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ABSTRACT Choosing a proper Region of Interest (ROI) for Remote Photoplethysmography (rPPG) is
essential and a challenging first step, and it has a direct effect on the accuracy and reliability of the overall
heart rate (HR) algorithm. Non-skin areas have no contribution to the HR information; however, few works
have tackled the issue of non-skin pixels included in the ROI. First, this paper considers improving the quality
of the rPPG signal by filtering out non-skin pixels included within the ROI. The feasibility of employing
skin segmentation for ROI definition is demonstrated. Then, this technique is compared with our previous
real-time rPPG-based method. Moreover, we explore the effect of extracting the HR from three ROIs using
signal fusion. Second, we give a comprehensive account of the examined methods in our algorithm for
face detection, face tracking, skin detection, and blind signal separation. Finally, we compare our rPPG
measurements with ground truth values obtained from a commercial pulse oximeter. Based on the simulation
results, the proposed algorrithm significantly improves the quality of the rPPG technique.

INDEX TERMS Heart rate, remote photoplethysmography (rPPG), unobtrusive monitoring, skin segmen-
tation, real-time.

I. INTRODUCTION

Remote measurement of human vital signs has a promising
potential for clinical and non-clinical scenarios. It provides
a comfortable way for determining subjects’ physiological
parameters for diagnosis and regular checking. Quite
recently, a considerable attention has been paid to remote
Photoplethysmography (rPPG), which is a camera-based
contactless acquisition method of the human cardiac pulse.
A remarkable feature of this emerging method is the abil-
ity to estimate the vital signs without any physical con-
tact with the subject, which eliminates any inconvenience
during the assessment process. This striking feature opens
the door for employing rPPG technology in non-clinical
applications, such as home health monitoring, driver mon-
itoring, fitness-cardio training, video surveillance, and face
anti-spoofing.
Traditional contact methods for measuring HR comprise

Electrocardiography (ECG) and Pulse Oximetry. ECG offers

The associate editor coordinating the review of this manuscript and
approving it for publication was Thomas Penzel.

the most accurate HRmeasurements, but it requires attaching
medical electrodes to the subject. Similarly, pulse oximeter,
which is based on Photoplethysmography (PPG), must be
attached to a body part, such as toes or an earlobe. These
twomethods are robust and cost-efficient; however, both have
several drawbacks because both require direct contact with
the subject. Attaching medical sensors and electrodes to the
subject is inconvenient, as it may cause pain and stress. The
aforementioned disadvantages of contact methods accentuate
the need for contactless HR measuring methods.

Lately, there have been numerous studies investigating
contactless HRmeasuring methods; including methods based
on Doppler effect [1], thermal imaging [2], and piezoelectric
measurements [3]. These techniques have been examined in
literature, but with limited applications due to size, cost and
complexity. Most recent studies as well as current work focus
on camera based HRmonitoring methods. These methods are
widely considered to be very efficient techniques for mea-
suring the HR remotely, and many researchers have proven
its feasibility. Moreover, these techniques are very promising
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in terms of safety, cost, health, reliability, and computational
efficiency.
Camera-based HR measuring methods are divided into

two types: color-based methods (rPPG), which extracts the
HR from the slight color changes happening in the skin
due to heartbeats [4]; and motion-based methods (Ballisto-
cardiography (BCG)), which measures the HR from the tiny
body motions accompanying the cardiac activity [5]. The
rPPG-based methods offer encouraging results for both static
and dynamic scenarios. It allows measuring the HR from
multiple persons simultaneously. Additionally, the HR can be
extracted from several Region of Interests (ROIs) (e.g., fore-
head and cheeks), however these ROIs are required to be clear
to allow accurate HR measurements. The major drawback of
this technique is that PPG signal, which contains information
about the HR, is not the same for different ROIs. Furthermore,
poor illumination and skin tone variation affect its accuracy.
On the other hand, because the BCG-based methods rely
on the mechanical effects due to cardiac activity, it has the
advantage of extracting the HR from unclear or not visible
ROIs, and it is robust against varying illumination and skin
colors. Nevertheless, this method suffers when the subject is
not steady. Each of these methods (Color-based and Motion-
based) has its pros and cons under various circumstances,
resulting in challenging practical problems.
A series of recent studies have proven the feasibility of

applying the camera-based HR monitoring methods in cars
for drivers monitoring [6]–[8]. Several techniques have been
proposed to apply it in practical setting, some focusing on
improving the method itself, and others on finding the most
reliable setting for accurate measurements. In short, the lit-
erature pertaining to using camera-based methods strongly
agrees that thesemethods are very promising, but they are still
in their infancy, meaning that a further research is required.
Here, our paper is focusing on developing a robust HR

measuring system for the drivers monitoring, where the chal-
lenges such as motion artifacts, and poor illumination are
the main concerns. Within the framework of these criteria,
this paper focuses on refining the quality of the extracted
cardiovascular wave by using skin segmentation for defining
the ROI, which enables us to estimate the HR from skin pixels
only.
The main contributions of this paper are represented as:
1- The adaptive skin detection for ROI definition is inves-

tigated. It is then compared to our previous real-time
rPPG-based method, in which face detection only was
used to define the ROI [9].

2- Furthermore, we examine the effect of segmenting the
face skin into three ROIs, and then extract the HR from
these three ROIs by fusing their resultant HR signals.

3- The effect of using different methods for face detec-
tion, face tracking, skin detection, and blind signal
separation is examined. Subsequently, we compare
these methods to decide which one achieves better
performance.

4- Finally, we compare our rPPG measurements with
ground truth values obtained from a commercial pulse
oximeter.

The remainder of the paper is organized as follows:
Section II explains origin and fundamental principles
of rPPG. The related works are reviewed in Section III. The
proposed method is discussed in Section IV. Experimental
results are presented and discussed in Section V. Section VI
summarizes the results of this work and draws the main
conclusions.

II. BACKGROUND

A. PHOTOPLETHYSMOGRAPHY (PPG)

The origin of rPPG can be traced back to PPG, a method
firstly introduced in 1937 by Hertzman and Spealman [10].
In broad terms, PPG can be defined as a non-invasive optical
method for detecting the blood volume pulse (BVP). Arterial
blood light absorption differs from that of the surrounding
biological tissues at specific optical wavelengths [11], [12].
Moreover, blood volume in capillaries under the skin changes
periodically with heartbeats. PPG takes the advantage of this
phenomenon to extract the BVP from the light reflected from
the skin, which is modulated according to the small blood
volume variations in capillaries.

Based on how the light source and photodetector are con-
figured, PPG operates in two possible modes: reflectance
mode and transmission mode, where the usage of the later
one is limited to specific areas, such as fingertip [13].

B. REMOTE PHOTOPLETHYSMOGRAPHY (rPPG)

1) ALGORITHMIC BASICS OF rPPG

In previous studies, many approaches have been adopted in
rPPG algorithms. These are:

i. Blind Source Separation (BSS)-based method: This
approach can be divided into ICA-based methods [14],
and PCA-based methods [15]. In this approach,
the BVP signal is recovered by splitting themixed RGB
signals into independent source signals.

ii. Chrominance-based method (CHROM): In this
method, a linear addition of the chrominance-signals
is performed, and a standard skin tone is used to white
balance the image [16].

iii. BVP signature based method:This method is robust
to motion artifacts. It separates color variations, due to
heart rate, from the noise produced by motion artifacts.
This separation is done by utilizing the blood volume
pulse signature in different optical wavelengths [17].

iv. Spatial Subspace Rotation (2SR):This is a novel
method introduced in [18]. In this technique, the BVP
signal is recovered bymeasuring spatial subspace time-
rotation of the skin pixels.

The main difference between each of these rPPG approaches
is how red, green and blue signals are combined to extract
the BVP signal. Our rPPG system is based on Blind Source
Separation (BSS) method.
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We use the rPPG mathematical model defined in [19] to
understand the basic principles of rPPG algorithms. This
mathematical model enables us to define and analyze differ-
ent problems and limitations regarding rPPG in details.

2) SKIN REFLECTION MODEL

Consider rPPG measuring system setup, which consists of
three main parts: light source (i.e., ambient light), camera
and a human skin with pulsating blood. The light source
is assumed to have varying intensities with constant optical
properties. Moreover, the light varying intensities are depen-
dent on the distance between the camera and the skin.
Based on the dichromatic model, the light reflected from

the skin can be modeled as follows [19]:

Ck (t) = I (t) . (Vs (t) + Vd (t)) + Vn (t) , (1)

where:
• Ck (t): The RGB signals (ordered in one column).
• I (t): the light intensity.
• Vs(t): the specular reflection.
• Vd (t): the diffuse reflection.
• Vn(t): camera quantization noise.

Ck(t) represents the RGB values of the k-th pixel in the
monitored skin area; the level of light intensity is denoted
by I (t). Light intensity is dependent on light source and
the distance between camera, monitored skin area, and the
light source. The light intensity is modulated by the specular
reflection Vs(t) and the diffuse reflection Vd(t). Vn(t) is
the quantization noise, which results from sensors of the
camera. It represents the undesired random color and bright-
ness changes in camera images. All variables in Eq. (1) are
time dependent because of motion artifacts and the pulsating
nature of the blood.
The specular reflection light is reflected from the skin

surface, and it does not penetrate skin tissues. Therefore,
the specular reflection light does not contain any information
about the BVP signal; it is similar to the light that is reflected
from amirror. Moreover, the spectral composition of specular
reflection light and the light source are identical. VS(t) can be
written as follows:

Vs (t) = us · (s0 + s(t)), (2)

where:
• us: the light spectrum’s unit color vector.
• s0: the stationary component of specular reflection.
• s(t): the varying component of specular reflection due

to motion artifacts.
• The diffuse reflection light is the light which penetrates

the skin, then it is reflected and scattered inside skin
tissues. Thus, diffuse reflection light contains a useful
information about the BVP signal.

Vd (t) can be written as following follows:

Vd (t) = ud · d0 + up · p (t) , (3)

where:
• ud: unit vector of the skin color.

• d0: represents the motionless light reflection strength.
• up: the strength of relative pulsatile in RGB signals.
• p(t): the BVP signal.

By substituting Eq. (2) and Eq. (3) into Eq. (1), we reach:

Ck(t)= I (t) ·
(

us · (s0+s(t))+ud · d0+up · p (t)
)

+Vn (t) ,

(4)

The motionless components in specular reflection and diffuse
reflection are added up together to form one motionless skin
reflection component as follows:

uc · c0 = us · s0 + ud · d0, (5)

where:
• uc: The unit vector of the skin color reflection.
• c0: the reflection strength.

The light intensity I (t) can be expressed as follows:

I (t) = I0 + I0 · i (t) , (6)

where:
• I0: the stationary part of the light intensity.
• i(t): the time varying part of the light intensity.

We can rewrite Equation 4 as follows:

Ck (t)= I0 · (1 + i (t)) ·
(

uc · c0+us · s(t)+up · p (t)
)

+Vn(t)

(7)

The time-varying components i(t), s(t), and p(t) are zero-
mean signals. It is worth mentioning that the specular
reflection light is the dominant component among all other
components. Therefore, skin areas, where all components are
negligible to specular reflection light, have to be rejected.
From Eq. (7), we can conclude that the solution to rPPG

problem is recovering the BVP signal p (t) from the RGB
signals ck(t).
Given that the number of pixels, within the monitored

skin area, is satisfactorily large, the camera quantization error
effect can be eliminated by taking the average pixels’ value
within the monitored skin-tissue area. This step leads to:

C (t) ≈ I0 · (1 + i (t)) ·
(

uc · c0+us · s (t)+up · p (t)
)

, (8)

This yields C(t) without camera quantization error, however
the camera quantization error cannot be neglected when the
number of pixels, within the monitored skin area, is not large
enough.
Equation (8) is expanded to:

C (t)

= uc · I0 · c0+us · I0 · s (t)+up · I0 · p (t) + uc · I0 · c0 · i (t)

+ us · I0 · s (t) · i (t) + up · I0 · p (t) · i(t), (9)

In Eq. (9), the DC components are much bigger compared to
AC components. Therefore, Equation 9 is approximated to:

C(t)≈uc · I0 · c0+uc · I0 · c0 · i (t) +us · I0 · s (t)+up · I0 · p (t) ,

(10)
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This approximation confirms that C(t) is a linear combination
of i(t), s(t), and p(t). Thus, recovering BVP signal from
C(t) can be done through a decomposition system, which
recovers the source signals i(t), s(t), and p(t) from the mixed
signals in C(t). Based on this finding, Blind Source Separa-
tion (BSS) is considered as an ideal method for decompos-
ing C (t) into source signals. For example, a suitable ICA
technique [33], [66]–[69], can be used for this decomposing
process.

Each video frame fi can be written as follows:

fi =
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(11)

where (M, N) is the frame size. Each video frame can be
reduced to include only pixels within ROI as in fROI (i), shown
at the bottom of this page, where the ROI is defined by a
bounding box with coordinates X and Y, and with height H
and width W.

By taking the average pixel value within the ROI, fROI can
be reduced as follows:

f
′

ROI (i) =





Ri
Gi
Bi



 (12)

Now, we can equate Eq. (10) with Eq. (13)

f
′

ROI (j) = C (j) =





Rj
Gj
Bj



 ≈ uc · I0 · c0 + uc · I0 · c0 · i (j)

+us · I0 · s (j) + up · I0 · p (j) (13)

Equation (13) represents the raw signals. Moreover, it relates
the skin reflection model with the actual signals obtained
from the video stream.

III. RELATED WORKS

In 2008, for the first time, Verkruysse et al. [20] proved the
possibility of measuring heart rate remotely using a consumer
level camera. Their technique is commonly referred to as
rPPG, which is similar to traditional PPG, a method firstly
introduced in 1937 by Hertzman and Spealman [10]. In their
experiments, subjects were asked to stay stationary, and they
recorded subjects’ face using consumer level camera from
several meters. Their basic system setup is illustrated in Fig-
ure 1. The recorded videos resolution was 640 × 480 with a
frame rate of 30 fps. In this study, the forehead was chosen
as ROI, and the raw RGB signals were computed in every
frame by calculating the mean value of all pixels within the
ROI. Then, FFT was used to analyze the computed signals

FIGURE 1. Basic setup of an rPPG system.

in frequency domain. In this study, it has been shown that
the strongest plethysmographic signal can be found in the
green channel, and this discovery agrees with the fact that
hemoglobin has a better absorption to green light than red
light and blue light [21]. However, red and blue channels also
contain information about the heart rate. Verkruysse et al.
made no attempt to utilize heart rate information from blue
and red channels.

In 2011, Poh et al. [14] improved the system presented
in [22]. Their implemented method was tolerant to motion
artifacts, and it was capable of measuring heart rate with auto-
matic face detection and tracking. They recorded subjects’
face using a webcam from about 50 cm, and a 30-seconds
moving analysis window was used. Their recorded videos
resolution was 640× 480 with 15 fps and a 24-bit RGB color
space. One of their major advances is utilizing the three RGB
channels to extract the cardiovascular heart wave.
In 2012, Kwon et al. [23] reproduced Poh’s approach and

developed the FaceBEAT application on a smartphone. In this
study, they explained the potential that the reliable heart rate
can be measured remotely by the facial video recorded using
a smartphone camera. First, using the front facing-camera of
a smartphone, facial video was recorded. They detected facial
region on the image of each frame using face detection, and
yielded the raw trace signal from the green channel of the
image. To extract more accurate cardiac pulse signal, they
applied independent component analysis (ICA) to the raw
trace signal. The heart rate was extracted using frequency
analysis of the raw trace signal and the analyzed signal
from ICA. The main contribution in this study is proving
the feasibility of using smartphones as video source and for
computation.
In 2013, an approach using an ROI and neural-network-

based skin detection was proposed [24] that allows for more
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accurate measurement. Additional areas such as the neck and
arms are included in the ROI in this algorithm.
In 2013, there was a comparative study for linear and

nonlinear techniques for BSS. In this study, it was found that
Laplacian eigenmap produces gave best results [25]. Other
studies [26] addressed the problem of moving subjects with
respect to the light source. In this study, authors argued that
an optimal fixed combination of band passed RGB channel
signals can be found based on a ratio of normalized color
signals when assuming ‘‘standardized’’ skin, thus eliminating
noise derived from specular reflection. A deficiency of this
approach was that it excluded BSS from the algorithm’s
design. Furthermore, Sun et al. [27] proposed to investigate
the feasibility of remote assessment of HR, RR, and HRV
by applying a time-frequency representation method to the
video recordings of the subjects’ palm regions. All videos
were recorded at a rate of 200 fps under the resting conditions
to minimize motion artifacts. The authors demonstrated that
200-fps iPPG system could provide a closely comparable
measurement of HR, RR, and HRV to those acquired from
contact PPG references.
In 2014, Li et al. also aimed at reducing noise [28] by

using an adaptive filter to reduce noise from illumination
changes using background illumination as a reference. There
are other algorithms for facial landmark detection that have
been proposed [28] which applied discriminative response
map fitting (DRMF) [29] after face detection. Researchers
working with facial landmark points used these points to
define more exact and robust ROIs. Using nine landmark
points, [28] defined a region that includes the cheeks and no
background pixels, similar to [30] and [31], which defined
a region that includes the forehead and the area below the
eyes. The location of the ROI can be updated frame by frame
without having to re-detect the ROI.
Using BSS, the component selection, have recently been

optimized [32] different machine learning methods to extract
HR from features Similarly, [33] used support vector regres-
sion (SVR) to extract the HR from frequency domain fea-
tures. The deficiencies in this study is that it has no detailed
on ROIs.
In 2015, a different approach was used [34], the facial

regionwas divided intomany small ROIs that yielded an array
of signals from the green channel, each of which was later
combined using a weighted average based on a goodness met-
ric. Similarly, the researchers in [35] stochastically selected
an array of points and combined them using an importance-
weighted Monte Carlo approach.
Tran et al. [36] proposed a real-time rPPG-based system

using consumer-level camera. They combined face detection
with skin detection for accurate construction of ROI. Then,
Linear Discriminant Analysis (LDA) was used to extract
heart rate signal from the three RGB channels. Another real-
time rPPG-based mobile application was developed in [37].
Instead of implementing face detection and ROI localization
in every frame as in [22], this method used LK optical flow
feature [38] to track the ROI.

In 2016, Rumiński [39] demonstrated the possibility of
estimating HR from rPPG signals in the YCrCb (YUV) space
using both ICA-based and PCA-based methods. The exper-
imental results showed that the best HR estimation perfor-
mance can be achieved by applying PCA to the V channel
obtained from a forehead. Another rPPG studies, aiming at
eliminating the impact of illumination variations [40]. The
framework using EEMD followed by amultiple-linear regres-
sion model was later employed to evaluate HR for reducing
the effects of ambient light changes. The deficiency in this
study is utilizing the only green channel to extract the cardio-
vascular heart wave.

In 2017 [41], it was shown that at the HR computation
stage, the frequency domainmethods are not capable to detect
instantaneous heartbeat changes, and are not as robust as
time domain methods according to Poh et al. Supervised
learningmethods aremainly applied at this stage. There is one
recent paper applying auto-regression to extract BVP signals
after the video processing [41], but there is no end-to-end
usage of supervised learning methods. Later, Qi et al. [42]
proposed a novel method for noncontact HR measurement
by exploring correlations among facial subregion data sets
via JBSS. The testing results on a large public database also
demonstrated that the proposed JBSS method outperformed
previous ICA-based methodologies.

In 2018, the two influential studies on rPPG [21], [22] have
motivated a growing number of publications and progres-
sions in this area, which was indicated in [43]. This research
provided a more complete and comprehensive understanding
of rPPG, facilitate further development of rPPG, and inspire
numerous potential applications in healthcare.

In [44], a novel framework for remote Photoplethysmog-
raphy pulse extraction on compressed videos is proposed.
In [45], the general framework is used to design rPPG
algorithms for specific situations. Moreover, authors pro-
vided the parameters which can be adjusted to increase the
accuracy.

In the literature, numerous names and abbreviations of
this method have evolved, such as rPPG [26], camera-based
PPG (cbPPG) [16], non-contact PPG (ncPPG) [46], distance
PPG (DistancePPG) [34], pulse camera (PulseCam) [47],
videoplethysmography (VPG) [39], imaging PPG (iPPG/
IPPG) [49], PPG imaging (PPGi/PPGI) [49], and remote
imaging PPG (RIPPG) [50]. In this paper, we will use the
term rPPG.

IV. METHODOLOGY

As shown in the previous section, a variety of rPPG
methods have been reported in the literature, even though
most previous works have based their methods on a com-
mon framework [18], [26], [35], [48]. This framework com-
prises of: Defining ROIs through detection and tracking,
extracting the raw signals, processing and filtering raw sig-
nals, combining RGB channels to find the cardiac wave, and
finally extract the vital sign of interest. The major differences
between the various rPPG methods lie in how the ROI is
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FIGURE 2. Block diagram of the proposed rPPG method.

defined and how the RGB signals are combined to estimate
the cardiovascular signal.
Selecting a suitable ROI for the rPPG-based HR mea-

suring is essential and challenging first step, and it has a
direct impact on the accuracy and reliability of the overall
algorithm. Non-skin areas have no contribution to the HR
information; however, few researchers have addressed the
issue of non-skin pixels included in the ROI [51], [52].
Our approach focuses on refining the quality of the

extracted cardiovascular wave using skin segmentation for
defining the ROI, which enables us to estimate the HR from
skin pixels only. The block diagram of the proposed rPPG
method is shown in Fig. 2. We can divide our method into
three main parts: raw signals extraction, signal processing,
and HR extracting, as follows. Figure 3 shows the flowchart
of the proposed HR monitoring system.

A. RAW SIGNALS EXTRACTION

The aim of this part is to constitute the temporal RGB signals
which are used to estimate the rPPG signal in a later step. This
has a significant impact on the quality of the overall rPPG
method; extracting a clear signal with distinguishable pulsat-
ing rPPG wave, which directly affects the system accuracy
and reliability.
Raw signal extraction is a critical step in the process

of recovering cardiovascular wave. The raw signals are
extracted from red, green, blue channels by calculating the
mean of all pixels’ values within the ROI in each frame over
a 10-seconds sliding window.
The raw signals are extracted from the ROIs. So, the first

step is to identify the ROIs. The ROIs are identified by the
following procedure:

1) FACE DETECTION

Viola-Jones face detection technique is employed to automat-
ically detect subject’s face [53]. This step provides a bound-
ing box coordinates defining the subject face.

2) FACE TRACKING

Implementing face detection at every frame consumes a lot
of computational power resources. Moreover, it causes unde-
sired noises because the output bounding box of the face is not
the same in the successive frames. Instead of redetecting the
face at every frame, we track the face using KLT tracker [54],
in which only specific features of the face are tracked over the
time.

3) ADAPTIVE SKIN DETECTION

Skin detection is performed on every frame to filter out non-
skin pixels. This skin segmentation process is done using
the algorithm proposed by Conaire et al. [55], which is a
reliable method capable of efficiently detecting skin areas.
This adaptive skin detection depends on maximizing joint
information, where classifiers are added assuming that their
errors are complementary, see Fig. 4 (middle).

4) CHOOSING ROI

Two ROI definitions are investigated in this work. The first
ROI is all skin-pixels returned from the skin segmentation
process, the second ROI has three parts, and it is obtained by
extracting the skin-pixels contained in forehead, left cheek,
and right cheek. The two ROI definitions are shown in Fig. 4
(right).

5) CONSTITUTE TEMPORAL rgb SIGNALS

The raw RGB signals are composed by calculating the aver-
age pixel value of the skin-pixels within the ROI region over
time. The extracted raw signals are shown in Fig. 5.

B. SIGNAL PROCESSING

After extracting the raw signals, a number of signal process-
ing techniques are employed such as: detrending, normaliza-
tion, smoothing, and filtering.
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FIGURE 3. Flowchart of the proposed algorithm using adaptive ROIs.

FIGURE 4. Illustration of the employed skin detection method, (left) the
detected face, (middle) the detected skin, and (right) the ROIs.

1) DETRENDING

Due to the noises caused by changing of the environmental
parameters, in this step, we remove the linear trends from
the raw signal. The effect of the detrending process is shown
in Fig. 6.

2) NORMALIZATION

We are only interested in the periodicity of the signal. There-
fore, the raw signal is normalized by dividing the raw signal

FIGURE 5. Unprocessed raw RGB signals.

by its maximum absolute value. The output of this step is
shown in Fig. 7.

3) SMOOTHING

In this step, the normalized RGB signals are smoothed using
a sliding average filter. This step leaves out noise, and it

VOLUME 7, 2019 76519



R. M. Fouad et al.: Optimizing rPPG Using Adaptive Skin Segmentation for Real-Time HR Monitoring

FIGURE 6. Detrended RGB signals.

FIGURE 7. Normalized RGB signals.

FIGURE 8. Smoothed RGB signals.

clarifies the signal. Therefore, it increases the robustness and
flexibility of the analyses. The output of this step is shown
in Fig. 8.

4) BLIND SIGNAL SEPARATION

The RGB signals contains information about the HR inmixed
components. Therefore, ICA is used to recover the source
signals from these mixed signals. In our system, FastICA
method is used to analyze the RGB signals to reveal the
original source signals. Moreover, FastICA is an effective
technique that can be utilized to eliminate noise artifacts. The
extracted raw signal is composed of three single series, which
were obtained from red, green, and blue channels. The goal
of BSS is to recover the one-dimensional plethysmographic
signal from the three raw signals. BSS is implemented to

FIGURE 9. ICA components in time domain.

FIGURE 10. Filtered RGB signals in the time domain.

compute the optimal combination of the three raw signals.
We use BSS algorithm [56] to get three independent source
components from the raw signals. The three ICA components
are compared, and the component with the highest periodicity
is chosen for the next step, see Fig. 9.

5) FILTERING

The goal of this step is to increase the quality of the
acquired plethysmographic signal by removing undesirable
noise. Driving conditions include: non-stationary subject and
varying illumination, these factors degrade SNR ratio. In this
step, the raw signal is applied to a band-pass-filter with ideal
behavior to eliminate high and low frequency noise. The filter
removes components which exist outside the 0.7 Hz to 4 Hz
frequency band. This band was commonly used in previ-
ous studies, and it corresponds to heart rate measurements
between 42 and 240 bpm, see Fig. 10.

C. HEART RATE CALCULATION

In this part, the spectrum of the resulting ICA components
is obtained by using FFT method. The peaks in the ICA
components power are determined, and the index frequency
of the highest peak corresponds to the HR frequency. This is
done by the following sequence.

1) FAST FOURIER TRANSFORM (FFT)

In this step, the spectrum of the chosen ICA component is
calculated by using FFT algorithm [57], see Fig. 11.
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FIGURE 11. FFT of the ICA output.

FIGURE 12. Final BVP signal.

2) PEAKS DETECTION

The highest peaks in the signal’s power spectrum are obtained
in the frequency domainwith a sliding Fourier window,which
enables varying heart rate estimation. The index frequency of
the highest peak is the estimate of the heart rate frequency,
see Fig. 12.

3) CALCULATE HEART RATE

The heart rate is calculated by multiplying the estimated
heart rate frequency by 60, this yield a value between
42 and 240 bpm.

V. PARAMETERS OPTIMIZATION OF THE PROPOSED

rPPG-BASED HEART RATE MONITORING SYSTEM

The main focus of this section is to optimize the developed
rPPG-based method in the previous section. With the aim
of improving the proposed method, we examine the effect
of using different methods for face detection, face tracking,
skin detection, and blind signal separation. Subsequently,
we compare these methods to decide which one achieves
better performance.

A. FACE DETECTION METHODS: VIOLA-JONES vs. LIAO

Face detection is a vital first step in the process of extracting
the rPPG signal. Using robust and reliable face detection
method plays an important role in determining the accuracy
of the overall system. The inability to detect the face at a
given time directly leads to failure in defining the ROI, and

estimating the HR at this specific period of time. Driving
conditions is a challenging environment, in which subject
moves unpredictably and lightening varies frequently. There-
fore, detecting the face can be hard in such situation; and
using a reliable face detection method is a must. In this
subsection, two face detection methods are investigated and
compared to each other, namely Viola-Jones method [53] and
Liao method [36].

1) VIOLA-JONES FACE DETECTION METHOD

Baker and Matthews [54] introduced a machine learning
based method for detecting objects very fast. Their technique
accomplishes decent detection rates in a very short time, mak-
ing it ideal for real-time applications. Viola-Jones technique
is one of the most widely used methods in detecting subjects’
faces, noses, eyes, mouth, or upper body. This technique is
able to process images rapidly. Thanks to its novel image rep-
resentation ‘‘Integral linage’’, which enables quick features
detection. Moreover, Viola and Jones developed a machine
learning procedure that extracts only small number of fea-
tures from a greater set and provides competent classifiers.
Another important feature of this method is merging complex
classifiers in a cascade to quickly remove background areas
and focus more on object-like areas.

2) LIAO FACE DETECTION Method

Monkaresi et al. [32] developed a robust and fast uncon-
strained face detection method. This method was designed
to address challenges such as position changing and face
blockages. For the first time, Normalized Pixel Difference
(NPD), which is a novel feature of image, was introduced.
NPD is calculated from the pixel values based on Weber
Fraction. Additionally, NPD is unchanging with scale, and
the original image can be reconstructed from it. Liao et al.
showed that NPD can be computed from a look up table, lead-
ing to a rapid face detection method. Moreover, they proved
that their method can provide the state-of-the-art accuracy in
unconstrained conditions.

B. FACE TRACKING METHODS: KANADE-LUCAS-TOMASI

(KLT) Vs. CAMSHIFT

Implementing face detection at every frame consumes a lot of
computational power resources, limiting the real-time appli-
cation of this method. Moreover, it causes undesired noises
because the output bounding box of the face is not the same
in the successive frames. Instead of redetecting the face at
every frame, we track the face over the time to track the face
bounding box. Furthermore, face tracking methods eliminate
the effect of small head pose variations on the bounding box,
this yields a more robust and stable coordinates of the face.
Therefore, face tracking method must be able to update the
bounding box coordinates accurately, efficiently, and rapidly.
Face tracking process consists of threemain parts: Face detec-
tion, extracting trackable facial points, and tracking these
facial points. This subsection compares the results of the
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proposed method using each of the following face tracking
methods: Kanade-Lucas-Tomasi (KLT) and CAMShift.

1) KANADE-LUCAS-TOMASI (KLT) FACE TRACKING METHOD

The first examined method is based on the KLT algo-
rithm, in which several feature points are tracked over the
frames [59]. At the initialization process of our algorithm,
the face is detected using Viola-Jones, and the output of this
step is a bounding box containing the face of the subject. This
bounding box is the input to the KLT algorithm which next
extracts a set of trackable points of the subject’s face. These
points can be efficiently tracked over the time, and if the
movements are not severe, redetecting the face is not needed.
In our system, we redetect the face if the number of trackable
points is less than 10 points.

2) CAMSHIFT FACE TRACKING METHOD

The secondmethod is based onCAMShift algorithm,wherein
the skin color is the tracked feature over the frames [60].
After the face detection step, the face can be tracked using
features which are invariant to subject’s movements. In this
tracking method, the skin color of the subject is the tracked
feature. What is interesting about tracking using skin color
is the ability to track the face as long as any part of skin
is included in the examined region; however, it sometimes
suffers when skin-color like objects are near the face. Firstly,
the examined video frame is converted to HSV color space
and then skin color is determined from the Hue channel.
Secondly, the skin color is tracked using a histogram tracker.
Since nose has the most precise measurement of the skin
color, we extract the Hue channel from only skin-pixels
located within the nose region, which are next employed to
initialize the histogram-based tracker.

C. SKIN DETECTION METHODS: CONAIRE vs. RGB-H-CbCr

Principally, rPPG is based on extracting the heart rate from
the periodic color variations in the skin. For that reason,
the skin pixels are the only effective contributors to the
information about the cardiovascular wave. A key limitation
of the method developed in [9], [14], and [22] is the inabil-
ity to differentiate between skin pixels and non-skin pixels.
This flaw was addressed in the present work; furthermore,
the experimental results confirmed the significance of includ-
ing only skin pixels in the ROI. The main function of skin
detection techniques is to identify skin regions in the image
frame, which enable us to remove non-skin pixels from the
ROI. In our algorithm, skin detection is applied only to the
bounding box of the face, which is obtained from the face
detection step. So, the most suitable skin detection method
for our system should be able to filter out the following areas:
background, eyes, eyebrows, hair, facial hair, and any other
non-skin areas. This sub-section compares the results of the
proposed rPPG algorithm using each of the following skin
detection methods: Conaire skin detection method [55] and
RGB-H-CbCr skin detection method [61].

1) CONAIRE SKIN DETECTION METHOD

Conaire et al. [55], introduced an efficient adaptive machine-
learning classification method based on exploiting the mutual
agreement among two independent information sources. This
adaptive skin detection method depends on maximizing joint
information, where classifiers are added assuming that their
errors are complementary. Themajor objective of this method
was to overcome the shortcomings of traditional classifica-
tion methods, which are: time-consuming training process,
and using overgeneralized or too small data set for training the
classifier. This method takes the advantage of employing two
data sources, and their redundant data to generate an adap-
tive classifier on different data. Additionally, Conaire et al.
proved the robustness of their method in learning varying skin
models.

2) RGB-H-CbCr SKIN DETECTION METHOD

The second investigated skin detection method is based on
RGB-H-CbCr skin color model. Cardoso [62], introduced a
new color model for the skin called RGB-H-CbCr which
is dedicated to face detection. This method recognizes skin
areas through a group of bounding rules that are originated
from the distribution of skin color in a training data set.
The used model employs the redundant hue and chrominance
channels with the RGB channels to differentiate between skin
pixels and non-skin pixels.

D. BLIND SOURCE SEPARATION (BSS) METHODS

The RGB signals contain information about the HR in a
mixed pattern. Therefore, we are allowed to simply define
the task of the rPPG system as the process of extracting
the cardiovascular wave from the mixed signals in the RGB
channels. This decomposition process can be done through
BSS. Therefore, BSS is used to recover the source signals
from the mixed signals. In this approach, the BVP signal is
recovered by splitting the mixed RGB signals into separated
source signals. In this subsection, different BSS methods are
used to analyze the RGB signals to reveal the original source
signals. Then, their results, based on our proposed rPPG
algorithm, are introduced and compared to decide which one
achieves the finest performance.

1) JOINT APPROXIMATION DIAGONALIZATION

OF EIGENMATRICES

The Joint Approximation Diagonalization of Eigenmatri-
ces (JADE) is an Independent Component Analysis (ICA)
algorithm firstly introduced by Cardoso in [62]. JADE
decomposes mixed signals into their original source signals
by means of the 4th order moments. It achieves a good numer-
ical performance by including all the cumulants of 2nd and 4th

order, and implementing rapid optimization through joint
diagonalization. The 4th order moments represent the non-
Gaussianity, which defines the independence between the
source signals. The most striking feature of JADE over other
ICA methods is that it is based on matrix calculation, similar
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to PCA. Other ICA methods are based on optimization pro-
cess. Therefore, their results may vary depending on the fol-
lowing factors: the chosen starting point and the path tracked
by the searching technique for optimization. JADE has been
widely employed in a variety of applications, where real-
data processing is required, such as mobile communication,
radars, and biomedical signals, as in our application.

2) FASTICA

FastICA is an Independent Component Analysis (ICA) algo-
rithm. Due to its efficiency and speed, FastICA is one of
the most widely used method for ICA; this computationally
powerful algorithm was developed by Stone [64]. FastICA
exploits a rapid fixed-point iterative method to determine
projections that maximize the non-Gaussianity of the signals.
For ICA, fixed-point iterationmethods are very fast compared
to the traditional gradient descent methods. Also, FastICA
can be used as an exploratory data analysis tool by performing
projection pursuit. Another significant feature of this algo-
rithm is the possibility of parallel execution, making it very
suitable for real-time applications.
Independent Component Analysis (ICA) can be described

as a special case of BSS. In ICA, the source signals are
assumed to be non-Gaussian and, it is described as a linear
mixture of statically independent components, i.e.

x = M · s (14)

For 3-dimension and time dependent vectors,

[x1 (t) , x2 (t) , x3 (t)] = M · [s1 (t) , s2 (t) , s3 (t)] (15)

[s1 (t) , s2 (t) , s3 (t)] = M−1. [x1 (t) , x2 (t) , x3 (t)] (16)

where x is the vector of the mixed signals, s is the vector of
source signals, andM is the matrix maximizing the statistical
independence of the source signals [64].
There are many ICA techniques available in the literature.

The remarkable difference between each of these ICA meth-
ods is how the unique feature of the single source signal is
identified.

3) KERNEL lCA (kICA)

Kernel ICA (kICA) is an efficient technique for ICA, which
was firstly proposed by Bach and Jordan [65]. kICA guesses
source signals through optimization of a general variance
contrast function, that is founded on kernel Hilbert space.
In this contrast function, mutual information is considered as
a representation of arithmetical independence. In other words,
kICA depends on minimizing the contrast function based on
Kernel notions. Therefore, by applying the contrast function
to a set of mixed data, we can extract components that are
independent as much as possible.

4) SECOND ORDER BLIND IDENTIFICATION (SOBI)

Second Order Blind Identification (SOBI) is another ICA
method, proposed by Belouchrani et al. [66], for tempo-
rally correlated signals. SOBI is founded on mutual diag-
onalization of an arbitrary group of covariance matrices.

The remarkable features of this method are as followings:
firstly, it only depends on second-order statistics of the exam-
ined data sources; secondly, in contrary to higher order tech-
niques, SOBI allows the decomposition of a set of Gaussian
signals; thirdly, the use of numerous covariance matrices
significantly improves the robustness of the algorithm.

5) PCA

Lewandowska et al. [15] argued that PCA [67] can yield an
effective performance as ICA. Therefore, we experimented
our method using PCA to compare it with ICA, and determine
which one achieves a better performance.
Principle Component Analysis (PCA) is another BSS

method; it is a famous technique for extracting features and
projecting data. PCA achieves a dimensionality reduction
via eliminating redundant variables and projecting the data
according to the significant variables, which have the largest
contribution towards data variance.
The PCA can be modeled by considering the following

transformation:

Y = UTX (17)

where Y is the vector that includes the mixed signals, X is
the original source signals whose dimension is determined
by the number of samples and the number of source signals,
and U is the orthonormal matrix whose columns represents
the principal components. These component columns are the
eigenvectors of the covariance matrix [64]

CX =
1

N
XXT (18)

VI. RESULTS AND DISCUSSION

A. DATA SETS

In order to verify the validity of our rPPG method, we use a
dataset composed of 45 videos [68], these videos show object
connected with A CMS50E pulse oximeter to get the ground
truth PPG and the objects were asked to sit still. The distance
between the object and the camera while recording the video
from data set is 1-2 m. Each video is almost 2 minutes long
and is recorded with a low cost webcam (Logitech C920 HD
pro) at 30 frames per second with a resolution of 640×480 in
uncompressed 8- bits RGB format. All subjects are recorded
using ambient light.
The length of the sliding window plays a critical role

in deciding the best achievable accuracy. The best possible
achievablemeasurements accuracy for a givenwindow length
is given by: df = 60

T , where T is the length of the win-
dow. From this relation, the expected accuracy for T=10 s
is 6 bpm. Increasing window length improves the accuracy,
but it is slower and it requires higher complexity; on the other
hand, decreasing window length degrades the accuracy, but it
requires less complexity and provides faster measurements,
which improves system overall latency. 10-seconds window
length provides a reasonable tradeoff between accuracy and
complexity.
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B. RESULTS

The results of the proposed system with different step varia-
tions are reported in this section.

1) COMPARISON BETWEEN THE FACE

DETECTION METHODS

To determine which method yields a better performance for
our algorithm, we tested our rPPG algorithm using each
of the two methods on 5 subjects. The experimental result
of this comparison is shown in Table 1. The resulting face
bounding box of each of the two methods is shown in Fig. 13.
The results of the experiments found clear superiority for
Viola-Jones over Liao in detecting faces for our rPPG-based
method. The overall this finding is in accordance with find-
ings reported in the most previous studies in the literature.
Consequently, we decided to employ Viola-Jones as the face
detection technique in our system.

TABLE 1. Comparison between the chosen face detection methods.

FIGURE 13. The resulting bounding box of the Viola-Jones method (Left)
and Liao method (Right).

2) COMPARISON BETWEEN SKIN

SEGMENTATION METHODS

In order to verify the validity of the skin segmentation meth-
ods, we conducted our rPPG method using each of the two
skin detection methods on 5 subjects. The experimental result
of the comparison between thesemethods is shown in Table 2.
The segmented output of each of the two methods is shown
in Fig. 14. The results confirm that Conaire’s method pro-
vides a better RMSE, and it outperforms the second investi-
gated skin detection method. This was an anticipated finding
because during the experiments, we reported that Conaire’s
method was very robust in distinguishing between skin and
non-skin areas within the face area of the subjects, which is
critical for our application. In general, the Conaire’s method
was the one that obtained the most robust results; thus,

TABLE 2. Comparing the examined skin segmentation methods.

FIGURE 14. Skin segmentation using: Conaire method (Left) and
RGB-H-CbCr method (Right).

TABLE 3. Summary of the experimental results for 5 subjects.

we have chosen it as the skin segmentation technique in our
algorithm.

3) COMPARISON BETWEEN ROIS DEFINITION METHODS

To assess the significance of employing skin segmentation,
we compare between the proposed scheme with the con-
ventional schemes [14], [33], where skin detection wasn’t
included. Moreover, we examine the effect of dividing skin-
pixels into 3 regions by comparing between our two prede-
fined ROIs, namely ROI 1 and ROI 2. The overall RMSE
results for 5 subjects are summarized in Table 3. Also,
the comparison between the proposed scheme and the con-
ventional schemes [14], [33], in sense of HR measurement
accuracy, is tabulated in Table 4. The ROIs definitions are
shown in Fig. 15.

4) COMPARISON BETWEEN ROI TRACKING METHODS

To decide which tracking method provides an improved per-
formance for our algorithm, we implemented our rPPG algo-
rithm using each of the two methods on 5 subjects.

The set of the tracking points for KLT algorithm is shown
in Fig. 16 (left). Also, the set of the tracking points for KLT
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FIGURE 15. ROI definitions.

TABLE 4. Summary of the accuracy of different schemes for 5 subjects

FIGURE 16. The detected trackable facial points for the KLT (left) and
CamsShift (right).

algorithm are shown in Fig. 16 (right). The comparison of
overall measurement results are summarized in Table 5. It can
be seen that slightly superior results are achieved with KLT
trackingmethod.We report that KLT is considered to be more
robust for our system. Subsequently, we use it as the face
tracking method in our system.

5) COMPARISON BETWEEN THE BSS METHODS

To assess each of the investigated BSS methods, and to deter-
minewhich one yields a better performance for our algorithm,
we tested our rPPG algorithm using: JADE, FastICA, kICA,

TABLE 5. Comparing between KLT and CamShift.

TABLE 6. Comparing different BSS methods.

TABLE 7. Comparing between proposed scheme and the conventional
schemes in sense of the computational time.

SOBI, and PCA on 5 subjects. The experimental results of
this comparison are shown in Table 6. Interestingly, the exper-
imental results revealed that PCA achieves the best RMSE
among all the examined BSS methods, which is in accor-
dance with findings reported by Cardoso [67]. Subsequently,
we report that PCA is the most suitable choice for the decom-
position technique employed in our system.

C. COMPUTATIONAL COMPLEXITY

The computational complexity of the proposed scheme is
compared with the conventional schemes [14], [33] in this
section. The computational complexity is measured as the
execution time for each scheme. The execution times aremea-
sured on MATLAB R2014a platform using Intel R©core(TM)
i5-2500 Cpu 3.30 GHz. The computational time is shown
in Table 7. From this table, it can be shown that thanks to
the exclusion of the non-skin pixels from the computation,
the overall computation time is reduced compared to the cases
of whole face [14] and using cropped face [33]. This result
can be justified by the number of the required operations for
each scheme per iteration which is tabulated in Table 8. This
table shows that the number of the required operations includ-
ing additions, multiplications, subtractions and divisions is
reduced in the proposed scheme compared to schemes [14]
and [33].

D. DISCUSSION

Our attention is focused not only on extracting skin-pixels
but also on which part of the facial skin to be used for
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TABLE 8. The required number of operation for different methods per
iteration.

signal extraction. The results demonstrate two findings. First
finding is that the skin segmentation is an effective way
to improve the accuracy of the rPPG technique by filter-
ing out non-skin pixels, which is consistent with that found
in [68]. The second finding is that extracting the rPPG signal
from ROI with segmentation provides a better accuracy than
extracting it from ROI without segmentation.
The second finding has some exceptions as in subject 4 in

Tables 3 and 4. As has been reported in [15], [33], [50] and
[69] that the rPPG signal is not homogeneously distributed on
the face, and the best facial regions for rPPG signal extraction
are the forehead and cheeks. The most likely explanation of
this exception is that the effect of RGB quantization error,
which cannot be neglected when the number of skin-pixels is
small. We observed that ROI down sampling has a negative
effect on the rPPG signal. This observation agrees with the
fact that the strength of camera sensor noise is inversely
proportional to the square root of the sum of pixels included
in the averaging step.We expect that using a higher resolution
camera may lead to a better signal extraction from ROI with
segmentation.

E. PROS. AND CONS. OF THE PROPOSED SCHEME

Themain advantages for the proposed scheme are represented
in the accuracy of the HR monitoring, where it outperforms
the conventional algorithms in [14] and [33]. Moreover, due
to the calculation of the HR from the segmented skin pixels;
the required computation time is less than the conventional
methods.
On the other side, the main disadvantage of the pro-

posed scheme is that it requires a segmentation step as a
pre-processing.

VII. CONCLUSION

This work is undertaken to optimize rPPG for continuous and
unobtrusive monitoring conditions. In this paper, adaptive
skin detection for ROI definition in rPPG is examined, and
then it is compared with our previous real-time rPPG-based
method. The most obvious finding to emerge from this
study is that segmenting facial skin improves the RMSE by
nearly 50%. This finding enhances our understanding that
only skin pixels contribute constructively to the rPPG signal.
Additionally, we inspected the effect of dividing the face

skin into three ROIs, and then extracted the HR from these
three ROIs through signal fusion. Our experiments reveal that
extracting the HR from all the face yields a better RMSE
than extracting it through signal fusion from different facial

regions. Also, because the strength of camera sensor noise is
inversely proportional to the square root of the sum of pixels
included in the averaging step, we encourage future works,
interested in employing signal fusion, to use higher resolution
cameras which may result in a better signal extraction.

Moreover, we examined the effect of using different meth-
ods for face detection, face tracking, skin detection, and
blind signal separation. Subsequently, we compared these
methods to decide which one achieves better performance for
our method. The evidence from these comparisons suggest
that choosing suitable methods for BSS and skin detection
plays a critical role in deciding the accuracy of the HR
measurements.

Finally, we compared our rPPGmeasurements with ground
truth values obtained from a commercial pulse oximeter.
From the outcome of our investigation, it is possible to
conclude that skin segmentation significantly improves the
quality of rPPG signals.
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