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Abstract

Repositories of multimedia objects having multiple types

of attributes (e. g., image, text) are becoming increasingly

common. A selection on these attributes will typically

produce not just a set of objects, as in the traditional

relational query model (filtering), but also a grade of match

associated with each object, indicating how well the object

matches the selection condition ( ranking). Also, multimedia

repositories may allow access to the attributes of each object

only through indexes. We investigate how to optimize

the processing of queries over multimedia repositories. A

key issue is the choice of the indexes used to search the

repository. We define an execution space that is search-

minwnul, i.e., the set of indexes searched is minimal.

Although the general problem of picking an optimal plan

in the search-minimal execution space is NP-hard, we solve

the problem efficiently when the predicates in the query are

independent. We also show that the problem of optimizing

queries that ask for a few top-ranked objects can be viewed,

in many cases, as that of evaluating selection conditions.

Thus, both problems can be viewed together as an extended

filtering problem.

1 Introduction

The problem of content management of multimedia

repositories is becoming increasingly important with the

development of multimedia applications. For example,

digitization of photo and art collections is becoming

popular, multimedia mail and groupware applications

are getting widely available, and satellite images are

being used for weather predictions. Attributes of the

multimedia objects may include the date the multimedia

object was authored, a free-text description of the

object, and image features like color histograms. These

attributes provide the ability to recall one or more
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objects from the repository. There are at least three

major ways in which accesses to a multimedia repository

differ from that to a structured database (e.g., a

relational database). First, rarely does a user expect

an exact match with the feature of a multimedia object

(e.g., color histogram). Rather, an object does not

either satisfy or fail a condition, but has instead an

associated grade of match [I]. Thus, an atomic filter

condition will not be an equality between two values

(e.g., between a given color c and the color otd. color

of an object), but instead an inequality involving the

grade of match between the two values and some target

grade (e.g., Grade (colorj c)(oid) > 0.7). Next, every

condition on the attributes of a multimedia object may

only be evaluated through calls to an index. This is in

contrast to a traditional database where, after accessing

a tuple, all selection predicates can be evaluated on the

tuple. Finally, the process of querying and browsing

over a multimedia repository is likely to be interactive,

and users will tend to ask for only a few best matches

according to a ranking criterion.

The above observations lead us to investigate a

query model with jilter conditions as well as ranktng

expressions, and to study the cost-based optimization

of such queries. In general, a query will specify both

a filter condition F and a ranking expression R. The

query answer is a rank of the objects that satisfy F,

based on their grade of match for the ranking expression

R.

Optimizing a filter condition in this querying model

presents new challenges. An atomic condition can be

processed in two ways: by a search, where we retrieve

all the objects that match the given condition (access

by value), and by a probe, where instead of using the

condition as an access method, we only test it for each

(given) object id (access by object id).

The costs of these two kinds of accesses, search and

probe, in multimedia repositories can vary for a single

data and attribute type as well as across types. How

to order a sequence of probes without considering the

search costs, as well as how to determine a set of

search conditions when the probing cost is zero (or a
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constant) has been studied before. However, to the best

of our knowledge, no work has studied the optimization

problem when both searches and probes have non-zero

costs and the filter condition is an arbitrary boolean

expression. When the filter condition is a conjunction of

atomic conditions, the problem becomes closely related

to that of ordering joins.

To optimize the processing of a filter condition, we

define a space of search-m~n~mal executions, and show

how to pick the optimal execution in that space when

the conditions in the filter condition are independent.

Our experiments show that considering both the search

and probe costs during query optimization impacts the

choice of an execution plan significantly. We also prove

that if the conditions in the filter condition are not

independent, the problem of determining an optimal

search-minimal execution is NP-hard. Although the

search-minimal execution space is a restricted space, our

experiments indicate that a simple post-optimization

step leads to plans that are nearly always as good as

the plans obtained when plans are not restricted to be

search minimal [2].

Our paper also contributes to the problem of opti-

mizing the evaluation of a ranking expression. Previous

significant work in this area is due to Fagin [1], who

shows his algorithm to be asymptotically optimal under

broad assumptions. A key contribution of our paper

is to show that ranking expressions can be processed

“almost” like filter conditions. We prove that our tech-

nique is expected not to retrieve more objects than the

strategy in [1]. Our experimental results indicate that

the performance gain from processing ranking expres-

sions as filter conditions can be substantial. This result

allows us to process queries with both a filter condition

and a ranking expression in a unifying framework.

The rest of the paper is organized as follows. Section 2

describes the query model that we use. Sections 3 and 4

present the results on evaluating filter conditions and

ranking expressions, respectively. Section 5 discusses

our experimental results. Finally, Section 6 is devoted

to related work.

2 Query Model

In this section we introduce a query model to select

multimedia objects from a repository. (See [3] for a

similar model. ) Such a query model needs to satisfy the

following requirements:

1. Consider that a match between the value of an at-

tribute of a multimedia object and a given constant

is not exact, i.e., must account for the grade of

match.

2. A11ow users to specify thresholds

match of the acceptable objects.

on the grade of
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3. Enable users to ask for only a few top-matching

objects.

Given an object o, an attribute attr, and a constant

value, the notion of a grade of match Grade (attr,

value)(o) between o and the given value for attribute

attr addresses the first requirement. Such a grade is a

real number in the [0, 1] range and designates the degree

of equality (match) between o.attr and value.

We address the second requirement by introducing

the notion of a jilter condttton. The atomzc filter

conditions are of the form Grade (attr, value)(o) >

grade. An object o satisfies this condition if the grade

of match between its value o. attr for attribute attr

and constant value is at least grade. Additional filter

conditions are generated from the atomic conditions by

using the A ( “and”) and V ( “or”) boolean connective.

Filter conditions evaluate to either true or false.

Following [1], we address the third requirement for the

query model through the notion of a ranking expression.

The ranking expression computes a composzte grade

for an object from individual grades of match and the

composition functions &fin and Max. Every object has

a grade between O and 1 for a given ranking expression.

Users can use a ranking expression in their queries,

and ask for k objects with the top grades for the given

ranking expression.

We use the following SQL-like syntax to describe the

queries in our model:

SELECT old

FROM Repository

WHERE Filter-condition

ORDER [k] by Ranking-expression

The above query asks for k objects in the object

repository with the highest grade for the ranking ex-

pression, among those objects that satisfy the filter

condition. The filter condition eliminates unacceptable

matches, while the ranking expression orders the accept-

able objects.

Example 2.1: Conszder a multzmedta repository of

reformation on criminals. A record on every person

on file conswts of a textual descrtptzon p (for profile),

a scanned fingerprint f, and a recordzng of a uoace

sample v. Gwen a target fkgerprznt ‘F and voice sample

V, the followtng example asks for records (1) whose

fingerprint matches F wtth grade 0.9 or hzgher, or

(2) whose profile matches the strzng ‘on parole’ wtth

grade 0.9 or hzgher and whose voice sample matches v

with grade 0.5 or h~gher. The ranking expression ranks

the acceptable records by the maximum of thetr grade of

match for the voice sample v and for the jingerprtnt F.

The answer contazns the top

(For strnplicity, we omztted

atomic condztzons below.)

10 such acceptable records.

the parameter oid zn the



SELECT oi,d

FROM Repository

WHERE (Grade(v, V) >= .5 AND

Grade(p, ‘on parole’) >= .9)

OR Grade(f, F) >= .9

ORDER [101 BY Max(Grade(f, F), Grade(v, V))

2.1 Expressivity of the Query Model

The filter condition F in a query Q selects the set

of objects in the repository that satisfy the condition,

whereas the ranking expression R computes a grade

for each qualifying object. IJ’e use these grades for

ordering the objects that satisfy the filter condition. An

interesting expressivity question is whether we actually

need both F and R. In other words, we would like to

lmowwhether we can “embed” the filter condition Fin

anew ranking expression RF such that the top objects

according to RF are the top objects for R that satisfy F.

(Note that a filter condition does not impose an order on

the objects, therefore we cannot express Rand Fusing

a single filter condition F~. However, see Section 4.)

More formally, given F and R, a ranking expression

RF that replaces F and R should verify the following

two conditions for any database dbandforanygivenk,

assuming that at least k objects satisfy F in database

db:

1. An object o E db is among the top k objects

according to RF only if o satisfies F.

2. If objects o, o’ c db satisfy F, and R(o) < R(o’),

then RF(o) <RF(o’).

The following example establishes the need for both a

filter condition and a ranking expression in our model.

It shows that it is not possible to find such a ranking

expression RF for an arbitrary filter condition F and an

arbitrary ranking expression R.

Example 2.2: Let el = Grade (al, vl) and e2 =

Grade(a2, 7J2), where al and az are dzfferent attributes,

and VI and V2 are constants. Constder the filter

condztzon F = el ~ 0.2, and the ranibng expression

R = ej. The query associated wzth F and R ranks the

ob]ects that have grade 0.2 or hzgher for el accordtng to

thezr grade for e2.

Suppose that there w a ranking expression RF that

sa.hsjies the two condtttons above. Then, RF is

equivalent to (t. e., always produces the same grades as)

one of the followtng ezpresstons: el , ez, klzn(el, e2),

or Max(el, ez). Constder the database of three objects

descrtbed tn Table 1, and that we are interested in the

top ob]ect (k = 1) for R that satisfies F. The actual

ansuler to the query should be ob]ect 02, which has the

htghest grade for R (0.,/) among the two ob~ects (02 and

03) that pass the jilter condition F. However, each of

the four posszbzlztzes for RF produces a wrong answer

for the query (ezther 01 or 03).

Table 1: The three objects in the database, and their

grades for each of the four possible definitions of RF.

2.2 Storage Level Interfaces

A repository has a set of multimedia objects. We

assume that each object has an id and a set of attribute

values, which we can only access through indexes. Given

a value for an attribute, an index supports access to the

ids of the objects that match that value with a certain

grade, as we discuss below. Indexes also support access

to the attribute values of an object given its oid.

The following are several storage-level access inter-

faces that multimedia repositories may support [4]. Key

to these interfaces is that the objects match attribute

values with a grade of match:

GradeSearch (attrzbute, value, mtn-grade): Given

a value for an attribute, and a minimum grade

requirement, returns the set of objects that match

the attribute value with at least the specified grade,

together with the grades for the objects.

TopSearch (attribute, value, count): Given a value

for an attribute, and the count of the number of

objects desired, returns a list of count objects that

match the attribute value with the highest grades

in the repository, together with the grades for the

objects.

Probe (attrzbute, value, { ozd}): Given a set of object

ids and a value for an attribute, returns the grade of

each of the specified objects for the attribute value.

Not all repositories have to support all of these

interfaces at the physical level. For example, a

repository may implement Probe atop GradeSearch.

Next, we briefly describe how text and image attributes

may support the above interfaces.

Text Attributes:

Consider a repository of objects with a textual attribute

T. For this attribute, the repository might have an

index that handles queries using the vector-space model

of document retrieval [5]. Given a value for T (i. e.,

a sequence of words), this index assigns a grade to

every object in the repository, according to how similar

its value for T and the query value are. Vector-

space retrieval systems usually provide the GradeSearch

interface, the TopSearch interface, or both. Some text-

retrieval systems allow access to the document weight

vectors by document id. If this is the case, the Probe
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interface is readily provided by accessing the weight

vectors of the objects requested, and computing the

similarity of these vectors and the query vector. If this

direct access is not provided, Probe can be simulated

by GradeSearch or TopSearch by requesting all objects

with non-zero similarity, for example.

Image Attributes:

If the objects of a repository contain an image, an

attribute could be the color histogram of this image,

for example. Then, a filter condition on such an

attribute may ask for objects whose color histogram

matches a given color histogram closely. The QBIC

system supports this type of queries [4]. A popular data

structure to support such queries is the R tree [6] and its

variants [7, 8], which may be used to index the feature

vectors associated with the attributes. The grade of

match between two feature vectors is computed based

on the semantics of the attributes.

Given one feature-vector attribute, a value w for the

attribute, and a grade, GradeSearch can be imple-

mented over an R tree by determining a box around

the given value v that contains all vectors that match

v with the given grade or higher, for a given grade-

computation algorithm. We then process the corre-

sponding range search. Roussopoulos and others [9]

have recently presented an algorithm to find nearest

neighbors on R trees. This algorithm can be used for

implementing TopSearch.

3 Filter Conditions

In this section we will consider the processing and cost-

based optimization of queries that have only a filter

condition, i.e., they are of the form:

SELECT old

FROM Repository

WHERE Filter-condition

M’e will assume that the filter conditions are inde-

pendent. Similar restrictions have been traditionally

adopted [10].

Definition 3.1: We say that a jilter condttton f is

independent zf:

● Every atomzc jilter condttton occurs at most once tn

f

● Every n atomtc jilter condtttons el, . . . . en satzsfy

p(el A... A en) = II~=lp(ei), where p(e) is the

probabdtty that the jilter condttzon e w true.

We assume that our repository requires that we use

an index to evaluate every atomic filter condition. One

way to process such queries is to retrieve object ids

using one GradeSearch for each atomic condition in the

filter condition, and then merge these sets of object ids

through a sequence of unions and intersections.

Alternatively, we can retrieve a set of object ids using

GradeSearch for some conditions. The key optimization

problem is to determine the set of filter conditions

that are to be evaluated using GradeSearch, The rest

of the conditions will be evaluated by using Probe.

In order to efficiently execute the latter step, we will

exploit the known techniques in optimizing the probing

of expensive filter conditions [11, 12, 13, 14].

In this section, we first define a space of search-

mtntmal executions, and sketch the cost model and the

optimization criteria. Next, we describe an optimization

algorithm and explain the conditions under which it

is optimal. We conclude with a result that indicates

that the general problem of determining an optimal

search-minimal execution is NP-hard. The results in

this section are complemented by the experiments in

Section 5.1, which show that considering both the search

and probe costs leads to significantly better execution

strategies.

3.1 Execution Space

We begin by discussing the possible space of execution

for simple filter conditions, i e., conditions that consist

of a disjunction (or a conjunction) of atomic conditions,

We will then generalize our description for arbitrary

filter conditions with disjunctions and conjunctions.

To process an atomic condition Grade (attr, value,)(o)

~ grade, we use the GradeSearch (attr, value, grade)

access method described in the previous section,

Consider now the case where the filter condition

is a disjunction of atomic filter conditions al V V

an 1. All objects that satisfy at least one of the a,

satisfy the entire filter condition. Evaluation of an

atomic condition a% requires the use of the GradeSearch

access method associated with a$, Since we assume

that the atomic conditions are independent, use of a

GradeSearch is needed for each atomic condition not to

miss any object that satisfies the entire condition,

Consider now the case where the filter condition is

a conjunction of atomic filter conditions al A A an.

There are several execution alternatives. In particular,

we can retrieve all the objects that may satisfy the

filter condition by using GradeSearch on any of the

atomic conditions al, ., an. Subsequently, we can

test each retrieved object to verify that it satisfies all

of the remaining conditions. The cost of using one

atomic condition for GradeSearch instead of another

may lead to significant differences in the cost. Thus,

we can process a conjunction of atomic filter conditions

by executing the following steps:

1We use aj as a shorthand for an atomic condition specifying

an attribute, value, and grade, e.g., Grade (attr, ual)(o) > grade.
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1. Search: Retrieve objects based on one atomic

condition (using GradeSearch ).

2. Probe: Test that the retrieved objects satisfy the

other conditions (using Probe).

An important optimization step is to carry out Step (2)

efficiently by ordering the atomic-condition probes

(Section 3.3).

We call the above class of execution alternatives for a

conjunctive query search-minimal since only a minimal

set of conditions (in this case, only one condition) is used

for GradeSearch; the other conditions are evaluated

using Probe. The search-minimal strategies represent

a subset of the possible executions. In particular for a

conjunctive filter condition, instead of searching on a

single atomic condition and probing on the others, it is

possible to search on any subset of the atomic conditions

and to take the intersection of the sets of object-ids

retrieved. However, the space of all such executions

is significantly larger. In [2] we consider applying

a post-optimization step to the best search-minimal

strategy and compare the new strategy against the

overall optimal execution. (Neither the post-optimized

strategy nor the overall optimal one are necessarily

search minimal. ) The post-optimization step produces

almost optimal strategies most of the time [2].

By searching on a condition using GradeSearch, we

obtain a set of objects. However, we may need to do

additional probes to determine the subset of objects

that satisfy the rest of the filter condition as well, Thus,

given an atomic condition ai and a filter condition f,

the residue of ~ for a;, R(ai, f), is a boolean condition

that the objects retrieved using ai should satisfy to

satisfy the entire condition ~. The following definition

captures how we construct residues for independent

filter conditions.

Definition 3.2: Let f be an independent filter condi-

tion, represented as a tree, and a an atomtc condttton

off. Consider the path from the leaf node for (the only

occurrence of) a to the root of the tree for f. For every

A node i in this path, let ~i be the condition consisting

of the con]unctzon of all the subtrees that are children of

the node i and that do not contain a. Then the residue

off for a, R(a, f), is AZ Q%. If there are no such nodes,

then R(a, f) = true.

Example 3.3: Consider the jilter conditzon f = a4 A

((al Aa2)Va3). Let us conszder the restdue of the atomic

condztzon a2 ustng the definition above. Thus, al z al

and a2 = a4. Hence, R(a2, f) = al A a4. As another

example, R(a4, f) = (al A a2) V a3. Then, any object

that satisjies aq and also satzsjies R(a4, f) satisjies the

entire condition f.

Given a filter condition ~. we would like to character-

ize the smallest sets of atomic conditions such that by

searching the conditions in any of these sets we retrieve

all of the objects that satisfy f (plus some extra ones

that are pruned out by probing).

Definition 3,4: A complete set of atomic conditions

m for a jilter condition f is a set of atomtc condtttons

m f such that any object that sattsjies f also sattsfies at

least one of the atomtc conditions m m. A complete set

m for f is a search-minimal condition set for f if there

is no proper subset of m that is also complete for f.

Example 3.5: Consider Example 3.3. Each of {a4},

{a2, a3}, and {al, as} is a search-minamal conditzon set.

If we dec~de to search on {a2, a3}, the following three

steps yield exactly all of the objects that satisfy f:

1. Search on az and probe the retraeued ob]ects wtth

restdue R(a2, f) = al A a4. Keep the objects that

satisfy R(a2, F).

2. Search on a3 and probe the retrzeued objects wtth

reszdue R(a3, f) = a4. Keep the objects that satzsfy

R(a3, F).

3. Return the objects kept.

Proposition 3.6: Let m be a complete set of atomic

conditions for an independent jilter conditzon f. Then,

f ❑ V.em(aAR(a)f )). In particular, the above holds

if m is a search -mtntmal condition set for f.

Now we are ready to define the space of search-

minimal executions.

Definition 3.7: A search-minimal execution of an

independent jilter condztton f searches the repo.wtory

using a search-minimal condttzon set m for f, and

executes the following steps:

● For each condition a c m:

– Search on a to obtain a set of objects S..

– Probe every object in S’a with the reszdual condt-

tion R(a, f) to obtatn a filtered set S: of objects

that satisfy f.

● Return the union ua~m S;.

We now present algorithms to pick a plan from the

space of search-minimal executions.

3.2 Assumptions and the Cost Model

Our optimization algorithm is cost-based and makes

statistical assumptions about the query conditions as

well as about the availability of certain statistical

estimates. We describe these assumptions in this

section.

We associate the following statistics with each atomic

condition a. We assume that we can extract these

statistics from the underlying object repository and its

indexes.
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Selectzvzty Factor Sel (a): Fraction of the objects in

the repository that satisfy the condition a.

Search Cost SC(a): Cost of retrieving the ids

of the objects that satisfy the condition a using

GradeSearch.

Probe Cost PC (a, p): Cost of checking the condition

a for p objects, using the Probe access method.

The probe cost PC(a, p) depends on p, the number of

probes that need to be performed. If p is large enough,

it might be cheaper to implement the p probes by doing

a single search on a, at cost SC’(a). This observation is

the key of the post-optimization step in [2].

We now sketch how to estimate the cost parame-

ters over multimedia repositories for text and image at-

tributes. Consider first a text attribute that is handled

by a vector-space retrieval system. Typically, such a

system has inverted lists associated with each term in

the vocabulary [5]. For each term we can extract the

number of documents d that contain the term, and the

added weight w of the term in the documents that con-

tain it. Thus, we can use the methodology in [15] to

estimate the selectivity of an atomic filter condition, as

well as the cost of processing the inverted lists that the

condition requires.

Consider now an attribute over an image that is han-

dled with an R tree. We can then use the methodology

in [16], which uses the concept of the fractal dimension

of a data set to estimate the selectivity of atomic con-

ditions, and the expected cost of processing such condi-

tions using the R tree. We use this estimation technique

for our experiments.

We will restrict our discussion to optimizing indepen-

dent filter conditions containing disjunctions and con-

junctions. We can compute the selectivities of com-

plex independent filter conditions using the following

two rules as in traditional optimization [10]:

● Sel(el V.. .V en) = l–H~=l(l –Sei(ez))

3.3 Optimization Algorithm

In this section, we present the results on optimization

of filter conditions. First, we define our optimization

metric over the search-minimal execution space. Next,

we sketch how we can use the past work in optimizing

boolean expressions for the task of determining a

strategy for probing. Then, we present our algorithm,

which is optimal for independent filter conditions,

and discuss how we can adapt it for non-independent

filter conditions. We conclude with an NP-hardness

result that shows that if the filter condition is not

independent, then the complexity of determining an

optimal execution is NP-hard.

Cost of the Search Minimal Executions:

Given a search-minimal condition set m for a filter

condition f and an algorithm w for probing conditions,

we define CW ( j, m), the cost of searching the conditions

in m plus the cost of probing the other conditions using

algorithm w, as follows:

CW(.f, m) = ~(SC(a) + PCW(R(a, f), 10al))

a~m

where 10. [ is the number of objects that satisfy con-

dition a and PCW (R(a, f), 10.1) is the cost of probing

condition R(a, f) for 10. I objects using algorithm w.

This cost depends on the probing algorithm w, as we

discuss next. Note that if there are O objects in the

repository, 10. I = Set(a) * O.

Optimizing Evaluation of Residues:

Given a residue R(a, f), the task of determining

an optimal evaluation for R(a, f) maps to the well

studied problem of optimizing the execution of selection

conditions containing expensive predicates [1 1]. (See

also [12, 13, 14].)

If R(a, f) is a conjunction of atomic conditions al A

. . . A an with n > 1, there is an efficient algorithm

w that finds the optimum probing strategy. We

first order the atomic conditions in increasing rank

Se/(at)-l
order, where the rank of the condition a% is

c, ‘
assuming that PC(ai, p) = Ci * p for some constant Ci.

Then, given p, we can calculate the cost F’C(R(a, ~), p)

as follows. For simplicity, we assume that al an

represents the increasing rank ordering of the conjuncts:

~C(R(a, f), P) = z~=l S,, where S, = Se/(al) * . . . *

Sel(a~_l) * p * c~. This result is well known and was

observed in the database context by [13, 14]. We can

take a similar approach to order the evaluation of a

disjunction of atomic conditions.

In case R(a, f) is an arbitrary boolean condition,

the problem of evaluating it optimally is known to

be intractable. However, several good heuristics are

available [11]. Therefore, we assume that we exploit one

of these available algorithms to optimize the evaluation

of residues. As we mentioned above, depending on

the strategy w used to evaluate R(a, f), we can

parametrize our cost function. Thus, we denote the

cost corresponding to evaluation strategy w by C’w

However, for the rest of the discussion, we assume

that such a choice of w is implicit and therefore omit

references to w,

Optimality:

We now study how to find an optimal search-minimal

condition set for a filter condition.

Definition 3.8: Let f be an independent jilter cond~-

tzon and let M(f) be the set of all search-m lnzmal con-
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dition sets for f. A search -mtntmal condzt~on set m for

f as optimal If C(f, m) = min~,~~fff, C(~, m’)

The algorithm to determine an optimal search-

minimal condition set for an independent filter condi-

tion is implicit in the following inductive definition. In-

tuitively, the algorithm traverses the condition tree in a

bottom-up fashion to create an optimal condition set.

Definition 3.9: Let f be a jilter condttzon and f’ be

a subexpression of f. The inductive search- mintmal

condition set for f’ with respect to f, SMj ( f’ ), is

dejined inductively as follows:

1. Case f’ = a: SMf (f’) = {a}, where a as an atomic

conditton

2. Case f’ = fl A . . .Af.: SMf (fl) = SMj(fi)j where

C’(f, SMf(f,)) = min{C(f, S~f(fl)), . . . . c(f,

SM~ ( fn ))} (Break tzes arbztrurzly.)

3 Case f’=fl V... Vfn: SllI~(f’) =SM~(fl)U... U

sMf(f. )

Theorem 3.10: Let f be an independent jilter conda-

tton. Then SAlf (f) ts an opt~mal search-mtntmal con-

dition set for f.

The proof of optimality of SAff ( f ) (see [2]) depends

on the fact that the given filter condition f is indepen-

dent. Nonetheless, we can easily modify the above algo-

rithm to provide a search-minimal condition set when

the given filter condition is not independent. However,

this set is no longer guaranteed to be optimal [2]. This

is not surprising given that the general optimality prob-

lem is intractable, as the following theorem shows.

Theorem 3.11: The problem of determanang an opti-

mal search -mtntmal condttlon set for an arbztrary filter

condztzon is NP-hard.

4 Filter Conditions and Ranking

Expressions

In this section, we consider queries consisting not only

of a filter condition, but also of a ranking expression.

The answer to such queries is the top objects ordered

by the ranking expression that also satisfy the filter

condition. We first look at queries consisting only of

ranking expressions. Section 4.1 describes an algorithm

for processing this type of queries that has been recently

presented [I], Section 4.2 presents our main result

regarding this class of queries. We show that we can

map a given ranking expression into a filter condition,

and process the ranking expression “almost,” as if it were

a filter condition. This result is central to processing

queries with ranking expressions using the techniques

of Section 3 for filter conditions. The experimental

results of Section 5.2 show that the number of objects

retrieved when processing a ranking expression like a

filter condition can be considerably smaller than when

processing the ranking expression using the algorithm

in [1].

A query consisting of only a ranking expression has

the form:

SELECT o id

FROM Repository

ORDER [k] by Ranking-expression

The result of this query is a list of k objects in the

repository with the highest grade for the given ranking

expression. The ranking expressions are built from

atomic expressions that are combined using the Mm

and Max operators that we defined in Section 2.

4.1 Fagin’s Strategy

Recently, Fagin presented a novel approach to process-

ing a query consisting of a ranking expression [1]. In

this section we briefly describe his approach.

Consider a ranking expression R = Min (al, . . . . an ),

where the a%’s are independent atomic expressions.

Suppose that we are interested in k objects with the

highest grades for R. Fagin’s algorithm uses the

TopSearch access method to retrieve these objects from

the repository. He does so by retrieving the top objects

from each of the atomic expressions a~, i = 1, . . . . n,

until there are at least k objects in the intersection of

the n streams of objects that he retrieves. (There is one

stream for each ai. ) He proved that the set of objects

that he retrieved contains the necessary k top objects.

Therefore, he can compute the final grade for R of each

of the objects retrieved, doing the necessary probes, and

output the k objects with the highest grades.

Fagin has proved the important result that his

algorithm to retrieve k top objects for an expression

R that is a Min of independent atomic expressions is

asymptotically optimal with arbitrarily high probability

in terms of the number of objects retrieved.

Assuming independence of the subexpressions, the

expected number of objects that are retrieved from each

of the expressions al, .,an is L = k$ .O~–~, where O

is the number of objects in the repository. In other

words, a request for top k objects for R results in

an expected top L object retrievals over each atomic

expression al, ., an. When the ranking expression

is R = Max(al, . . . . an), Fagin’s algorithm requests

exactly k objects from each atomic expression at. It

follows that there are k top objects for R among these

k . n objects.

4.2 Processing Ranking Expressions as Filter

Conditions

In this section we show that we can process ranking

expressions like a modified filter condition, providing
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for a uniform treatment of ranking expressions and filter

conditions.

Given a ranking expression R and the number k of

objects desired, we show that:

1

2

There is an algorithm to assign a grade to each

atomic expression in R, and a filter condition F with

the same “structure” as R, such that F is expected

to retrieve at least the top k objects according to R.

There is a search-minimal execution for F that

retrieves an expected number of objects that is no

larger than the expected number of objects that

Fagin’s algorithm would retrieve for R and k.

Example 4.1: Constder a ranking expression e =

M~n(Grade(al, VI), Grade(az, V2)), where a, zs an at-

trzbute, and vi a constant value. We want two objects

wzth the top grades for e. Now, suppose that we can

somehow find a grade G (the hagher the better,) such that

there are at least two ob~ects with grade G or higher for

expression e. Therefore, zf we retrzeve all of the ob~ects

with grade G or hzgher for e, we can simply order them

accordzng to thezr grades, and return the top two as the

result to the query.

In other words, we can process e by processing the

following associated filter condition f, followed by a

sortzng step of the answer set for f:

f = (Grade(al, vi)(o) Z G) A (Grade(a~, v~)(o) z G)

By processing f uszng the strategies zn Section 3,

we obtain all of the objects wzth grade G or hzgher

for al and VI, and for a2 and U2. Therefore, we

obtatn all of the objects wtth grade G or htgher for

the ranking expression e. If there are enough ob-

jects tn thts set (z. e., tf there are at least two ob-

jects), then we know we have retrieved the top objects

that we need to answer the query wtth ranktng expres-

sion e. Stmilarly, we can process a ranking expression

e’ = Max(Grade(al, VI), Grade(a2, V2)) as jilter condt-

taon f’ = (Grade(al, VI)(0) ~ G’) V (Grade(az, V2)(0) ~

G’), for some grade G’.

The example above shows how we can process a

ranking expression e as a filter condition ~ followed by a

sorting step. But the key point in mapping the ranking

problem to a (modified) filtering problem is finding the

grade G to use in f.

We now present the algorithm Grade_Rank, which

given the number of objects desired k, a ranking

expression e, and selectivity statistics, produces the

grade G for the filter condition f,

1. Propagate the number of objects requested k down

to each atomic expression. Assign to each atomic

expression e, the number of objects L% that Fagin’s

algorithm is expected to retrieve using ei.

2.

3.

4.

Replace each L, by a grade g, using selectivity

statistics: the expected number of objects having

grade at least gi for atomic expression ei is at least

Li

Propagate the gi grades from the atomic expressions

up to the entire ranking expression. A subexpression

Afin(tl, . . . . tn) gets the minimum of the grades

assigned to its subexpressions tt. A subexpression

Maz(tl, . . . . tn) gets the maximum of the grades

assigned to its subexpressions tt.

Return the grade G assigned to the entire ranking

expression.

Example 4.2 Conszder the expression e = Mzn(el, e2)

of Example ~. 1, where e, = Grade(a,, vi). Suppose that

the number of ob]ects zn the repository M O = 100. We

want a top object for e, i.e., k = 1. The expected number

of ob~ects that Fagtn ’s algorithm will retraeve from both

el and e2 w L1 = L2 = (k * O)+ = 10. Suppose that

the largest grade gl such that Sel(el, gl) > ~ M gl =

0.2. Szmilarly, g2 = 0.3. Then, the algortthm above

propagates these two grades to the whole expression e,

ytelding G = min{O.2, 0.3} = 0.2. We use thts value oj

G in the jilter condttton f wtth whtch we wdl process e:

f = (Grade(al, vi)(o) > 0.2) A (Grade(aZ, v2)(o) > 0.2)

Once we have determined the grades g% for the

atomic expressions, we obtain a single grade G that we

use in the filter condition for processing the ranking

expression, The following example illustrates why we

need to find G, instead of just using the g, ‘s.

Example 4.2: (cent. ) Suppose that znstead of f we

used the followzng filter condttton fw (for “wrong”) for

processing e:

f~ = (Grade(alv l)(o) > 0.2) A(Grade(a~, VZ)(0) > 0.3)

The only dtflerence between f and fu as that in fu

we kept the ortgtnal g% grades tnstead of uszng the

‘[global” grade 0.2. Constder a database wtth two

objects 01 and 02, wzth Grade(al, Vl)(ol) = 0.2 and

Grade(a2, V2)(OI) = 0.3, and Grade(al, VI)(02) = 0.25

and Grade (a2, W2)(02) = 0.25, Object 01 sattsjies

conditzon fu, and will thus be retrieved by fm Also,

e(ol) = min{O.2,0.3} = 0.2. On the other hand,

ob]ect 02 wtll not be retrzeved by fW, sznce at fails to

satzsfy the second conjunct of fW. However, e(oz) =

min{O.25, 0.25} = 0.25. Therefore, 02 is better than 01

for e, and yet it was not retrzeved by the jilter condition

fw .

If we use f znstead of fw, both 01 and Oz are retrzeved.

After the objects are retrieved, they are sorted accordtng

to thetr grade for e, and the best object, Oz, as returned

whzch is a correct answer.
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Now we show that if we process a ranking expression

(and its associated number of objects requested k) by

using a filter condition F with grade G as determined

by algorithm Grade Rank, we can expect to retrieve

no more objects than Fagin’s algorithm, under some

assumptions on the repositories. This result allows us to

translate the ranking expressions into filter conditions,

and to use the processing strategy of Section 3. At least

k objects are expected to satisfy F. However, if at run

time we find that fewer than k objects satisfy F, we

should lower the grade G used in F. We will investigate

strategies to lower G as part of our future work.

Definition 4.3: A repository ts uniquely graded zf for

every atom~c expressmn e and anteger L there exists a

grade g such that Sel(e, g) x O = L, where O is the

number of ob]ects tn the repository.

Intuitively, a uniquely graded repository does not

have “ties”: given an atomic expression e and a number

L, there is a grade cut-off for the expression such that

there are exactly L objects with such a grade or higher

for e.

The following theorem follows for any uniquely

graded repository:

Theorem 4.4: Let R be an independent ranking

expression over a untquely graded repository wtth O

ob]ects, and k be the number of objects deszred. Let

F be the filter condttton assoc~ated with R that uses the

grade G computed by algorzthm Grade-Rank for R and

k. Then:

● Sel(F) x O ~ k (i. e., at least k objects are expected

to satisfy F), and

● There I,s a search -mintmal ezecutzon for F such that

tt M expected to retrzeve no more objects than Fagin ’s

strategy w.

Example 4.2: (cont.) Suppose that Se/(el, 0.2) =

Sel(e2 ,0.3) = $ = 0.1. Then, Sel(f) ~ O.l XO.1 = 0.01.

Then, the expected number of ob]ects sattsfyzng f M at

least 0,01 X O = 1 = k.

One search-minimal strategy to process f (see Sec-

tion 3) searches on el > 0.2, retrtetvng an expected 10

objects. Fagzn ’s strategy M expected to retrteue a total of

20 ob]ects (10 per subexpresszon).

Observe that although we can construct a search-

minimal execution that accesses no more objects than

Fagin’s algorithm, the strategies in Section 3 are chosen

based on their costs, not on the number of objects that

they retrieve. Our optimality property (Theorem 3.10)

guarantees that the cost of the chosen execution is not

higher than that of the execution that retrieves no more

objects than Fagin’s plan.

If a repository is not uniquely graded, or if the

statistics that we keep on the repository are not as

finely grained as to allow for modeling the repository

as uniquely graded, then Theorem 4.4 does not hold.

However, Section 5 shows that the approach that we

outlined in this section still is a desirable one when the

assumptions of Theorem 4.4 do not hold strictly.

Although in this section we showed how to process a

ranking expression like a filter condition, the semantics

of both the filter condition and the ranking expression

remain distinct. (See Section 2.) After processing a

ranking expression as a filter condition, we have to

compute the grade of the retrieved objects for the

ranking expression, and sort them before returning

them as the answer to the query.

Finally, note that when the query contains a filter

condition F and a ranking expression R, it asks for k

top objects by the ranking expression R that satisfy

F. Using the results above, we can translate this

query into the problem of optimizing the filter condition

F A F’, where F’ is the filter condition associated with

R assuming that we request k’ = ~~ top objects for

R. We can then apply the methodology of Section 3.

5 Experimental Results

We ran a set of experiments using synthetic data.

We assumed a database of 1,000,000 objects, with

five attributes each. Attributes Al and A2 are text

attributes handled by vector-space search engines [5].

Attributes A3 through A5 are defined over images, and

handled by R-trees indexes [6]. We use these attributes

to build atomic expressions e~ = Grade (A,, v,), for fixed

values v,, i = 1, . ...5. Below we define the selectivities

and the search and probe costs associated with the

atomic expressions. (See [2] for a detailed description

of the cost calculations and parameters. )

Expressions el and ez (text attributes): We define

Sel(el, 1.0) = 3 x 10-6 and Sel(ez, 1.0) = 7 x 10-6,

and assume that Sel (e,, g) increases exponentially as g

decreases, up to Sel(e~, 0.0) = 1.0. To compute the

search cost for e, and a grade g, we assume that the

text engine that handles attribute A~ has an inverted

file for Ai. To compute the probing cost for e 1, we

assume that there is a hash table that, given an object

id o, returns the weight vector associated with o. To

compute the probing cost for ez, we assume that there

is no hash table for probing attribute AZ, and so a probe

is processed as a search with the lowest grade.

Expressions es, eA, and e5 (image attributes):

We assume that these attributes are managed using R

trees, and use the methodology of [16] to estimate their

parameters. The fractal dimenston of a data set is a

number that characterizes the distribution of the data.

Given a range query, the fractal dimension associated

with the data allows for accurate estimates of the query
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Sel(e~, 1.0) % Improved Queries % Improvement

1 x 10-6 87.65 27.62

2! x 10–6 89.30 28.35

3 x 10-6 94.24 33.65

Table 2: Comparison of the optimal search-minimal

executions against executions that choose the search

condition without considering the probing cost.

selectivity and the number of nodes of the R tree

that are accessed when processing the query. For our

experiments, we set the dimension of the corresponding

feature vectors of attributes A3, A4, and A5 to be 9, 7,

and 10, respectively, and their fractal dimension to be

9, 3, and 4, respectively. We then use the methodology

in [16]. To compute the probing costs, we assume that

A3 and A4 scan the entire database to look for the

feature vector of the object being probed, whereas A5

has a hash table for this task, like Al.

5.1 Search-minimal Executions

In this section we report experimental results on

optimizing strategies for a simple conjunctive filter

condition al A A a5, where a, is an atomic filter

condition involving expression e,, i = 1, . . . . 5.

We compare the cost of the best search-minimal

execution against the cost of the execution of the

following strategy, which we call Sep. Strategy Sep is

determined by first choosing the best atomic condition

on which to search, considering the search cost and

the selectivity of the conditions, but not the probe

costs. Then, Sep probes the remaining conditions in an

optimal order. Our search-minimal strategy differs from

Sep in that we consider the probing costs to pick the

search condition. We choose the grade for each atomic

condition from the set {0.7, 0.8, 0.9} to obtain 35 = 243

different queries. Table 2 compares the cost of an

optimal search-minimal execution versus the cost of the

Sep strategy, and shows that even for the simple query

form that we considered, we obtained improvements

in the execution time of an overwhelming majority of

the queries. For example, when Se/(ez, 1.0) = 3 x

10-6, the search-minimal strategy outperformed Sep for

94.24% of the 243 queries. The Sep strategy was on

average 33.65% more expensive for these queries. These

results show the importance of considering the probe

costs as well as the search costs when processing filter

conditions.

5.2 Ranking Expressions as Filter Conditions

Section 4 showed how to map the execution of a ranking

expression R into the execution of a filter condition F.

If a repository is uniquely graded, there is a search-

minimal execution for F that is expected to access no

more objects than Fagin’s algorithm for processing R

directly (Theorem 4,4),

However, in practice, repositories might not be

uniquely graded. And even if they are, the statistics

that we keep to determine the selectivity of the atomic

expressions for the different grades might not be “fine”

enough for the theorem to hold.

For example, the statistics that we keep about

an attribute might provide the selectivity of atomic

conditions for that attribute at discrete grade points

(e.g., at grades O, 0.1, 0.2, . . . . 1). In this section we

consider such a case, and that the grade granularity for

selectivity y estimates is either 0.1 or O.01.

The experiments in this section use two different rank-

ing expressions over the set of five atomic expressions

that we defined above: RM;n = Mzn(el, ez, e3, e4, e5)

and RMaC = iMax(el, ez, es, e4, es).

Figure 1 shows, for each k and for RMin, the

expected number of objects retrieved when we process

the ranking expression as a filter condition, as a

fraction of the number of objects that Fagin’s algorithm

is expected to retrieve, for two different statistics

granularities. Even when we have only coarse statistics

(grade granularity=O. 1), the filter-condition strategy

accesses less than one third as many objects as Fagin’s

algorithm. This fraction gets even lower for finer

statistics (grade granularity=O.0 1). The reason is

that the filter-condition strategy searches objects from

only one atomic condition, whereas Fagin’s algorithm

retrieves objects from all five query conditions.

The results for the RL~aZ ranking expression (Fig-

ure 2) are not as good as for Rkftn: both strategies re-

trieve objects from the five atomic conditions. Actually,

when the grade granularity is 0.1, the filter-condition

strategy accesses slightly more objects than Fagin’s al-

gorithm. This phenomenon disappears when the grade

granularity is 0.01 and k >2. For example, for k = 10,

the filter-condition strategy accesses only an expected

30% of the objects that Fagin’s algorithm is expected

to retrieve.

6 Related Work

The concept of a graded match has been used exten-

sively. For example, the query model in [3] allows speci-

fying a grade of match as well as ranking. However, the

processing of queries in [3] is based on searches (i e., no

probes are considered).

Many database systems support processing user-

defined functions [17]. The QBIC system [4] from

IBM Almaden allows users to query image repositories

using image attributes like color, texture, and shapes.

Another example is Cypress2, a picture retrieval system

that allows a filter condition to be specified, and returns

a set of objects as the answer to the filter condition.

However, Cypress does not support ranking. The

querying interface supports user-defined functions and

‘Accessible at http : //wHw .elib .berkeley .edu/cypress html.
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Figure 1: The expected number of objects retrieved

when processing RMzn asafilter condition, as a fraction

of the expected number for Fagin’s algorithm, and as a

function of thenumber ofobjects desired k.
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Figure 2: The expected number of objects retrieved

when processing RMaz as a filter condition, as a

fraction of the expected number for Fagin’s algorithm,

and as a function of the number of objects desired k.

predicates including a set ofpredefined graded matches

(e.g., a predicate “mostly yellow”).

The problem of optimizing user-defined filter condi-

tions such as those in Cypress has been addressed in

the literature. Work in [12, 13, 14] focuses on conjunc-

tive selection conditions. Techniques to optimize ar-

bitrary boolean selection conditions have been studied

in [11, 18, 19]. Our work draws upon the known results

in this area. (See Section 3.) However, all of the above

work focuses on what we have referred to as prob~ng

costs, and does not consider the search costs.

On the other hand, the problem of determining an

optimal set of conditions to search arises naturally

when optimizing single-table queries with multiple

indexes [20, 21]. The problem of sequencing the order

of accesses to subfiles of transposed files is also closely

related [22]. However, in the above contexts, the

probing cost is either zero or is independent of the

predicates. Our approach to defining the execution

space is similar in spirit to [21], but our problem is more

complex since probe costs can be significant as well as

varied. When the filter condition is restricted to being

a conjunction, the optimization problem can be cast

as a join-ordering problem [10, 13, 14]. However, such

a formulation fails to capture characteristics that are

particular of selection queries. In summary, past work

in this area does not consider the case where the search

cost as well as the probing cost need to be considered

for optimization of arbitrarily complex filter conditions

containing and’s and or’s.

In the context of the Garlic project at IBM Al-

maden [23], Fagin’s recent work [1] focuses on how to

evaluate queries that ask for a few top matches for a

ranking expression. (See Section 4.1. ) Our ranking ex-

pressions are a special case of Fagin’s queries. Under

broad assumptions on the cost model, Fagin demon-

strates the optimality of his algorithm for a class of com-

position functions. Our contribution has been to show

that ranking expressions can be evaluated efficiently by

using GradeSearch, and that the expected number of re-

trievals of objects in this technique is provably no larger

than in Fagin’s approach. This result clears the way for

the integration of the evaluation of filter conditions and

ranking expressions.
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