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All places that the eye of heaven visits

are to a wise man ports and happy havens. Shakespeare. Richard II

Ship berthing plans reserve a location for inbound U.S. Navy surface vessels prior to
their port entrance. or reassign ships once in port to allow them to complete. in a timely
manner. reprovisioning. repair. maintenance. training, and certification tests prior to
redeploying for future operational commitments. Each ship requires different services
when in port. such as shore power. crane . ordnance. and fuel. Unfortunately. not all
services are offered at all piers. and berth shifting is disruptive and expensive: A port
operations scheduler strives to reduce unnecessary berth shifts . We present an optimi­
zation model for berth planning and demonstrate it for Norfolk Naval Station . which
exhibits all the richness of berthing problems the Navy faces. ( !l)l)-l John Wilev & Sons, 111\:.

I. INTRODUCTION

While most ships' missions are executed at sea, their in-port time is essential to maintain
a high degree of material readiness and crew morale: Efficient ship berthing is important.
A ship berthing plan assigns surface vessels a berth prior to entering port or reassigns
ships once in port "to accomplish a progression of maintenance training and certification
events which build readiness for future operational commitments" [151 . These events
include combat systems maintenance , tests. and training. amphibious in-port deck ev­
olutions, and other in-port functions relevant to an individual ship class [71.

Prior to the port arrival of a commissioned naval ship or fleet auxiliary ship, the
commanding officer sends a message to the appropriate naval authority stating the logistic
requirements (LOGREQ) of his ship during the period in port [Ill . This LOG REO
specifies any requests a ship may have due to upcoming inspections, operational com­
mitments, maintenance requirements, or any other consideration the commanding officer
identifies.

Port operation ship berthing schedulers review logistic requirement s, quarterly em­
ployment schedules, and squadron requests for all home-based and visiting ships. and
make berth assignments based on fleet requirements and port capabilities. Factors con­
sidcred in berth assignments include pier service requirements, deployment status. special
operational tests. ship and berth characteristics, as well as crane requirements fur on­
or off-loading supplies. These considerations must be taken into account since each berth
is unique in its capabilities: Each berth may offer differing shore power and crane services.
depth and length of slip. fuel or ammunition loading capability and fendering system

1121·
An ideal ship berthing plan which minimizes port loading problems would require

that all possible berths for each vessel be examined and ··the one which best promotes
Beet readiness while minimizingconflict between the inport goals would b....' chosen" [151.
As a practical matter , this is impossible for a human scheduler to do . There arc simply
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too many details to consider over time. and comparison of the goodness of alternate
plans is problematic.

In order to assign ships to a sequence of berths that offer required services while
minimizing the number of berth shifts required. we formalize and quantify berthing rules
and ship priorities and develop appropriate measures of effectiveness. A computerized
optimization model is developed and tested to assist the schedulers in the creation of a
berthing plan which minimizes port loading conflicts. thus promoting fleet readiness
through berthing stability.

II. NAVAL STATION NORFOLK

We study the Navy's largest base: Naval Station Norfolk. Virginia (NAVSTA­
NORVA). a base which exhibits all features seen at other bases.

The mission of Naval Station Norfolk is

.. . to provide. a~ appropriate . logisric support for the Operating Forces of the Navy The

Port Services Officer (abo known as the Port Operati ons Officer) is responsible . . . for the

assignment of berths and anchorages: the usc of piers. landing sites . pilots: coordination of logistic

requests for supplies. lucl. medical services, communications. hazardous material handling and

other services . .. [:-;] .

The Norfolk Naval Station consists of 15 piers which exhibit different physical char­
acteristics and services. Figure 1depicts 14 of these piers. Typically. the average number

NORFOLk
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20e!l~C.-,

Figure 1. Naval Station Norfolk piers.
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of ships in port is 50 with the highest port load at 74 during the Christmas holiday. These
vessels usually rely on shore power rather than on their own power. Shore power and
other facilities permit ships to operate and test combat systems and other mission ca­
pabilities while in port PI. The increasing numher of ships homeported at Norfolk
(presently l lS). along with unique requirements by ships and lengthy pier maintenance
projects. combine to make pier scheduling an extremely difficult task requiring complex

planning [6].
The Naval Station Norfolk ship berthing plans are manually prepared by the schedulers

with the aid of pen and paper and a wall-size mock-up of the pier layout with scale-size
ship silhouettes . Once informed of which ships are scheduled to be in port for the next
week. the scheduler first determines which berths can physically accommodate each ship.

The berth scheduling rationale is based on the following primary criteria:

• The ship's length must he less than the length of the pier.

• The pier-side depth must he live teet greater than the ship's draft to allow for tidal change as

well as propeller wush and engineering plant requirements .

• The ship\ hcurn plus fender system must extend less than the distance between the berth and

the next closest pier or berthed ship plus room to allow a ship to maneuver,

• The berth should provide at least the minimum required number of shore power cables 171 .

After the physically feasible herths are identified for each ship. the scheduler then
considers a secondary set of guidelines specific to Norfolk. shown in Appendix A. Every
port has an analogous set of local berthing criteria .

At this point. scheduling becomes difficult. The scheduler assigns each ship to a feasible
berth and tries to maximize the proportion of requested servicesand minimize the number
of berth shifts required to accommodate these requests over time. This berth plan is the
initial input r6 a key planning event, the berthing conference .

Once a week. a herthing conference is held at port operations and attended by rep­
resentatives from squadrons. groups. type commanders. Military Sealift Command. Nor­
folk Supply Center. Puhlic Works Center (PWC. utilities. and crane scheduler). Read­
iness Support Group and Port Operations (scheduler. chief pilot, ordnance officer,
dockmaster , and policy maker). The squadrons all represent their ships' requests for
docking and undocking times. as well as for particular berth assignments. PWC advertises
feasible pier utility services. The pilot assigns move times for ships constrained by tide.
Compromises are worked out and the Port Operations Officer makes final decisions [121 ,

The final berthing plan resulting from the berthing conference is used as the start of
the following week's schedule. Coordination among all these participants isvital. Changes
in the announced plan are inevitable-the schedule often changes hourly. The sheer
frequency of revisions makes a strong case for the use of a computerized. optimizing
berthing plan. The consequence of oversights is delay. and delays cost time and money.

III. A SHIP BERTHING l\-IODEL

The goal j" to create an optimal berthing plan. at a daily level of detail. for all ships
scheduled to he in port during the prospective planning horizon (say, a week).

The situation calls for a set of discrete ship-to-berth assignments. with limitations on
feasible assignments. These limitations (on length. draft. power cables. and so forth)
are easily cxprcs-cd aslinear functions of ship-to-berth assignment variables. This sug­
gcsrs a linear integer program.
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Model Formulation

Indices

s = I , . S individual ships (alias index tT)

p = I P piers

b = I , . R berths

II "" 1. . , , . N nesting position (alias index III) . where I = pia side and .TV = last position

( := O. , , . . T day where (J "" current day

k = I . , , , . K basins

If := I. . , . . Q services

a = 1. .. . . A ship/pier attributes (draft /depth. length:pier length . ... )

CT and m are simply alternate indices for referring to the ships and nesting positions.
respectively. Such alias indexing is required when describing the constraints below. The
indices p. b, II. and k refer to nautical terms illustrated in Figure 2.

In general. ships can be berthed on both sides of a pier and index p distinguishes
between each side. In Figure 2. p can represent 12N, 12S. lIN. lIS. and ION. Pier lOS
is for small ships and it is not included in our problem. A pier is typically long enough
for two ships to berth pier side, in which case B = :2 indicates two berthing positions.
At a given berthing position of a pier, up to three ships can usually be nested alongside
one another (see berth 2 of pier 11 N in Figure 2), implying that N :=;: 3 in the above
definition of indices. Finally. a basin refers to a space surrounded by two piers as indexed
by p . Figure 2 displays two basins. One includes 11 Nand 125 and the other includes
ION and lIS.

Given and Derived Data

(Us) indices of ships which are shorter than shipr
{!(s) indict's of ships which urc shorter than o r equal in length III ship \

DAYS
. ~ N,

Pier

12

k= 2

~~~~
t

FFGS

Pier

11
p= l1S

k=l

Pier

10

Small Craft

Basin

On day t=5, ship FFG5 is berthed at pier p=11N,

berth b=2, nesting position 11=3.

Figure 2. Ship berthing indices for basin l; . .. I and 2.
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indices of ships which must he berthed singly at pier side

indices of ships which cannot have any ship berthing outboard from them

indices of piers which can provide service type q

I if pier P belongs to basin k: 0 otherwise

width of basin k

beam width of ship s
I if fcndcring and superstructure on pier P is not compatible with ship s: II otherwise

attribute II for ship .\

attribute it for pia II

reward for nesting position 11

ship v priority for requested service (I

I if pier service If is available on pier p: 0 otherwise

s ~\ f e ry distance between ship draft and water depth

I if I ~ I and ship \ can physically and logically be assigned to nesting position 11 of

berth h at pier p on Jay I: tl othcrwisc

max distance that ships can extend past piers

beam width of a standard tug

bow stern distance between ships and /or sea wall

fender distance between nested ships and pier

benefit from berthing ship s. at pier p . in berth h. at nesting position 11 . and on J ay I

penalty for unper formed service type <f for ship S

5

Among the above collection of data . C \I' /1II/ determines whether a ship can be assigned
to (or is compatible with) one of the specified berths at a pier. Such an assignment is
possible. i.e., C,phll/ = 1. as long as all of the following primary berthing conditions (1)­
(5) are satisfied. If these primary berthing criteria are violated for every pier associated
with each specified berth , the ship cannot berth and the problem is deemed infeasible.

SDI.lJratt :5 PDp.,kplh - DR, . ( I)

(2)

(3)

(4)

(5)

Condition (I) ensures the pier depth is deep enough for the ship's draft plus safety
distance. Condition (2) berth s a ship only if its length does not extend past the pier. For
a ship to be considered compatible. it must be scheduled to he in port during the day
considered as ensured by conditions (3) and (4). Condition (5) does not allow a ship to
be assigned a berth where it would have a tendering or superstructure interference .

In order to help the human scheduler. rather than (foolishly) try to replace him.
extensive capability should be provided to allow manual assignment of a ship to a specifi ed
berth. subset of piers/berths, or nesting position. These coercions are simulated in the

prototypic implementation via input of the compatibility data. C,I'lvnI , derived above.
This allows the scheduler to restrict any or all permitted indices for a ship. i.e .. a specified

berth , group of berth s/pier s. and /or nesting position for a specified ship during any or
all days the vessel is scheduled to be in port. When the user identifies specific requests.

all other C',J:lfII arc automatically set to zero. thus ensuring the ship will be berthed only
as specified by the scheduler.
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The objective is the "goodness" of any given feasible berthing plan. The problem is
greatly simplifiedif this benefit can be expressed as an additive. separable linear function
of individual ship-to-berth assignments. To provide such an objective function. individual
ship service requests are prioritized among and between ship classes: larger ships such
as aircraft carriers are authorized higher priorities for services than destroyers or frigates.
The benefit is expressed as a function based on this ship priority for services. pending
inspections. deployments. whether the pier offers any or all of the requested services
and how far into the future the decision will be committed.

Recognizing the time value of information and uncertainty. an exponential function
discounts the preference awarded to a ship desiring a berth in the future versus a ship
requesting it today.

BN';"'/ll benefit from berthing ship s. at pier Ii . in berth h. at nesting position II. on day I ; der ived

only if C..""" :0 1. and defined a ~ follows:

The benefit of a potential assignment is thus calculated by summing. term by term.
the pairwise products of the weighted ship requests (LQ) with the vector (A) which
identifies services available at each pier . This is an indication of how well each berth
satisfies a ship's needs. The inspection and deployment (SD) factors are then added to
the weighted ship requests; this allows a ship with an upcoming inspection or deployment
to be ranked higher than other ships of the same type. The updated weight is multiplied
by an exponential term to give greater consideration to ships requesting services today
than ships scheduled to be in port in the future . Lastly. a reward (R) based on nesting
position is added to yield the final benefit for assigning the ship to a specific berth. This
final nesting position reward encourages the model to berth ships pier side.

Variables

X...,I"" A binary variable specifying if ship .\ is to be berthed at pier p. in berth I,. at nesting position

fl . on day I . In the implementation. the variable, X.""",. is included in the model only when

C..,I,,,, = I. To lake into account the fact that the berthing of ships is an ongoing process.

1 = () indicates a ship's current position .

L 'I'i"lI indicates if ship s shift ed to pier p. in berth n. at nesting position II. on day I . This variable

is generated only if the ship was berthed on day [ - I.

V "I indicates if requested service type q is 1101 performed lor ship s.

Technically. variable Z'l'hlH can have values of Uor I to indicate any berth shifting of
ships already in port. To account for berth shifting. Z,pllllt is simply defined as a difference

between X'II!>III and X,pl'IIf1 -) I' both of which are binary. This naturally induces the inte­
grality restriction when combined with the objective function introduced below. Thus.
Z ';II>III is stated and implemented as a continuous variable between 0 and 1. Similarly,
U"I is technically a binary variable. However. it is stated as a continuous variable because
the objective function and the constraints naturally restrict the value of V", to 0 or 1.

To simplify the presentation. the variables X,/llml and Z 'P /1II1 and the parameter BN '/'!lIIl

arc present in the following formulation only if Cpl11H = 1. In addition . all constraints
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are defined for only combinations of indices which are meaningful. For example. the
symbol V s. t should be interpreted as for all pairs of sand t corresponding to all days
t for which ship s is in port.

Formulation

subject to

Maximize L BN'f1h1l/X',lblll
." ,hlll

L SD ' I. I' ~ n a : l ~ Z,plllll
'1'/1II1

L (SDl.k nglh + BTW)X,phJ I :s; PD p . kll~lh + EXT.
,I!>

L SD ,. p ,, \\ ~rX '/ l h ll/ -s PDp. p" w.:ro V p. t.
'\ / ' /1

V p. t. (6)

(7)

L (w, + FND) Bp"X'flhlll -s W" - TUG. V k , b. f .

' 111/

)'V _I \.I
.L.J ~ ' \ spbn t -. V s. t ,
pbn

L X' flblll -s 1. V p. h. n, f.

(X)

(9)

( 10)

X"'hlll - X'l'llIIl r - II - Z,phlll:S; O. V s. p . b. II. t, ( II )

2: L X " l'h/l11 + (n .- I)XIf1httt :S; (II - 1). V s, p, b. t, and 11 ~ 2. (12)
.rEl t!.,) 1/1 II

L L X "fl llIlII + NX'Phl1 -s N.
I II .r-' \

V p. h. t , and s E NONEST. (,13)

L 2: X " /J hlll l + (N - n)X,phlll -s (N - n) ,
,,, £(1(.Il 11/ ' /1

V s E NOOUT. p. h. t and II :s (N .. I). (14)

V p ; b. t and II ?: 2. (15)

V s, q. (10;
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X I / .hm E to. I}. 'tI s, p . b. fl . t.

Z lpblll E [0. 1]. 'tI s, p, b. n, t.

V" I E [U. 1]. 'tI s, q.

(17)

(18)

(1':)

In the above formulation. the objective function is to maximize the ship-to-berth
assignment benefits less a berth shift and unperformed service penalties. This penalty
decreases the total benefit of the plan each time a vessel is required to move to a different
berth or nesting position from day to day in order to receive required services at a new
berth or to free its current berth for another ship. Since the formulation encompasses
the entire planning horizon. the optimal plan takes into account the arrival on any day
of new ships and their required services. Initial ship positions are treated as arrivals on
day O. .

Constraints (6) limit the total length of ships berthed pier side at pier p to be less than
the length of the pier plus allowable extension. Constraints (7) ensure that each pier has
sufficient power cables to support ships berthed alongside. Constraints (8) provide room
for a tug to maneuver among ships berthed in each basin. Constraints (lJ) ensure each
ship is uniquely berthed when scheduled to be in port while constraints (10) allow at
most one ship per bathing position. Constraints (11) calculate berth shifting. To illus­
trate. consider shifting ship FFG5 which is berthed at pier lIN. berth 2. nesting position
3 on day 5 to pier ION. berth 1. nesting position 1 on day 6. The constraints (11) yield
the following equations of interest.

XFFl i5.ION.1.1.6 - XFFG~ . I IlN .1.1.5 ~ ZFFG:, .ltlN .l. l. (>'

where XFF<i5. I IN.2.J .h = (), XFFG5.II N.2.:U =1, XFFG5 .l lIN .l.l.cl = 1. and X FFCl5.ION .I. J5 = o.
With these values. the left-hand side of the first inequality evaluates to -' 1. This implies
that ZFFl;5 .11!'C..~ ,(1 equals zero at optimality since its objective function coefficient is
positive. Similarly, the left-hand side of the second inequality evaluates to 1 which in
turn forces ZFHi5.l fJ N.1.1.h to be I to account for shifting FFG5 to a new berth on day 6.

Constraints (12) ensure that shorter ships are berthed outside longer ships while con­
straints (13) make sure that ships which cannot be nested are berthed by themselves.
Constraints (14) guarantee that no ship is berthed outboard from ships which request
it. Constraints (i5) ensure that berthing positions are filled sequentially. Finally. con­
straints (ltl) determine which services are unfulfilled. When service q for ship s cannot

be fulfilled . the first term in (16) sums to zero which requires VI'I to be I to satisfy the
inequality. When considered in conjunction with the last term in the objective function.
these constraints insure problem feasibility when it is impossible to fulfill all requested
services.

IV. SHIP BERTHING EXAMPLE

A prototypic model has been evaluated using a GAMS generator PI and initially
solved with XS [-ll. The model has been tested using an example with 17 ships, eight
piers (sec Fig. 1). and a 6-day planning horizon.
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Table 1. Ship characteristics.

Power ;../0 Shifting
Ship Length Draft cables Arrive Depart Beam Inspect Deploy nesting penalty

AFS2 5Hl 24 4 5 5 7lJ 400
AOR4 65\.) 33.3 3 .3 5 96 son
DDG4 437 20

, ..,
5 47 .300.' -

DDG6 437 20 3 5 47 300
LHA4 H4() 26 14

,
5 1116 400-

BB61 xX7 3X h
..,

lOX 500-
BBhla XH7 3X 6 :; 5 illS 50l)

CYN71 UUO 37 H 5 IJ~ woo
CYo7 lJU() 35.9 24 5 1311 200 100l!
CY66 UOO 37 24 .3 nil 200 IOOl)

CGn 547 2X.S 4 4 54.X .350
CG30 547 2S.H 4

.,
5 54.X 35l)-

CGJ~ 547 2X.S 4 4 5 54 .S 350
CG4X 567 33 6 I 3 55 WO 350
CG51 5116 31 b 1 J 55 350
FFG5 414 24.2 :2 1 4 44.2 100 3l)O
TAFX 524 22

..,
1 J T2 400-

TAOl~N 67x 34.5 4
.,

4 97.5 400

This example incorporates a wide variety of ship types: carrier, frigate. destroyer.

cruiser. oiler. and battleship. The physical characteristics of each ship include length,

draft, number of shore power cables required, arrival date, departure date, beam, and

whether the ship can nest. Inspection and deployment factors are identified along with

the penalty incurred if a berth shift is required. Table 1 displays a sample of data input

for the 17-ship example problem.

To identify any particular ship or ship type, refer to Jane's Fighting Ships, 199~. BB6la

indicates a second inport period for 8B61 during the planning horizon. Each pier is

characterized in Table 2 by its length, depth and shore power available. The services

available pierside include diesel fuel (DFl'\'1), lP5 fuel. Military Sealift Command (MSC).

Stores. 140T crane, DESRON2 (DRON2) and COMDESTRUB (CD68) sponsorship.

and ordnance handling certification. Table 3 shows the pier and service availability used

in the sample problem. The weighted values assigned to each ship for requested services

are seen in Table 4.

Table 2. Pier attributes .

Pier Length Depth Power cables

12~ 130() 50 24
12S 1300 50 24
liN 1397 50 2~

lIS U97 50 24
ION 130() 3X SCi
7N 1350 45 24
75 1350 4S 21
45 13-+7 40 24
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Table 3. Pier/service avail ability.

JP5 MSC STR I40T 4160V DRON2 ORDN

1 1 1
I 1 I

1 I
1 1

CD68 TEND

The remaining physical characteristics for all ships. piers. and basins essential to the
problem are given in the complete GAMS model shown in [14] and also available from
GAMS Development Corporation. The resulting integer program generated by GAMS
has been solved using XS. Figure 3 illustrates the resulting berthing plan. A narrative
script follows:

Day 1: Both FF05 and con arc required to berth shift in orde r to make room for the arrival

and berthing or CVn7. The crosses outboard con indicate that ship's request for none
to berth outboard.

Day 2: T A O I~ 9. L HA ~. DD04. and COJ O arrive inport. C0 51 berth shifts to allow C030 to

berth piersidc in accordance with the scheduler's input.

Day 3: BBCiI. C051. and TAFH depart and arc underway on Day .3 whereas A OR~ arrives in

port.

Day ..1-: CO-tH and ('V66 arc underway. COJ-t arrives at the base and assumes the bert h vacated

by CO~H .

Dav 5: On Day 5 AFS2 arrives inport and BBol return s (as BBMa l hut to a different berth .

TA OlH'J. FFU5. und con arc underway for sea .

Table 4. LOGR EQ properties for ship services.

Ship DFM JP5 MSC STR 140T ..HoOV DRON 2 ORDN CD6H TEND

AFS2 hOO 600
AOR4 750 750
LHA4
DDG-t
DDG6
BBhl
BBn la bOO
CVN71 YOO Yl)Y
CVb7 YO!)
( V66 I)Oll
CG27 .lOll
CGJO -tOil
CG34 .lOll
CG4X 4(1)

COSI .lOll
FFGS 20U
TAFX '700 70(j -tOO
TAOl , ~l) 71lll
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V. COMPUTATIONAL EXPERIENCE

GAMS. the General Algebraic Modeling System [2}. "is designed to make the con­

struction and solution of large and complex mathematical programming models more

straightforward for programmers and more comprehensible to users of models". GAMS

has been developed to [3}:

• Provide a high-level language for the compact representation of large and complex models.

• Allow changes to be made in model specifications simply and safely.

• Allow unambiguous statements of algebraic relationships.

• Permit model descriptions that are independent of solution algorithms.

GAMS enabled experimentation and easy changes to both the prototypic ship berthing

model and its supporting data. The dollar operator feature in GAMS "provides powerful

and concise exception-handling capability." Explicit if-then-else statements constructed

within an equation or assignment makes a program more manageable by decreasing the

number of equations and variables generated [3]. To illustrate. the compatibility data

Clpilirl is represented as a PARAMETER C(S. P. B. N. T) and constraints (7) become
the following EQUATION.

POWER(P. T) . .

SUlvt((S. B. N)$C(S. P. B. N. T). X(S. P, B. N. T) "SD(S, 'PWR')) = L = PD(P. 'PWR'):

Here. the dollar operator controls the indices of the summation and GAMS only sums

over those indices for which C(S, P. B. N. T) is nonzero, thereby generating only those

variables necessary for the model.

The example problem has 1747 constraints. 4522 continuous variables, <)42 binary

variables. and 25,904 nonzero coefficients . Using Amdahl 59<)0-500 mainframe. GAMS

generates this model in 6 seconds. The default X-system [5] solves the LP relaxation of

the example in 2 seconds and renders an optimal integer solution in another second.

Our goal is to demonstrate that the port scheduling model can also be solved quickly

and reliably at realistic scale on a modest personal computer (e .g., [1]). A 4X6/50-MHz
personal computer with MS-DOS 5.0 operating system and SVS C3 FORTRAN [131
generates the example problem in 17 seconds. solves the LP relaxation in 13 seconds

and finally renders an integer solution within 0.<)% of optimality in another 22 seconds,

We expect to be able to improve this performance significantly by tuning. This is im­

portant because the full-scale Norfolk berth scheduling problem will require some ad­

vanced optimization techniques. To illustrate, a problem with 24 piers. 144 berths, and

74 ships in port an average of five days over a 7-day berthing plan contains up to 120.107

constraints and 53,2XO binary variables.

Although GAMS is a powerful tool. it can be expensive in terms of computer resources

to use routinely and repeatedly. Recall that the example model requires 6 seconds on

the Amdahl and 17 seconds on the PC just to generate the input for an optimizer. After

solution. simple report writing takes 3 and 6 seconds on the mainframe and PC . re­

spectively . By contrast. models of equivalent size and complexity are generated in a

second or less on the mainframe by use of customized problem generators written in

general-purpose compiled languages (e.g.. FORTRAN). Such old-fashioned generators

and report writers take longer to write and debug than GAMS and are harder to modify.

hut they generate with enormously improved efficiency.
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VI. CONCLUSIONS

Optimization-based berth scheduling is feasible and effective. The prototype intro­
duced and developed here gives compelling evidence that a computer-based model can
express the berthing problem concisely and automatically produces berthing plans cap­
turing an enormous amount of the realism and detail that make such scheduling a

~ ~

challenging manual chore. Better yet. the method developed here encourages human

interaction.
In the context of the proposed model. extensive user-friendly facilities can be accom­

modated to allow a port operations scheduler to manually assign a ship to a specific
berth, subset of piers/berths or nesting position. The optimization model then completes
the tedious details of the berth plan. Thus. the port operations scheduler can naturally
express any "human judgement" issues and the optimization assures that high-quality
berth plans are easily and quickly produced.

This optimization program would also give the scheduler the flexibility to evaluate
alternate "what if' berthing plans. In this role. quick-response identification of upcoming
infeasibilities may be as useful as comparative evaluations of the relative merit of alter­
nate plans. There is no current manual analog for this capability. nor is it likely that the
manual time and effort will be available to devote to much more than cursory analysis
of schedule changes.

Independent of the research reported here. NARDAC [101 has designed a computer­
based data management system. called BASIS (Bases and Stations Information System)
which has a Port Services module. The decision support model we propose is ideally
suited for integration into such a system.

Port scheduling iscrucial to the U.S. Navy. Considering the tempo of schedule changes
and the meticulous detail which preparation of every schedule must consider. a manual
scheduler is hard-pressed to weigh myriad alternatives and fine-tune every alteration. It

is inevitable that oversights will lead to delays. If an automatic, optimization-based
decision support system prevents unnecessary delays or berth shifts. then such a system
clearly contributes to the readiness of the fleet.

APPENDIX A. NAVAL STATION NORFOLK BERTH

SCHEDULING GUIDELINES

1. Due to pier superstructure. the following ship types cannot berth at these prohibited locations:

Ship type

LSD. LPD
CViCYN

Prohibited locutions

Pier ~ berths :; and t)

Pier 2. 3. -4. 10

, The rendering. system limits the ship types certain piers an: or can be configured for. All other

ship types may go to any berth provided it is physically feasible and shore power is available.

Ship type

BB
LHA
LPH
LPD
CY;CYN

Compatible piers

all except 10

5.7, 10. 1J. 12. ~5N
2.5.7.11.12

2.3. -4. 5. 7.10-5.11.12

7 ~ . II. 12
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3. Ships would like to be berthed at piers that their respective squadrons sponsor.

Pier

20

21

2·L 25
10.25

Sponsor squadron

SERYGRU ~

DESRON 2

DESRON 10

CRUDESGRU }(

-I. During high port loading. ships berthed bow out rnuv extend up to 20 feet beyond the end

of the pier.
5. Maintain a distance or 50 feet between ships berthed how-to-bow, bow-to-stern . stern-to-

how. and 25-50 feet between a ship' s how-to-stern and a seawall.

h. The larger the ship. the higher its priority should be in receiving services.

7. Do not nest CY. CYN. LHA. LPH. and LPDs due to their hull structure .

fl, An outboard ship's length must he less than or equal to the inboard ship's length. This

minimizes the stress on mooring lines. However. during high port loading. the outboard ship

may he up to 20 feet longer.

\). Preferably. bath ships in "UPKEEP" near a tender or Ship Intermediate Maintenance Facility

(SIMA). responsible for repairs.

10. Certain services are rendered only at specificpiers: e.g. . refueling pier side. ordnance transfer.

major stores loading. collimation (pier... 5. 7.24.25: berths I and 2). sonar testing (bow out.
end of pier). and 'cranes,

II . The maximum number of ...hips nested is usually two hut may be a" many as lour. This is

primarily due to shore power limitations.

12. If LHAs require lowering their ramp. they must do so on piers 5.7. 11, or 12. (The drive­
on and -off ramp is used to load vehicles.)

n. Certain ships must go to specific berths (e.g.. lJSS Mount Whitney. Pier ~5-1) .

1-1 . Ships preparing I'm deployment and inspections have a higher priority for services than others

of the same ship type.

15. Two ships of certain classes. Spruuncc. Oiler. BB. Ticonderoga. Yorktown, DOG . FF. may
herth Chinese (bow-to-stern). This is nut a major factor but may he a considerat ion. (This

is an infrequent event .)

If>. Ships undergoing a Radiation Hazard (RADHAZ) survey must he ~(KI feet out of range of

any line-of-sight shore structure or other ship's superstructure. (This is an infrequent cvcnt .)
17. Berth ships (AUE. AO . AOR. AFS) requesting inport underway stream qualification training

tests. and underway replenishment standard qualification trials (UNREP SOTS) across from

each other in the same basin or across an unobstructed pia. (This is an infrequent evcru.)

See Figure -I.

Ik. SUBRON II and Harc responsible for assigning submarines and tenders to berths on piers 22

and 23. Thus. piers 22 and 23 arc removed from our consideration.

l~ . Phone lines: fresh water : 125 psi steam: and collection, holding, and transfer (CHT) hookups

arc not scarce at the Norfolk Base and are therefore not considered in the model.

1 2

~ ~

Figure 4. U~REP SOTfS berthing positions.
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