wrappers to start simply, and evolve 
over time. While Garlic STARS may be complicated, due in 
part to their use of other STARS to enforce needed proper- 
ties, wrapper STARS tend to be simple. Indeed, we have 
found no need for wrapper STARS to invoke other STARS, 
or even to build multiple wrapper POPS. In this section, we 
demonstrate the power and simplicity of the STAR frame- 
work for heterogeneous systems, by means of an example 
involving three very different data sources. In the next sec- 
tion, we extend our example to show how the Garlic opti- 
mizer would optimize a query involving these three sources. 

Consider a university with a relational database stor- 
ing basic information on each course offered, course de- 
scriptions in a special text store, and an on-line complaint 
mechanism that sends mail to an ombudsman. These three 
sources (relational, text, and mail) are integrated using Gar- 
lic. In the following, we provide relevant details of these 
wrappers and define STARS for them. 

The mail wrapper exports a Complaints collection of ob- 
jects of type Message. Messages each have Sendeq Date, 
Body and Subject attributes. The wrapper provides only the 
ability to iterate through a collection, retrieving the OIDs. 
To model this ability, it defines the simple plan-access 
STAR shown in Figure 9. Like every plan-access 
STAR, this STAR takes as parameters the identifier of a 
collection (T), a set of attributes (C), and a set of predi- 
cates (P) that are used in the query. Regardless of C and 
P, this STAR always returns one plan consisting of a sin- 
gle Quantifier POP. The Quantifier POP models the exe- 
cution of the query “select OID from T” in the data source 
that stores T. The values of the properties (except cost and 
cardinulity) of the Quantifier POP are defined in Table 1; 
the RepoAccess STAR would get these values from the 
wrapper plan to create its PushDown POP. Query plans 
generated using this STAR are executed as follows: the 
OIDs of all messages of a collection are passed from the 
wrapper to Garlic’s execution engine, which uses method 
calls to the wrapper to get the attributes of the messages. 

The simple STAR of Figure 9 could be used as a start- 
ing point for wrappers of many different sources. (There 
is nothing Mail-specific about it.) This STAR guarantees 
that any query that accesses data from one of a wrapper’s 

plan-access(T, C, P) = Quantifier(T, U%(T)) 

C.: none 
E: ds(T) returns the id of the data source that stores T. I 

Figure 9: Mail Wrapper STAR 

plan-access(T, C, P) = RScan(T, C, P, h(T)) 

C.: none 
E: h(T) returns the id of the rel. data source that stores T. 

--------------_______ 

planbind(T, C, P,plon) = 

RScan(T, C, P Uplan.Preds, ds(T)) 

C. : none 
E: ds as defined above. 

---------_-_______ 
plaLjoin(Tl,Tz, P) = RJoin(Tl,Tz, P) 

C. : TI Source = T2Source 

E: none 

Figure 10: Relational Wrapper STARS 

sources can be processed, but it does not model a wrap- 
per’s query processing capability, and therefore, plans gen- 
erated by this STAR often show poor performance. Initially 
a wrapper writer might define only this STAR to integrate a 
source quickly; later (s)he could add more powerful STARS 
to improve performance. For example, we could initially 
use this STAR to integrate the relational database, and then, 
once we had made the relational data accessible, replace it 
with the STARS of Figure 10 to exploit the relational en- 
gine’s query processing power, improving performance. 

The relational wrapper exports a Classes collection. 
Class objects have attributes Course, Professes etc. The 
relational data source supports the usual relational opera- 
tions, and the wrapper provides STARS for access, bind and 
join. These STARS are shown in Figure 10. They construct 
a set of POPS which model the relational source’s opera- 
tions. Their properties are given in Table 1. plan-access 
generates an R&an POP which models the execution of a 
single-table query, aggressively applying all predicates and 
retrieving all necessary columns. planbind also builds 
an R&an POP, adding the binding predicates to the set. Fi- 
nally, plan-j oin constructs an RJoin POP, which mod- 
els the relational source’s ability to join two tables, again 
applying all predicates and fetching all columns. 

The text wrapper exports a single collection, Descrs, 

which contains objects of type Blurb, with attributes 
Name and Description. The text data source supports 
single-collection queries with methods of the form con- 

tains(string) or is-about(string) modeling its search capa- 
bilities. contains returns a boolean value, depending on 
whether the document it is applied to contains the words 
in the string. isabout(string) returns a rank between 0 and 
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Quantifier(T, S) 
T-Rank(T, C, e, P, S) 

T-S&T, C, P, S) 
R-Scan(T. C. P. Sj 

--------._ \-, - .-- VI -.--, \.?, . 

T oid 0 NIL 
T CU score(e) P score(e) 
T c P NIL 
T c P NT1 

\ ,-. I-, I 1 - .-- , FALSE S 
RJoin(T1, T2, P) 1 T1.t U T2.t 1 Tl.cU T2.c 1 Tl.pU Tz.pU P 1 NIL 1 FALSE T1.s 

Table 1: Properties (except cost and cardinality) of POPS used in Wrapper STARS 
T a collection; S an id of a data source; e an isabout oredicate; C a set of attributes; P a set of preds; TI, T2 plans 

plan-access(T, C, P) = TScan(T, C, Pt, h(T)) 

C.: Pt c P are all predicates of the form 
contains(string) or Name = string. 

R: ds(T) returns the id of the text data source that stores T. 

----__--------------- 

plan-access(T, C, P) = 
t/e E C : T-Rank(T, C, e, Pt, ds(T)) 

C.: e is an isabout expression on T. Pt c P as above. 
E: a% as above. 

Figure 11: Text Wrapper STARS 

1 indicating how closely the document matches the terms in 
the argument string. STARS defining this wrapper’s plans 
are found in Figure 11. The POPS for these STARS are also 
described in Table 1. Note that this wrapper provides two 
plan-access rules: one, which produces a TScan POP, 
simply scans the documents, returning whatever attributes 

are asked for, and applying any “contains” or other String 
predicates, and the other, which produces the T-Runk POP, 
returns the results in order of rank computed as a result of 

an isabout method in the order by clause. 
iFrom these three examples, we can see that the ba- 

sic query power of wrappers and data sources with vastly 
different querying abilities can be modeled easily with a 

handful of simple, single-POP STARS. There are two rea- 
sons why wrapper STARS can be so simple. First, Garlic 
provides a powerful query engine which can make up for 

missing query function in the wrappers. Second, wrapper 
STARS model “what” can be executed by a wrapper, not 
“how”. For example, the relational wrapper exported a sim- 
ple plan-j oin STAR to model that joins can be executed 
by its data sources; it did not need to enumerate altema- 

tive plans with different join methods because plans with 

an RJoin POP are translated into a multi-table (SQL) query, 
and the optimizer of the relational data source automatically 

determines the most efficient join methods. Precise model- 
ing of join methods may be required in the wrapper’s cost 
model in order to estimate the cost of join processing in the 
data source, but it is not required in the wrapper’s STARS. 

These examples also demonstrate three further advan- 
tages of our approach. First, we defined a simple minimal 
STAR that might be the first STAR a wrapper would export. 
This makes it easy to get a wrapper up and running. Sec- 
ond, wrapper writers can add STARS or alternatives for an 
existing STAR at any time, to expose more wrapper query 

functionality to Garlic. This makes it easy to modify and 
evolve wrappers. Third, each wrapper’s STARS were de- 
fined independently of the others’, and without affecting 
Garlic STARS or Garlic’s query services, making it easy 
to add new wrappers to the system. Modeling power, low 
“entry-cost” for writing wrappers, evolvability, and extensi- 
bility are key advantages of our approach. 

5 Optimizing a Query 

To see how the whole framework works, we now describe 
how a query against the sources of Section 4 would be 
processed by the Garlic optimizer using Garlic’s built-in 
STARS (Section 3) and the wrapper STARS defined above. 
Suppose that the ombudsman has just received a complaint 
about an Ancient Studies course. She remembers receiv- 
ing a number of complaints about courses concerning the 
ancient world recently, and wants to see what faculty are 
involved. She poses the following query: 

SELECT C.Course, C.Prof 
FROM Classes C, Descrs D, Complaints P 
WHERE D.Name = CCourse AND 

C.Course = PSubject 
ORDER BY D.is-about(“ancient world, Greece, Rome”) 

In phase one of optimization, Garlic’s AccessRoot 
STAR is invoked once for each collection of the query. 
In each case, it invokes the appropriate wrapper’s 
plan-access STAR, and then creates a PushDown POP. 

This results in four plans, shown in Figure 12, one from 
each of the Mail and Relational wrappers, and two from the 
Text Wrapper. Their properties will be those of the wrapper 
POPS in Table 1. 

In phase two, Garlic’s JoinRoot STAR is fired, first 
to make all possible two-collection joins, and then to look 

at all three-collection plans. This entails four calls to 
JoinRoot to join Classes and Descrs (one with each of 
the plans for Descrs as the outer, and two with Classes as 

the outer, using the different plans for Descrs as the in- 
ners), four more for Descrs and Complaints, and two for 
joining Classes and Complaints. Each time it is called, 

Pl: PushDown(R&an(Classes,{Course,Prof}, 0, RDB)) 
P2: PushDown(Quantifier(Complaints, Mail)) 
P3: PushDown(T-Scan(Descrs, {Name,score}, 8, Text)) 
P4: PushDown(T_Rank(Descrs, {Name,score}, 0, Text)) 

Figure 12: Plans from Phase 1 of Optimization 
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P5: NLJ(P1, Scan(Temp(P3)), {Course = Name}) 

Figure 13: Two-Way Join Plans Surviving Pruning 

PIO: NLJ(P5, Scan(Temp(Fetch(P2,Subject))), 
{ Subject=Course}) 

Pll: NLJ(P4, Scan(Temp(P9)). {Name = Course}) 

Figure 14: Three-Way Join Plans Surviving Pruning 

JoinRoot instantiates all three Garlic join rules. For this 
query, RepoJoin never returns any plans, as no two col- 
lections are co-located. Nes tedLoopJoin always re- 
turns a plan, as Garlic can always perform the join, so 
ten nested loop plans are returned. Since only the rela- 
tional wrapper defines a planbind STAR, BindJoin 
returns a plan only when Classes is the inner. This occurs in 
three plans, so in total, thirteen join plans are considered in 
this phase. However, only five plans survive pruning (Fig- 
ure 13). The others are eliminated because they have the 
same properties as another plan, and cost at least as much. 

Note that each plan of Figure 13 builds on the plans of 
Figure 12. For example, plan PS combines plans Pl and P3, 
storing the results of P3, and adding the join operator with 
a scan of the new collection. Plan P8 similarly builds on 
plans P4 and P2, but discovers that it needs to add a fetch of 
subject before making the temporary collection, in order to 
apply the join predicate during join processing. 

Plans P7 and P8 demonstrate the benefits of extending 
well-known optimizer technology. Both plans apply a join 
predicate that did not appear in the query, but could be de- 
duced from it by taking the transitive closure of the predi- 
cates [G+93]. These plans required no new rules, nor did 
the new, generic Garlic rules disturb them; the existing op- 
timizer computed transitive closures of predicates, and the 
Garlic optimizer therefore (automatically) does so. 

In the next step of phase two, these two-way join plans 
will be combined with the single-table access plans from 
phase one to generate the three-way joins. In this phase, 
fourteen plans are created, but only two survive pruning, 
one ordered by isabout (Pl 1) and one not ordered (PlO). 
These two plans, shown in Figure 14, are the input to phase 
three. In this phase, the FinishRoot STAR is invoked 
to complete both plans. Pll is already complete, so it is 
returned as is, but FinishRoot adds a Sort POP to PlO to 
complete it. As both plans now have the same properties, a 
winner is chosen on the basis of cost. 

6 Related Work 

Despite its importance, there is little related work on opti- 
mization and decomposition of queries across data sources 
with different query capabilities. Some systems use query 

rewrite rules to decompose a query, but have no cost model 
to evaluate alternative plans (e.g., [FRV95]). [CS93] uses 
rewrite rules to generate alternative versions of a query in- 
volving foreign tables and functions. Each version can 
then be optimized, and the least cost plan overall is cho- 
sen. Most work on cost-based query optimization in het- 
erogeneous systems is limited to specific classes of data 
sources [DKS92, GST96]. The works most closely related 
to ours are [TRV96] (DISCO) and [PGH96]. These two ap- 
proaches also use grammars to describe the capabilities of 
wrappers; however, the types of grammars used and how 
they are used are significantly different. 

DISCO addresses problems beyond the scope of Garlic, 
with an emphasis on operating when not all data sources 
are available. DISCO uses a wrapper grammar to match 
queries. The DISCO optimizer enumerates query plans as 
if wrappers could handle any kind of query, then uses the 
wrapper grammar to parse each plan to determine whether 
it can be handled by the wrapper. Thus, DISCO enumer- 
ates all plans, including many invalid ones. The Garlic op- 
timizer, by contrast, constructs only valid plans, and it is 
quicker to construct a plan using STARS than to parse a plan 
using a grammar. 

[PGH96] proposes a set of algorithms that decompose 
a query based on a novel relational query description lan- 
guage that describes the capabilities of wrappers. Their al- 
gorithms push down as much work as possible to wrappers 
to minimize the amount of processing in the middleware 
system’s query engine. However, this work gives no guid- 
ance on how to execute the remaining query pieces in the 
middleware, or how to choose between alternative plans. 

Recently, other ways to describe capabilities of het- 
erogeneous wrappers or data sources have been proposed. 
In [LRO96], capability records are used to describe which 
bindings can be passed to a source. However, the capability 
record mechanism is not powerful enough to describe the 
capabilities of, say, Garlic’s relational or image wrappers. 
In other work, views are used to describe which queries can 
be handled by a wrapper/data source; e.g., [Qia96, LRU961. 
While flexible, decomposing a query using views requires 
solving the query subsumption problem. Thus, these ap- 
proaches are typically limited to simple conjunctive queries 
and cannot easily be extended to handle ordering, grouping, 
or aggregate functions. 

7 Conclusion 

In this paper, we presented the design of a query opti- 
mizer for heterogeneous middleware systems designed to 
integrate data sources with different data models and query 
processing capabilities. A query optimizer is a critical 
component of any such middleware system, because dif- 
ferences in cost between alternative plans for executing a 
query can easily be several orders of magnitude, and there 
are generally many possible plans. Our optimizer is based 
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on dynamic programming and Lohman’s STrategy Alter- 

native Rules, or STARS. We have extended Lohman’s ap- 
proach to encompass generic and wrapper STARS, and im- 

plemented this in the Garlic middleware system. Garlic 
uses STARS to construct its query execution plans, in which 
a generic PushDown POP represents work done by a data 
source. Garlic’s generic STARS construct PushDown POPS 
and invoke wrapper-provided STARS to construct the wrap- 
per portion of the plan. We illustrated our approach with 
both Garlic and wrapper STARS, and described how they 

would be used to optimize a query. In a small set of experi- 
ments [K+96], we have further shown the importance of op- 
timization in this environment, and how alternative wrapper 

STARS impact query processing in Garlic. 
The advantages of our approach lie in its extensibility 

and evolvability, the expressiveness of the powerful STAR 
syntax, the simplicity of wrapper STARS, and the fact that 
it can be implemented as an extension of an existing opti- 
mizer, leading to high quality plans. Tbe approach is exten- 
sible, as new wrappers and their STARS can be integrated 

without affecting other wrappers or Garlic’s query engine. 
The STAR syntax is powerful, as it enables wrapper writers 

to precisely model the capabilities of wrappers even for very 
unusual data sources. It is typically easy to define STARS 
because STARS simply model “what” kind of queries can 
be handled by a wrapper rather than specifying precisely 
“how” these queries are executed by the data sources. The 
approach is efficient, as it employs well-known optimiza- 

tion techniques such as dynamic programming with pruning 
to find good plans with reasonable effort. 

In the future, we want to continue to integrate and exper- 

iment with new kinds of data sources in order to get more 
general insight into the design tradeoffs for wrapper STARS. 
We are considering wrappers for a digital library product, 
and for OLE automation servers. We are also examining 
whether we can develop cost models for broad classes of 
data sources, so that modeling the cost of wrapper plans 

can be simplified for the wrapper writer. 
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