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ABSTRACT

OPTIMIZING RESOURCE ALLOCATION IN NEXT-GENERATION
OPTICAL ACCESS NETWORKS

by
Jingjing Zhang

To meet rapidly increasing traffic demands caused by the popularization of Internet

and the spouting of bandwidth-demanding applications, Passive Optical Networks

(PONs) exploit the potential capacities of optical fibers, and are becoming promising

future-proof access network technologies. On the other hand, for a broader coverage

area and higher data rate, integrated optical and wireless access is becoming a

future trend for wireless access. This thesis investigates three next-generation

access networks: Time Division Multiplexing (TDM) PONs, Wavelength Division

Multiplexing (WDM) PONs, and WDM Radio-Over-Fiber (RoF) Picocellular

networks.

To address resource allocation problems in these three networks, this thesis first

investigates respective characteristics of these networks, and then presents solutions to

address respective challenging problems in these networks. In particular, three main

problems are addressed: arbitrating time allocation among different applications to

guarantee user quality of experience (QoE) in TDM PONs, scheduling wavelengths

optimally in WDM PONs, and jointly allocating fiber and radio resources in WDM

RoF Picocellular networks. In-depth theoretical analysis and extensive simulations

have been performed in evaluating and demonstrating the performances of the

proposed schemes.
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CHAPTER 1

INTRODUCTION

As compared to the currently widely-deployed broadband access technologies such as

DSL with various flavors, Cable modems, and hybrid fiber coaxial (HFC), passive

optical networks (PON) and Fiber-to-the-Home cater for much higher speed access

for new applications and services. As of the first quarter of 2009, there were over

30.8 million FTTH/FTTB subscribers in Asia-Pacific including South Korea, Hong

Kong, Japan, Taiwan, Singapore, and China. The household penetrations in all of

these countries are still growing.

As a point-to-multipoint network architecture, PON incurs a lower cost of

optical cables and central office equipments as compared to the point to point

architectures. PON contains two major components: the optical line terminal (OLT)

at the central office and a number of optical network units (ONUs) near subscribers.

OLT delivers its downstream bandwidth to ONUs via optical fibers in the optical

distribution network (ODN). The upstream data traffic from ONUs are multiplexed

and sent to OLT.

There are various flavors of PON technologies including A(ATM)PON,

B(Broadband)PON, E(Ethernet)PON, and G(Gigabit)PON, among which GPON

and EPON constitute two major flavors of currently commercially deployed PON

systems. As standardized in IEEE 802.3ah, EPON uses symmetric 1 Gb/s upstream

and downstream rates. GPON, as standardized in ITU-T G.984, provides 2.488 Gb/s

downstream bandwidth and 1.244 Gb/s upstream bandwidth. However, with the

popularization of Internet and spouting of bandwidth-demanding applications such as

IPTV, both EPON and GPON may not be able to satisfy users’ bandwidth requests.

For future-proof, IEEE investigated and standardized 10G EPON in P.802.3av on

1
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September 11, 2009. At the same time, Full Service Access Network (FSAN) working

group and ITU-T are now studying next generation access (NGA) based on GPON.

FSAN has planned two stages of NGA evolution: NGA1 and NGA2. NGA1 focuses

on PON technologies compatible with GPON standards (ITU-T G.984 series) and

the current Optical Distribution Network (ODN). In contrast, NGA2 is a long-term

solution with an entirely new optical network type. The objective of NGA2 is to

provision an independent PON scheme, without being constrained by the GPON

standards and the currently deployed outside plant.

From the MAC layer’s perspective, GPON, EPON, NGA1, and 10GEPON all

can be considered as TDM systems, where the time allocation is a critical factor

in achieving the system performance. Formerly, many scheduling algorithms have

been proposed to guarantee QoS, ensure fairness, and maximize the link utilization

in these networks. Currently, the access network has to accommodate many more

classes of applications, each of which may have a specific requirement on quality of

service parameters, such as delay, jitter, loss, and throughput. How to guarantee the

specific QoS requirements of each application, and how to guarantee user Quality of

Experience (QoE) are major issues, which are addressed in Chapter 2.

TDM systems increase their bandwidth provisioning by upgrading the data rate

in the wavelength channel. An alternative scheme of increasing bandwidth is to use

multiple wavelengths. The latter approach can be realized by WDM PONs such as

NGA2. WDM PONs was proposed as early as 1989. However, the requirements of

WDM devices make the network cost-prohibitive, thus hampering the deployment

of WDM PONs. Recently, owing to the maturity of several WDM devices such as

AWG, tunable transmitters, and RSOA, research on WDM PONs has been thriving.

Owing to the nature of multi-wavelength support, wavelength scheduling constitutes

another important issue in WDM PONs besides time allocation. In addition, tunable

transmitters may see widespread usage in WDM PONs owing to their color-free
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property. Tunable transmitters can be based on many technologies, and have

different wavelength switching time depending on the specific adopted technology.

The wavelength switching time of some technologies may be negligible and may

also be non-negligible as compared to the duration of the resource allocation cycle.

In Chapter 3, wavelength scheduling algorithms for various scenarios of wavelength

switching time of tunable transmitters are proposed.

Integrated optical and wireless access network is another focus of this thesis

as optical and wireless integration is becoming a clear trend in the years to come.

This thesis specially focuses on Radio-over-fiber (RoF) picocellular networks, which

distribute antennas over a cell to get closer to mobile users. By doing so, the signal

to noise ratio (SNR) at the receiver can be increased, and thus the wireless access

data rate can be increased accordingly. The coverage area of each antenna is greatly

reduced as compared to the conventional cell, thus resulting in the sharing of wireless

resources among a smaller number of users, and increasing the bandwidth share of

each user. In Chapter 4, the joint optical and radio resource allocation problem in

this network is addressed.



CHAPTER 2

RESOURCE ALLOCATION IN TDM PONS

In currently deployed TDMPONs such as Gigabit-capable PON (GPON) and Ethernet

PON (EPON), upstream/downstream traffic are time division multiplexed (TDM)

onto their respective dedicated wavelength channel. Owing to the sharing of the

transmission media, proper schemes are required to arbitrate the bandwidth allocation

among multiple ONUs, which may carry a variety of applications. To guarantee QoS

for applications of ONUs, GPON [1] defines five types of traffic containers, each of

which is characterized by four kinds of bandwidth components. A strict priority

hierarchy of these four types of bandwidth components is employed in bandwidth

allocation. Regarding EPON, although bandwidth allocation schemes are not specified,

incorporating DiffServ framework into EPON scheduling schemes has been extensively

studied [2–4].

These existing class-based bandwidth arbitration schemes in PONs are generally

of coarse granularity, which, however, can hardly facilitate any particular QoS profile,

required by newly emerging diversified applications, such as video streaming and

e-science. These applications impose different QoS requirements as compared to those

demanded by traditional video, voice, and data traffic. For example, large file transfer

among e-science computing sites, on one hand, has strict throughput requirements,

and hence possesses higher priorities over traditional data traffic. On the other hand,

it is not delay sensitive as compared to voice and video traffic. For efficient QoS

provisioning, the bandwidth allocation scheme is desired to consider these diversified

QoS requirements and facilitate QoS profiles to provide a wide variety of services.

Driven by the desire of sharpening their competitive edges, service providers may

regard user quality of experience (QoE) as the basis for making network management

4



5

and control decisions [5–7]. Network-level QoS performances are correlated to

user QoE. Generally, better network-level QoS performances result in higher QoE.

Formerly, to bridge QoE and QoS, experimental measurements and theoretical

modeling have been broadly employed to characterize QoE as functions of QoS

parameters for different applications [8–11].

In this chapter, QoE is considered as a function of network layer delay and loss

performances, and QoE functions of applications are assumed to be known a priori.

The following assumptions regarding user QoE are further made. First, the QoE of

a user depends on the overall impacts of its online sessions. Usually, the subjective

experience of a human being is significantly degraded by the poor performance of any

online session of the user no matter how high the qualities of other sessions of the user

are [11]. Therefore, the session with the lowest QoE score is used to characterize QoE

of this particular user. Second, QoE of a user session depends on the performances

of all network-level QoS parameters. Since degradation in any of QoS parameters

may result in poor QoE, QoE of a user session is assumed to achieve a certain score

only when both loss and delay satisfy certain criteria. With these assumptions, the

problem of maximizing user QoE is recasted as the problem of finding a schedule

which can guarantee corresponding QoS performances to guarantee the maximum

QoE score for all user sessions for given incoming downstream or upstream traffic.

In TDM PON where multiple sessions from multiple users share one

communication channel, there exists a tradeoff between performances of sessions.

Moreover, for a given user session, there exists a tradeoff between its delay and loss

performances too. A smaller delay may be achieved at the cost of a higher traffic

loss ratio. Similarly, a smaller loss ratio may be obtained by further delaying the

scheduling of the traffic. Therefore, when the best delay and loss performances cannot

be simultaneously achieved for all sessions, optimizing the delay-loss tradeoff becomes

a key issue in guaranteeing the maximum QoE for all users in TDM PONs.
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In this chapter, an optimal scheduling scheme which can guarantee QoE for all

users in TDM PON is proposed. Formerly, Uysal et al. [12] proposed lazy schedules

which minimize the energy consumption in transmitting packets over a wireless link.

The authors first constructed an optimal offline schedule, and then proposed the online

schedule based on the optimal offline schedule. Similarly, to address the problem of

maximizing user QoE, the offline scheduling problem with the assumption that the

arrival traffic over the entire time span is known a priori is first addressed. Based on

the optimal offline scheduling scheme, an online scheduling scheme is first proposed

to make its bandwidth allocation decision based on the information of traffic which

arrives at ONU or OLT prior to the decision making time. After that, issues on

the estimation of the request arrival time and request size in the upstream scenario

are discussed. Extensive simulation results are included, and they show that the

maximum QoE score can be achieved even when the traffic load is as large as 0.8585.

The rest of the chapter is organized as follows. Section 2.1 presents the system

model and the definition of QoE functions. Section 2.2 discusses the scheduling

scheme for the downstream scenario. Specifically, an optimal offline scheduling scheme

is presented first followed by an online scheduling scheme. Section 2.3 discusses the

estimation of the traffic arrival time and size in the upstream scenario. Section 2.4

presents simulation results in detail. The summary is included in Section 2.5.

2.1 System Model

2.1.1 Network Architecture

Figure 2.1 shows the typical PON architecture, where a number of ONUs are connected

to the OLT via optical fibers, and both the upstream and downstream transmissions

are TDM based. This chapter considers the fiber-to-the-home (FTTH) scenario,

where each ONU is a home user and has a number of online sessions.
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(b) MAC control in the upstream scenario

Figure 2.1 Illustration of the PON architecture.

For the downstream traffic transmission scenario as shown in Figure 2.1 (a),

This chapter assumes OLT has virtual output queues, each of which corresponds to

one user session at one ONU. Upon the arrival of the downstream traffic of each user

session, OLT arbitrates the bandwidth allocation among different user sessions at

different ONUs, and then dispatch the arrival traffic.

Consider deterministic entry of the downstream traffic into the network. Denote

{rki,j}i,j,k as the kth request of session j at ONU i. Each request corresponds to some

packets which arrives during a continuous time duration. rki,j is associated with a

double sequence (aki,j, x
k
i,j), where x

k
i,j is the size expressed in time duration of request

rki,j, and a
k
i,j is the time at which request rki,j arrives. For the downstream case, both

{xki,j}i,j,k and {aki,j}i,j,k are known to the decision maker OLT.

For the upstream scenario, upstream traffic arrives at ONUs, and is not explicitly

known to OLT. Since the decision maker OLT does not know the exact arrival time and
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size of upstream arrival traffic, the upstream scenario in PONs is more complicated

than the downstream scenario. Typically, as shown in Figure 2.1 (b), the life cycle of

a packet in TDM PONs such as GPON and EPON can be described as follows.

• At the ONU side: The upstream data packet is queued in its corresponding

buffer upon arrival, and waits to be reported to the OLT about its existence.

The ONU reports its queue length at a proper time, which is taken after the

data transmission in EPON and at the beginning of the frame in GPON.

• At the OLT side: OLT collects reports from ONUs, makes bandwidth allocation

decisions, and then sends out its decisions to ONUs.

• At the ONU side: An ONU receives the bandwidth allocation decision sent from

OLT, and then transmits packets queued in its buffer using the granted time

duration.

Different from the downstream scenario where OLT can closely keep track of the traffic

arrival information, OLT, in the upstream scenario, does not directly own the exact

information of the traffic arrival time and size, i.e., (aki,j, x
k
i,j) needs to be estimated

based on ONU reports.

2.1.2 QoE

QoE of an User: For user QoE, as aforementioned in the introduction, this chapter

identifies QoE of a user based on the performance of the session with the lowest QoE

score among all sessions of the user. That is to say, QoE of user i equals to minj ui,j,

where ui,j refers to QoE of session j of ONU i, and it can be regarded as the QoE

score of user i when user i has session j only. Achieving a given QoE score v for user

i implies that

ui,j ≥ v, ∀j (2.1)
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QoE of an User Session: As stated in the introduction, QoE of a session

achieves QoE score v only when its loss and delay satisfy certain criteria. Denote

loss−1
i,j (v) and delay−1

i,j (v) as the maximum allowable loss and delay for session j at

ONU i to achieve QoE score v, respectively, i.e.,











loss−1
i,j (v) = argmaxloss{ui,j = v}

delay−1
i,j (v) = argmaxdelay{ui,j = v}

Then, the necessary and sufficient condition to guarantee QoE score v for user i is

that

li,j ≤ loss−1
i,j (v) and di,j ≤ delay−1

i,j (v), ∀j (2.2)

where li,j and di,j denote the loss and delay performances of session j at ONU i,

respectively.

In this chapter, QoE functions ui,j, loss
−1
i,j , and delay

−1
i,j is assumed to be known

a priori. Investigating these QoE functions is rather challenging, and has received

intensive research attention [8–11,13,14].

Delay and Loss: The subsequent question is how to define loss ratio and

delay for user sessions. While many existing literatures employ average loss ratio

as loss metric, the application level QoS perceived by end users is also affected by

short-term loss patterns (loss burstiness and loss interval) [15, 16]. For delay, each

traffic request is expected to have a bounded delay such that the delivery of this

particular request is on time without degrading user’s experience. The short term

delay can also guarantee delay jitter performance [17]. Thereby, assume that li,j ≤

loss−1
i,j (v) and di,j ≤ delay−1

i,j (v). They further implying that delay and loss of every

single request in the session are less than loss−1
i,j (v) and delay

−1
i,j (v), respectively.

Denote cki,j and yki,j as the completion transmission time and the granted time

duration of the kth request of session j at user i (request rki,j), respectively. Define
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traffic loss ratio of request rki,j as (xki,j − yki,j)/x
k
i,j, and the delay of request rki,j as

the difference between the request completion time and the request arrival time, i.e.,

cki,j − aki,j.

Then, mathematically, guaranteeing QoE score v of session j at user i implies

that










(xki,j − yki,j)/x
k
i,j ≤ loss−1

i,j (v), ∀k

cki,j − aki,j ≤ delay−1
i,j (v), ∀k

(2.3)

Further, guaranteeing QoE score v of user i implies that











(xki,j − yki,j)/x
k
i,j ≤ loss−1

i,j (v), ∀k, ∀j

cki,j − aki,j ≤ delay−1
i,j (v), ∀k, ∀j

(2.4)

For ease of explanation, for any request rki,j, the largest QoE score v satisfying (xki,j −

yki,j)/x
k
i,j ≤ loss−1

i,j (v) and c
k
i,j − aki,j ≤ delay−1

i,j (v) is referred to as QoE of request rki,j

in the rest of the chapter.

Problem Formulation: Out of fairness concern, the objective is to achieve

max-min fairness among QoE of all users in allocating resources [18, 19]. With the

above definitions and assumptions, the problem of achieving max-min fairness can be

formulated as:

Given traffic requests {rki,j}, QoE functions ui,j, loss
−1
i,j , and delay−1

i,j , ∀i, ∀j,

construct a schedule with the smallest delay lki,j and loss dki,j for all requests such that

QoE score of any ONU i cannot be increased at the sacrifice of the decrease of QoE

score of any other ONU whose QoE is already smaller than that of ONU i.

This chapter first focuses on the downstream bandwidth allocation problem in

which the decision maker OLT can track {(aki,j, r
k
i,j)} of all requests. Subsequently,

the estimation of {(aki,j, r
k
i,j)} will be discussed in the upstream scenario.
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2.1.3 Related Works

Formerly, many DBA algorithms have been proposed to ensure fairness and guarantee

QoS for queues of ONUs in EPON and GPON. For example, the DiffServ framework

was proposed to be incorporated into the DBA to provision QoS guarantees [2,

3, 20, 21]. However, the employed strict-priority discipline when incorporating the

DiffServ framework into DBA raises the so-called light-load penalty problem [2].

To compensate for the light-load penalty, Kramer et al. [2] proposed a two-stage

queueing system, where a proper local queue management scheme and a priority-based

scheduling algorithm are employed. Kim et al. [22] adopted weighted fair queuing

to give queues with different weights for their priorities. IPACT-LS [23] prevents

ONUs from monopolizing the bandwidth by setting a predetermined maximum of the

granted resources. Assi et al. [3] proposed to satisfy requests from light-load ONUs

first, while penalizing heavily-loaded ONUs. Different from these existing works, from

the perspective of user QoE, this chapter presents a scheme to achieve max-min QoE

fairness for users in PONs.

Regarding related works on QoE-oriented scheduling, formerly, from the

application-level QoS perspective, Cao et al. [24] and Wang et al. [25] modeled

application utility as a function of available bandwidth, and employed four general

utility shapes, namely, elastic utility, real-time utility, rate-adaptive utility, and

step-wise utility, to model four classes of applications. Thakolsri et al. [26] maximized

the sum of utilities by using a fast greedy algorithm which searches only the

boundary of the utility space in High Speed Downlink Packet Access (HSDPA).

Kuo et al. [27] investigated utility-based resource allocation for soft QoS traffic in

infrastructure-based wireless networks, where soft QoS traffic refers to the traffic

which demands a certain amount of bandwidth for normal operation but allows some

flexibility when the given bandwidth is close to the preferred value. By modeling

utilities as functions of available resources, the authors then proposed resource
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allocation schemes to optimally schedule these soft QoS traffic. Rather than modeling

QoE as a function of available bandwidth, this chapter models QoE directly as a

function of delay and loss performances such that not only the amount of arrival traffic

but also the traffic arrival time can be taken into account in arbitrating bandwidth

allocations among users.

In [28, 29], application utilities are defined as functions of loss, delay, and

jitter. Then, with the focus on the resource allocation in one cycle only, a heuristic

resource allocation algorithm was proposed to guarantee high utilities for queues. In

this chapter, without restricting the resource allocation in one cycle, the problem

of allocating resources across the entire time span is formally formulated, and the

optimal offline scheduling scheme is investigated first. Then, an online version of the

offline scheduling scheme is derived.

2.2 The Downstream Scenario

This chapter starts from the offline scheduling which assumes that downstream traffic

arrival during the whole time span, i.e., {(aki,j, r
k
i,j)}

∞
k=1, ∀i, ∀j, are known in advance.

Then, inspired from the optimal offline scheduling scheme, an online scheduling

scheme for real-time implementation is proposed. In the proposed scheme, the decision

maker does not know the future incoming traffic at the decision making time.

2.2.1 Offline Scheduling

Maximize the Minimum QoE of all Users: First, the problem of achieving a

given QoE score for all users is investigated. For a given QoE score v, based on

Constraints (2.4), guaranteeing v for all users implies that











(xki,j − yki,j)/x
k
i,j ≤ loss−1

i,j (v), ∀i, ∀j, ∀k

cki,j − aki,j ≤ delay−1
i,j (v), ∀i, ∀j, ∀k

(2.5)
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Then, the problem is equivalent to the problem of constructing a schedule with yki,j

and cki,j satisfying yki,j ≥ xki,j · (1 − loss−1
i,j (v)) and c

k
i,j ≤ aki,j + delay−1

i,j (v), ∀i, ∀j, ∀k.

The following Algorithm 1 addresses this problem.

Algorithm 1 Guarantee QoE score v for all users

1: Consider xki,j · (1− loss−1
i,j (v)) as the grant size yki,j for request r

k
i,j.

2: Consider aki,j + delay−1
i,j (v) as the scheduling deadline of request rki,j.

3: t = 0

4: while There exists unscheduled request do

5: Among unscheduled request rki,j which arrive before t, select the one with the

earliest deadline.

6: if request rk
′

i′,j′ arrives between t and t + yki,j and has deadline earlier than

request rki,j then

7: cki,j = ak
′

i′,j′

8: else

9: cki,j = t+ yki,j and denote request rki,j as scheduled.

10: end if

11: Allocate the time between t and cki,j to request rki,j.

12: t = cki,j

13: end while

Algorithm 1 is essentially a preemptive earliest-deadline-first (EDF) scheduling

algorithm. Among all unscheduled requests, the one with the earliest deadline is

scheduled with the highest priority. When a request is being scheduled, the scheduling

can be preempted and resumed later if another request with an earlier deadline arrives.

Theorem 1. If the schedule constructed by Algorithm 1 cannot guarantee all users

with QoE score v, then, no schedule exists to guarantee all users with QoE score v.
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Proof. Assume the deadline of request rki,j is violated in the schedule constructed by

Algorithm 1, i.e., cki,j > aki,j + delay−1
i,j (v). The next will show that there does not

exist a schedule which can schedule all requests prior to their respective deadlines.

It is not difficult to see that the scheduling policy described in Algorithm 1

is work-conservative. Then, the earliest time to schedule all requests with deadline

earlier than aki,j+delay
−1
i,j (v) is c

k
i,j. If request r

k
i,j is scheduled earlier, there must exist

some other request rk
′

i′,j′ with deadline earlier than aki,j + delay−1
i,j (v) that completes

its transmission at time cki,j. In this case, the deadline request rk
′

i′,j′ is violated.

If there exists a schedule guaranteeing QoE score v for all users, v is said to be

achievable for all users. With the problem of guaranteeing QoE score v for all users

being addressed, the minimum achievable QoE score for all users can be maximized

by trying different v using the bisection method [30] which is described in Algorithm

2. The main idea is as follows: Let h and l be the highest and lowest value of QoE

functions of all sessions. v is first let to be equal to h, and then whether v is achievable

for all users is checked. If v is not achievable, h is updated to be v, and v is decreased

to the midpoint between h and l; otherwise, h is increased to v, and v is increased

to the midpoint between h and l. The above process is performed recursively until h

and l are close enough to each other.

Further Increase of QoE of Some Sessions if Possible: In the above, the

schedule with the maximum achievable QoE score for all users is obtained. Although

there does not exist a better schedule which can increase QoE score of all sessions of

all users at the same time, QoE score of some sessions of some users may be increased

without decreasing those of other sessions. For example, assume user sessions can be

classified into two classes, in which the two classes with the highest QoE scores are µ

and ν, respectively. Without loss of generality, assume µ < ν. Then, with Algorithm

2, a QoE score higher than µ cannot be achieved for sessions in the second class whose

QoE score can be as high as ν.
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Algorithm 2 Maximize the minimum QoE among all users by employing the

bisection method

1: Denote h and l as the highest and lowest value of QoE functions of all applications,

respectively.

2: v = h

3: while h and l are not close enough do

4: if v is achievable for all users then

5: l = v

6: else

7: h = v

8: end if

9: v = (h+ l)/2

10: end while

To further increase QoE scores of some sessions, this chapter proposes Algorithm

3 whose idea is similar to water-filling. In Algorithm 3, all sessions whose QoE scores

have not reached their respective highest score are considered, and maximizing the

minimum QoE of all these sessions is considered as the objective. The process is

repeated until the QoE score cannot be further increased for any session. The detailed

procedure involved in Line 3 of Algorithm 3 is similar to those described in Algorithm

2.

Algorithm 3 Further increase QoE of some user sessions

1: while QoE score can be increased for some session do

2: Decide the sessions whose QoE can be possibly increased, i.e., sessions which

have not reach their respective highest QoE scores yet.

3: Maximize the minimum QoE score for these sessions.

4: end while
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Further Improvement of Delay and Loss of Some Requests: Algorithm

2 and Algorithm 3 constructed a schedule with which QoE of any session i cannot

be increased without the sacrifice of QoE of some other sessions whose QoE scores

are already smaller than that of session i. Although QoE of a session cannot be

increased, delay and loss of some requests in the session may be enhanced for two

cases. First, the fact that QoE of a session cannot be increased implies that delay and

loss performances of all requests in the session cannot be decreased simultaneously.

However, for some requests in a session, their delay and loss performances may be

possibly enhanced. This case is referred to Case 1. Second, to achieve the highest

QoE score, usually, delay and loss do not need to be as small as zero owing to the

human auditory and visual limitation. In the schedule produced by Algorithm 2 and

Algorithm 3, if the highest QoE score of a session is achieved, delay and loss ratio of

requests in the session equals to the maximum allowable value to achieve the highest

QoE score. It is possible to further reduce delay and loss ratio from the maximum

allowable value for some requests, or even all requests of a session. This case of further

reducing delay and loss is referred to as Case 2.

Algorithm 4 describes the scheme of further enhancing delay and loss

performances of some requests. In the real implementation, delaying the scheduling

of a request is much easier than dropping some traffic of the request. Thus, delaying

traffic is preferable over dropping traffic when either one has to be chosen.

In Algorithm 4, delay and loss performances are first enhanced for requests in

Case 1. In the “while” loop described in Lines 2 - 5 of Algorithm 4, the minimum QoE

score of requests which can be possibly increased is maximized. Then, the requests

whose QoE score can be increased are updated, and the same process repeats until

no request can have an increased QoE score without degrading QoE of others. In

Lines 7 - 8 of Algorithm 4, the algorithm first obtains all requests which achieve their

respective highest QoE scores. Then, the algorithm tries to gradually reduce loss ratio
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Algorithm 4 Further increase QoE of some requests

1: /*Enhance delay and loss performances for Case 1*/

2: while QoE score can be increased for some request do

3: Among all requests of all sessions, decide requests whose QoE score cannot be

further increased.

4: Obtain the maximum QoE score which can be guaranteed for all the other

requests.

5: end while

6: /*Enhance delay and loss performances for Case 2*/

7: Obtain requests being scheduled with the highest QoE score.

8: Gradually decrease the loss ratio of these requests until no further loss can be

made.

9: Obtain requests being scheduled with zero loss ratio.

10: Gradually decrease the delay of these requests until no further delay can be made.

of these requests until no further loss ratio can be made. Lines 9 - 10 of Algorithm

4, first obtain all requests with zero loss ratio, and then tries to gradually decrease

delay of these requests until no further delay can be made.

2.2.2 Online Scheduling

The offline scheduling assumes that the arrival traffic across the entire time span

is known to the decision maker. In the online scheduling for real implementation,

the decision maker does not own the information of the future arrival traffic at the

decision making instance.

In the online scheduling, at any given decision making time t, the decision

maker decides the bandwidth to be allocated to unscheduled requests based on the

information of requests with arrival time prior to t, i.e., {rki,j|a
k
i,j ≤ t}. The scheduler

optimistically assumes that there are no requests coming in the future to make the
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best decision for the existing requests. The disability of foreseeing future incoming

requests of the online scheduling will result in suboptimal solution as compared to

the offline scheduling.

Algorithm 5 The online scheduling algorithm to achieve max-min QoE fairness

1: Denote the newly arrival request at time t as rki,j.

2: Calculate the deadline of scheduling request rki,j with the highest QoE score.

3: Insert the request into the unscheduled request list, and then sort them in the

ascending order of scheduling deadline.

4: Schedule request rki,j according to the deadline order.

5: if The scheduling deadline of request rki,j is violated then

6: Calculate the maximum allowable loss ratio to guarantee the highest QoE score

of the request.

7: Let the loss ratio lki,j = 0

8: while The deadline cannot be met and lki,j is no greater than the maximum

allowable one do

9: Gradually increase lki,j.

10: Update the grant bandwidth yki,j to request rki,j as xki,j · (1 − lki,j), and check

whether the request can be scheduled prior to the deadline

11: end while

12: if The scheduling deadline of the request is still not met then

13: Consider the current unscheduled requests and request rki,j, and employ

Algorithm 2 to maximize the minimum QoE among all these requests.

14: end if

15: end if

Algorithm 5 describes the online version of the optimal offline scheduling scheme.

In Lines 1-4, Algorithm 5 tries to schedule the newly incoming request rki,j with zero

loss ratio. If a schedule cannot be constructed to guarantee the request with zero



19

loss ratio as stated in Line 5, the request with some degraded loss performance but

still achieve the highest QoE score will be scheduled. More specifically, the maximum

allowable loss ratio which can guarantee the highest QoE score is first calculated.

Then, the loss ratio is gradually increased until the traffic can be scheduled before

the deadline or the loss ratio reaches the maximum allowable value (see Lines 6-11).

If the highest QoE score cannot be guaranteed for this request as described in Line

12, the bisection method is applied to maximize the minimum QoE of all unscheduled

requests as well as the newly arrival one.

The online version of the optimal offline scheduling scheme makes bandwidth

allocation decisions every time a new request arrives. This imposes high requirement

on the computational burden of the scheduler. To reduce the computational burden,

instead of calculating a new schedule each time a request arrives, an alternative more

practical method is to calculate the schedule until the channel is about to turn idle.

This scheduling framework is referred to as just-in-time scheduling [31]. This scheme

will be applied in the simulation section.

2.3 The Upstream Scenario

Different from the downstream scenario, the bandwidth allocation decision maker

OLT does not own the exact information of the arrival time aki,j and size xki,j of each

request. In this section, the estimation of aki,j and xki,j in the upstream scenario is

discussed.

Several more notations to facilitate the estimation of the arrival upstream

requests are first introduced. Denote αk
i,j as the time that the kth report of session

j at ONU i. Then, at time αk
i,j + RTTi/2, OLT receives the kth report of session

j at ONU i, where RTTi is the round trip time between ONU i and OLT. Denote

∆k
i,j as the interval between the (k − 1)th and kth request sending time from session

j of ONU i, i.e., ∆k
i,j = [αk−1

i,j , αk
i,j]. Denote trki,j, dr

k
i,j, and arki,j as the transmitted
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traffic, dropped traffic, and arrival traffic during interval ∆k
i,j. Then, at time αk

i,j, the

backlogged traffic of session j at ONU i equals to

k
∑

p=1

(arpi,j − trpi,j − drpi,j)

Denote γki,j as the reported queue length (in time) contained in the kth report

of session j at ONU i. Then, γki,j =
∑k

p=1 (ar
p
i,j − trpi,j − drpi,j). The following can be

further obtained.

arki,j = γki,j +
k

∑

p=1

(trpi,j + drpi,j)−
k−1
∑

p=1

arpi,j (2.6)

On the right side of Eqt. (2.6), γki,j is the request reported to the access node. Both

trpi,j and drpi,j are decided by OLT. Hence, by recursion, OLT can infer the arrival

traffic arki,j during time interval ∆k
i,j.

Besides the newly arrival traffic arki,j during interval ∆k
i,j, OLT can estimate

the arrival time of all backlogged traffic at time αk
i,j. Assume infinite buffer size at

the user side, and the dropping is from the head of the queue. As compared to the

scheme of dropping the latest arrival packets, dropping the oldest packets first can

let precious resources be used for transmitting traffic with smaller delay, and hence

larger QoE.

Then, among the total
∑k

p=1 ar
p
i,j arrival traffic before time ak

i,j, the first
∑k

p=1 (tr
p
i,j + drpi,j) arrival traffic is either transmitted or dropped, and the latest

arrival
∑k

p=1 (ar
p
i,j − trpi,j − drpi,j) traffic remains in the queue and is reported to the central

access node. Among the γki,j request traffic, assume ηki,j(p) traffic arrives during time

interval ∆p
i,j. Then, it can be obtained that











ηki,j(k) = min{arki,j, γ
k
i,j}

ηki,j(p) = min{arpi,j, (γ
k
i,j −

∑k
m=l+1 η

k,m
i,j )+}

(2.7)
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where x+ =











x if x > 0

0 otherwise
.

After the arrival time and size of each request have been estimated, the

bandwidth allocation problem is boiled down to the problem discussed in the

downstream scenario. Then, online Algorithm 5 can be employed to obtain the

optimal solution.

2.4 Simulation Results and Analysis

In this section, taking the upstream transmission in EPON for example, the

performance of our proposed online scheduling scheme is investigated.

IEEE 802.3ah has standardized the Multi-Point Control Protocol (MPCP) as

the MAC layer control protocol for EPON [4]. Specifically, MPCP defines two 64-

byte control messages REPORT and GATE for the bandwidth arbitration in the

upstream. ONUs report its backlogged traffic to OLT by sending REPORT. After

collecting REPORT from ONUs, OLT dynamically allocates bandwidth to ONUs

and informs its grant decisions to ONUs via GATE. The cycle duration in EPON

can be dynamically adaptive to the traffic. In the simulation, instead of letting OLT

calculate schedules every time a REPORT from an ONU arrives, OLT keeps collecting

REPORTs from different ONUs, and makes bandwidth allocation decision just before

the upstream wavelength channel becomes idle.

The interval between two consecutive bandwidth allocation decision making

time is referred to as a dynamic bandwidth allocation (DBA) cycle in this chapter.

The DBA cycle is adapted to traffic variation. The maximum DBA cycle is set as

2ms, and the data rate is set as 1.25 Gb/s. Then, the maximum traffic transmitted

during a cycle is 2.5 Mbits. When the total requests are below 2.5 Mbits, every

request is granted with the bandwidth equaling to its request size. When the total
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requests increase beyond 2.5 Mbits, OLT allocates the bandwidth in the cycle with

the duration of 2ms to ONUs.

For ease of explanation, three kinds of DBA cycles are defined according to the

traffic load. For one particular DBA cycle, if the total requested traffic is within the

capacity of the cycle, the cycle is referred to as a low-load cycle; if the requested traffic

is greater than the capacity of the cycle but every ONU can still get the highest QoE

score by delaying the scheduling of some traffic to the next cycle or dropping some

traffic, the cycle is referred to as medium-load cycle; if the QoE score of some ONUs

falls below the highest score, the cycle is referred to as a high-load cycle. In a low-load

cycle, only Lines 1 - 4 in Algorithm 5 are performed; in a medium-load cycle, Lines

1 - 11 in Algorithm 5 are performed; when it comes to high-load cycles, the entire

Algorithm 5 is performed. The operation in low-load cycles is the simplest, whereas

the operation in medium-load cycles involves more calculations, and the operation in

high-load cycles incurs the highest computational burden.

The number of ONUs is set to be 16, and the round trip time between ONUs

and OLT is set to be 125µs. The simulation model is developed on the OPNET

platform. Since self-similarity is exhibited in many applications, Each user session is

input with self-similar traffic. The Pareto parameter is set as 0.8. The packet length

is uniformly distributed between 64 bytes and 1500 bytes. Assume each ONU has

five sessions corresponding to five kinds of applications. Each of the five sessions is

entered with traffic with the same statistical characteristics. The input traffic of all

ONUs obey the same distribution.

First, distributions of low-load cycles, medium-load cycles, and high-load cycles

are investigated under different traffic loads. The simulation time is set to be 2.5

seconds. Assume the maximum allowable delay to achieve the highest QoE score of

the fiver sessions in each ONU are 3 ms, 4 ms, 5 ms, 6 ms, and 7 ms, respectively,

no traffic loss is allowed, and the precise QoE functions are unknown. Figure 2.2
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presents simulation results of the distribution of the three kinds of cycles. It was

shown that when the network load is about 0.8585, the majority of the cycles are

low-load cycles, and the high-load cycles are very few. That is to say, the maximum

QoE can almost be guaranteed under this case. When the network load is increased

to 0.9152, the medium-load cycles are increased to around 11% of the total number of

cycles, and the high-load cycles takes around 5% of the total number of cycles. Then,

in 5% of all cycles, QoE of some sessions are degraded in some degree. When the

network load increases to 0.96, the majority of cycles are high-load cycles, implying

that tremendous amount of computation is required.

Figure 2.2 The proportion of three kinds of cycles under different traffic loads.

Figure 2.3 shows the throughput under different traffic loads, which is defined

as the ratio of the sum of input traffic during the whole simulation time over the

maximum traffic accommodated by the network. Throughput is defined as the ratio

of the total amount of successfully transmitted traffic to the maximum traffic which

can be accommodated by the network. Under low traffic load, all the requests can be

successfully scheduled. Hence, the throughput increases with the increase of traffic

load. When the traffic load is increased to a certain value, further increase will not

increase the throughput of the network. As shown in Figure 2.3, the knee point

happens when the network load is around 0.9421, where high-load cycles occupy

less than 30% of the total cycles. In other words, most of the cycles will be either
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low-load cycles or medium-load cycles, which do not involve much computation, and

more importantly, the highest QoE score can be guaranteed in these low-load and

medium load cycles.

Figure 2.3 Throughput vs. traffic load.

Assume QoE functions are known. Two kinds of QoE functions will next be

considered. One is a function of packet delay, and the other one is a function of loss

ratio.

2.4.1 Packet Delay

First, QoE of a user session as a function of packet delay is considered, i.e.,

ui,j(loss, delay) = u2i,j(delay), defined as follows.

u2i,1(delay) =











1 delay ≤ 3ms

e(delay−3)/3 delay > 3ms
, ∀i

u2i,2(delay) =











1 delay ≤ 4ms

e(delay−4)/4 delay > 4ms
, ∀i

u2i,3(delay) =











1 delay ≤ 5ms

e(delay−5)/5 delay > 5ms
, ∀i

u2i,4(delay) =











1 delay ≤ 6ms

e(delay−6)/6 delay > 6ms
, ∀i
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Figure 2.4 Delay vs. traffic load.

u2i,5(delay) =











1 delay ≤ 7ms

e(delay−7)/7 delay > 7ms
, ∀i

Assume the traffic is delayed if it fails to be successfully transmitted. The buffer

size of each queue is set as 25K bytes to avoid queues’ build-up at high load. The

network load is defined as the ratio of the total traffic admitted into the network to

the capacity of the network.

Then, the objective is to show that QoS profiles received by the five kinds of

session conform to the corresponding profiles derived from their application utilities.

Fairness is achieved if application utilities obtained by sessions are equivalent to each

other.

Figure 2.4 shows the average delay of packets received in cycles under six

different network loads. Since the input traffic is self-similar, the delay of packets

fluctuates cycle from cycle. Generally, with the increase of the traffic load, the packet

delay increases. When the network load equals to 0.8585, most of the cycles are

low-load cycles. Hence, almost all requests from these five kinds of sessions can

be scheduled immediately. The five sessions experience similar delay performance.

When the network load equals to 0.9162, around 15% cycles are medium-load cycles

or high-load cycles, where requests from some of the sessions are delayed. It is
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shown that session 5 experiences the largest delay while session 1 has the smallest

delay, complying to their respective QoE profiles. With the increase of traffic load,

delay of sessions increases but at different degrees, as determined by their respective

application utilities. Delay of session 1 increases at the smallest degree, while that

of session 5 increases at the largest degree. When the traffic load increases to 0.96,

most of the cycles are high-load cycles. This implies that most of the requests have

to be delayed before being successfully transmitted. Simulation shows that delay in

this case is much higher than that in the case when the load is 0.8585.

Figure 2.5 shows QoE of the five kinds of sessions under different loads. It can

be seen that QoE of all sessions are almost the same with small differences under a

particular traffic load. For each session, there exists obvious differences in delay with

different traffic loads. However, the difference in QoE is not that obvious, i.e., very

small. The average QoE achieved when load equals to 0.96 is slightly lower than that

achieved when load is 0.8585. This can be attributed to the fact that QoE is set as

the same value when the delay is below a certain value.

Figure 2.5 QoE vs. traffic load.

2.4.2 Loss Ratio

Consider QoE as a function of packet loss ratio, i.e.,ui,j(loss, delay) = u1i,j(loss). In

a particular cycle, if the request is greater than the capacity of the cycle, the extra



27

requested traffic is dropped rather than delayed. The buffer size for each queue for a

user session is set as infinity. For the five sessions in each ONU, u1i,j(loss) is defined

as follows.

u1i,1(loss) =











1 loss ≤ 0.01

(1− loss)/0.99 loss ∈ [0.01, 1]
, ∀i

u1i,2(loss) =











1 loss ≤ 0.1

(1− loss)/0.9 loss ∈ [0.1, 1]
, ∀i

u1i,3(loss) =











1 loss ≤ 0.2

(1− loss)/0.8 loss ∈ [0.2, 1]
, ∀i

u1i,4(loss) =











1 loss ≤ 0.3

(1− loss)/0.7 loss ∈ [0.3, 1]
, ∀i

u1i,5(loss) =











1 loss ≤ 0.4

(1− loss)/0.6 loss ∈ [0.4, 1]
, ∀i
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Figure 2.6 Sampled packet loss ratio.



28

Figure 2.6 shows the sampled packet loss ratio of five kinds of sessions, each

of which assumes one of the above five different QoE functions. The sampling is

taken every 8 ms. Simulations show that packet loss happens during some of the

cycles when the network load equals to 0.9446, whereas packet loss happens during

most of the cycles when the network load is 1.3099. It is also shown that five kinds

of sessions experience different packet loss ratios during heavily-loaded cycles. From

application functions, QoE of the five sessions equal to the highest value of 1 when

the packet loss ratios of session 1, 2, 3, 4, and 5 are below 0.01, 0.1, 0.2, 0.3, and

0.4, respectively. From Figure 2.6, it can be seen that almost all points comply with

this rule. On the other hand, when the network is heavily loaded and the highest

QoE score cannot be guaranteed for sessions, the packet loss ratio of session 1, 2, 3,

4, and 5 will be increased to be higher than 0.01, 0.1, 0.2, 0.3, and 0.4, respectively.

For fairness, this increase should enable the five sessions achieve the same QoE. This

is also substantiated in the simulation results. Therefore, in terms of the packet loss

ratio, our algorithm can guarantee fairness among the five sessions.

Figure 2.7 QoE vs. traffic load.

Figure 2.7 shows QoE scores of the five kinds of sessions under different loads.

It shows that, under a particular traffic load, sessions of all sessions are almost the

same with slight differences. QoE of sessions decreases with the increase of traffic

load because of the increased packet loss ratio. When the traffic load is less than 1,
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QoE scores of all sessions approach the maximum value of 1. When traffic load is

greater than 1, QoE of sessions decrease slightly at nearly equal degrees.

2.5 Summary

From the perspective of optimizing user QoE, scheduling schemes to optimize the

tradeoff between delay and loss performances of user sessions in TDM PONs have

been proposed, where all user sessions share one upstream/downstream wavelength

channel. First, with the assumption that the arrival traffic information across the

entire time span is known a priori, an optimal offline scheduling scheme to achieve

max-min QoE fairness among all users have been proposed. Then, based on the

optimal offline scheduling scheme, the online scheduling scheme have been derived.

Extensive simulations have been performed to show that the proposed scheme can

guarantee the maximum utility even when the traffic load is as large as 0.8585 in

EPON, and achieves equal utilities when the network is highly loaded.



CHAPTER 3

MULTI-WAVELENGTH SCHEDULING IN WDM PONS

3.1 Introduction

HybridWavelength Division Multiplexing (WDM)/Time Division Multiplexing (TDM)

Passive Optical Network (PON) is becoming a promising solution for next-generation

broadband optical access [32, 33]. Instead of using only one wavelength to provision

bandwidth in upstream and downstream as TDM PON does, hybrid WDM/TDM

PON increases the number of working wavelengths in each stream to exploit the high

bandwidth of optical fibers. On the other hand, hybrid WDM/TDM PON bridges

the gap between TDM PON and pure WDM PON, and can be deployed by smoothly

migrating from the currently deployed TDM PON [34–36].

In hybrid WDM/TDM PONs, an important optical device is the optical laser

used for generating optical signals with multiple wavelengths. Depending on the

wavelength generation capability, there are three major classes of lasers available for

use, namely, multi-wavelength lasers, wavelength-specified lasers, and wavelength-

tunable lasers [37]. A multi-wavelength laser is able to generate multiple WDM

wavelengths simultaneously, including multi-frequency laser, Gain-Coupled DFB LD

Array, and Chirped-Pulse WDM. Multi-wavelength lasers are usually used at the

OLT to generate downstream traffic or seed ONUs with optical signals for their

upstream data transmission [38, 39]. Instead of generating multiple wavelengths, a

wavelength-specified laser, e.g., the common distributed feedback (DFB), can only

emit one specific wavelength. Wavelength-specified sources have been extensively

used in BPON, EPON [4], GPON [40], and next-generation access stage 1 (NGA1) [1].

However, with wavelength-specified lasers, no statistical gain can be exploited among

ONUs which can support different wavelengths. Wavelength-tunable lasers are able

30
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to generate multiple wavelengths, but only one wavelength at a time [41, 42]. As

compared to wavelength-fixed lasers, tunable lasers possess advantages in two major

aspects. First, from the perspective of the MAC layer, the wavelength tunability of

tunable lasers facilitates the statistical multiplexing of traffic from all ONUs, thus

potentially yielding better system performance [43,44]. Second, from the perspective

of network operators, tunable lasers enable the color-free property of ONUs, which

further facilitates the simplified inventory management, reduced sparing cost, and

automated wavelength provisioning [35]. Owing to these advantages, wavelength-

tunable lasers are promising light source generators for hybrid WDM/TDM PONs.

One typical example of hybridWDM/TDMPON architectures employing tunable

lasers is SUCCESS [34]. SUCCESS equips OLT with tunable lasers to generate

downstream data traffic and provides ONUs with optical CW bursts for their upstream

data transmission. The wavelength tunability of tunable lasers was exploited to

provision high bandwidth and realize a smooth migration path from current TDM

PONs to WDM PONs. Bock et al. [45] also proposed an architecture of using tunable

lasers at the OLT. In addition to equipping OLT with tunable lasers, the network

equips ONUs with tunable lasers as well. Das et al. [46] proposed to equip each

ONU with a tunable laser to facilitate a fully flexible dynamic bandwidth allocation

in the upstream direction. In Reference [47], an architecture which equips ONUs

with tunable lasers is proposed. With the focus on the laser tuning range which

is an important parameter of tunable lasers, the impact of the laser tuning range

on the network capacity is investigated, and WDM PONs is designed by selecting

lasers with proper tuning ranges to minimize the capital investment of the PON. In

Reference [43], capacities of hybrid WDM/TDM PONs are theoretically analyzed.

Currently, tunable lasers can be manufactured by various technologies such

as mechanical, acousto-optic, or electro-optic tunability. Despite the many kinds

of options, tunable lasers are still costly, thus inhibiting their wide deployment
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in networks. The important cost elements of tunable lasers include “non-optical”

specifications such as package dimension, output power, power variation over

wavelength, and electrical power dissipation, and “optical” specifications such as the

tuning speed and the tuning range [42]. According to the adopted technology, the

tuning time may range from a few tens of nano-seconds (electro-optic) to a few tens

of milli-seconds (mechanical), or even seconds or minutes. Generally, a higher tuning

speed can yield a better system performance. Bock et al. [45] claimed that tuning

times in the range of microseconds offer good network performance at data rates of 2.5

Gb/s. However, the higher the tuning speed, the more sophisticated the technology

is needed, and consequently the higher the tunable laser cost.

This chapter focuses on investigating the impact of laser tuning (wavelength

switching) time on dynamic bandwidth allocation (DBA) algorithms, and consequently

the system performance. The bandwidth allocation refers to either downstream or

upstream bandwidth allocation depending on the placement and usage of tunable

lasers in the network. Laser tuning time constitutes an important consideration

factor in designing DBA algorithms. When the laser tuning time is infinite, lasers

have to stay on the same wavelengths all the time, and requests from ONUs can only

be scheduled on the wavelengths their respective corresponding lasers stayed. No

statistical gain can be exploited among ONUs which can support different wavelengths.

When the laser tuning time is zero, requests can be scheduled on any wavelength

any time. Then, statistical gain among all requests can be exploited. When the

laser tuning time is between zero and infinity, proper DBA algorithms are desired to

exploit the statistical gain among requests to the best under the condition that lasers

are given enough time to switch wavelengths. To the best of our knowledge, this is

the first time that the DBA problem with the consideration of laser tuning time is

reported.
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In this chapter, the DBA problem under the condition of non-zero laser tuning

time is mapped into a multi-processor scheduling problem, with wavelength channels

as machines, and requests from ONUs as jobs. The objective is to minimize the

latest ONU request (job) completion time for the sake of small delay, fairness, and

load balancing. It will be shown that when the laser tuning time is non-zero, both

preemptive and non-preemptive scheduling problems with the objective of minimizing

the latest ONU request (job) completion time are NP-hard. Heuristic preemptive and

non-preemptive scheduling algorithms are then presented to address the scheduling

problems, respectively. Theoretical analyses show that the heuristic preemptive

scheduling algorithm achieves an approximation ratio of at most 2 and the heuristic

non-preemptive scheduling algorithm achieves an approximation ratio of at most

2 − 1/m, where m is the number of wavelengths. Simulation results show that

our proposed algorithms with the consideration of the laser tuning time have made

significant performance improvement as compared to previous algorithms without

considering the laser tuning time. It is also shown that the preemptive scheduling

scheme has some advantages over non-preemptive scheduling in terms of average delay

and average throughput when the number of wavelengths is large and the number

of ONUs is small. The advantages diminish with the decrease of the number of

wavelengths and the increase of the number of ONUs. Note that this chapter assumes

that all lasers have the same optical specifications including tuning time and tuning

range for the color-free purpose.

The rest of the chapter is organized as follows. Section 3.2 describes the

media access control, the scheduling framework, and the scheduling policy in hybrid

WDM/TDM PON. Section 3.3 maps the DBA problem into a multi-processor

scheduling problem, and presents the formal problem formulation. Section 3.4

presents preemptive scheduling schemes in a single cycle, and Section 3.5 describes

non-preemptive scheduling schemes in a single cycle. Section 3.6 discusses the
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scheduling problem in multiple DBA cycles. Section 3.7 presents simulation results

and analyses. Section 3.8 presents concluding remarks.

3.2 Media Access Control, Scheduling Framework, and Scheduling

Policy

For the downstream transmission in hybrid WDM/TDM PONs, the downstream

incoming packets are queued in buffers at the OLT upon arrivals. Then, OLT

determines the downstream bandwidth allocated to ONUs, and sends the downstream

packets out to ONUs. Different from the downstream transmission, the upstream

transmission in hybrid WDM/TDM PONs needs a proper MAC protocol to avoid data

collision among ONUs. For backward compatibility, the MAC layer control protocol

of hybrid WDM/TDM PONs inherits some characteristics from those of EPON

and GPON, two major flavors of the existing TDM PONs. The data transmission

processes of the two PONs are similar and can be generalized as follows: ONUs report

their queue lengths and send their data packets to OLT using time slots allocated

by OLT; OLT collects queue requests, makes bandwidth allocation decisions, and

then notifies ONUs when and on which channel they can transmit packets. Such

a request-grant based transmission mechanism is highly likely to be adopted in

hybrid WDM/TDM PONs for consistency [48–50]. Following the assumption of a

request-grant based MAC control mechanism, OLT gathers most of the intelligence

and control of the network, and its functions determine the performance of the

network.

Formerly, McGarry et al. [31] introduced the concept of the scheduling framework

and scheduling policy to address the issues on when and how OLT performs DBA,

respectively. Three scheduling frameworks were defined, i.e., on-line scheduling,

off-line scheduling, and just-in-time scheduling. On-line scheduling refers to the

operation that OLT determines bandwidth allocated to an ONU immediately after
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receiving this ONU’s request; off-line scheduling refers to the operation that OLT

performs DBA after receiving queue requests from all ONUs. Both on-line scheduling

and off-line scheduling have their advantages and disadvantages. On-line scheduling

enables ONUs get immediate grants. However, the bandwidth allocation decision

is made based on only one ONU’s request. This may result in unfairness for other

ONUs with upcoming requests. Off-line scheduling achieves better fairness by making

decisions based on the requests of all ONUs. However, it incurs delays for ONUs

to receive grants, and underutilizes the gap between the time that OLT sends out

grant and the time that OLT receives the report from the first ONU. To overcome

the near-sight problem of on-line scheduling and the underutilization problem of

off-line scheduling, McGarry et al. [31] proposed just-in-time scheduling, where OLT

postpones the decision making time until one channel is about to become idle. The

decision making time in just-in-time scheduling is later than that in on-line scheduling,

and is earlier than that in off-line scheduling. These three scheduling frameworks

show similar advantages and disadvantages when they are applied in downstream

scheduling.

The scheduling policy addresses the problem of how to perform DBA. It

involves two problems: wavelength assignment and time allocation. For wavelength

assignment, the earliest-channel-available-first rule was proposed to be employed

with the assumption that each ONU can support all wavelengths [48, 50]. To make

the algorithm applicable to the case that ONUs may support only a subset of the

wavelengths, McGarry et al. [49] modified the earliest-channel-available-first rule

into next-available-supported-channel-first. In [31], McGarry et al. converted the

wavelength assignment problem into a matching problem between wavelengths and

ONUs, and proposed Weighted Bipartite Matching to solve the matching problem.

In [51], McGarry et al. modeled the problem into a multiprocessor scheduling problem

and proposed to use longest processing time (LPT) first rule to address the minimizing
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makespan problem for the case that ONUs can access all the wavelengths. When

ONUs can access a limited set of wavelengths, they schedule ONUs with the least

flexible job (LFJ) first rule. Meng et al. [52] studied the joint grant scheduling and

wavelength assignment problem. They formulated it into a mixed integer linear

programming (MILP) problem, and employed tabu search to obtain the optimal

solution. For the time allocation problem, the time allocated to ONUs usually

equals to its corresponding request when the on-line scheduling framework is adopted.

In off-line scheduling, Dhaini et al. [50] proposed three time allocation algorithms,

whereby low-load ONUs can always have their requests satisfied and high-load ONUs

share the excess bandwidth by using different methods.

This chapter focuses on investigating the scheduling policy for off-line scheduling

and just-in-time scheduling frameworks. Our objective is to consider laser tuning

time and propose proper scheduling policy to exploit the benefit introduced by laser

tunability to the best. The proposed scheduling policy can be applied in both

downstream and upstream scheduling where tunable lasers are used to generate

optical signals. To the best of our knowledge, this is the first time that the scheduling

problem with the consideration of laser tuning time is investigated in WDM PONs.

Formerly, scheduling schemes with the consideration of the laser tuning time

have been proposed for WDM broadcast-and-select networks [53], where each network

node is configured with one tunable transmitter (TT) or fixed transmitter (FT),

and one tunable receiver (TR) or fixed receiver (FR). The scheduling problem

under the “FT-TR” configuration is the dual problem of that under the “TT-FR”

configuration. The scheduling problems under both configurations have received

extensive research attention [54–57]. Consider the “TT-FR” configuration. Since the

receiver at each node is fixed tuned, the traffic to be scheduled on each wavelength

is determined. The scheduling problem is reduced to the problem of sequencing

requests on each wavelength channel such that enough time durations are left for
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two requests originating from the same node and the schedule length is minimized.

This is different from the DBA problem to be addressed in this chapter, which

involves both wavelength assignment and time allocation problems. For the “TT-TR”

configuration, Rouskas et al. [58] decomposed it into two subproblems: determine the

wavelength tuned by each receiver, and determine the scheduling time of the request

of each node pair. The latter problem is equivalent to the problem under the “TT-FR”

and “FT-TR” configurations. The former problem is similar to the DBA problem in

WDM PONs, which is going to be addressed in this chapter. For the former problem,

Baldine et al. [59] considered the variation of traffic patterns, and tried to adjust the

wavelengths tuned by receivers to accommodate the new traffic pattern such that the

total number of retunings is minimized. In this way, a small total amount of time

is spent in the tuning process, and thus high bandwidth utilization may be achieved

since the wavelength channel may be idle during the tuning. This chapter assumes

that, during the retuning time that a receiver retunes to a wavelength, the objective

wavelength can be used by other receivers, and thus a higher and even 100% time

utilization can be achieved. Constructing a schedule which can fully utilize these

retuning time durations can be considered as the objective of this chapter. As will

be discussed next, the problem can be considered as one multiprocessor scheduling

problem where jobs take nonnegligible time to switch wavelengths.

3.3 Modeling and Problem Formulation

The bandwidth allocation problem in hybrid WDM/TDM PONs in a single DBA

cycle discussed in this chapter can be described as:

Given the laser tuning time, requests from n ONUs, the available time of m

wavelength channels, and the wavelength initially tuned by each laser, construct a

schedule of the minimum length such that all requests can be accommodated and

lasers are given enough time to switch wavelengths.
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The bandwidth allocation problem in WDM/TDM PONs can be mapped into a

multi-processor scheduling problem [60], with ONU requests as jobs, and wavelength

channels as machines. Jobs and machines in this particular problem possess their

respective unique characteristics.

3.3.1 Wavelengths → Machines

Assume data rates are the same on all wavelengths. Wavelength channels are modeled

as parallel machines. Note that these wavelength channels may not be simultaneously

available.

3.3.2 ONU Requests → Jobs

There are two options to model jobs. The first one is to model each queue request of

an ONU as an individual job. However, owing to the laser on/off time, some guard

time is needed between scheduling of jobs from different ONUs. To save the guard

time, jobs from the same ONU should be scheduled consecutively, and thus can be

grouped together as a single job for simplicity. This chapter regards the total requests

of an ONU as a single job. Then, jobs possess two main properties. First, owing to

the laser tuning time, a certain time gap is needed between the scheduling of jobs

from the same ONU on different wavelength channels. Second, a job can be divided

into subjobs, corresponding to requests of queues in the ONU, and each subjob can

be further divided into subjobs, corresponding to requests of packets in the queue.

In GPON with the allowance of packet fragmentation, scheduling of a packet can

even be divided into scheduling of its partial packets, while in EPON without packet

fragmentation, scheduling of a packet cannot be further divided. Therefore, jobs are

preemptable in hybrid WDM/TDM GPON, and preemptable in a certain degree in

hybrid WDM/TDM EPON.
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In multi-processor scheduling, preemption enables jobs to be scheduled more

flexibly, and thus yielding better system performances as compared to non-preemption.

However, when preemption is allowed, jobs may be divided and scheduled in non-

continuous time periods, which incur some extra time gap for laser on/off. It is not

easy to tell whether the extra cost introduced by the guard time outweighs the extra

performance improvement introduced by flexibility. This chapter simply assumes

zero guard time for laser on/off, and investigates and compares the performances of

preemptive and non-preemptive scheduling.

3.3.3 Scheduling Objective

In assigning wavelengths to ONUs, the objective is to minimize the latest job completion

time among all requests and equalize the usage of all wavelength channels for two

main reasons. First, assume one wavelength is more loaded than another one. ONUs

assigned with the over-loaded wavelength may experience longer waiting time than

those using the other wavelength. Equalizing the wavelength usage can ensure fairness

among ONUs. Second, in terms of the just-in-time scheduling framework, OLT makes

bandwidth allocation decisions before any of the wavelengths becomes idle. If all

wavelengths become idle simultaneously, the scheduler can collect the requests from

most of the ONUs, and thus make a fair decision. If one wavelength turns idle

much earlier than the others, few requests arrive at the scheduler before the decision

making time. In the worst case, just-in-time scheduling may be degraded into on-line

scheduling, which makes the decision for one ONU request only. This will result in

unfairness and increase the frequency of calculating bandwidth allocation.

Therefore, for the sake of small delay, fairness, and load balancing, minimizing

the latest job completion time is considered as the scheduling objective.
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3.3.4 Formal Problem Formulation

To mathematically formulate our scheduling problem, the definition of a DBA cycle

is introduced. A DBA cycle in hybrid WDM/TDM PON refers to the time difference

between two consecutive DBA decision making instances.

Formally, our problem of DBA in a single DBA cycle can be stated as follows:

Given:

1. n : The number of ONUs.

2. m : The number of wavelengths.

3. τ : The laser tuning time.

4. t : The decision making time of the current cycle.

5. r = {r1, r2, ..., rn} : The time durations of requests from n ONUs.

6. {λ−1
1 , λ−1

2 , ..., λ−1
n } : The wavelengths tuned by lasers at respective ONUs at the

decision making time t.

7. {C−1
1 , C−1

2 , ..., C−1
m } : The latest job completion time on m wavelengths in the

last cycle.

Define:

1. γw: The sum of all requests with λ−1
i = w, i.e., γw =

∑

{i|λ−1

i
=w} ri.

2. Sp(r, τ), S p̄(r, τ): The preemptive and non-preemptive schedules with respect

to requests r and the laser tuning time τ .

3. CS,p
w (r, τ), CS,p̄

w (r, τ): The latest job completion time on wavelength w in schedule

Sp and S p̄, respectively.
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4. CS,p
max(r, τ), C

S,p̄
max(r, τ): The latest job completion time among all wavelengths in

schedule Sp and S p̄, respectively. CS,p
max(r, τ) = maxmw=1C

S,p
w (r, τ). CS,p̄

max(r, τ) =

maxmw=1C
S,p̄
w (r, τ).

Objective:

Find the optimal preemptive schedule Sp and non-preemptive schedule Sp̄ such

that CS,p
max(r, τ) ≤ CS,p

max(r, τ) for all other S
p, and CS,p̄

max(r, τ) ≤ CS,p̄
max(r, τ) for all other

S p̄.

Subject to:

1. Each request is allocated with sufficient time duration to be transmitted.

2. Each laser is given sufficient time to switch wavelengths if necessarily.

3. One laser cannot transmit on multiple wavelengths simultaneously.

To describe our proposed schemes, the following notations are further introduced.

Denote αi,w as the earliest time that wavelength w can be allocated to the

request from ONU i.

• For the downstream transmission, lasers can get the time allocation decision

from the decision maker as early as the decision making time t. Consider the

tuning time for lasers to switch wavelengths; laser i can tune to wavelength w

at time t if λ−1
i = w and time t + τ if λ−1

i ̸= w. On the other hand, the latest

job completion time on m wavelengths are {C−1
1 , C−1

2 , ..., C−1
n } in the former

cycle. Therefore,

αi,w =











max{C−1
w , t} if λ−1

i = w

max{C−1
w , t+ τ} otherwise

• For the upstream transmission, laser i needs to wait for RTTi/2 time duration to

receive the decision sent from the OLT, and the upstream traffic needs another
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RTTi/2 time to arrive at OLT. Considering both the laser tuning time and the

latest job completion time in the last cycle,

αi,w =











max{C−1
w , t+RTTi} if λ−1

i = w

max{C−1
w , t+ τ +RTTi} otherwise

For simplicity, assume RTTi = RTT ′
i , ∀i ̸= i′, in this chapter. Then, for both

upstream and downstream transmissions, αi,w = αi′,w, ∀i with λ−1
i ̸= w, and ∀i′

with λ−1
i′ ̸= w. For notational convenience, αi,w for request i with λ−1

i = w is denoted

as al, and αi,w for request i with λ−1
i ̸= w is denoted as au. al ≤ au ≤ al + τ , i.e.,

αi,w =











alw if λ−1
i = w

auw otherwise
.

Next, the preemptive and nonpreemptive scheduling algorithms are investigated,

respectively.

3.4 Preemptive Scheduling in a Single Cycle

The problem is equivalent to the preemptive multiprocessor scheduling problem with

the objective of minimizing makespan subject to the constraints that machines are

non-simultaneously available and jobs take non-negligible time to switch machines.

When the laser tuning time τ = 0, and all wavelengths channels are available

from the same time, i.e., alw = alw′ , ∀w ̸= w′, the problem is equivalent to the

p|pmtn|Cmax multiprocessor scheduling problem [61], which can be easily solved.

When τ = 0 and wavelength channels are not simultaneously available, i.e., ∃w ̸=

w′, alw ̸= alw′ , the problem can be solved by slightly modifying the algorithm for the

p|pmtn|Cmax problem.

When the laser tuning time τ = +∞, the request from ONU i can only be

scheduled on the original wavelength λ−1
i tuned by ONU i. The latest job completion

time on wavelength w equals to alw+
∑

{i|λ−1

i
=w} ri. Among all wavelengths, the latest
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job completion time CS,p
max(r,+∞) equals to maxmw=1 (a

l
w +

∑

{i|λ−1

i
=w} ri). Therefore,

CS,p
max(r,+∞) =

m
max
w=1

(
∑

{i|λ−1

i
=w}

ri + alw)

When the laser tuning time τ is an arbitrary value, this is the first time that the

problem is investigated. The preemptive scheduling problem is shown to be NP-hard.

Theorem 2. When the laser tuning time τ is arbitrary, the preemptive scheduling

problem with the objective of minimizing the latest request completion time is NP-hard.

Proof. Consider the following downstream traffic scheduling problem with

C−1
w =











t+ τ if w = 1

t otherwise

λ−1
i = 1 ∀i, and ri ∈ [ℓ − t − 2τ, ℓ − t − τ ], ∀i. Then, after checking all i and w,

αi,w = t + τ, ∀i, w. Since αi,w + ri ≤ ℓ and αi,w + ri + τ ≥ ℓ, any request can be

scheduled on any wavelength, but cannot be divided into parts and scheduled on

multiple wavelengths. The time duration which can be allocated on any wavelength

equals to (ℓ−t−τ). The problem of determining whether all requests can be scheduled

before ℓ is equivalent to the problem of deciding whether all these given requests can

be divided into m groups, in which the sum of requests in each group is no greater

than ℓ − t − τ . The latter problem is equivalent to the bin packing problem, which

is NP-hard [62]. Hence, the preemptive scheduling problem with the objective of

minimizing the latest request completion time is NP-hard when the laser tuning time

τ is arbitrary.

Because of the NP-hard property, heuristic algorithms is next proposed to solve

the problem.
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3.4.1 Naive Preemptive Scheduling

The first preemptive scheduling algorithm to be proposed, referred to as naive

preemptive scheduling, is based on the schedules constructed for τ = 0 and τ = +∞,

respectively.

Since lasers with smaller tuning time yield a smaller latest job completion time,

for any given requests r, CS,p
max(r, τ) ≤ CS,p

max(r, τ + ϵ), ∀ϵ > 0. Hence,

CS,p
max(r, 0) ≤ CS,p

max(r, τ) ≤ CS,p
max(r,+∞)

The main idea of naive preemptive scheduling is to first construct a schedule

Sp(r, 0) assuming that the laser tuning time is zero, and a schedule Sp(r,+∞)

assuming that the laser tuning time is +∞. Then, naive preemptive scheduling

adjusts the schedule Sp(r, 0) to give all lasers enough time to switch wavelengths. If

the schedule length is less than the length of Sp(r,+∞), the adjusted schedule based

on Sp(r, 0) is considered as the final schedule; otherwise, Sp(r,+∞) is considered as

the final schedule. Algorithm 6 details the proposed naive preemptive scheduling.

The part between Line 2 and Line 10 in Algorithm 6 is to construct a schedule

assuming that the laser tuning time is zero. For the scheduling algorithm with zero

laser tuning time, the main idea is to try different number ℓ and decide whether there

exists a schedule whose latest job completion time is ℓ. Finally, the schedule with the

minimum latest job completion time can be obtained.

For a given ℓ, requests are first sorted in the descending order of their sizes, and

wavelengths are sorted in the ascending order of their available time as described

in Line 3 and Line 4. The sorting is to make sure that large requests receive

enough allocations of nonoverlapping time durations. Then, the time resource on

a wavelength is assigned to requests one by one from the back of the time span until

the time on that wavelength is used out. If the remaining time on a wavelength
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Algorithm 6 Naive preemptive scheduling

1: ℓ = (
∑

i ri +
∑

w aw)/m

2: while The smallest latest request completion time ℓ has not been found do

3: Index ONU requests such that r1 ≥ r2 ≥ ... ≥ rn

4: Index wavelengths such that al1 ≤ al2 ≤ ... ≤ alm

5: Select an ONU request and a wavelength

6: Schedule the request on the back of the wavelength. If the remaining time on a

wavelength is not enough for the request, schedule the remaining unscheduled

part of the request to another wavelength.

7: if Not all requests can be scheduled before ℓ then

8: Find a proper ℓ

9: end if

10: end while

11: Postpone the scheduling of all requests on a wavelength by τ

12: Postpone the scheduling of the last request on a wavelength by τ

13: If the length of the constructed schedule is longer than CS,p
max(r,+∞), Sp(r,+∞)

is considered as the final schedule.
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is not enough to satisfy a request, the unscheduled part will be moved to the next

wavelength as described in Line 6.

To generate a feasible schedule which gives lasers sufficient time to switch

wavelengths, some further adjustments are performed. The first step is to postpone

the scheduling of all requests by τ as described in Line 11. The second step is to

postpone the scheduling of the last request on each wavelength by τ as described in

Line 12.

Next will prove that the schedule produced by naive preemptive scheduling is a

feasible schedule under the condition that the laser tuning time equals to τ .

Lemma 1. The schedule produced by Algorithm 6 is a feasible schedule for the case

that the laser tuning time equals to τ .

Proof. Since all requests are postponed by time τ , the corresponding laser for request

i is idle during [alw, a
l
w + τ ], and laser i is given enough time to schedule the first

request. Besides, in the schedule Sp(r, 0), only requests scheduled at the beginning

or the end of the time span of a wavelength may be preempted. In Line 12, the last

scheduled request on each wavelength is postponed by τ , and hence lasers are given

sufficient time to schedule the last scheduled request.

Therefore, in the schedule produced by Algorithm 6, all requests have been

scheduled, and lasers are all given enough time to switch wavelengths.

The following theorem can be derived regarding to CS,p
max(r, τ) produced by naive

preemptive scheduling.

Theorem 3. For a given r, the schedule S produced by Algorithm 6 has the property

that CS,p
max(r, τ) = min{CS,p

max(r, 0) + 2τ, CS,p
max(r,+∞)}, and consequently the optimal

schedule S(r, τ) has the property that CS,p
max(r, τ) ≤ min{CS,p

max(r, 0)+2τ, CS,p
max(r,+∞)}

Proof. The “while” loop between Line 2 and Line 10 optimally solves the scheduling

problem under the condition of zero laser tuning time. As compared to the schedule
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with zero laser tuning time, the latest job completion time on each wavelength in

the final schedule is increased by 2τ . Thus, CS
max(r, τ) obtained by naive preemptive

scheduling equals to min{CS
max(r, 0)+2τ, CS

max(r,+∞)}. Since CS,p
max(r, τ) ≤ CS,p

max(r, τ),

CS,p
max(r, τ) ≤ min{CS

max(r, 0) + 2τ, CS
max(r,+∞)}.

Computational Complexity: The complexities of the two ordering processes

are O(n log(n)) and O(m log(m)), respectively. The complexity of the “for” loop in

Algorithm 6 is O(n). Lines 11, 12, and 13 are all of complexity of O(n). Hence, the

total complexity of Algorithm 6 is O(n log(n) +m log(m)).

The example with 8 ONUs and 3 wavelengths as shown in Figure 3.1 illustrates

Algorithm 6. Figure 3.1 (a) shows the constructed schedule assuming that the laser

tuning time equals to zero. Request 1 is allocated with the time duration [6,14] on

wavelength 1. The remaining time duration on wavelength 1 is not enough to satisfy

request 2. Part of request 2 is scheduled in time duration [0,6] on wavelength 1 and

the other part is scheduled in time duration [13,14] on wavelength 2. Similarly, part of

request 4 is scheduled on wavelength 2, and the other part is scheduled on wavelength

3. All the requests can be scheduled before time 14. Figure 3.1 (b) shows the final

schedule after adjustment. When τ = 1.5, the latest job completion time is increased

from 14 to 17.

3.4.2 Heuristic Preemptive Scheduling

In the schedule produced by Algorithm 6, there are two idle time gaps of duration τ

on each wavelength. One is the time gap between alw and alw+ τ , and the other one is

the time gap before the scheduling of the last request on the wavelength. To produce

a schedule S with CS
max(r, τ) smaller than min{CS

max(r, 0) + 2τ, CS
max(r,+∞)}, these

idle time gaps need to be filled to the best. To this end, a heuristic preemptive

scheduling algorithm can be proposed as described in Algorithm 7.

Algorithm 7 constructs the schedule according to three basic rules.
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Request i 1 2 3 4 5 6 7 8

8 7 7 5 4 3 2 1

8 7 6 5

3 24

2 1

0 2 14 time4

4

6 8 10 12

Wavelength w 1 2 3

320

320

(a) The preemptive schedule when τ = 0
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(b) The preemptive schedule when τ = 1.5

Figure 3.1 An example of naive preemptive scheduling when τ = 1.5.



49

• Since the time gap between alw and auw on wavelength w can only be filled

by requests with λ−1
i = w, Algorithm 7 fills this time gap with requests with

λ−1
i = w to the best. Request i is scheduled on a wavelength other than its

originally tuned wavelength λ−1
i only if the gap filling between al

λ−1

i

and au
λ−1

i

is

not affected after the scheduling.

• Similar to Algorithm 6, to guarantee that large requests receive enough

bandwidth, the resource in the wavelength with the smallest alw is allocated

first, and the largest request is scheduled first.

• Similar to Algorithm 6, preemption is disallowed in the middle of the time span

on a wavelength. If one request is preempted and scheduled during [µ, ν] on a

wavelength, this request cannot be scheduled during µ − τ and ν + τ on any

wavelength, thus resulting in smaller chances of scheduling the remainder of the

request in other wavelengths.

More specifically, Algorithm 7 divides the resource allocation process on a

wavelength into two steps. The first step is to allocate the time duration between

auw and ℓ. The second step is to allocate the time duration between alw and auw. The

time duration between auw and ℓ on wavelength w can be allocated to any request,

while the time duration between alw and auw on wavelength w can only be allocated

to requests with λ−1
i ̸= w.

Step 1: The Allocation Between auw and ℓ: When allocating the resource

between auw and ℓ, the largest request is considered first. To avoid preemption in the

middle of the schedule, a request is scheduled on wavelength w only if the remaining

available time duration after auw is enough to accommodate the request. On the other

hand, since allocating request i to wavelength w will decrease the total traffic γλ−1

i

which can be used to fill the gap between al
λ−1

i

and au
λ−1

i

on wavelength λ−1
i , request
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Algorithm 7 Heuristic Preemptive Scheduling

1: Initialize xw = γw, yw = ℓ

2: Index wavelengths such that al1 ≤ al2 ≤ ... ≤ alm

3: for w = 1 : m do

4: /*Step 1: The allocation between auw and ℓ*/

5: Index unscheduled requests such that r1 ≥ r2 ≥ ...

6: for i = 1 : n do

7: if ri ≤ yw − auw & xλ−1

i
− ri ≥ (au

λ−1

i

− al
λ−1

i

) then

8: Allocate time duration [yw − ri, yw] to request i

9: yw = yw − ri, xλ−1

i
= xλ−1

i
− ri

10: end if

11: end for

12: Denote xw and yw as x∗w and y∗w, respectively.

13: /*Step 2: The allocation between alw and y∗w*/

14: Index unscheduled requests with λ−1
i = w such that r1 ≥ r2 ≥ ...

15: i = 1

16: while there is available time on wavelength w and there are unscheduled

requests with λ−1
i = w do

17: if ri ≤ yw − alw then

18: Allocate time [yw − ri, yw] on wavelength w to request i

19: else

20: Allocate time [alw, yw] on wavelength w and time [ℓ− (ri − yw + alw), ℓ] on

wavelength w + 1 to request i

21: yw+1 = ℓ− (ri − yw + alw)

22: end if

23: i = i+ 1

24: end while

25: end for
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i is allocated onto wavelength w only if the gap filling between al
λ−1

i

and au
λ−1

i

is not

affected. The conditions are described in Line 7 of Algorithm 7.

xw is used to track the total traffic which can fill the gap between alw and auw, and

yw to track the last available time stamp on wavelength w. xw and yw are initialized

to be γw and ℓ, respectively. The time duration between alw and yw is the resource

which is still available on wavelength w. Denote xw and yw after performing the first

step as x∗w and y∗w, respectively. The first step tries to let y∗w approach auw without

affecting the filling of the gap between alw and auw, ∀w.

Step 2: The Allocation Between alw and auw: After performing the first

step, the available time duration on wavelength w is actually between alw and y∗w. The

second step of allocating the time between alw and y∗w considers the largest unscheduled

request with λ−1
i = w first. If the remaining time is not enough to schedule the

request, the remaining unscheduled part of the request is scheduled onto the next

wavelength as described in Line 20.

It can be seen that if x∗w ≥ y∗w − alw, the time duration between alw and y∗w on

wavelength w can be allocated, and there is no idle time gap on wavelength w. If

x∗w < y∗w − alw, the time duration between alw and y∗w − x∗w on wavelength w is idle.

Algorithm 7 takes two measures to reduce the duration of the idle time gap. One is

to let y∗w approach auw to the best, and the other one is to make sure that x∗w is always

above auw − alw if γw ≥ auw − alw.

Analysis: Theorem 4 describes the upper bound of CS,p
max(r, τ) produced by

Algorithm 7.

Theorem 4. For given r and τ , schedule S produced by Algorithm 7 has the property

that CS,p
max(r, τ) ≤ CS,p

max(r, τ) + maxni=1 ri, where S is the optimal schedule with the

minimum latest request scheduling time.

Proof. This theorem is proven by showing that when ℓ = CS,p
max(r, τ) + maxni=1 ri,

Algorithm 7 can schedule all requests before ℓ.
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Denote gapw and gapw as the duration of idle time on wavelength w in schedule

S produced by Algorithm 7 and that in the optimal schedule S. As described above,

when x∗w ≥ y∗w − alw, there is no idle time on wavelength w; otherwise, the time

between alw and y∗w − x∗w on wavelength w is idle, and gapw equals to y∗w − x∗w − alw.

Also, it is known from the above that x∗w











≥ auw − alw if γw ≥ auw − alw

= γw otherwise
. Thus,

gapw











≤ y∗w − auw if γw ≥ auw − alw

= y∗w − γw − alw otherwise.

On the other hand, in the optimal schedule S, when γw < auw − alw, there must be

some idle time duration between alw and auw, and gapw = auw − alw − γw. Accordingly,

it can be further obtained that gapw ≤ gapw + y∗w − auw for all w. In Step 1, y∗w is let

to approach auw to the best by trying every unscheduled job. It can be easily obtained

that y∗w − auw ≤ maxni=1 ri if there is still an unscheduled job which does not have to

be scheduled on its originally tuned wavelength. Then,

gapw ≤ gapw + y∗w − auw ≤ gapw +
n

max
i=1

ri

Therefore, all requests can be scheduled before CS,p
max(r, τ)+maxni=1 ri by using Algorithm

7.

Corollary 1. The approximation ratio of the heuristic preemptive scheduling algorithm

is at most 2.

Proof. Based on Theorem 4, CS,p
max(r, τ) ≤ CS,p

max(r, τ)+maxni=1 ri. On the other hand,

CS,p
max(r, τ) ≤ maxni=1 ri. Therefore,

CS,p
max(r, τ)/C

S,p
max(r, τ) ≤ 2

That is to say, the approximation ratio is at most 2.
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Computational Complexity: The ordering process in Line 2 of Algorithm 7

has the complexity of O(mlog(m)). The “for” loop in Step 1 has the complexity of

O(n). The total complexity of performing Step 1 is O(mn). The complexity of Step 2

is O(nlog(n)). Hence, Algorithm 7 has the complexity of O(mn+mlog(m)+nlog(n)).

Taking the example with 12 ONUs and 4 wavelengths, Figure 3.2 illustrates the

algorithm. The laser tuning time τ = 5. The decision making time t = 0. The latest

job completion time on wavelengths in the last cycle are 0, 1, 1, and 2, respectively.

Then, al = {0, 1, 1, 2}, au = {5, 5, 5, 5}, and ℓ = 15. Request 1 with the largest

size cannot be scheduled on wavelength 1 because the bandwidth from au1 to ℓ is not

enough to satisfy Request 1. Request 2 satisfies all conditions and is scheduled on

wavelength 1. After scheduling Request 2, the remaining time duration between au1

and ℓ can only accommodate requests with sizes no greater than 3. Request 8 with

size 3 is not scheduled between au1 and ℓ on wavelength 1 because the gap between

al1 and au1 cannot be filled without Request 8. After scheduling Request 9 , the time

between au1 and ℓ on wavelength 1 has been all allocated. The scheduling enters

into the second step of allocating [al1, a
u
1 ]. After scheduling Request 6 which is the

largest among all requests with λ−1
i = 1, the remaining time duration is not enough to

schedule the next largest request, i.e., Request 8 with 3. Hence, Request 8 is divided

into two parts, among which the first part of size 1 is scheduled on wavelength 1 and

the second part of size 2 is scheduled on wavelength 2. After repeating this process,

all requests can be scheduled before ℓ = 15.

3.5 Non-preemptive Scheduling in a Single Cycle

When the laser tuning time τ = 0, the non-preemptive scheduling problem was proved

NP-hard [61]. For the case that all wavelength channels are available at the same

time, i.e., alw = alw′ , ∀w ̸= w′, the problem is equivalent to the p||Cmax multiprocessor

scheduling problem. LPT was shown to have 4/3 − 1/n approximation ratio, and
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Request i 1 2 3 4 5 6 7 8

344667711 3

9

14122324 4

10 11

22 1

12

32 3

8

0 5

Assume the tuning time is 5.

15

1

6

12

5 7

8 2

4

34

1011

9

5

10

Wavelength w 1 2 3

000

4

0

555 5

Figure 3.2 One example of heuristic preemptive scheduling when τ = 5.

the MULTIFIT algorithm is with a smaller approximation ratio of 72/61 [63]. When

the wavelength channels are non-simultaneously available, Lee et al. [64] proposed

modified LPT (MLPT) to achieve 4/3 approximation ratio. Lin et al. [65] showed

that 4/3 is the exact bound for MLPT when the number of processors is greater than

two, and the approximation ratio is 5/4 when the number of processors equals to two.

Chang et al. [66] showed that the approximation ratio of the MULTIFIT algorithm is

9/7 + 2−k, where k is the selected number of the major iterations in the MULTIFIT.

This is the smallest one known so far.

When 0 < τ < +∞, the problem is NP-hard since it is not easier than the

problem under the case that τ = 0. Two heuristic algorithms are then proposed to

address it.

3.5.1 Naive Nonpreemptive Scheduling

As described in Algorithm 8, naive nonpreemptive scheduling is based on the algorithm

proposed for the τ = 0 case. This chapter uses the MULTIFIT algorithm to construct

the nonpreemptive schedule for the τ = 0 case.
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In Algorithm 8, schedule S with the assumption of zero laser tuning time is first

constructed by using the MULTIFIT algorithm. Then, the scheduling of all requests

are postponed by time τ to give lasers sufficient time to switch wavelengths.

Algorithm 8 Naive Nonpreemptive Scheduling

1: Construct schedule S by using MULTIFIT.

2: Postpone scheduling of all requests in S by time τ

Since preemption is disallowed in schedule S, each request is scheduled on one

wavelength only in schedule S. By postponing all requests in S(r, 0) with a time

duration of τ , the time period between alw and alw + τ is idle, and hence lasers can

have sufficient time to switch wavelengths.

From Algorithm 8, the following theorem can be derived regarding to CS,p̄
max(r, τ).

Theorem 5. For a given r, CS,p̄
max(r, τ) ≤ CS,p̄

max(r, 0) + τ .

Proof. For a given r, assume S is the optimal schedule for the case that τ = 0. If

all requests in S are postponed by τ time duration, the newly obtained schedule is a

feasible schedule for the case that τ ̸= 0. Hence, CS,p̄
max(r, τ) ≤ CS,p̄

max(r, 0) + τ .

3.5.2 Heuristic Nonpreemptive Scheduling

In the schedule produced by Algorithm 8, the time duration between alw and alw + τ

is unoccupied. To generate a schedule with a smaller latest job completion time,

Algorithm 9 is proposed by filling idle time durations on all wavelengths. Algorithm

9 contains two steps. The first step is to allocate the time period between alw and auw

on wavelength w for requests with λ−1
i = w. Large jobs are given higher priorities

over small jobs since they are not easy to switch wavelengths. The second step is

to allocate the time period between alu and ℓ. The MULTIFIT algorithm is applied

directly in the second step.

Theorem 6. The approximation ratio of Algorithm 9 is at most 2− 1/m.
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Algorithm 9 Heuristic Nonpreemptive Scheduling

1: /*Step 1: Schedule between alw and auw*/

2: for w = 1 : m do

3: Index requests with λ−1
i = w such that r1 ≥ r2 ≥ r3....

4: Allocate time to requests with λ−1
i = w until the time exceeds auw

5: end for

6: /*Step 2: Schedule between auw and ℓ*/

7: Run the MULTIFIT algorithm to allocate bandwidth to the remaining

unscheduled requests

Proof. Let job x be the last job assigned to all m wavelengths. The processing time of

job x is rx. Also, let s be the start time that job x is processed. Then, the latest job

completion time equals to rx+s. Let βw = max{τ −
∑

{i|λ−1

i
=w} ri, 0}. βw denotes the

time duration between time αl
w and αu

w which cannot be filled anyway. It is easy to see

that, with Algorithm 9, s < (
∑x−1

i=1 ri+
∑n

i=x+1 ri+
∑m

w=1 (α
l
w + βw))/m. s+ rx/m <

(
∑x−1

i=1 ri+
∑n

i=x+1 ri+
∑m

w=1 (α
l
w + βw))/m+rx/m = (

∑n
i=1 ri+

∑m
w=1 (α

l
w + βw))/m+

(m − 1)rx/m. On the other hand, the optimal value CS,p̄
max(r, τ) must not be less

than (
∑n

i=1 ri +
∑m

w=1 (α
l
w + βw))/m. Therefore, s + rx < CS,p̄

max(r, τ) + (1− 1/m)rx.

Also, it is known that CS,p̄
max(r, τ) > rx. Consequently, it can be obtained that (s +

rx)/C
S,p̄
max(r, τ) < 2− 1/m. So, the approximation ratio is at most 2− 1/m.

Computational Complexity: The ordering process in Step 1 of Algorithm 9

has the complexity of O(nlog(n)). The allocation process in Step 1 has the complexity

of O(n). Hence, the complexity of Step 1 in Algorithm 9 is O(nlog(n)). Algorithm

8 has the complexity of O(nm). Therefore, Algorithm 9 has the complexity of

O(nlog(n) + nm).

Taking the same example as shown in Figure 3.2, Figure 3.3 illustrates Algorithm

9. Assume the tuning time is 5 and ℓ = 13. After the first step, jobs 2, 3, 4, 8, and 10
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Figure 3.3 An example of heuristic nonpreemptive scheduling when 0 < τ < +∞.

still use their last tuned wavelengths. After the second step, all the remaining jobs

are successfully scheduled before time 13. Note that ℓ cannot be further decreased.

The latest job completion time is thus 13.

3.6 Discussions on the Scheduling in the Multi-cycle Scenario

As discussed before, besides the decision making time t, the laser tuning time τ ,

and requests r, the latest job completion time also depends on {C−1
1 , C−1

2 , ..., C−1
w }

and {λ−1
1 , λ−1

2 , ..., λ−1
m }, which are determined by the schedule in the last

cycle. The relations between CS,p
max(r, τ), C

S,p̄
max(r, τ) and {C−1

1 , C−1
2 , ..., C−1

w }, and

{λ−1
1 , λ−1

2 , ..., λ−1
m } will be next respectively discussed.

3.6.1 CS,p
max(r, τ) and CS,p̄

max(r, τ) vs. {C−1
1 , C−1

2 , ..., C−1
m }

To obtain small CS,p
max(r, τ) and C

S,p̄
max(r, τ), the earliest time αi,w that wavelength w

can be allocated to request i is desired to be small for all i, w; this consequently

requires small {C−1
1 , C−1

2 , ..., C−1
m }. Thus, minimizing the latest job completion time

in the last cycle can help produce a small latest job completion time in the current

cycle. On the other hand, as discussed in Section 3.3.3, minimizing the latest job

completion time in a cycle can achieve small delay, fairness, and load balancing of
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traffic in that particular cycle. Therefore, minimizing the latest job completion time

yields good performances not only for traffic in the current cycle, but also for traffic

in future cycles. The latest job completion time in each cycle should be minimized

when considering the traffic in multiple cycles.

3.6.2 CS,p
max(r, τ) and CS,p̄

max(r, τ) vs. {λ−1
1 , λ−1

2 , ..., λ−1
m }

CS,p
max(r, τ) and C

S,p̄
max(r, τ) are closely related to {λ−1

1 , λ−1
2 , ..., λ−1

m }. The following two

lemmas can be derived.

Lemma 2. When τ = 0, CS,p
max(r, 0) and CS,p̄

max(r, 0) are independent of

{λ−1
1 , λ−1

2 , ..., λ−1
m }.

Proof. When τ = 0, {λ−1
1 , λ−1

2 , ..., λ−1
w } can be changed to any other {λ′1, λ

′
2, ..., λ

′
w}

in no time at the decision making time t. Therefore, CS,p
max(r, 0) and CS,p̄

max(r, 0) are

independent of {λ−1
1 , λ−1

2 , ..., λ−1
m }.

Lemma 5 states that, when τ = 0, the scheduling in the current cycle does

not depend on the scheduling in the last cycle, and does not need to consider the

scheduling in future cycles.

Lemma 3. When τ = +∞, if {λ−1
1 , λ−1

2 , ..., λ−1
m } satisfies the condition that no other

{λ′1, λ
′
2, ..., λ

′
m} can yield a smaller maxmw=1 (a

l
w + γw), {λ

−1
1 , λ−1

2 , ..., λ−1
m } can produce

the smallest CS,p
max(r,+∞) and CS,p̄

max(r,+∞).

Proof. As described above, CS,p̄
max(r,+∞) = CS,p

max(r,+∞) = maxmw=1 (a
l
w + γw). If

no other {λ′1, λ
′
2, ..., λ

′
m} yields a smaller maxmw=1 (a

l
w + γw) than {λ−1

1 , λ−1
2 , ..., λ−1

m },

{λ−1
1 , λ−1

2 , ..., λ−1
m } can produce the smallest CS,p

max(r,+∞) and CS,p̄
max(r,+∞).

Lemma 6 states that, when τ = +∞, the scheduling in the current cycle

is closely related to {λ−1
1 , λ−1

2 , ..., λ−1
m } which is determined in the last cycle. For

given requests r, {λ−1
1 , λ−1

2 , ..., λ−1
m } is desired to achieve equal (alw + γw) among all

wavelengths.
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When 0 < τ < +∞, both preemptive and non-preemptive scheduling with

minimizing the latest job completion time as the objective are NP-hard. CS,p
max(r, τ)

and CS,p̄
max(r, τ) cannot be expressed as a closed-form function of {λ−1

1 , λ−1
2 , ..., λ−1

m }.

It can be estimated that, the smaller the τ , the less dependency of CS,p
max(r, τ) and

CS,p̄
max(r, τ) on {λ−1

1 , λ−1
2 , ..., λ−1

m }.

3.7 Simulation Results and Analysis

In this section, the cycle duration in the single DBA cycle case is first investigated,

and then the performances in the multiple-cycle case are discussed.

3.7.1 The Single-Cycle Case

In the simulation, requests are expressed in terms of time durations, i.e., requested

time durations. The number of ONUs n is set as 16 or 32, and the number of

wavelengths m is set as 4 or 8. All the channels are available from time 0. The

request sizes are uniformly distributed between 0 and 100, and the originally tuned

wavelength λ−1
i of ONU i at time 0 is set as ⌊i/m⌋ such that each wavelength channel

was tuned to by the same amount of ONUs at time 0. The cycle duration equals

to the latest request completion time in this case. 200 sets of requests are randomly

generated and their average performances are investigated.

Figure 3.4 shows the relation between the cycle duration and the laser tuning

time. From the figure, the gap between CS,p
max(r, 0) and CS,p

max(r,+∞), and the gap

between CS,p̄
max(r, 0) and C

S,p̄
max(r,+∞) can also be observed. Since the cycle duration

increases with the increase of the laser tuning time, 1−CS,p
max(r, 0)/C

S,p
max(r,+∞) can

be interpreted as the maximum relative saving of the cycle duration benefited from the

laser tunability. Simulation results in Figure 3.4 show that 1−CS,p
max(r, 0)/C

S,p
max(r,+∞)

increases with the increase of the number of ONUs and the decrease of the number
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Figure 3.4 The cycle duration vs. laser tuning time.
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of wavelengths. This is reasonable because large multiplexing gain can be exploited

when the number of ONUs is large and the number of wavelength is small.

Owing to the NP-hard property of the nonpreemptive scheduling problem,

the exact value of CS,p̄
max(r, 0) cannot be obtained. However, CS,p̄

max(r, 0) is between

CS,p
max(r, 0) and the schedule length CS,p̄

max(r, 0) produced by naive preemptive scheduling.

Simulation results in Figure 3.4 show that, in the four cases of combinations of ONU

number and wavelength number, CS,p̄
max(r, 0) exceeds C

S,p
max(r, 0) by no more than 10%.

Hence, it can be inferred that 1 − CS,p̄
max(r, 0)/C

S,p̄
max(r,+∞) also increases with the

increase of the number of ONUs and the decrease of the number of wavelengths.

For naive preemptive scheduling, Section 3.4.1 shows that, for a given r,

CS,p
max(r, τ) = min{CS,p

max(r, 0) + 2τ, CS,p
max(r,+∞)}. Therefore, when τ is not greater

than

(CS,p
max(r,+∞)− CS,p

max(r, 0))/2, the cycle duration increases with the increase of τ by

2τ . When the laser tuning time increases beyond (CS,p
max(r,+∞)− CS,p

max(r, 0))/2, the

cycle duration equals to CS,p
max(r,+∞). For naive nonpreemptive scheduling,

CS,p̄
max(r, τ) = min{CS,p̄

max(r, 0)+τ, C
S,p̄
max(r,+∞)}. Therefore, the cycle duration remains

constant as CS,p̄
max(r,+∞) when the laser tuning time increases beyond CS,p̄

max(r,∞)−

CS,p̄
max(r, 0).

For heuristic preemptive scheduling and heuristic non-preemptive scheduling,

simulation results shown in Figure 3.4 demonstrate that they yield significant

performance improvement as compared to naive preemptive scheduling and naive

non-preemptive scheduling, respectively. The general trend of the relation between

the cycle duration and the laser tuning time τ is as follows. When τ is below some

value, referred to as “knee point 1”, the cycle duration almost keeps as low as the case

that τ = 0. Beyond “knee point 1”, the cycle duration increases with the increase

of τ . Further increasing of τ to another value, referred to as “knee point 2”, the

cycle duration almost equals to the value obtained in the case that τ = +∞. When
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n = 16 and n = 4, Figure 3.4(a) shows that, in the curve describing the relation

between cycle durations produced by heuristic preemptive scheduling and the laser

tuning time, “knee point 1” happens when τ is around 120 and CS,p
max(r, 0) is around

202. So, “knee point 1” is even larger than CS,p
max(r, 0)/2. In addition, from Figure 3.4

it can be seen that “knee point 1” increases with the increase of the ONU number,

and increases with the decrease of the wavelength number. This is again due to the

fact that the multiplexing gain is large when the number of ONUs is large and the

number of wavelengths is small. On the other hand, “knee point 2” is always around

CS,p
max(r,+∞) in all cases of n and m.

Besides, heuristic preemptive scheduling performs better than heuristic

nonpreemptive scheduling because of the scheduling flexibility benefited from the

allowance of preemption. For a given n and m, “knee point 2” of heuristic

nonpreemptive scheduling is smaller than that of heuristic preemptive scheduling,

and “knee point 2” of two algorithms are similar. The outperformance of heuristic

preemptive scheduling over heuristic nonpreemptive scheduling is not obvious when

n = 32 and m = 4, but is significant when n = 16 and m = 8. When n = 16 and

m = 4, the outperformance is less than 5%.

3.7.2 The Multiple-cycle Case

For the multiple cycle case, the configuration of n = 16 and m = 8 is taken for

example to investigate the performance. The simulation setup is as follows. The

data rate on each wavelength channel is set as 1Gb/s. A finite-time horizon with

the time duration of 2 seconds is chosen. Assume the traffic of an ONU arrives in

bursts. The burst size obeys Pareto distribution with the Pareto index α = 1.4 and

the mean equals to 31.25k bytes, which takes about 0.25ms to transmit. The burst

inter-arrival time also obeys the Pareto distribution with α = 1.4 and the mean equals

to x. x is varied to obtain different traffic loads. The traffic load is defined as the
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ratio between the total size of the arrival bursts and the maximum value which can

be accommodated, which is 4 ∗ 1Gb/s ∗ 2s = 8G bits.

Consider the off-line scheduling framework, in which OLT performs DBA after

receiving requests from all ONUs. Since naive preemptive scheduling and naive

nonpreemptive scheduling perform much worse than heuristic preemptive scheduling

and heuristic nonpreemptive scheduling, respectively, performances of heuristic

preemptive scheduling and heuristic nonpreemptive scheduling in the multiple-cycle

case are only investigated.

The cycle duration is adaptive to the incoming traffic. Therefore, the cycle

duration varies over time. Different scheduling schemes produce different cycle durations,

and thus result in different total number of cycles during the 2 seconds.

Figure 3.5(a) shows the cycle duration of heuristic preemptive scheduling under

the condition that the traffic load equals to 0.87. When the laser tuning time equals

to 0.5ms, the cycle duration is around 0.75ms, and the total number of cycles in the

2 seconds time period is around 2388. With the increase of the laser tuning time, the

cycle duration increases, and the total number of cycles decreases. When the laser

tuning time equals to 2ms, most of the cycles last between 1.75ms and 2.75ms, and the

total number of cycles in the 2 seconds time period is decreased to around 869. The

cycle durations produced by heuristic nonpreemptive scheduling are shown in Figure

3.5(b). As compared to Figure 3.5(a), the cycle durations produced by nonpreemptive

scheduling algorithm in each case of laser tuning time increase slightly.

Figure 3.5(c) and Figure 3.5(d) show the cycle durations when the traffic load

increases to 0.983. In comparing Figure 3.5(c) and Figure 3.5(a), the cycle duration

greatly increases although there is only 0.113 increase of the traffic load. The cycle

durations as shown in Figure 3.5(c) fluctuate tremendously when the load is 0.983.

When the laser tuning time equals to 0.5ms, the cycle duration varies between 0.5ms

and 3.75ms. Although the cycle duration fluctuates over time, its average value



64

load=0.87

0

0.5

1

1.5

2

2.5

3

3.5

1 218 435 652 869 1086 1303 1520 1737 1954 2171 2388

cycle id

c
y
c
l
e
 
d
u
r
a
t
i
o
n

tuing time=0.5ms

tuning time=1ms

tuning time=1.5ms

tuning time=2ms

(a) Preemptive scheduling, load=0.87

load=0.87

0

0.5

1

1.5

2

2.5

3

3.5

1 174 347 520 693 866 1039 1212 1385 1558 1731 1904

cycle id

c
y
c
l
e
 
d
u
r
a
t
i
o
n

tuning time=0.5ms

tuning time=1ms

tuning time=1.5ms

tuning time=2ms

(b) Non-preemptive scheduling, load=0.87

load=0.983

0

1

2

3

4

5

6

1 122 243 364 485 606 727 848 969 1090 1211 1332 1453cycle id
cycle durati
on(ms)

tuning time=0.5ms

tuning time=1ms

tuning time=1.5ms

tuning time=2ms

(c) Preemptive scheduling, load=0.983

load=0.983

0

2

4

6

8

10

12

14

1 27 53 79 105 131 157 183 209 235 261 287 313 339

cycle id
c
y
c
l
e

d
u
r
a
t
i
o
n
(
m
s
)

tuning time=0.5ms

tuning time=1ms

tuning time=1.5ms

tuning time=2ms

(d) Non-preemptive scheduling,

load=0.983

Figure 3.5 Variation of the cycle duration over time (n = 16, m = 4).

remains almost constant over time. This implies that heuristic preemptive scheduling

can achieve throughput as high as 0.983. Figure 3.5(d) shows the cycle durations

produced by heuristic nonpreemptive scheduling. The cycle duration fluctuation

is more severe than that produced by heuristic preemptive scheduling. Also, cycle

durations are much greater than those produced by heuristic preemptive scheduling.

Moreover, the average values of the cycle durations keep increasing over time, implying

that heuristic nonpreemptive scheduling is not able to admit traffic load as high as

0.983. Therefore, when the network is heavily loaded, heuristic preemptive scheduling

can achieve significant better performance than heuristic nonpreemptive scheduling.

However, when the network is lightly loaded, heuristic nonpreemptive scheduling

yields similar performance as heuristic preemptive scheduling.
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Figure 3.6 shows the average delay and the largest delay performance of the

heuristic preemptive scheduling and the heuristic nonpreemptive scheduling. In offline

scheduling of WDM PON, the arrival traffic in the current cycle will be transmitted

in the next cycle. So, the average delay should be around the average cycle duration,

and the largest delay should be around two times that of the largest cycle duration.

The largest delay as shown in Figure 3.6(c) is around twice of the average delay as

shown in Figure 3.6(a); it agrees with the analysis. In addition, for a given traffic

load, delay generally increases with the increase of the laser tuning time. This is due

to the fact that large laser tuning time results in large cycle duration, which further

introduces large delay. When the laser tuning time increases to a certain value that

the laser tunability cannot help improve the performance, delay will become constant.

Since heuristic preemptive scheduling produces a shorter cycle duration than

heuristic nonpreemptive scheduling, delay performance of heuristic preemptive

scheduling is better than that of heuristic nonpreemptive scheduling. However,

the outperformance of heuristic preemptive scheduling over heuristic nonpreemptive

scheduling is not obvious in four cases of traffic loads. When the laser tuning time

is too large that tunability cannot help improve the system performance, delay

performance only depends on the incoming traffic profile, and thus both heuristic

preemptive scheduling and heuristic nonpreemptive scheduling achieve the same

performance. However, when the traffic load is too large (such as 0.983), preemptive

scheduling may still be able to achieve relatively stable delay performance, while

non-preemptive scheduling may result in the phenomenon that delay keep increasing

over time.

3.8 Summary

This chapter has investigated the dynamic wavelength assignment and time allocation

problem in a single resource allocation cycle in hybrid WDM/TDM PONs with



66

0

2

4

6

8

10

12

0
.
2
5

1
.
5

2
.
7
5 4

5
.
2
5

6
.
5

7
.
7
5 9

1
0
.
3

1
1
.
5

1
2
.
8

1
4

tuning time(ms)

A
v
e
r
a
g
e
 
d
e
l
a
y
(
m
s
)

load=0.816

load=0.859

load=0.893

load=0.912

(a) Preemptive scheduling

0

2

4

6

8

10

12

0
.
2
5

1
.
5

2
.
7
5 4

5
.
2
5

6
.
5

7
.
7
5 9

1
0
.
3

1
1
.
5

1
2
.
8

1
4

tuning time(ms)

A
v
e
r
a
g
e
 
d
e
l
a
y
(
m
s
)

load=0.816

load=0.859

load=0.893

load=0.912

(b) Non-preemptive scheduling

0

5

10

15

20

25

0
.
2
5

1
.
5

2
.
7
5 4

5
.
2
5

6
.
5

7
.
7
5 9

1
0
.
3

1
1
.
5

1
2
.
8

1
4

tuning time(ms)

L
a
r
g
e
s
t
 
d
e
l
a
y
(
m
s
)

load=0.816

load=0.859

load=0.893

load=0.912

(c) Preemptive scheduling

0

5

10

15

20

25

30

0
.
2
5

1
.
5

2
.
7
5 4

5
.
2
5

6
.
5

7
.
7
5 9

1
0
.
3

1
1
.
5

1
2
.
8

1
4

tuning time(ms)
L
a
r
g
e
s
t
 
d
e
l
a
y
(
m
s
)

load=0.816

load=0.859

load=0.893

load=0.912

(d) Non-preemptive scheduling

Figure 3.6 Average delay and the largest delay vs. laser tuning time.

tunable lasers as optical light generators. The scheduling problem is mapped into a

multi-processor scheduling problem, with wavelength channels as machines and ONU

requests as jobs. Owing to the laser tuning time, jobs in this particular problem

possess the property that sufficient guard time should be given when scheduling one

job on two machines. It has been shown that both preemptive and non-preemptive

scheduling problems with the objective of minimizing the schedule length are NP-hard

when the laser tuning time is nonzero. Thus, heuristic scheduling schemes have been

proposed for the case of arbitrary laser tuning time. Theoretical analyses show that

the approximation ratios of the heuristic preemptive scheduling algorithm and the

heuristic nonpreemptive scheduling algorithm are at most 2 and 2−1/m, respectively,

where m is the number of wavelengths. Simulation results show that our proposed

heuristic scheduling algorithms achieve significantly better performances than naive

algorithms which are directly derived from existing algorithms. It is also shown that
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the preemptive scheduling algorithm achieves slightly better performances than the

nonpreemptive scheduling algorithm when the network is lightly loaded. However,

the preemptive scheduling algorithm performs significantly better when the traffic

load exceeds some value.



CHAPTER 4

RESOURCE ALLOCATION IN INTEGRATED OPTICAL AND

WIRELESS ACCESS NETWORKS

Radio-over-fiber (RoF) picocellular networks [67,68] are becoming promising options

for delivering high speed wireless access services to accommodate bandwidth-

demanding applications, such as HDTV. Instead of centrally locating antennas at

the base station in conventional wireless networks, the RoF picocellular network

distributes antennas over the cell to get closer to mobile users. This can increase the

signal to noise ratio (SNR) at the receiver and thereby increase the wireless access

data rate. The coverage area of each antenna is greatly reduced as compared to the

conventional cell, thus resulting in the sharing of wireless resources among a smaller

number of users, and increasing the bandwidth share of each user.

Typically, in RoF picocellular networks, upstream wireless signals are first sent

to distributed antennas, and then converted to optical signals and further transmitted

to the base station which is usually located at the central office. The downstream

signal transmits in the opposite direction. In the physical layer, radio signals are

usually delivered directly at high frequencies to/from the base station by utilizing RoF

transmission technology. The simple structure of antennas makes the RoF network a

promising cost-effective wireless access solution especially for in-building environment

such as airports, conference centers, shopping malls, stadiums, and subways [69].

Owing to the high bandwidth provisioning, RoF enables promising applications in

many network scenarios such as fourth-generation (4G) wireless systems and wireless

local area networks (WLANs) [70].

RoF picocellular networks can be considered as the integration of wireless access

and optical access. The wireless access refers to the communication between mobile

68
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users and antennas, whereas the optical access refers to the communication between

antennas and the base station. In this chapter, orthogonal frequency-division multiple

access (OFDMA) is considered as the wireless modulation and access method [71,72].

OFDMA, well known for its immunity to multipath interference, has been adopted

by both LTE and WiMAX as the downlink access scheme [73]. OFDMA divides

the frequency band into non-overlapping orthogonal OFDMA subcarriers. These

subcarriers can be flexibly allocated to individual mobile users at different time slots

based on the real-time incoming user traffic demands and wireless channel status.

For the optical access, one solution is to use one single upstream/downstream

wavelength to carry traffic of all mobile users. Then, OFDMA subcarriers carried

over the wavelength are shared by all users in the picocellular network. However,

the single wavelength may not be able to accommodate future bandwidth-demanding

multimedia applications. To meet the ever increasing bandwidth requirement, 4G

wireless systems are being rapidly developed and deployed, and the optical access

systems in particular passive optical networks (PONs) are increasing upstream or

downstream wavelengths [1, 47, 74–79]. In order to accommodate the growing traffic

in wireless networks especially 4G systems, wavelength-division multiplexing (WDM)

is adopted in the optical access. In WDM optical access networks, the downstream

optical signals are usually demultiplexed into individual wavelengths and delivered to

picocells by using demultiplexing devices such as arrayed waveguide gratings (AWG),

optical add-drop multiplexer (OADM), or wavelength filters, and the upstream optical

signals modulated onto certain wavelengths are first generated by lasers at antennas,

and then multiplexed onto a single fiber by using multiplexing devices such as couplers

[68, 80].

For high bandwidth provisioning, one or more wavelengths is expected to be

dedicated for each picocell. However, a large quantity of wavelengths are needed for a

large-scale picocellular network; this further incurs high network cost since the prices
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of WDM optical devices are usually high when the number of supporting wavelengths

is large. For a reasonable network cost, the number of wavelengths may fall below

the number of picocells in large picocellular networks. In this case, multiple picocells

need to share the same wavelength.

In consideration of the scenario that one WDM wavelength is shared among

multiple picocells, the chapter investigates the wavelength assignment and OFDMA

resource block (RB) allocation problems in the OFDMA-based WDM RoF network.

For a better description, the area covered by picocells sharing the same wavelength

is referred to as a nanocell. Figure 4.1 shows one example of the RoF picocellular

network. The base station which is typically located at the central office is connected

with multiple antennas via optical fibers [70]. In the example shown in Figure 4.1,

the base station connects with 36 antennas, among which each set of 9 antennas

covers a nanocell. Note that a nanocell may not cover a continuous geographic

area. Since one OFDMA RB in an OFDMA symbol can only be allocated to one

picocell in a nanocell at a time, the inter-nanocell interference is eliminated. However,

interferences between picocells in different nanocells may still exist when those

picocells are allocated with OFDMA RBs of the same frequency. Such inter-nanocell

interference can be minimized by assigning RBs of the same frequency to picocells

which pose the least interference to each other. However, this may result in some

picocells being allocated with a large number of OFDMA RBs, while some other

picocells may be allocated with few OFDMA RBs. In picocells which are allocated

with many OFDMA RBs, each OFDMA RB may receive a very limited power share

owing to the power constraint of the picocell. Thereby, the signal to interference

plus noise ratio (SINR) perceived by users allocated with the RB is small even if the

inter-picocell interference can be avoided.

This chapter considers the power constraints of picocells and investigates the

problem of minimizing the inter-nanocell interference in allocating OFDMA RBs
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picocell antenna base station optical fiber

WDM coupler nanocell

Figure 4.1 WDM Radio-over-fiber picocellular network architecture.

and assigning wavelengths. Specifically, conflict graphs are employed to characterize

constraints of OFDMA RB allocation and wavelength assignment. By using conflict

graphs, the problem of maximizing the number of allocated OFDMA RBs is proved

to be strong NP-hard when no inter-picocell interference is allowed and the power

constraints of picocells are considered. It is also shown that the problem of allocating

OFDMA resources at a time instance can be polynomially reducible to graph problems.

Finally, the wavelength assignment problem with the objective of maximizing the

number of assigned RBs is heuristically mapped into graph partitioning problems,

and algorithms are proposed to address these problems.

The rest of the chapter is organized as follows. Section 4.1 describes the

system model, presents the formal formulations of the problems, and discusses related

works. Section 4.2 discusses the OFDMA resource allocation problem. Section 4.3

investigates the wavelength assignment problem. Section 4.4 presents and analyzes

extensive simulation results. Section 4.5 presents concluding remarks.

4.1 System Model, Problem Formulation, and Related Works

4.1.1 System Model

Similar to WiMAX, the OFDMA radio resource is assumed to be partitioned in

both time and frequency domains [81–83]. Specifically, the frequency resource is
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Figure 4.2 One example of OFDMA RB allocation at a time instance.

divided into multiple non-overlapping OFDMA RBs, each of which contains a subset

of OFDMA subcarriers. OFDMA RB in a time slot serves as the minimum unit of

resource allocation. Picocells in the same nanocell share OFDMA resources in an

OFDMA symbol. Since picocells in the same nanocell are not allocated with the

same RB at a time, they do not pose interferences to each other. However, picocells

in different nanocells may interfere with each other. Figure 4.2 shows one example of

the wavelength assignment and RB allocation at a time instance. Let set Pw contain

picocells in the nanocell assigned with wavelength w. In the example, P1 = {1, 2, 3},

P2 = {4, 5, 6}, P3 = {7, 8, 9}, etc., and Picocells 1, 4, 9, 11, and 13 are allocated with

RB 1, and interfere each other.

To minimize the inter-nanocell interference, picocells which pose the least

interferences to each other should be selected and assigned with the same RB.

However, considering the interferences only may result in some picocells being

over-allocated with many RBs while some others under-allocated with few RBs.

Owing to the power constraint at each picocell, the RB will get small power share

if the picocell is allocated with many RBs, thereby reducing the signal power and

limiting the user data rate. Therefore, both the inter-nanocell interference and power

constraints of picocells need to be considered so as to maximize the total delivered

data rates at a time.

The following assumptions about the interference and user data rate are invoked.
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• Assumption 1 : Assume that wireless channel interference dominates the optical

wavelength channel interference, and consider the wireless channel interference

only.

• Assumption 2 : Similar to the interference model in [84–87], consider the binary

case of the interference between picocells and assume that the wireless channel

is RB inselective. Denote Ip,p′ as the interference between picocell p and picocell

p′. If the transmission of RBs in picocell p interfere that in picocell p′, Ip,p′ = 1;

otherwise, Ip,p′ = 0. Assume the interference is symmetric, i.e., Ip,p′ = Ip′,p.

Since the wireless channel condition is dynamically changing, the interference

Ip,p′ between two picocells changes over time.

• Assumption 3 : Considering the power constraint of each picocell, each picocell

is assumed to be allocated with at most C/P RBs at a time, where C is the

number of RBs and P is the number of picocells in a nanocell. Each RB is also

assumed to be allocated with the same amount of power.

• Assumption 4 : This chapter does not investigate the problem of further

allocating OFDMA RB to mobile users, but assume that the maximum rate

delivered by any RB at any picocell is the same when there is no inter-nanocell

interference.

4.1.2 Mathematical Formulation

This chapter investigates a slot-based wavelength assignment and OFDMA RB

allocation scheme. To achieve high throughput, the total transmitted data rates

of all RBs in a time slot is maximized.

Let W be the number of WDM wavelengths, and set Q contain all the picocells

which have backlogged traffic in the time slot. The wavelength assignment problem

is to divide set Q into W subsets, each of which is assigned with one wavelength.
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As defined earlier, Pw contains picocells in the nanocell assigned with wavelength w.

Then, ∪W
w=1Pw = Q and Pw ∩Pw′ = ∅, ∀w ̸= w′. Each nanocell is assumed to contain

the same amount of picocells. Denote P as the number of picocells in a nanocell.

Then, P = |Pw| = |Q|/W, ∀w.

Denote xw,c as the picocell to which RB c carried by wavelength w is assigned

at a time instance. xw,c ∈ 0 ∪ |Q|. xw,c = 0 if RB c carried by wavelength w is not

assigned to any picocell. Denote yw,c as the indicator of whether RB c on wavelength

w is allocated. yw,c ∈ {0, 1}. yw,c = 1 if xw,c > 0; yw,c = 0, otherwise. Since the rate

delivered by any RB at any picocell is assumed to be the same (see Assumption 4),

the data rate delivered to picocell p is proportional to the number of RBs allocated

to picocell p, i.e.,
∑

{c|xw,c=p} yw,c.

The total transmitted data rates of all RBs in the network is proportional

to
∑

p

∑

{c|xw,c=p} yw,c =
∑

w

∑

c yw,c. Then, the joint wavelength assignment and

OFDMARB allocation problem with the objective of maximizing the total transmitted

data rates in the network subject to the constraints that no interferences are allowed

can be described as follows.

Given: IWP×WP and set Q

Determine: Pw, ∀w and xw,c, ∀w, c

Objective: maximize
∑

w

∑

c yw,c

Subject to:

∪W
w=1Pw = Q (4.1)

Pw ∩ Pw′ = ∅, ∀w ̸= w′ (4.2)

xw,c ∈ Pw (4.3)

Ixw,c,xw′,c
= 0, ∀c, ∀w ̸= w′ (4.4)
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∑

{c|xw,c=p}

yw,c ≤ C/P, ∀w, ∀p ∈ Pw (4.5)

Constraints (4.1) and (4.2) describe the wavelength assignment constraints. Constraint

(4.4) states that RB c cannot be allocated to two picocells posing interferences to each

other. Constraint (4.5) limits that the number of RBs allocated to any picocell p in

any nanocell w cannot be greater than C/P .

The problem is decomposed into two subproblems, i.e., wavelength assignment

and OFDMA RB allocation. The OFDMA RB allocation problem can be formulated

as:

Given IWP×WP and Pw, ∀w, determine xw,c, ∀w, c subject to constraints (4.3 -

4.5).

A different wavelength assignment scheme {Pw}
W
w=1 may result in different

f({Pw}
W
w=1). Let f({Pw}

W
w=1) be the maximum number of assigned RBs with respect

to a wavelength assignment scheme {Pw}
W
w=1. The wavelength assignment problem

can be formulated as:

Given the interference IWP×WP and set Q, find {Pw}
W
w=1 such that f({Pw}

W
w=1)

is maximized subject to constraints (4.1) and (4.2).

Since IWP×WP is time varying (see Assumption 2), the optimal wavelength

assignment changes over time. To dynamically assign wavelengths, antennas need

to be equipped with wavelength tunable transceivers, which are currently still cost-

prohibitive. If wavelength-fixed devices are employed in the network, the problem of

determining the wavelength supported by each optical transceiver can be similarly

formulated by replacing the real-time interference matrix IWP×WP with statistical

interference IWP×WP .

The OFDMA RB allocation problem and wavelength assignment problem will

be next respectively addressed. Table 4.1 lists notations used in the chapter.



76

Table 4.1 Notations

Symbol Definition

W The number of wavelengths or nanocells

P The number of picocells in a nanocell

C The number of OFDMA RBs in an OFDMA

symbol

Q The set of all picocells

Pw The set which contains picocells in the nanocell

assigned with wavelength w

xw,c The picocell to which RB c carried by wavelength

w is assigned

yw,c The indicator of whether RB c carried by

wavelength w is allocated

Ip,p′ The binary interference between picocell p and

picocell p′

f({Pw}
W
w=1) The maximum number of assigned RBs with

respect to a wavelength assignment scheme

{Pw}
W
w=1

G(V,E) The constructed conflict graph

Gα(V,Eα) The conflict graph containing interference edges

only

Gβ(V,Eβ) The conflict graph containing co-nanocell edges

only

N (G(V,E)) The maximum number of vertices in graph G(V,E)

which can be colored by using P colors
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4.1.3 Related Works

Formerly, dynamic power and resource allocation have been proposed to maximize

the sum of throughput over all users or equalize user throughput in OFDMA-based

cellular networks [88, 89]. Zhu et al. [90] presented chunk-based OFDMA subcarrier

allocation schemes to simplify the subcarrier allocation algorithm and reduce the

overhead. From the combinatorial optimization perspective, Reuven et al. [91]

investigated the issue of properly selecting packets to be transmitted, determining

Phy-profiles for each packet, and constructing OFDMA frame matrix such that the

profit gained by the transmitted traffic can be maximized. Lee et al. [83] tried

to optimally select the MIMO mode (multiplexing or diversity) so as to maximize

the proportional fairness criterion with the constraints that only one mode can

be selected per user per time interval. For multicell wireless networks, Wang et

al. [92] investigated the direct sequence code division multiple access (DS-CDMA)

microcellular network operating over a multipath Rician fading channel and sharing

common spectrum with various narrowband waveforms. To reject the intra-cell as well

as inter-cell interference, a suppression filter was equipped at each CDMA receiver

and its performance was investigated. Sang et al. [93] proposed a scalable cross-layer

framework to coordinate the packet-level scheduling, call-level cell selection, and

system-level cell coverage for CDMA systems. Gault et al. [94] investigated the power

and subcarrier allocation issue with the objective of minimizing the total transmitted

power based on the statistical knowledge of the user channels.

Resource allocation in WDM access networks also received intensive attention

in the past. McGarry et al. [51] modeled the wavelength assignment problem into

a multiprocessor scheduling problem and proposed to use the longest processing

time (LPT) first rule to address the minimizing makespan problem for the case

that ONUs can access all the wavelengths. Meng et al. [52] studied the joint grant

scheduling and wavelength assignment problem. They formulated it into a mixed
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integer linear programming (MILP) problem, and employed tabu search to obtain

the optimal solution. In [43, 44], the capacity of WDM passive optical networks is

theoretically analyzed. In [95], with consideration of the laser tuning time, wavelength

scheduling schemes are proposed to schedule ONU traffic as early as possible in hybrid

WDM/TDM PONs.

Regarding the optical and wireless integration, Sarkar et al. [96, 97] proposed

a hybrid wireless-optical broadband access network (WOBAN) and employed the

Lagrangian relaxation technique to address the problem of optimal placement of

ONUs and BSs. In WOBAN, mobile users communicate with a wireless BS, which

is connected to the ONU. Koonen et al. [98] proposed a fiber-wireless network which

uses a flexible wavelength router at a local spitting center to adjust wavelength

routing between OLT and ONUs. In this case, the wavelength can be dynamically

assigned to each ONU/cell. For the wireless access part, the radio access function

is integrated with ONUs [98]. The two integrated optical-wireless networks share

one common characteristic, that is, the radio access controller is responsible for the

wireless resource allocation of a single cell only, which is different from our case that

the base station controls wavelength assignment and OFDMA resource allocation in

all picocells.

To the best of our knowledge, our proposal is the first attempt to tackle the

wavelength assignment and OFDMA resource allocation problem in OFDMA-based

WDMRoF networks, in which wavelength assignment and OFDMA resource allocation

need to be properly tackled in consideration of the inter-nanocell interference.

4.2 OFDMA Resource Allocation

In this section, the OFDMA resource allocation problem is first transformed into

graph problems, then their complexities are analyzed. Finally, solutions are proposed

to address them.
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4.2.1 Conflict Graph

Following the idea of modeling binary interferences among nodes in wireless networks

[84–87, 99], conflict graph is used to model the interferences in this chapter. Besides

the interference, the co-nanocell scheduling constraints are characterized by using the

conflict graph as well. Denote G(V,E) as the conflict graph. In G(V,E), vertices

represent picocells, and |V | = WP . Edges characterize the scheduling constraints

among picocells. Two vertices are connected if they cannot be allocated with the

same RB at a time.

There are two kinds of edges in G(V,E). When Ip,p′ = 1, picocell p interferes

with picocell p′, and hence vertices p and p′ are connected. These edges are referred

to as interference edges. When picocell p and picocell p′ are within the same nanocell,

they cannot be allocated with the same RB at a time, and hence are connected. These

edges are referred to as co-nanocell edges. Note that an edge can be both co-nanocell

edge and interference edge. The graph containing interference edges only is denoted

as Gα(V,Eα), and that containing co-nanocell edges only is denoted as Gβ(V,Eβ).

Then, E = Eα ∪ Eβ.

Figure 4.3 shows one example of the conflict graph. The network contains 16

picocells, among which four nearby picocells constitute a nanocell. Figure 4.3 (b)

shows the conflict graph with the interference edges only, and Figure 4.3 (a) shows

the conflict graph with the co-channel edges only. Some edges are both co-nanocell

edges and interference edges as shown in Figure 4.3 (c).

By using conflict graphs, the OFDMA RB allocation problem is transformed

into the problem of labeling the vertices by RB id such that no two adjacent vertices

are labeled with the same RB id. The objective of maximizing the number of allocated

RBs is equivalent to that of maximizing the sum of labels labeled on all vertices. Note

that one vertex can be labeled with more than one RB id since one picocell can be
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(a) Graph with interference edges only (b) Graph with co-nanocell edges only

(c) Conflict graph (d) RB allocation
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Figure 4.3 An example of conflict graph and its coloring.

allocated with more than one RB at a time. Figure 4.3 (d) shows one RB labeling

scheme with four RBs for the conflict graph as shown in Figure 4.3 (c).

4.2.2 Computational Complexity

The OFDMA RB allocation problem is shown to be NP-hard in the strong sense.

Theorem 7. The OFDMA RB allocation problem with the objective of maximizing

the number of allocated RBs at a time is strong NP-hard.

Proof. The strong NP-hardness property of the OFDMA RB allocation problem is

proved by showing that the maximum independent set problem is reducible to this

problem.

Given a graph G(V,E), the independent set is a set containing vertices of which

no two vertices are adjacent. The maximum independent set problem is to find the

independent set with the largest size.

Consider an arbitrary instance of the maximum independent set problem for

graph G(V,E). An equivalent OFDMA RB problem is constructed. Let both the

total number of picocells PW and the number of wavelengths W be |V |, and graph
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G(V,E) be the conflict graph. Then, P = 1, each picocell has a dedicated wavelength,

and each vertex v in the conflict graph can be labeled with at most C RBs.

It is shown that the optimal labeling scheme is to label all vertices in the

maximum independent set of graph G(V,E) with all RBs, and leave all the other

vertices unlabeled. The vertices labeled by any RB id must be in an independent set.

So, the maximum number of vertices a RB can be labeled equals to to the size of

the largest independent set. This scheme achieves the maximum number. Therefore,

finding the optimal labeling is equivalent to finding the maximum independent set.

The independent set problem is known to be strong NP-hard. Thus, the RB allocation

problem is strong NP-hard.

Owing to the NP-hardness property of the problem, the brute force search may

be employed to find the optimal solution. To examine whether or not the brute-force

search is practical, the running time of the brute force search is evaluated for this

problem.

Lemma 4. The running time of the brute-force search for the optimal solution to the

OFDMA resource allocation problem is O(PCW ).

Proof. Each RB can be allocated to any picocell in a nanocell, and thus the number

of choices is P . For the total of C resource blocks, the number of choices is PC in a

nanocell. For the total of W nanocells, the total choices is PCW . It is exponential

both in C and W .

Typically, the number of resource blocks C is 25, 50, 75, 100 in 3GPP LTE; the

number of WDM wavelengthsW in PONs is 2, 4, 8, 16, 32; the number of picocells P

in a nanocell can be in the order of tens. Therefore, the brute force scheme is highly

impractical.
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4.2.3 OFDMA RB Allocation Algorithms

Here, optimal and heuristic algorithms are developed to address the OFDMA RB

allocation problem.

Vertex-coloring-based RB Allocation: The first algorithm proposed is

vertex-coloring-based RB allocation. First, the problem under two extreme cases of

the nanocell size P are considered.

Based on the proof of Theorem 7, the following Lemma 5 is derived.

Lemma 5. When the number of picocells P in a nanocell equals to 1, the RB

allocation problem is equivalent to the maximum independent set problem.

Proof. See the proof of Theorem 7.

Lemma 6. When the number of picocells P in a nanocell equals to the number of

RBs, i.e., C, the RB allocation problem is polynomially reducible to the vertex coloring

problem.

Proof. When P = C, each picocell can be allocated with at most one RB based

on Assumption 3. The objective of maximizing the number of labels labeled on all

vertices is equivalent to that of maximizing the number of labeled vertices. If the

conflict graph is C-colorable, by regarding each color as a RB, a labeling is obtained

to achieve PW labeled vertices. When n < PW , for any feasible labeling with n

labeled vertices, the graph after removing PW − n unlabeled vertices along with

their connecting edges is C-colorable. There are
(

PW
n

)

choices of choosing n vertices

from the total of PW vertices. That is to say, the decision problem of determining

whether n is achievable is polynomially reducible to the vertex coloring problem.

Therefore, the RB allocation problem is polynomially reducible to the vertex coloring

problem when P = C.

The maximum independent set problem can be considered as a special case

of vertex-coloring problem, where the number of colors is one. Therefore, problems
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under both of these two extreme cases are polynomially reducible to the vertex-

coloring problem. Thereby, a vertex-coloring-based RB allocation approach is proposed

as described in Algorithm 10.

Algorithm 10 Vertex-coloring-based RB allocation

1: Divide RBs evenly into P groups, and include RBs (j− 1)C/P +1, ..., jC/P into

the jth group (1 ≤ j ≤ P ).

2: n = PW

3: ind = 0

4: while ind = 0 do

5: Determine whether P colors can color n vertices

6: if Yes, then

7: Color these n vertices, and include vertices colored by color j into set ψj

8: Label RBs in group j onto vertices in ψj

9: ind = 1

10: else

11: n = n− 1

12: end if

13: end while

The main idea of Algorithm 10 is to color vertices as much as possible using P

colors. First, the algorithm tries to color all vertices by using P colors. If it cannot

be achieved, the algorithm removes one vertex, and tries to color all the remaining

vertices by using P colors. The process repeats until the maximum number of vertices

colored by P colors is found. Let n equal to the maximum number of colored vertices.

For vertices colored by the same color, Algorithm 10 labels each of them with C/P

RBs among all RBs. Let ψj include vertices colored by color j. The total number of

labels equals to
∑P

j=1 |ψ
j|C/P .
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Besides the above two extreme cases, Algorithm 10 can achieve the optimal

value in every scenario of P and C.

Theorem 8. The optimal solution to the OFDMA RB allocation problem can be

obtained by using Algorithm 10

Proof. Let n be the maximum number of vertices colored by P colors. That is, there

are at most n vertices contained in the union of P independent sets of the conflict

graph. In Algorithm 10, any P of these C RBs are allocated to n vertices. The total

number of labels labeled on vertices equals to nC/P . Assume there exists a scheme

that achieves m(m > nC/P ) labels, then there must exist P RBs being allocated to

more than n vertices. Vertices allocated with the same RB constitute an independent

set. Then, there exist P independent sets whose union is of size greater than n.

This contradicts the fact that n is the maximum number of vertices colored by P

colors.

The following corollaries pertain to the optimal value and the graph which can

achieve the upper bound CW .

Corollary 2. The maximum number of allocated RBs at a time equals to

N (G(V,E))C/P , where G(V,E) is the conflict graph, and N (G(V,E)) is the

maximum number of vertices in graph G(V,E) which can be colored by using P colors.

Proof. According to Theorem 8, the maximum number of RBs allocated at a time

equals to n ·C/P , where n is the maximum number of vertices which can be colored

by P colors in graph G(V,E). Thus, this corollary has been proved.

Corollary 3. The total number of RBs which can be allocated at a time achieves the

upper bound CW if and only if the conflict graph is P -colorable.

Proof. If the conflict graph is P -colorable, N (G(V,E)) = PW , and the total number

of allocated RBs equals to PW ·C/P = WC; otherwise, N (G(V,E)) is less than PW ,

and thus the total number of allocated RBs is less than CW .
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Computational Analysis: In Algorithm 10, the vertex coloring problem,

which is known to be strong NP-hard, needs to be addressed. The brute force search

scheme for a graph with |V | vertices and P colors runs in time O(P |V |). Line 4 of

Algorithm 10 involves checking whether n among PW vertices can be colored by

P colors. For a given n, the running time from Line 3 to Line 11 is O(
(

PW
n

)

P n).

Thus, the running time of Algorithm 11 is O(
∑PW

n=1

(

PW
n

)

P n) = O((1 + P )PW ). By

eliminating the dependence on C which can be up to 100, the vertex-coloring-based

scheme has a smaller running time as compared to the brute-force search solution

to the original problem, which is O(PCW ). However, it is still impractical since the

running time is exponential in both P and W .

Independent-set-based RB Allocation: An independent-set-based RB

allocation scheme as described in Algorithm 11 is proposed to obtain a more efficient

algorithm.

Algorithm 11 Independent-set-based RB allocation

1: Divide RBs evenly into P groups, and include RBs (i − 1)C
P
+ 1, ..., iC

P
into the

ith RB group (1 ≤ i ≤ P ).

2: Let G = G(V,E),

3: for i = 1 : P do

4: Find the maximum independent set in graph G, and denote the set as ϕi

5: Label all vertices in ϕi with RBs in group i.

6: Remove vertices in ϕi along with their connecting edges from graph G.

7: end for

In Algorithm 11, RBs are first divided into P groups, where group i contains

RB {(i− 1)C
P
+ 1, (i− 1)C

P
+ 2, ..., iC

P
}. Graph G is initialized as G(V,E). Then, the

maximum independent set is found in graph G, and all vertices in the independent

set are labeled with RBs in a RB group. After that, graph G is updated by removing
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Figure 4.4 One example of Heuristic-1 for P = 2 and W = 2.

all vertices in the independent set along with their connecting edges. The process is

repeated until all RBs are labeled.

Denote ϕi as the maximum independent set in the ith iteration. The number

of vertices labeled with RB j with (i− 1)C
P
+1 ≤ j ≤ iC

P
equals to the size of ϕi. The

total number of labels labeled on all vertices equals to
∑P

i=1 |ϕ
i|C
P
.

In the ideal case, |ϕi| = W, ∀i. Then, each RB is labeled on W vertices, and

the number of total labels labeled on vertices equals to P · (W C
P
) = WC, which

is the upper bound of the optimal value. However, the size of the independent set

may decrease iteration by iteration. This happens for conflict graphs with optimal

values below the upper bound WC. Another reason may be due to the greedy nature

of Algorithm 11. Algorithm 11 greedily selects the maximum independent set in

each iteration. This may decrease the size of the maximum independent set in the

subsequent iterations.

Figure 4.4 shows one simple example with two nanocells and four picocells. In

iteration 1, the independent set contains picocell 1 and 4, whereas the independent

set in iteration 2 can only contain either picocell 2 or 3. Let RBi denote the ith RB

group. Then, RBs in set RB2 can only be labeled on one vertex. It is not difficult to

see that the optimal solution is to let ϕ1 = {1, 3} and ϕ2 = {2, 4}.
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Computational Analysis: Algorithm 11 involves addressing the maximum

independent set problem, which is known to be NP-hard. The brute force approach of

checking every vertex subset for a graph with |V | vertices runs in time O(2|V |). The

problem can be solved by more efficient exact algorithms, for example, the algorithm

with time bound of O(2|V |/3) proposed by Tarjan [100], and the measure and conquer

approach with time bound of O(20.287|V |) [101]. The best known is the one with time

bound of O(20.276|V |) proposed by Robson [102]. In Algorithm 11, the graph sizes in

these P iterations are PW , PW − |ϕ1|, PW − |ϕ1| − |ϕ2|,..., PW −
∑P−1

i=1 |ϕi|. Thus,

the running time of Algorithm 11 is O(P20.276PW ) if Robson’s algorithm is used. The

running time is approximately P (1.21/(1 + P ))PW of that of Algorithm 10.

Greedy RB Allocation: Although Algorithm 11 has a reduced running time

as compared to that of Algorithm 10 and the brute force approach to the original

problem, it is still exponential in P and W , and becomes impractical when P and W

are large. To further reduce the running time, heuristic graph coloring or maximum

independent set algorithms can be employed.

There are numerous heuristic graph coloring and maximum independent set

algorithms. This chapter by no means applies each of them into Algorithm 10 and

Algorithm 11, and discusses their performances. For computational efficiency, the

following greedy graph coloring algorithm and greedy maximum independent set

algorithm are incorporated into Algorithm 10 and Algorithm 11, respectively.

Greedy maximum independent set algorithm: include the vertex with the least

degree in the independent set, and remove vertices connected to the vertex from the

graph. This process repeats until no more vertex can be included.

Greedy vertex coloring algorithm: order the vertices in the ascending order of

their degrees, and assign vertex v with the smallest available color which is not used

by adjacent vertices of vertex v, and add a fresh color if needed.
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After applying the above greedy graph coloring algorithm and greedy maximum

independent set algorithm, both Algorithms 10 and 11 are reduced to the following

greedy Algorithm 12. In Algorithm 12, vertices are first ordered in the ascending

Algorithm 12 Greedy RB allocation

1: Divide RBs evenly into P groups, and include RBs (j− 1)C/P +1, ..., jC/P into

the jth group (1 ≤ j ≤ P ).

2: Sort vertices in the conflict graph in the ascending order of their degrees.

3: for i = 1 : PW do

4: j = 1

5: while vertex i has not been colored & j ≤ P do

6: if vertex can be colored with color j then

7: color it

8: else

9: j = j + 1

10: end if

11: end while

12: end for

13: Label vertices colored by color j with RBs in group j

order of their degrees, and then colored by one of these P available colors. When

there are multiple colors available, the one with the smallest index is selected. Good

performance requires the number of uncolored vertices to be as small as possible.

Computational Analysis: By using a proper ordering algorithm, the

complexity of the ordering process in Line 1 of Algorithm 12 is O(PW log(PW )).

For each vertex, the process of selecting colors is of complexity O(P ). Thus, the

complexity of the greedy RB allocation is O(PW log(PW ) + P 2W ).

Here, the performance of Algorithm 12 is analyzed. In Algorithm 12, if the

condition “j ≤ P” in the “while” loop is removed, the algorithm becomes a greedy
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vertex coloring algorithm. For the greedy vertex coloring algorithm, denote X as

the number of colors required to color all vertices, and ψi(1 ≤ i ≤ X ) as the set

containing all vertices colored by color i. Then,
∑X

i=1 |ψ
i| = PW . It can be easily

obtained that the total number of vertices which can be colored by P colors using

Algorithm 12 equals to
∑P

i=1 |ψ
i|. If the conflict graph is a clique, each vertex needs

to be colored by a distinct color, and P colors can only color P vertices. In this case,

Algorithm 12 is the optimal solution. If the conflict graph is not a clique, according

to Brooks’ theorem [103], X ≤ ∆, where ∆ is the maximum degree of vertices in the

conflict graph. Then,

• When ∆ ≤ P , Algorithm 12 can color all vertices by P colors, and it achieves

the optimal solution.

• When ∆ > P ,

P
∑

i=1

|ψi| ≥ P/X ·
X
∑

i=1

|ψi| (4.6)

= P/X · PW ≥ P/∆ · PW (4.7)

Condition (4.6) holds since |ψi| > |ψj| if i < j. Thus, the total number of allocated

RBS is lower bounded by P/∆ · PW · C/P = CW · P/∆, where CW is the upper

bound of the number of allocated RBs.

4.3 Wavelength Assignment

The above discusses the OFDMA RB allocation problem for a given conflict graph.

As stated in Corollary 2, the maximum number of allocated RBs at a time

equals to N (G(V,E))C/P , where N (G(V,E)) is the maximum number of vertices

that can be colored by P colors in conflict graph G(V,E). N (G(V,E)) depends on

the connectivity of the conflict graph, i.e., the edges in graph G(V,E).
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The edges in the conflict graph are contained in set E = Eα∪Eβ, where Eα and

Eβ refer to interference edges and co-nanocell edges, respectively. The wavelength

assignment can be further formulated as deciding Eβ for given interference edges Eα

such that N (G(V,E)) is maximized. However, owing to the NP-hardness property,

N (G(V,E)) cannot be explicitly expressed as a function of the edge set E.

Intuitively, the more the connecting edges in graph G(V,E), the smaller the

N (G(V,E)). Based on this intuition, minimizing |E| is heuristically treated as

the objective in assigning wavelengths. The problem is further transformed into

minimizing |Eα ∪ Eβ| for given |Eα|.

|Eα ∪ Eβ|

= |Eα + Eβ − Eα ∩ Eβ|

= |Eβ|+ |Eα − Eα ∩ Eβ|

= WP (P − 1)/2 + |Eα − Eα ∩ Eβ|

|Eβ| = WP (P−1)/2 follows from the fact that the graph with Eβ only contains

W fully connected subgraphs of sizes P . Again, owing to this property of Eβ,

minimizing |Eα −Eα ∩Eβ| for given Eα is equivalent to the problem of partitioning

graph into parts such that parts are of the same sizes with few connections among

them, i.e., the graph partitioning problem.

The graph partitioning problem is also NP hard. The brute force search approach

involves checking every partitioning choice; the total number of choices can be as

large as
∏W

w=1

(

w·P
P

)

. Many heuristic algorithms have been proposed, among which

Kernighan-Lin Algorithm has running time of O(|V |2 log |V |) [104].

4.4 Simulation Results and Analysis

For the OFDMA RB allocation, the above presents three algorithms: vertex-coloring

based approach, independent-set based approach, and greedy algorithm. With optimal
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vertex coloring, the vertex-coloring based approach can produce the maximum number

of allocated RBs with running time ofO((1+P )PW ). At the sacrifice of the performance

in some degree, the independent-set based approach reduces the running time to

O(P20.267PW ) by using Robson’s maximum independent set algorithm. The greedy

algorithm is the most efficient with running time of O(PW log(PW ) + P 2W ) with

the most compromised performance.

Assume each operation takes around 1ns. Table 4.2 compares the running time

of the three algorithms for some P and W . The overall frame length in 3GPP LTE

is around 10 ms, and the typical WiMAX frame length ranges from 2.5ms to 20 ms.

Hence, it is usually impractical if the resource allocation algorithm takes longer than

1 ms. Table 4.2(a) shows that the vertex-coloring based approach is impractical even

with two wavelengths and five picocells per nanocell. The independent-set based

approach can be employed in real systems when the number of wavelengths and the

nanocell size are below some thresholds, as indicated red in Table 4.2(b). The greedy

algorithm takes less than 10µs even with 16 wavelengths and 20 picocells per nanocell,

as shown in Table 4.2(c).

As shown in Corollary 2, the maximum number of allocated RBs at a time

equals toN (G(V,E))C/P , which determines the system performance. The simulation

assumes C = P , and investigates the relationship between N (G(V,E)) and the

conflict graph G(V,E).

Consider a topology with n antennas uniformly distributed in an 800m× 800m

square area. Assume the communication range is r/2, and then the interference

range is r. Figure 4.5 shows one example of 64 picocells and 4 wavelengths. The

communication range is 100 m. Figure 4.5 (a) illustrates the geographical distribution

of these distributed antennas. Figure 4.5 (b) is the conflict graph Gα(V,Eα) containing

interference edges only. In Figure 4.5 (c), picocells are grouped into four groups as

indicated by four different colors. Picocells in the same group constitute a nanocell.
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Table 4.2 The Running Time of Three OFDMA RB Allocation Algorithms

(a) Vertex-coloring-based approach

❅
❅
❅
❅
❅

W

P
5 10

2 0.06 s 6.7× 1011 s

4 3.65× 106 s

(b) Independent-set-based approach

❅
❅
❅
❅
❅

W

P
5 10 15 20

2 31.82 ns 405 ns 3.87 µs 32.8 µs

4 202 ns 16.4 µs 1 ms 53.8 ms

8 8.2 µs 26.5 ms 66.2 s 1.45× 105s

16 13.4 ms 7.2× 104s 2.9× 1011s 1× 1018s

(c) Greedy algorithm

❅
❅

❅
❅
❅

W

P
5 10 15 20

2 0.0964µs 0.3329µs 0.6844µs 1.1458µs

4 0.1929µs 0.6658µs 1.3688µs 2.2915µs

8 0.3858µs 1.3315µs 2.7377µs 4.5830µs

16 0.7715µs 2.6630µs 5.4753µs 9.1660µs
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Figure 4.5 n = 64, W = 4, r = 200 m.

In the simulation, Kernighan-Lin Algorithm is used to partition the graph. The final

conflict graph is shown in Figure 4.5 (d).

In Figure 4.6, the interference range is varied so as to observe its impact on

N (G(V,E)) and |Eα − Eα ∩ Eβ| for n = 64 and W = 4. The displayed results

are the average values of 10 simulations. The greedy RB allocation algorithm is

performed. When the interference range are small, the number of interference edges

and |Eα − Eα ∩ Eβ| are small. In this case, almost all these 64 vertices can be

colored by P = 16 colors. With the increase of the interference range, the number

of interference edges increases, and the less likely a vertex can be colored. When the

number of interference range equals to 800 meters, |Eα−Eα∩Eβ| increases to around

800, and N (G(V,E)) is reduced to around 20.

In Figure 4.7, the interference range is fixed to be r = 200 meters. The number

of picocells in the area and the wavelength number are varied to observe the variation

of N (G(V,E)). The displayed value is the average results of 10 simulations. For a

given n, smallW implies large P , large |Eβ|, and small |Eα−Eα∩Eβ|. In the extreme
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Figure 4.6 N (G(V,E)) and |Eα − Eα ∩ Eβ| vs. r.
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Figure 4.7 N (G(V,E)) vs. W and n.

case of W = 1, |Eα−Eα∩Eβ| = |Eβ|, and P = n. The conflict graph with n vertices

is a fully connected graph, and it is P -colorable since P = n. Simulations show

that, when W = 2, N (G(V,E)) almost equals to n, which agrees with the theoretical

analysis. WhenW is large, P is small, and |Eα−Eα∩Eβ| is large. Then, the number

of colored vertices becomes small. Figure 4.7 shows N (G(V,E)) decreases with the

increase of the wavelength number.

When discussing the wavelength assignment problem in Section 4.3, the

wavelength assignment problem is transformed into the graph partition problem based

on the assumption that the larger the |Eα−Eα∩Eβ|, the smaller theN (G(V,E))C/P .

Here, the assumption is tested by simulations. In Figure 4.8, P = 16, W = 8, and

r = 200, run 1000 simulations, and plot N (G(V,E)) vs. |Eα − Eα ∩ Eβ| in each
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Figure 4.8 N (G(V,E)) vs. |Eα − Eα ∩ Eβ| in 1000 simulations.

simulation. Although N (G(V,E)) fluctuates for a given |Eα − Eα ∩ Eβ|, the general

trend is that N (G(V,E)) decreases with the increase of |Eα − Eα ∩ Eβ|.

4.5 Summary

This chapter investigates the OFDMA resource allocation and wavelength assignment

problems in WDM radio-over-fiber picocellular networks. With the assumption that

the data rate delivered by each resource block in each picocell is the same, the

problem of maximizing the sum of data rates is reduced to the problem of maximizing

the total number of allocated OFDMA resource blocks. It has been shown that

the problem of maximizing the total number of allocated RBs is strong NP-hard.

Then, three algorithms have been proposed to address it: the vertex-coloring based

approach, the independent-set based approach, and the greedy algorithm. Vertex-

coloring based algorithm can obtain the optimal result, but is computational intensive.

The independent-set based approach reduces the complexity at minor expense of

performances. The greedy algorithm, though has the worst performance among the

three, is efficient and scalable. The wavelength assignment problem is heuristically

formulated into a connectivity minimization problem, and employ graph partitioning

algorithms to address it. This assumption is shown to be reasonable by simulations.
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Simulation results also show that the performances of the greedy resource allocation

algorithm conform closely with the theoretical analysis.
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