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METHOD Open Access

Optimizing sequencing protocols for
leaderboard metagenomics by combining
long and short reads
Jon G. Sanders1, Sergey Nurk2, Rodolfo A. Salido1, Jeremiah Minich1, Zhenjiang Z. Xu1, Qiyun Zhu1,
Cameron Martino1,3, Marcus Fedarko4, Timothy D. Arthur1, Feng Chen5, Brigid S. Boland6,7, Greg C. Humphrey1,
Caitriona Brennan1, Karenina Sanders1, James Gaffney1, Kristen Jepsen8, Mahdieh Khosroheidari8, Cliff Green8,
Marlon Liyanage1, Jason W. Dang1, Vanessa V. Phelan9,14, Robert A. Quinn9,15, Anton Bankevich2, John T. Chang6,7,
Tariq M. Rana1, Douglas J. Conrad10, William J. Sandborn6,7,11, Larry Smarr4,12, Pieter C. Dorrestein1,8,16,
Pavel A. Pevzner4,11 and Rob Knight1,4,11,12,13*

Abstract

As metagenomic studies move to increasing numbers of samples, communities like the human gut may benefit
more from the assembly of abundant microbes in many samples, rather than the exhaustive assembly of fewer
samples. We term this approach leaderboard metagenome sequencing. To explore protocol optimization for
leaderboard metagenomics in real samples, we introduce a benchmark of library prep and sequencing using
internal references generated by synthetic long-read technology, allowing us to evaluate high-throughput library
preparation methods against gold-standard reference genomes derived from the samples themselves. We introduce a
low-cost protocol for high-throughput library preparation and sequencing.

Keywords: Leaderboard metagenome, Long reads, Benchmark, Assembly, Binning

Introduction
DNA sequencing of microbial samples has emerged as a
technology of choice for analyzing complex bacterial
communities. In the past years, the field of metage-
nomics has been shifting from marker gene-based
approaches toward de novo assemblies of shotgun meta-
genomic sequencing data, followed by binning the
resulting contigs into clusters representing individual
organisms [1–3]. However, despite many efforts, de novo
metagenomic assembly remains challenging. The com-
plexity of many metagenomic samples, combined with
widely varying abundance of the constituent species, de-
mands sequencing effort that dwarfs most other applica-
tions of next-generation sequencing. This challenge is
further amplified in emerging high-throughput projects

aimed at sequencing thousands of microbiomes—espe-
cially the human gut.
Unfortunately, most individual genomes resulting from

metagenome sequencing are often far from the quality
standards achieved in assembling bacterial isolates. The
first issue is that even with deep sequencing, the cover-
age of most species is still less than the typical coverage
depth in isolate sequencing projects. The second issue is
that conserved genomic fragments present in multiple
microbial species lead to hard-to-resolve inter-genomic
repeats during the assembly process. Finally, the high
microdiversity of many bacterial communities leads to
additional deterioration of assemblies [4, 5]. These chal-
lenges make it impossible to generate high-quality as-
semblies of individual genomes within a metagenome
for all but a few abundant species.
However, metagenomic studies have been rapidly pro-

gressing from analyzing a few samples to analyzing many
samples. Analysis of multiple bacterial communities of
similar origins (e.g., human stool) has revealed that they
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widely differ in composition [6, 7]. Moreover, analysis of
a single community across multiple time points, even in
the absence of apparent variation in external conditions
[8–11], shows rapid and drastic shifts in the community
composition. This observation suggests an alternative se-
quencing strategy that focuses on analyzing abundant
species in multiple datasets rather than increasing the
sequencing depth and sensitivity of the analysis of a
single sample. This strategy, which we refer to as leader-
board metagenomics, is also supported by the recent
success of binning algorithms based on differential
coverage of genomic fragments across multiple samples
[2, 12, 13]. The resulting set of leaderboard genomes can
then be used for mapping-based analysis of less abun-
dant species and strain variants within each sample. The
leaderboard approach to metagenomic assembly is impli-
cit in the use of co-abundant gene groups to partition
metagenomes [3], and tools for dereplicating redundant
genome bins from individually assembled samples [14]
have been used successfully in meta-analyses of publicly
available metagenomic data to dramatically increase the
breadth of the available human-associated microbial
genome catalog [15].
While the increased sample size has clear theoretical

advantages, most research is resource-constrained, and
individual investigators have to weigh the benefits of a
higher sample size with the costs of generating additional
sequencing libraries. Current sequencing protocols have
significant performance differences in metagenome stud-
ies [16]. To scale leaderboard metagenomics to thousands
of samples and to maximize its efficiency, it is imperative
to benchmark experimental approaches both in terms of
cost and assembly quality. While the quality of genome as-
semblies is usually assessed on isolates with known refer-
ence genomes [18, 19], benchmarking of metagenome
assemblies is a more difficult task because reference meta-
genomes are rarely available. This problem is typically ad-
dressed by generating synthetic mock datasets with
known community members [20–22].
In this work, we propose a different path for bench-

marking metagenome assemblies which uses synthetic
long-read sequences as a reference. Using long reads
permits benchmarking protocols directly on the commu-
nity of interest without having to assemble mock samples,
while simultaneously generating a complementary sequence
that can be used for improved hybrid assembly. Since True-
Seq synthetic long read (TSLR) technology [23, 24] yields
high-quality reconstruction of abundant microbial species
[25, 26], it is ideal for benchmarking leaderboard metage-
nomic protocols, although the same concepts apply to
other highly accurate long-read technologies as they emerge
[27–29]. We exploit tools of SPAdes family [25, 30, 31] to
assemble short-read data and TSLR data and use meta-
QUAST [32] for evaluating the quality of short-read

assemblies with the TSLR-derived genomic bins as the
underlying references. We benchmarked three sequence
library preparation protocols (TruSeqNano, NexteraXT,
and KAPA HyperPlus) for performance in leaderboard
metagenomics of the human gut microbiome. We then
used these data to guide the development of a high-
throughput, miniaturized library preparation protocol that
dramatically reduces per-sample costs, facilitating the appli-
cation of a leaderboard metagenomics approach to new
datasets. We make these data, as well as the automated
workflow for comparative assessment, available as a com-
munity resource so that alternative assembly tools and
novel metagenomic environments can be easily bench-
marked in subsequent works.

Results
Sequencing parameter cost/benefit analysis
To ensure that our subsequent comparisons of library
preparation protocols were performed using cost-effective
sequencing parameters, we did an initial assessment of
assembly results given cost-matched sequencing effort on
different sequencing instruments. We calculated the per-
gigabase sequencing cost using Rapid Run flow cells on Illu-
mina HiSeq2500 and HiSeq4000 instruments at 150 bp and
250 bp paired-end (PE) read lengths. In general, sequencing
was most cost-effective using the HiSeq4000 instrument at
the 150 bp insert size (Additional file 1: Table S1).
However, a given sequencing depth may still perform

differently for assembly depending on the insert size, read
length, and instrument used. Thus, we compared assembly
performance at different insert sizes given cost-matched
sequence efforts for HiSeq2500 and HiSeq4000 se-
quencers, using eight human fecal metagenomes prepared
using the TruSeqNano kit (Additional file 1: Table S2).
Given the estimates in Additional file 1: Table S1, 1 mil-
lion reads of HiSeq2500 PE250 costs about the same as
2.4 million reads of HiSeq4000 PE150. We therefore sub-
sampled these libraries to the maximum number of reads
available across parameters combinations, cost-matched
for the different sequencer types (4.5 million and 10.9 mil-
lion reads for HiSeq2500 and HiSeq4000, respectively).
In general, shorter insert sizes yielded superior assem-

blies in the HiSeq4000 instrument, while longer insert
sizes performed better in the HiSeq2500, consistent with
the narrower insert size range recommendations from
Illumina. Scaffolds of 3 kbp or longer accounted for a me-
dian of about 110 total megabases for both HiSeq4000
PE150 libraries using 400-bp inserts and HiSeq2500
PE250 libraries using 1000-bp inserts (Additional file 1:
Figure S1). Assembly of very long scaffolds (≥ 50 kbp) was
marginally less successful for HiSeq2500 PE250 libraries
at these insert sizes, with a total length above this scaffold
size at about 92% compared to HiSeq4000 PE150 libraries
in matched samples (Fig. 1).
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All told, we consistently achieved the best assembly
contiguity using HiSeq4000 PE150 sequencing with in-
sert sizes centered around 400 bp; these parameters were
used for the remainder of the analyses.

Creation of internal reference genome bins
We used TruSeq long-read sequencing technology to
generate synthetic long-distance reads from eight hu-
man fecal microbiome samples, further assembling
them into longer contigs per sample (see the “Methods”
section). We identified reference genome bins from the
TSLR genome assemblies using differential coverage in-
formation across samples with the CONCOCT binning
algorithm [2] as implemented in the Anvi’o metage-
nomics pipeline [33], manually refining the bin assign-
ments using the Anvi’o interactive bin refinement tool
(Fig. 1) (note that CONCOCT has subsequently been
shown to underperform other available binning tools
[20]). These refined bins were then scored using a
metric incorporating both estimates of genome com-
pleteness and purity and average coverage depth in the
original sample (see the “Methods” section). For each of
the eight samples, we extracted five top-scoring bins for

use as internal reference genomes that further served
for benchmarking different short-read sequencing strat-
egies. Information resulting in internal references is
summarized in Additional file 1: Table S2.

Assessing assembly quality using reference genome bins
We used the genome bins created above as internal refer-
ences to evaluate alternative library preparation methods
with respect to leaderboard sequencing of human fecal
metagenomes. For all eight samples for which we had gen-
erated TSLR references, we generated libraries using Tru-
SeqNano and NexteraXT preparation kits and sequenced
using a HiSeq4000 sequencer and PE150 sequencing with
400-bp insert sizes. For four of these samples, we also gen-
erated libraries using the KAPA HyperPlus preparation
kit. A randomly sampled set of ten million read pairs from
each of these libraries (the maximum available across li-
braries) was assembled with metaSPAdes [30] and com-
pared to the reference genome bins using metaQuast [32].
In general, libraries prepared using TruSeqNano tech-

nology performed the best with respect to assembled
genome fraction, recovering nearly 100% of the 5 refer-
ence bins from each of the 8 samples in assemblies

Fig. 1 Illustration of the benchmarking workflow using sample 1 as “primary.” Data products are represented by white ellipses and processing
methods by gray rounded rectangles. The workflow consists of two parts. In the first part (TSLR reference creation), TSLR data are generated and
assembled for primary sample 1. Coverage information from additional samples is used to bin the TSLR contigs into reference genome bins. In
the second part (Assembly evaluation), primary sample 1 is sequenced using various short-read sequencing methods. Assemblies from these
alternative methods are then compared against the internal reference to benchmark performance
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(Fig. 2). For NexteraXT libraries, 26 out of 40 total refer-
ence genomes were recovered at ≥ 80% completeness (at
least 1 bin was recovered at more than 95% complete-
ness in 7 out of the 8 samples). KAPA HyperPlus librar-
ies generally performed better than NexteraXT, with
assembly fractions similar to TruSeqNano libraries for
11 of the 20 references in the 4 samples for which data
were available (difference < 1%). With respect to per-
reference assembled genome fraction (length assembled
into contigs ≥ 500 bp), TruSeqNano assemblies were al-
most strictly better than HyperPlus assemblies, which
were in turn strictly better than NexteraXT assemblies.
Per-nucleotide error statistics (mismatches between

the assembly and the TSLR reference sequence) were
similar among various library preparation methods. This
may reflect errors in the underlying TSLR references, or
systematic differences in coverage among respective refer-
ence genome bins, with lower-abundance genomes having
greater proportions of the short-read assembly mapping to
low-coverage regions of the TSLR reference with limited
capacity for internal error correction (Additional file 1:
Figure S2). Although TSLRs feature a lower error rate
(below 0.1% on average) than the standard Illumina reads
[24], they are not as accurate as the assembled contigs that
often have a very small ≈ 0.001% error rate. Additional file 1:
Figure S2 illustrates that the mismatch rates for the

majority of references were in line with the estimated mis-
match rates in TSLRs; 35/40, 27/40, and 17/20 genomes
had mismatch rates below 0.1% (1 mismatch per 1000 bp)
for TruSeqNano, NexteraXT, and HyperPlus assemblies,
respectively. In general, the references with higher assem-
bled genome fractions also had lower mismatch rates. In
contrast, indel rates were more systematically different
between library prep methods, with NexteraXT libraries
having a much higher estimated indel rate than either
TruSeqNano or HyperPlus libraries (Additional file 1: Fig-
ure S3).
Systematic differences between library prep methods

were also quite clear in assembly length statistics, with
TruSeqNano libraries almost always having both the
longest overall contig (Additional file 1: Figure S4) and
the largest fraction of the assembly in contigs greater
than 10 kbp (Additional file 1: Figure S5). NexteraXT li-
braries rarely yielded any contigs greater than 50 kbp in
length and typically had very low fractions of the refer-
ence genome assembled into ≥ 10 kbp contigs. Hyper-
Plus libraries performed in between on both metrics.
Because we only investigated a single long-read tech-

nology as a reference, we cannot eliminate the possibility
that differences in performance are in part due to simi-
larities between the TSLR chemistry and short-read
chemistries, rather than differences in overall assembly

Fig. 2 a–h Genome fraction of internal reference bins recovered in test assemblies. Each panel depicts the performance of the top five reference
bins from a separate sample. Reference bins are ordered from the highest to the lowest average recovered genome fraction across the library
prep methods tested for that sample (x-axis categories are not comparable between panels)
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performance. However, the differences we observed in
reference assembly statistics mirror differences we ob-
served in non-reference-based statistics—i.e., assemblies
were not only more contiguous in comparison with syn-
thetic references, but also using de novo metrics for un-
related samples (see below)—suggesting that similarities
between long-read and short-read library chemistries are
not the sole explanation.

Ultra high-throughput miniaturized library prep for
leaderboard metagenomics
While full-scale TruSeqNano libraries yielded the most
complete assemblies according to our TSLR synthetic
references, the labor- and sample-intensive initial frag-
mentation step makes it relatively difficult to implement
at large scale. Methods using enzymatic fragmentation,
including NexteraXT, are more amenable to scaling and
miniaturization [34]. Given that our evaluation showed
that the HyperPlus chemistry (which also uses enzymatic
fragmentation) resulted in improved assemblies over
NexteraXT at full scale, we implemented a miniaturized,
high-throughput version of the HyperPlus library proto-
col (Additional file 1: Figure S6). We compared its per-
formance to both full-scale libraries using synthetic
references and to an implementation of a miniaturized
NexteraXT protocol using a panel of real samples.
The miniaturized HyperPlus protocol uses automated

acoustic liquid handlers, allowing a 10-fold reduction in
reagent volumes in addition to a substantial reduction in
consumable pipette tips. It also implements the iTru
adapter chemistry [35], which in combination with the
acoustic liquid handler allows programmatic addressing
of individual wells and thus flexible combinatorial bar-
coding using 384 unique error-correcting 5′ and 3′ indi-
ces. Our implementation of the protocol resulted in a
consumable cost of approximately $7 per sample, using
manufacturers’ catalog prices, when preparing 384 li-
braries at a time. Complete overall costs, including cap-
ital and operating expenses for liquid handlers, will be
higher.
Using TSLR synthetic references for comparison, the

miniaturized HyperPlus protocol yielded metagenome
assemblies that were comparable to full-scale HyperPlus
libraries and superior to full-scale NexteraXT libraries.
In particular, we observed improvements in the assembly
of lower-coverage portions of the metagenome. To
visualize the assembly performance as a function of esti-
mated genome abundance in the original sample, we
used individual contigs (rather than bins) from the TSLR
assemblies as references, using average read depth from
read mapping of the original TruSeqNano libraries as a
proxy for genome abundance. In two of the reference
samples, NexteraXT libraries showed a decrease in as-
sembly completeness at higher estimated levels of

coverage than other chemistries (Fig. 3). This may be
due to the localized regions of lower coverage fragmenting
assemblies. By comparison, the miniaturized HyperPlus
protocol yielded assemblies comparable to TruSeqNano
and full-scale HyperPlus protocols across different esti-
mated contig abundances.
We next explored the sensitivity of the protocol to

variation in PCR cycle numbers, adaptor concentration,
and DNA input. When comparing libraries of the same
input biomass, increasing the PCR cycle from 15 to 19 cy-
cles did not change the total number of PCR duplicates
(pre-trimming; Additional file 1: Figure S7a) nor the total
number of reads (post-trimming; Additional file 1: Figure
S7b). The DNA input amount (total mass), however, was
negatively associated with PCR duplicate counts, particu-
larly when samples had less than 100 pg. Further, the total
read counts was positively associated with DNA input
amount (Additional file 1: Figure S7). Based on these re-
sults, we chose a standard input DNA amount of 5 ng and
15 PCR cycles. In the same experiment, 2 adaptor concen-
trations were also tested (360 nl 15 μM vs. 36 nl 15 μM).
When less adaptor was added (36 nl 15 μM), PCR dupli-
cates were significantly lower across all 4 DNA input
amounts (Additional file 1: Figure S8a, Mann-Whitney).
Starting DNA mass was overall negatively correlated to
PCR duplicates, with 1 ng (36 nl at 15 μM) input having a
median of 1.87% while 1 ng (360 nl at 15 μM) had a median
of 15.1%. Furthermore, total read counts were higher for
samples processed with the lower adaptor quantities (Add-
itional file 1: Figure S8b). For the final production scale, we
dilute primers to 1.5 μM and add 360 nl. In the second ex-
periment, we validated our finalized protocol by sequencing
2 microbial controls across 7 orders of magnitude of input
quantity, ranging from 140,000 to 0.14 estimated genome
equivalents. Our miniaturized workflow produced libraries
with negligible contamination across 4 orders of magnitude
of DNA starting material (140,000–140 genomes; 500 pg–
500 fg; Additional file 1: Figure S9). The lower limit of
detection of this assay was around 500 fg of microbial DNA
or approximately 140 genome equivalents.
Next, we performed a direct comparison of miniatur-

ized high-throughput protocols using a panel of samples,
including 89 fecal microbiomes from the American Gut
Project [36], 84 samples from a time series of human
microbiomes from different body sites [8], and 184 bac-
terial isolates. In addition to the miniaturized HyperPlus
protocol, we prepared libraries for all samples using a
miniaturized implementation of NexteraXT [37]. We
compared assembly performance at shallow depths more
commonly used for isolate resequencing (384 samples,
including no-template controls, per HiSeq4000 lane;
about 0.3 Gbp per sample) and, for metagenomes, at
more moderate depths (96 samples per lane; about
1.2 Gbp per sample).
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Miniaturized HyperPlus libraries generally outper-
formed miniaturized NexteraXT libraries, especially at
more challenging sequencing depths. Most isolates
showed similar assembly statistics for each library, indicat-
ing that these assemblies were likely limited by genome
structure and read length rather than library quality, al-
though a substantial fraction of these samples appeared
to fail outright using the NexteraXT chemistry (Fig. 4).
For metagenomes, assemblies from miniaturized Hyper-
Plus libraries were almost invariably larger and more con-
tiguous. These differences were least pronounced for
metrics like total length (Additional file 1: Figure S10) and
most pronounced for metrics emphasizing contiguity,
such as the total length assembled in contigs exceeding
50 kbp, where HyperPlus libraries commonly yielded
megabases of assembly and NexteraXT almost never
yielded any (Additional file 1: Figure S11).

Leaderboard metagenomics enhances recovery of
genome bins
Assembly metrics of our test datasets indicated that,
using the miniaturized HyperPlus library protocol, valu-
able information could be recovered from metagenome
assemblies even at sequencing depths much lower than
typically performed for complex samples. Given the typ-
ical cost of library preparation relative to sequencing,
low-coverage metagenome sequencing of large sample
numbers is often not cost-effective. However, lower costs

and higher throughput afforded by the miniaturized
protocol may change this evaluation for some projects.
To evaluate the effect of increasing sample number

even at lower depths of coverage per sample, we pre-
pared miniaturized HyperPlus sequencing libraries for a
set of longitudinal mouse parent/offspring fecal samples.
Samples were individually indexed and sequenced at a
depth of 384 samples per HiSeq4000 lane. Samples were
then co-assembled per individual (mothers) or litter (off-
spring) and binned using either the per-sample differen-
tial coverage and composition information or using
pooled coverage and composition information per indi-
vidual to approximate a lower-throughput but higher-
depth sequencing strategy. Incorporating per-time point
coverage information improved bin completeness and
decreased contamination relative to the pooled time
points (Fig. 5). A total of 312 bins exceeding 70% com-
pletion and below 10% contamination were recovered, of
which 248 exceeded the 90%/5% completeness/contam-
ination thresholds to be considered “high-quality draft”
metagenome-assembled genomes [38]. To evaluate the
total non-redundant genomic diversity recovered using
each method, we dereplicated the total set of genome
bins using the dRep pipeline [14]. From the 186 high-
quality genome bins recovered using composition-only
binning and 248 high-quality bins recovered using per-
time point coverage information, we obtained 50 unique
genome bins. Of these dereplicated genomes, the highest-

Fig. 3 Assembly performance as a function of estimated genome abundance. Points represent the total fraction of a TSLR reference contig
assembled as a function of average read depth for that contig, per library prep methodology. Samples e–h correspond to samples e–h in Fig. 2
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quality bin was recovered from the per-time point proto-
col in 32 cases (Additional file 1: Figure S12).

Discussion
Long-read internal reference bins enable robust leader-
board benchmarking on real samples, permitting realistic
assessment of sequencing and assembly strategies for
novel and complex microbial communities. Existing
resources for assembly benchmarks, such as in vitro and
in silico mock communities [16, 20, 39], have been invalu-
able for guiding previous sequencing efforts. However, few
mock community resources are readily available for other
types of environments. Although generating high-fidelity
long-read data is also relatively expensive, it does not
depend on the isolation and maintenance of organisms,
opening benchmarking up to environments where

relevant organisms are not present in the culture. And
while Illumina has discontinued the TSLR product,
other high-fidelity long-read technologies, such as
PacBio long-range circular consensus sequencing [27]
or emerging tools based on Oxford Nanopore single
molecule sequencing [28], should be easily integrated
into our approach. Even for technologies which cur-
rently lack extremely high fidelity at the single-read
level, such as uncorrected single nanopore reads [29],
these benchmarks are likely to be especially important
as shotgun metagenomic sequencing becomes more
widely utilized, and constituent genome assembly chal-
lenges become more clinically relevant, since the
success of annotating biosynthetic gene clusters and
antibiotic resistance cassettes heavily depends on the
assembly quality.

Fig. 4 Assembly metrics for miniaturized libraries prepared from three different sample sets. a N50 values for samples (points) assembled from
miniaturized HyperPlus libraries (horizontal axis) and from miniaturized NexteraXT libraries (vertical axis). Point of equality is indicated by a dotted
line, and values are presented for assemblies at a depth of 96 samples per lane (left panel) and at 384 samples per lane (right panel). b The total
length of assemblies in contigs exceeding 5 kbp in length
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In this proof of concept analysis, we have focused on
the recovery of genomes present at high abundance,
which could be isolated in silico from other genomes in
the community. These types of genomes are likely to be
central to the expansion of the global microbial genome
catalog via metagenome sequencing [12, 15, 40, 41], so
assessing the quality of their reconstruction independ-
ently of overall metagenomic assembly statistics is an
important challenge.
Recent large-scale meta-analyses have dramatically

expanded the available genomic catalog for human-
associated communities, highlighting the importance of
increased sample count to the exploration of global
microbial genomic diversity [15, 41]. However, these
efforts leveraged the immense investment in human
microbiome research over the last decade, analyzing tens
to hundreds of thousands of metagenomic samples avail-
able in public databases.
For most microbial environments, and most host ani-

mal species, such broad-scale community resources do
not exist. And while recent research has demonstrated
that even shallow metagenomic sequencing can identify
the same kinds of biological signals that are recovered
from (typically lower-cost) 16S rRNA marker gene se-
quencing [42], these shallow metagenomic analyses are

highly dependent on the quality of the available genome
references. We envision leaderboard metagenomics as
one way out of this double bind for researchers studying
relatively underexplored environments: by trading se-
quencing depth for increased sample numbers while still
assembling the dominant genomes from each sample,
we can expand the environment-specific genome catalog
organically while improving statistical power to identify
biological patterns within individual, moderately scoped
studies.
Our results demonstrate that, at least for moderately

complex environments like the mammalian gut, shifting
effort from increased depth to increased sample number
can result in substantial improvements in the quality of
genomes recovered from the metagenomic samples. Two
important caveats apply. First, the degree of improvement
will be a function of the complexity and distribution of
microbes across samples. Genomes must be present in
multiple samples at varying abundances, and in at least
one sample at sufficient abundance for assembly, to bene-
fit. For very complex and evenly distributed communities,
like soil microbiomes, there may be few genomes that
meet these criteria. Second, microbes can still have im-
portant effects at low abundances; even in communities
like the mammalian gut, these ubiquitously rare microbes

Fig. 5 Completeness and contamination statistics for bins recovered from assembly and binning of shallow-sequenced mouse metagenomes.
Longitudinal samples for each mother (Mothers) or for each litter (Offspring) were coassembled. “Compositional only” bins were calculated using
pooled reads from each longitudinal sample per individual, simulating low-N, high-depth sequencing. “Compositional and alignment” bins were
calculated using differential coverage data obtained by mapping each longitudinal sample independently to its individual coassembly
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might never be assembled well from more shallowly se-
quenced samples. In these cases, initial low-coverage
sequencing across many samples could still serve to iden-
tify targets for higher-depth resequencing efforts. Such a
low-coverage high-N approach demands a substantial
reduction in the per-sample costs of library construc-
tion, while placing a premium on the ability to produce
contiguous assemblies at lower average coverage. We
found that differences in the library preparation proto-
col resulted in substantial differences in the assembly of
the most abundant organisms and that these differences
were exaggerated at lower sequencing depths. Libraries
prepared with sonic fragmentation of high input DNA
quantities, ligated adapters, and magnetic bead purifica-
tion are the current standard in the field, and the li-
braries using this approach in our study (TruSeqNano)
were by far the most successful at the reconstruction of
underlying internal reference genome bins. However,
higher unit cost, labor-intensive fragmentation step,
and higher input requirements inhibit the application
of these protocols in high-throughput automated pipe-
lines. For these reasons, despite being known to per-
form poorly in assembly due to unevenness of coverage
[43], transposase-mediated protocols such as Nexter-
aXT, which can operate effectively at very low input
concentrations and require no separate fragmentation
step, have been favored in such applications [44, 45].
Transposase-based libraries have also been imple-
mented in microfluidics-based miniaturization strat-
egies [46, 47].
Our results show that metagenomic libraries generated

with the KAPA HyperPlus chemistry, which uses a more
automation-friendly enzymatic fragmentation while
retaining TruSeq-style adapter ligation, can serve as a
useful middle ground. Our miniaturized protocol yields
substantial improvements in metagenomic assembly over
NexteraXT, while maintaining flexibility in input DNA
quantity and reducing consumables costs per sample to
a fraction of the per-Gbp cost of Illumina sequencing.
By leveraging flexible dual-indexing, it also permits the
multiplexing of hundreds to thousands of samples on a
single sequencing lane, allowing the cost efficiency of
newer NovaSeq sequencers to be accessed even in stud-
ies with modest sequencing needs per sample.
Our protocol does rely on automated liquid handling

robots to handle reduced fluid volumes and increase
throughput. The capital costs associated with the acqui-
sition and upkeep of laboratory robotics, as well as the
informatics infrastructure necessary to keep track of
tens of thousands of samples and their associated meta-
data, will limit the number of facilities that will be able
to implement it successfully. Other strategies for
miniaturization, for example, via purpose-built micro-
fluidics devices, show great promise for reducing the

overall capital requirements for high-throughput and
low-cost library construction [46, 47].
Advances in throughput and cost-efficiency were crit-

ical to the widespread adoption of 16S rRNA gene pro-
filing, and the distributed efforts of researchers across
disciplines, study systems, and nations have produced a
collective database of marker gene diversity that is be-
ginning to yield insights at a global scale [48]. As surveys
of microbial diversity move past the marker gene and
toward the metagenome, efforts to increase the utility
that each individual study provides to subsequent re-
search can potentially yield enormous dividends—espe-
cially for understudied environments and populations.
Accurate estimation of genomes from metagenomes is
one such dividend: metagenome-assembled genomes can
serve both as datasets for testing future hypotheses
about genomic content and as references for testing future
hypotheses about microbial distribution. By lowering the
barriers to sample-specific assembly evaluation and high-
sample number metagenome studies, the tools for leader-
board metagenomics we introduce here aim to make
genome generation from metagenomes more accessible.

Methods
DNA extraction, library preparation, and sequencing
Samples used for the TSLR reference portion of this
study were comprised of four human fecal microbiome
samples from the Inflammatory Bowel Disease Biobank
at UCSD (A-D), as well as four samples spanning ap-
proximately yearly intervals from a longitudinal series
from a single individual who gave written informed con-
sent (E-H). These studies were both approved by the in-
stitutional review board at UC San Diego (IRB protocols
#131487 and #14083/#150275, respectively).
Initially, eight libraries were prepared using Illumina

TruSeqNano library preparation kits and 100 ng of iso-
lated DNA per sample, and using Illumina NexteraXT
preparation kits and 1 ng of DNA, according to the
manufacturer’s instructions. Input for TruSeqNano li-
braries was sheared using a Covaris E220 ultrasonicator.
These libraries were purified using AmPure magnetic
beads, pooled in equimolar ratios, and different size
ranges (< 400, 400–600, 600–800, and 800–1000 bp) se-
lected from purified libraries using a Pippen Prep electro-
phoresis machine (Sage Sciences). The size-selected
libraries were then sequenced on two lanes of a RapidRun-
format HiSeq2500 in PE250 mode and on two lanes of a
RapidRun-format HiSeq4000 in PE150 mode.
Subsequently, libraries were prepared from four of

these samples using a HyperPlus library prep kit (KAPA
Biosciences) according to the manufacturer’s instruc-
tions. These libraries were prepared with 1 ng of input
DNA and 15 cycles of PCR library amplification, pooled,
and size selected using the same parameters and
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instrument as the lowest size range for the above
libraries, and sequenced on a HiSeq4000 instrument
in PE150 mode.

TruSeq long-read library preparation, sequencing, and
assembly
First, the truSPAdes algorithm [25] was used for the re-
assembly of individual synthetic long reads from individ-
ual barcoded short-read clouds. Then, the truSPAdes
genome assembler [25] was used for the assembly of
resulting TSLRs. Normally, SPAdes requires at least one
high-coverage paired-end Illumina library for construc-
tion of an assembly graph. The truSPAdes algorithm is
modified to handle TSLRs as a base for assembly graph
construction. In particular, we used iterative assembly
graph construction up to a large value of k = 127 and,
exploiting the high accuracy of the synthetic long reads,
introduced a strict threshold on graph processing proce-
dures (such as tip clipper and erroneous connection re-
mover), effectively preventing removal of edges supported
by more than two TSLRs. We then extracted contigs from
the assembly graph using SPAdes’ hybrid mode [49]
designed to use long reads (e.g., SMRT and Sanger) for
repeat resolution in the assembly graph.

TSLR reference bin selection
Assembled TSLR libraries for each of the 8 samples se-
quenced with TruSeqNano and NexteraXT libraries
were processed into contig databases using a Snakemake
[50] pipeline adaptation of the recommended workflow
for the Anvi’o analysis and visualization platform [33].
This workflow can be found at https://github.com/
tanaes/snakemake_anvio. Briefly, contigs for each assem-
bly were indexed and stored in a reference database,
then annotated for the presence of several sets of published
universal single-copy protein-coding genes [2, 51–53].
Abundance profiles for these contigs were estimated by
mapping the reads from each of the eight TruSeqNano li-
braries to the TSLR assembly using Bowtie2 [54]. Because
differential abundance-based binning is most successful
with more than 10 samples [2], we also included abundance
profiles for the 4 additional samples prepared with
HyperPlus library preparation. The abundance profiles
from these 12 samples were then used as input to the
CONCOCT binning algorithm [2] to group contigs
into preliminary bins. The preliminary bins estimated
to have high completeness (> 85% universal single-
copy marker genes represented) were then manually
refined using the anvi-refine tool to reduce the esti-
mated bin contamination (as estimated by the redun-
dancy of single-copy marker genes). Refined bins were
scored using the following equation:

wc � C−wr � Rþ wa � A=Amaxð Þ

where C is the estimated completeness of the bin (pro-
portion of single-copy genes represented), R is the esti-
mated redundancy (based on single-copy genes present
in multiple copies), A is the abundance of the bin in its
original sample as estimated by the average coverage
depth, and Amax is the coverage depth of the most abun-
dant bin in that sample. wc, wr, and wa are simply the
weighting variables chosen to change the contribution of
different factors to the score. We used wc = 1, wr = 1, and
wa = 10. We chose these values because they yielded bins
that were of consistently high quality across these assem-
blies, enabling automated bin selection in our pipeline.

Sample assembly and reference comparisons
We constructed an automated pipeline using Snakemake
[50] to assemble samples and compare them to the
reference bins, available at https://github.com/RNAer/
assembly_snakemake_pipeline. The raw sequence reads
for each sample were subsampled using seqtk (https://
github.com/lh3/seqtk) to an even depth of ten million
reads then quality- and adaptor-trimmed using Cutadapt
[55]. Subsampled and trimmed paired-end sequences were
then de novo assembled using metaSPAdes 3.8.2 [30]
using default parameters. Assemblies were then compared
against corresponding five highest-scoring internal refer-
ence bins from the same sample using MetaQUAST 4.
1[32], which calculates a number of assembly statistics.
The taxonomy of each bin was assessed using Taxator-tk
1.3.0e [56] against its reference database “microbial-full_
20150430.” Once initiated, the intelligent workflow track-
ing provided by Snakemake allows test sequences from
additional library prep protocols to be sequentially added
and compared to prior results, using the minimum neces-
sary re-computation. As new protocols and sequencing
technologies become available, this approach will allow
analysis teams to maintain an updated evaluation of how
different methodologies perform on their unique sample
types.

High-throughput miniaturized HyperPlus library protocol
and validation
We developed a high-throughput version of the HyperPlus
library chemistry (Kapa Biosciences) miniaturized to an
approximately 1:10 reagent volume and optimized for
nanoliter-scale liquid-handling robotics. An exhaustive
step-by-step protocol and accompanying software are in-
cluded in Additional file 2. We performed two primary ex-
periments to both optimize and validate miniaturization
steps for library preparation. To optimize the PCR cycle
number and determine the ideal concentration of barcode
adaptors, we choose two high diversity metagenome sam-
ples (human feces) and 2 microbial isolates (Bacillus subtilis
2610 and Vibrio fischeri ES114). Four 10-fold serial dilu-
tions of the samples’ normalized gDNA were performed

Sanders et al. Genome Biology          (2019) 20:226 Page 10 of 14

https://github.com/tanaes/snakemake_anvio
https://github.com/tanaes/snakemake_anvio
https://github.com/RNAer/assembly_snakemake_pipeline
https://github.com/RNAer/assembly_snakemake_pipeline
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk


and used as input for the library preparation representing 1
pg, 10 pg, 100 pg, and 1 ng of gDNA. Sample dilutions were
processed in duplicate at 2 adaptor concentrations (15 μM
at 360 nl vs. 15 μM at 36 nl). In addition, samples were also
processed through either 15 or 19 PCR cycles. The second
experiment was conducted in order to validate the final
protocol and determine the linear input range of gDNA
possibilities along with determining the limit of detection.
Genomic DNA from the Zymo Mock community stan-
dards, a low diversity community consisting of 10 unique
microbes at relatively equal genomic frequencies, and a sin-
gle microbial isolate, Vibrio fischeri ES114 were used as
templates. To test the full input range capabilities, we per-
formed 7 10-fold serial dilutions of each sample in duplicate
for a total of 28 samples (ranging from 140,000–0.14
genomes) along with four negative controls. gDNA was
processed through the 1:10× HyperPlus protocol utilizing
360 nl of 1.5 μM dual index adaptors and a 15 cycle PCR.
Samples were then pooled in equal volume and sequenced
on a MiSeq 1 × 50 bp kit and then processed through
FASTQC [57], Trimmomatic [58], and taxonomy assigned
using Kraken/Bracken [59, 60].
Our standard protocol is optimized for an input quan-

tity of 5 ng DNA per reaction. Prior to library prepar-
ation, input DNA is transferred to a 384-well plate and
quantified using a PicoGreen fluorescence assay (Ther-
moFisher, Inc). Input DNA is then normalized to 5 ng in
a volume of 3.5 μL of molecular-grade water using an
Echo 550 acoustic liquid-handling robot (Labcyte, Inc).
Enzyme mixes for fragmentation, end repair and A-
tailing, ligation, and PCR are prepared and added in ap-
proximately 1:10 scale volumes using a Mosquito HT
micropipetting robot (TTP Labtech). Fragmentation is
performed at 37 °C for 20 min, followed by end-repair
and A-tailing at 65 °C for 30 min.
Sequencing adapters and barcode indices are added in

two steps, following the iTru adapter protocol [35].
Universal adapter “stub” adapter molecules and ligase
mix are first added to the end-repaired DNA using the
Mosquito HTS robot and ligation performed at 20 °C for
1 h. Unligated adapters and adapter dimers are then re-
moved using AMPure XP magnetic beads and a BlueCat
purification robot (BlueCat Bio). 7.5-μL magnetic bead
solution is added to the total adapter-ligated sample vol-
ume, washed twice with 70% EtOH, and then resus-
pended in 7 μL molecular-grade water.
Next, individual i7 and i5 are added to the adapter-

ligated samples using the Echo 550 robot. Because this
liquid handler individually addresses wells, and we use
the full set of 384 unique error-correcting i7 and i5 indi-
ces, we are able to generate each plate of 384 libraries
without repeating any barcodes, eliminating the problem
of sequence misassignment due to barcode swapping
[61, 62]. To ensure that libraries generated on different

plates can be pooled if necessary, and to safeguard
against the possibility of contamination due to sample
carryover between runs, we also iterate the assignment
of i7 to i5 indices each run, such that each unique i7:i5
index combination is only repeated once every 147,456
libraries. 4.5 μL of eluted bead-washed ligated samples is
added to 5.5 μL of PCR master mix and PCR-amplified
for 15 cycles. The amplified and indexed libraries are
then purified again using magnetic beads and the Blue-
Cat robot, resuspended in 10 μL water, and 9 μL of final
purified library transferred to a 384-well plate using the
Mosquito HTS liquid-handling robot for library quanti-
tation, sequencing, and storage.
To further validate this protocol against an existing

miniaturized library preparation protocol, we generated
a sample set comprising 89 fecal microbiomes from the
American Gut Project [36], 84 samples from a time
series of human microbiomes from different body sites
[8], and 184 bacterial isolates of clinical strains derived
from cystic fibrosis sputum. The isolates were processed
and characterized at the clinical microbiology laboratory
in the Center for Advanced Laboratory Medicine (CALM)
at UC San Diego. After use for diagnostic purposes, the
culture plates were deidentified and collected from
CALM. The microbial community was selected from each
plate, suspended in LB broth containing 20% glycerol, and
frozen at − 80 °C. These pure culture and mixed isolates
were then cultured in Todd Hewitt Broth in deep-well 96-
well plates at 37 °C prior to DNA extraction. DNA was ex-
tracted from samples using the MoBio PowerSoil DNA
high-throughput isolation kit per the manufacturer’s rec-
ommendations. All 357 DNA samples were combined into
a single 384-well source plate and libraries prepared using
the above protocol. In addition, we prepared libraries from
the same source plate using an implementation of the
miniaturized NexteraXT protocol from [37]. Briefly, the
NexteraXT protocol was miniaturized at a 1/10 ratio
based on the kit’s standard protocol. Genomic DNA was
normalized to 1 ng input and went through the recom-
mended tagementation and neutralization protocol. Illu-
mina Nextera indices and NPM were added to the
tagmented gDNA at .5 μL and 1.5 μL, respectively. The
bead cleanup was omitted to increase efficiency and re-
duce cost, and the libraries were then normalized at equal
volumes, 2 μL per sample. All reagent transfers were per-
formed by the Mosquito HTS liquid-handling robot (TTP
Labtech, Inc).
Both sets of libraries were quantified via qPCR and

pooled to approximately equal molar fractions using the
Echo 550 robot, and the final pools (representing 384
samples each prepared via miniaturized NexteraXT
and HyperPlus protocols) were sequenced across 4
lanes of a HiSeq4000 instrument using paired-end
150 bp chemistry.
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Demultiplexed sequences were quality filtered and
adapter trimmed using Atropos [63], assembled using
SPAdes [31] or metaSPAdes [30], and quality metrics
summarized using Quast [19] and MultiQC [19, 64], all
implemented in a custom Snakemake [50] workflow, avail-
able at https://github.com/tanaes/snakemake_assemble.

Leaderboard metagenomics sequencing and assembly
evaluation
To demonstrate the utility of low-coverage whole-meta-
genome shotgun sequencing for recovering genomes from
real-world metagenome samples of moderate complexity,
we identified a sample set comprising longitudinal time-
series sampling for sequencing with the miniaturized
HyperPlus protocol. Studies with a longitudinal sampling
component are expected to especially benefit from the re-
duced per-sample costs of this protocol, as time-series de-
signs can generate large numbers of samples from even
modest numbers of subjects, and are consequently often
cost-prohibitive to analyze using conventional shotgun
metagenomics protocols. The sample set chosen com-
prises 693 mouse fecal samples collected from 12 mothers
over 36 time points and 24 offspring across 11 time points
with 4 dropout time points. The treatment groups were
split evenly both into mothers and offspring groups with
groups of 6 and 12 for mothers and offspring, respectively.
Offspring were collectively sampled in 4 litter groups. The
pregnant mother mice were sampled every 2 days from an
age of 50 to 122 days, and methamphetamine treatment
began on day 54. The offsprings were born on day 68 and
were sampled every 2 days from 21 days after birth until
day 122. The mice were distributed into 4 cages, 2 per
treatment group. This study was conducted in accordance
with approved protocols by the University of California
San Diego. All animal work was approved by the Institu-
tional Review Board at the University of California San
Diego and was performed in accordance with the Institu-
tional Animal Care and Use Committee guidelines.
DNA was extracted from these samples using standard

Earth Microbiome Project protocols [48], with 10–50 mg
of fecal material homogenized and purified with the
PowerSoil PowerMag DNA extraction kit (Qiagen, Inc.)
and a KingFisher magnetic bead purification robot
(ThermoFisher Inc). Libraries were prepared from 5 ng
of purified DNA per the above protocol and sequenced
across 2 lanes of a HiSeq4000 sequencer (corresponding
to 384 samples per lane of sequencing).
Demultiplexed sequences were trimmed using Atropos

[63], and paired-end reads were merged with FLASH (v.
1.2.11) [65]. The merged reads along with reads that
FLASH was unable to merge were then used to assemble
with MetaSPAdes (v. 3.13.0) [30] on k-mer lengths of 21,
33, 55, 77, 99, and 127. For assembly, all time point sam-
ples from single individuals (mothers) or from single

litters (offspring) were combined and coassembled.
These coassemblies were then binned using MaxBin2 (v.
2.2.4) [66] and MetaBAT2 (v. 2.12.1) [67], either using
contig abundance profiles estimated independently per
time point for that individual or (to approximate single-
sample deep-sequencing approaches) using a single
contig abundance profile calculated with the pooled
reads. Abundance profiles were estimated by mapping
reads against contigs using BowTie2 (v. 2.2.3) [54] and
SAMtools (v. 0.1.19) [68]. MetaBAT2 was run with two
parameter profiles, and MaxBin2 was run on default pa-
rameters. The first MetaBAT2 parameters were less sen-
sitive with a minimum contig length allowed of 1500
and the other parameters on default. The second had
more sensitive parameters with a minimum contig
length of 3000, minimum edge score cutoff of 80, and a
percentage of good contigs cutoff of 98. The three
resulting sets of bins were refined into a single set with
metaWRAP (v. 1.1.2) [69]. Quality metrics for the result-
ing refined bin sets were calculated using CheckM (v.
1.0.13) [70] and compared between abundance profile
methodologies described above.
All bins, from both compositional only and compos-

itional and alignment-based binning, were pooled across
all subjects. The pooled bin set was dereplicated using
dRep (v2.3.2) on default parameters [14]. The resulting
dereplicated bin set was filtered for bins considered to
be “high-quality draft” metagenome-assembled genomes
[38]. The final dereplicated and quality-filtered bin set
was then compared for “winning” bin origin of either
compositional only or compositional and alignment-
based binning.
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